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Non-linear shrinkage estimation of large-scale structure covariance
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ABSTRACT
In many astrophysical settings, covariance matrices of large data sets have to be determined
empirically from a finite number of mock realizations. The resulting noise degrades inference
and precludes it completely if there are fewer realizations than data points. This work applies
a recently proposed non-linear shrinkage estimator of covariance to a realistic example from
large-scale structure cosmology. After optimizing its performance for the usage in likelihood
expressions, the shrinkage estimator yields subdominant bias and variance comparable to that
of the standard estimator with a factor of ∼50 less realizations. This is achieved without any
prior information on the properties of the data or the structure of the covariance matrix, at a
negligible computational cost.

Key words: methods: data analysis – methods: numerical – methods: statistical – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The covariance is an indispensable ingredient for inference from
data, quantifying the varying levels of statistical uncertainty among
the data points as well as their correlations. In many astrophysi-
cal situations, the covariance is not known a priori and has to be
determined from measurements along with the data, turning the
elements of the covariance matrix themselves into random vari-
ables with associated errors. Cosmological data analysis faces a
particular challenge in that only a single realization of the data is
available, and that treating representative subsamples of the data
as quasi-independent may be inaccurate due to long-range spatial
correlations of the signals under investigation (Norberg et al. 2009).
Therefore, one usually resorts to estimating a standard sample co-
variance matrix from simulated realizations of the data.

The finite number of mock data realizations induces noise in the
covariance estimate that propagates into the errors of inferred model
parameters, which was first explicitly pointed out in a cosmological
context by Hartlap, Simon & Schneider (2007) and subsequently in-
vestigated in detail (Dodelson & Schneider 2013; Taylor, Joachimi
& Kitching 2013; Percival et al. 2014; Taylor & Joachimi 2014;
Sellentin & Heavens 2016). For Gaussian distributed data, the sam-
ple covariance follows a Wishart distribution. While, for example,
the fields and derived statistics probed in cosmic large-scale struc-
ture (LSS) surveys follow strongly non-Gaussian distributions, the
derived properties of the covariance inferred from the Wishart dis-
tribution turn out to still be applicable to a very good approxima-
tion (Dodelson & Schneider 2013; Petri, Haiman & May 2016).
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A generic property of a Wishart matrix is that it becomes singular
if the number of realizations used to estimate it, NS, becomes less
than the size of the data vector, ND, prohibiting its use in likelihood
analysis or least-squares fitting, for which the inverse covariance is
required. This implies that NS � ND often computationally expen-
sive simulations are required to determine the covariance, where
ND ∼ 1000 will be readily surpassed by forthcoming cosmological
surveys.

To lessen this computational bottleneck in the analysis, ND could
be reduced via data compression, but good knowledge of the co-
variance is necessary to achieve near-optimal compression (e.g.
Tegmark, Taylor & Heavens 1997). Innovative schemes to augment
a given number of simulations via resampling techniques have been
proposed as well (Schneider et al. 2011; Escoffier et al. 2016). Al-
ternatively, one can replace the sample covariance estimator with
a generally biased one that has favourable noise properties. Paz
& Sánchez (2015) proposed to taper correlations far from the di-
agonal, which, however, requires a notion of distance between all
elements of the data vector. Padmanabhan et al. (2016) investigated
the direct estimation of inverse covariance matrix elements, by-
passing the sample covariance altogether. Linear shrinkage towards
a modelled target (Pope & Szapudi 2008) or a constant correla-
tion coefficient (Simpson et al. 2016) has seen LSS applications.
These estimators relied on the accuracy of the assumed model or
structure of the covariance matrix, respectively, and were limited to
a single global shrinkage intensity for all matrix elements, which
can be suboptimal in improving the conditioning of the covari-
ance (Ledoit & Wolf 2012). It is therefore timely to assess the
performance of a non-linear generalization of shrinkage covariance
estimators, which has the added benefit of not relying on models or
assumptions about the structure of the covariance matrix.
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2 SH R I N K AG E E S T I M ATO R

This work adopts the NERCOME1 estimator recently proposed by Lam
(2016), which in turn capitalized on earlier work by Abadir, Dinasto
& Žikeš (2014) and Ledoit & Wolf (2012). Let X = (x1, . . . , xNS )
be a ND × NS matrix of NS realizations (independent measurements)
of the data vector, xi , each of length ND. The data have covariance
�, which, however, is unknown a priori. In the following, it is
assumed that the xi are mean-subtracted and have potentially been
normalized, i.e. their elements are given by xαi = (xraw

αi − μα)/nα ,2

where μ is the vector of means (also estimated from the data) and
n is a normalization vector with noiseless entries. The standard
sample covariance estimator reads

Ŝ = 1

NS − 1
X Xτ , (1)

which is unbiased, 〈Ŝ〉 = �. A key idea of NERCOME is to divide the
data set into two subsamples, X = (X1,X2), with X1 an ND × s
matrix and X2 an ND × (NS − s) matrix. The sample covariance can
also be measured from each subset, denoted by Ŝi , with i = 1, 2.
The estimator uses the diagonal decomposition of these estimates,
Ŝi = Ui Di U

τ
i , where U is the matrix of eigenvectors and D is

a diagonal matrix with entries dαβ = δαβ λα , where λα are the
eigenvalues and δ is the Kronecker delta.

The NERCOME estimation process consists of three steps:
(1) apply the basic estimator

Ẑ ≡ U1 diag
(
Uτ

1 Ŝ2 U1

)
Uτ

1 (2)

to a given subdivision of X;
(2) average over different compositions of (X1,X2) for a given

location s of the split, of which there are
(

NS
s

)
;

(3) find the optimal location of the data vector split by minimiz-
ing

Q(s) =
∣∣∣
∣∣∣Ẑ(s) − Ŝ2(s)

∣∣∣
∣∣∣2

F
, (3)

where the bar denotes the average of step (2), and where ||A||2F =
Tr(AAτ ) is the Frobenius matrix norm. An estimate for the inverse
covariance is then simply provided by the inverse of the covariance
estimator.

Equation (2) takes advantage of the fact that Ŝ1 and Ŝ2 are es-
timated independently of the data, so that their combination can
be expected to be less adversely affected by noise when estimating
the diagonal elements of the covariance. Lam (2016) showed that
Uτ

1 Ŝ2 U1 is the expression for the diagonal elements that minimizes
the difference to the true covariance in the Frobenius norm. Abadir
et al. (2014) demonstrated that the subsequent averaging over a
moderate number of compositions of (X1,X2) suppresses noise
in Ẑ. Here, that number is chosen to be Nav = min

{(
NS
s

)
; 500

}
,

where, in the latter case, combinations are drawn at random once(
NS
s

)
> 3Nav. Equation (3) is minimized by evaluating Q at 20

equidistant steps in s in the range of [0.1NS; 0.9NS]. Since Q itself
is a rather noisy quantity primarily through Ŝ2, which serves as an
unbiased estimate of the true covariance matrix, results for a fixed
split at s/NS = 2/3 (meaning two-thirds of the data are used to
estimate U) are also reported.

NERCOME is close to ideal when the true covariance is a multiple of
the identity, a I, as asymptotically the value of U becomes irrelevant

1 Non-parametric Eigenvalue-Regularized COvariance Matrix Estimator.
2 Latin indices denote different realizations, while Greek indices cycle
through the elements of the data vector.

and most constraining power can be focused on estimating the
single number a (Lam 2016). It is therefore advisable to whiten
the covariance by an informed choice of the normalization, n, if
possible, in case an optimal estimate of � in a mean square error
sense is the goal. However, in physical applications, one is usually
more interested in controlling the uncertainty and bias of weighted
sums of inverse covariance entries that enter likelihood analyses
and weighted least-squares fits. This is assessed here by using the
scalar quantity F ≡ (S/N)2 = mτ �−1m as the figure of merit for
covariance estimation, where m is the best-guess model of the data
vector. Setting n = m for the remainder of this work, the NERCOME

formalism now optimizes the performance with respect to the same
combination of covariance elements as those in F.

An incorrect choice of the model m will not per se lead to biased
inference on cosmological parameters but to a potentially subopti-
mal performance of the NERCOME algorithm (which could then imply
biases on the posterior distribution). As long as signals can be pre-
dicted to within a few tens of per cent accuracy, the uncertainty
should only marginally affect the NERCOME estimate.

3 A TOY EXAMPLE

The performance of NERCOME is first illustrated with a toy example,
based on uncorrelated, Gaussian distributed data with standard error
5 for the first half of the data vector, and 1 for the second half. The
resulting spectrum of eigenvalues is shown in Fig. 1 for the standard
sample covariance and NERCOME. Since the matrix of eigenvectors
is orthogonal and thus always well conditioned, all ill-conditioning
due to noise shows up in the eigenvalues. This is apparent for the
sample covariance with small eigenvalues decreasing and large ones

Figure 1. Spectrum of eigenvalues of an ND = 30-dimensional covariance
estimate for the toy example of uncorrelated data with standard errors of 1
and 5 for 50 per cent of the data set, respectively (see black dashed line).
Coloured curves result for different numbers of realizations of the data, NS.
Top panel: sample covariance estimates. Bottom panel: NERCOME estimates.
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Figure 2. Left-hand panel: ‘true’ covariance (sample covariance determined from NS = 2000 realizations). Shown are the absolute values of the covariance
elements, with negative elements indicated by the additional black markers. The block structure reflects the use of three tomographic redshift bin combinations,
with ξ+ and ξ− calculated for each combination. Middle panel: sample covariance for NS = 200, normalized by the diagonal elements of the true covariance
(see equation 4). Right-hand panel: same as the middle panel but for the NERCOME estimate with NS = 20.

strongly increasing as the number of realizations decreases. Once
NS < ND + 2, at least one eigenvalue vanishes so that the covariance
becomes singular (e.g. Taylor & Joachimi 2014).

NERCOME shrinks both excessively large and small eigenvalues
back towards the true values, avoiding singular values altogether.
It can be shown (Lam 2016) that NERCOME estimates are positive
definite with probability 1 (i.e. the exceptions constitute a set of
measure zero) and consistent (approaching � for NS → ∞). The
shrinkage is non-linear in that different eigenvalues are shrunk by
different amounts (see Pope & Szapudi 2008 for an illustration of
linear shrinkage). NERCOME consistently overestimates the smallest
eigenvalues for low values of NS, a feature that is also present in the
following more realistic example.

4 SI M U L ATI O N SE T U P

A realistic and challenging performance test is provided by the co-
variance of the two-point correlation functions ξ± of cosmic weak
lensing, measured deeply into the non-linear regime of structure
formation (see Kilbinger 2015 for a recent review). A large suite
of simulated weak-lensing shear catalogues is created by produc-
ing coupled lognormal random fields from angular power spectra
calculated for a vanilla flat 	 cold dark matter cosmology and as-
suming a minimum lensing convergence value of κ0 = −0.012
(Hilbert, Hartlap & Schneider 2011). The redshift distribution of
source galaxies is set to have a median of 0.8, and is split at the
median into two tomographic bins. The mock survey is assumed
to have an area of 25 deg2 and a source galaxy number density
of 10 arcmin−2 per tomographic bin, with a total galaxy elliptic-
ity dispersion of 0.35. While the choice of survey area leads only
to a rescaling of the covariance (note that the simulations have
periodic boundary conditions and no masks), the number density
determines the level of shot noise that contributes to the diago-
nal (and some sub-diagonals) of the covariance. Current and future
surveys will choose their redshift binning such that at most a few
galaxies per arcmin2 will be in each bin, so that the choice above

will lead to larger cross-correlations than expected in real-world
applications.

From the 2000 mock realizations created in total, the shear corre-
lation functions ξ± are measured for all three redshift–bin com-
binations in 20 angular bins, logarithmically spaced between 1
and 180 arcmin, with the tree code ATHENA (Kilbinger, Bonnett &
Coupon 2014), constituting a total data vector of length ND = 120.
The resulting covariance is shown in Fig. 2 and is challenging
for non-standard estimators in that it has a high condition number
(∼3000), a high level of correlation (numerous off-diagonal ele-
ments with correlation close to ±1; see the middle panel of Fig. 2)
and a complex structure, including several discontinuities.

5 PE R F O R M A N C E

The eigenspectra for the simulated covariance, shown in Fig. 3, are
qualitatively similar to the toy case; NERCOME estimates are consis-
tent, remain positive definite and display a positive bias across the
spectrum. This is reflected in an overestimation of covariance ele-
ments, particularly the diagonal ones, which increases as NS drops.

This is illustrated in the right-hand panel of Fig. 2, where a
correlation matrix normalized with respect to the diagonal elements
of the ‘true’ covariance (sample covariance for NS = 2000),

r true
ij ≡ Cij /

√
C true

ii C true
jj , (4)

is shown. For NS = 20, diagonal elements are larger by a factor of up
to 4. Otherwise, all main features in the correlation matrix have been
reproduced, despite the small number of realizations (cf. the sample
covariance in the centre panel). This trend persists irrespective of
whether n is set to unity or to m; hence, NERCOME is a poor choice
of estimator if the covariance itself is the desired outcome of the
estimation process.

In Fig. 4, the performance in terms of the signal-to-noise ra-
tio, F, is shown. Under the assumption that the sample covariance
is Wishart distributed, the distributions of its inverse and linear
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Figure 3. Same as Fig. 1 but for the cosmic weak-lensing covariance shown
in Fig. 2. The ‘true’ spectrum as measured from the sample covariance
with NS = 2000 realizations is given by the black dashed line. Note the
logarithmic scaling of the ordinate axes.

Figure 4. Relative bias (top panel), variance (centre panel) and mean square
error (bottom panel) for the squared signal-to-noise ratio, F, as a function
of the number of data realizations, NS, used to estimate the covariance.
Blue circles (grey diamonds, red squares) correspond to using the sample
covariance (default NERCOME, NERCOME with a split fixed at s/NS = 2/3). The
black solid curves show the analytic expectation for the sample covariance.
The vertical grey dashed line indicates NS = ND = 120.

Figure 5. Comparison of parameter constraints in the �m–σ 8 plane, using
different covariance estimates in a Fisher matrix calculation, as indicated in
the legend.

mappings thereof can be calculated analytically. It follows that an
estimate of F derived from using the inverse of the sample co-
variance is distributed according to F̂ ∼ Inv−χ2(F, NS − ND)
(Eaton 2007). This allows for the calculation of the relative bias
and rms noise of F, given by

rb ≡
〈
F̂

〉
F

− 1 = NS − 1

NS − ND − 2
; (5)

rV ≡

√〈(
F̂ − 〈

F̂
〉)2

〉

F
=

√
2 (NS − 1)√

NS − ND − 4 (NS − ND − 2)
; (6)

see Taylor & Joachimi (2014) for the details regarding moment
calculations. For a given NS, the mean and variance of F̂ entering
rb and rV are calculated via a delete-one jackknife. The analytic
predictions agree excellently with the simulation results, validating
the approach. Both bias and variance diverge as NS → ND, with
Ŝ moving ever closer to becoming singular. The standard NERCOME

estimator performs very well, displaying a small, marginally sig-
nificant bias over the range of NS probed and a relative rms error
that peaks around NS ≈ ND and reduces to ∼0.2 for both large and
small NS. For NS > 400, the variance of F̂ via NERCOME surpasses
that using Ŝ, which could be beaten down by increasing Nav, but
the sample covariance estimator is the more efficient choice in this
regime anyway. The location of the split fluctuates typically be-
tween s/NS = 0.5 and 1, as NS varies, and tends to larger values
in the regime where rV peaks. An alternative run of NERCOME with
s/NS fixed at 2/3, also shown in Fig. 4, returns a slightly smaller
and almost constant mean square error, at the price of a somewhat
larger bias contribution for some values of NS. Overall, NERCOME

down to NS = 10 (cf. Fig. 2, right-hand panel) is competitive with
the sample covariance estimator at NS ∼ 500 in terms of the mean
square error.

To assess the impact on cosmological posteriors, the different
covariance estimates are inserted into a Fisher matrix forecast (fol-
lowing Tegmark et al. 1997) for the two most strongly constrained
parameters for the toy weak-lensing survey outlined above, �m and
σ 8, with results shown in Fig. 5. For NS = 500, NERCOME is very
close to the result for the ‘true’ covariance, while the sample co-
variance underestimates the width of the posterior, corresponding
to an overestimate of F. The latter bias can largely be removed by
applying the analytic correction of the mean bias, as proposed by
(Hartlap et al. (2007) (cf. Fig. 4, top panel). The NS = 10 NERCOME
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estimate accurately reproduces the degeneracy direction and the
size of the minor axis of the posterior ellipse but biases the major
axis moderately high. Note that the choice of normalization n in
this work is optimal for F but not necessarily so for elements of the
Fisher matrix.

6 C O N C L U S I O N S

This work marks the first application of a non-linear shrinkage
estimator of covariance in an astrophysical context, using a real-
istic example of a tomographic cosmic weak-lensing analysis that
features a high condition number, high levels of correlation and a
complex structure of the covariance matrix. After rescaling with
a model of the data vector, the NERCOME estimator is able to esti-
mate a function of the inverse covariance that has the same form
as a Gaussian log-likelihood with subdominant bias and with vari-
ance that scales only mildly with the number of realizations of the
data vector. Well-conditioned covariance estimates in the regime
of much fewer realizations than data points are readily achieved.
Compared to the standard sample covariance estimator, a factor of
50 less realizations are required to achieve the same mean square
error, without any assumptions on the statistical properties of the
data or the form of the covariance matrix, beyond those made for the
sample covariance estimator (such as independently and identically
distributed data).

The NERCOME estimator is consistent and almost surely positive
definite. Its algorithm is simple, mainly consisting of eigenvalue
decompositions, and trivially parallelizable in the subsequent aver-
aging and split optimization steps. On a single core of a standard
UNIX work station, NERCOME takes ∼6 s of wall-clock time per split
location for the 120-dimensional data vector and setup considered
in this work, so it adds a negligible runtime to an analysis pipeline.
A downside is the lack of a priori control over the bias of the estima-
tor, which depends on the details of the structure of the covariance
matrix, an issue which is shared with most alternative estimators
of covariance (e.g. Pope & Szapudi 2008; Paz & Sánchez 2015).
However, fast approximate simulations based on random fields (see
e.g. Xavier, Abdalla & Joachimi 2016) are well suited to assess
these biases and optimize the free parameters of the estimators.
Further work is required to assess the impact of these alternative
covariance estimators on the fidelity of posteriors. A first cursory
test with NERCOME revealed a moderate bias for very low NS along
the least constrained direction in parameter space.

Further suppression of adverse noise effects from covariance
estimation can be achieved by explicitly incorporating prior infor-
mation, which can range from the assertion of smoothness in the
elements of (sub-)matrices to physically motivated effective models
of the full covariance with a small level of residual degrees of free-
dom (see Mandelbaum et al. 2013; O’Connell et al. 2015; Pearson
& Samushia 2016, for recent applications). A combination of such
covariance modelling with the principles of non-linear shrinkage es-
timation as employed in NERCOME is a promising avenue. Likewise,
a combination of shrinkage with resampling techniques directly ap-
plied to the data could potentially obviate the need for simulated
data altogether, provided the challenges of bias induced by long-
range spatial correlations can be overcome (Norberg et al. 2009;

Friedrich et al. 2016). Since a NERCOME-like estimator does not
set any requirements on the structure of the data vector (such as
smoothness or a notion of distance), it can also readily be combined
with the compression of the data vector as a preprocessing step (see
Taylor et al. 2013, and references therein, as well as Zablocki &
Dodelson 2016 for a recent example).

An implementation of NERCOME in C is made available with this
publication.3
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