
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1608–1616,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Generate Textual Data

Guillaume Bouchard†‡∗ and Pontus Stenetorp†∗ and Sebastian Riedel†
{g.bouchard,p.stenetorp,s.riedel}@cs.ucl.ac.uk
†Department of Computer Science, University College London

‡Bloomsbury AI

Abstract

To learn text understanding models with
millions of parameters one needs massive
amounts of data. In this work, we argue that
generating data can compensate for this need.
While defining generic data generators is dif-
ficult, we propose to allow generators to be
“weakly” specified in the sense that a set of
parameters controls how the data is generated.
Consider for example generators where the ex-
ample templates, grammar, and/or vocabulary
is determined by this set of parameters. In-
stead of manually tuning these parameters, we
learn them from the limited training data at
our disposal. To achieve this, we derive an ef-
ficient algorithm called GENERE that jointly
estimates the parameters of the model and the
undetermined generation parameters. We il-
lustrate its benefits by learning to solve math
exam questions using a highly parametrized
sequence-to-sequence neural network.

1 Introduction

Many tasks require a large amount of training data
to be solved efficiently, but acquiring such amounts
is costly, both in terms of time and money. In several
situations, a human trainer can provide their domain
knowledge in the form of a generator of virtual data,
such as a negative data sampler for implicit feedback
in recommendation systems, physical 3D rendering
engines as a simulator of data in a computer vision
system, simulators of physical processes to solve
science exam question, and math problem genera-
tors for automatically solving math word problems.

∗ Contributed equally to this work.

Domain-specific data simulators can generate an
arbitrary amount of data that can be treated exactly
the same way as standard observations, but since
they are virtual, they can also be seen as regularizers
dedicated to the task we want to solve (Scholkopf
and Smola, 2001). While simple, the idea of data
simulation is powerful and can lead to significantly
better estimations of a predictive model because it
prevents overfitting. At the same time it is subject
to a strong model bias, because such data genera-
tors often generate data that is different from the ob-
served data.

Creating virtual samples is strongly linked to
transfer learning when the task to transfer is corre-
lated to the objective (Pan and Yang, 2010). The
computer vision literature adopted this idea very
early through the notion of virtual samples. Such
samples have a natural interpretation: by creating
artificial perturbations of an image, its semantics is
likely to be unchanged, i.e. training samples can be
rotated, blurred, or slightly cropped without chang-
ing the category of the objects contained in the im-
age (Niyogi et al., 1998).

However, for natural language applications the
idea of creating invariant transformations is diffi-
cult to apply directly, as simple meaning-preserving
transformations – such as the replacement of words
by their synonyms or active-passive verb trans-
formations – are quite limited. More advanced
meaning-preserving transformations would require
an already good model that understands natural lan-
guage. A more structure-driven approach is to build
top-down generators, such as probabilistic gram-
mars, with a much wider coverage of linguistic phe-

1608

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79548558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nomena. This way of being able to leverage many
years of research in computational linguistics to cre-
ate good data generators would be a natural and use-
ful reuse of scientific knowledge, and better than
blindly believing in the current trend of “data takes
all”.

While the idea of generating data is straightfor-
ward, one could argue that it may be difficult to
come up with good generators. What we mean by
a good generator is the ability to help predicting test
data when the model is trained on the generated data.
In this paper, we will show several types of gener-
ators, some contributing more than others in their
ability to generalize to unseen data. When design-
ing a good generator there are several decisions one
must make: should we generate data by modifying
existing training samples, or “go wild” and derive
a full probabilistic context-free grammar that could
possibly generate unnatural examples and add noise
to the estimator? While we do not arrive at a spe-
cific framework to build programs that generate vir-
tual data, in this work we assume that a domain ex-
pert can easily write a program in a programming
language of her choice, leaving some generation pa-
rameters unspecified. In our approach these unspeci-
fied parameters are automatically learned, by select-
ing the ones most compatible with the model and the
training data.

In the next section, we introduce GENERE, a
generic algorithm that extends any gradient-based
learning approach with a data generator that can be
tuned while learning the model on the training data
using stochastic optimization. In Section 2.2, we
show how GENERE can be adapted to handle a (pos-
sibly non-differentiable) black-box sampler without
requiring modifications to it. We also illustrate how
this framework can be implemented in practice for
a specific use case: the automatic solving of math
exam problems. Further discussion is given in the
concluding section.

2 Regularization Based on a Generative
Model

As with any machine learning approach, we assume
that given the realisation of a variable x ∈ X repre-
senting the input, we want to predict the distribution
of a variable y ∈ Y representing the output. The

goal is to find this predictive distribution by learning
it from examples D := {(xi, yi)}ni=1.

Building on the current success in the applica-
tion of deep learning to NLP, we assume that there
exists a good model family {fθ, θ ∈ Θ} to pre-
dict y given x, where θ is an element of the pa-
rameter space Θ. For example, the stacked LSTM
encoder-decoder is a general purpose model that
has helped to improve results on relatively complex
tasks, such as machine translation (Sutskever et al.,
2014), syntactic parsing (Vinyals et al., 2014), se-
mantic parsing (Dong and Lapata, 2016) and textual
entailment (Rocktäschel et al., 2016).

For many applications, the amount of training
data is too small or too costly to acquire. We hence
look for alternative ways to regularize the model so
that we can achieve good performance using few
data points.

Let pθ(y|x) be the target prediction model. Given
the training dataset D, the penalized maximum like-
lihood estimator is obtained by minθ∈Θ L(θ) where:

L(θ) := `(θ) + λΩ(θ) . (1)

where `(θ) := − 1
n

∑n
i=1 log pθ(yi|xi) =

EP̂ [log pθ(y|x)] is the negative log-likelihood.
Here, Ω(θ) is a regularizer that prevents over-fitting,
λ ∈ R the regularization parameter that can be
set by cross-validation, and P̂ is the empirical
distribution. Instead of using a standard regularizer
Ω – such as the squared norm or the Lasso penalty
which are domain-agnostic, – in this paper we
propose to use a generative model to regularize the
estimator.

Domain knowledge A natural way to inject back-
ground knowledge is to define a generative model
that simulates the way the data is generated. In text
understanding applications, such generative mod-
els are common and include probabilistic context-
free grammars (PCFG) and natural language gen-
eration frameworks (e.g. SimpleNLG (Gatt and
Reiter, 2009)). Let Pγ(x, y) be such a generative
model parametrized by a continuous parameter vec-
tor γ ∈ Γ, such as the concatenation of all the pa-
rameters of the production rules in a PCFG. One
important difference between the discriminative and
the generative probability distributions is that the in-

1609

ference problem of y given x might be intractable1

for the generative model, even if the joint model can
be computed efficiently.

In this work, we use the following regularizer:

Ω(θ) := min
γ∈Γ

EPγ(x,y)

[
log

(
Pγ(y|x)

pθ(y|x)

)]
.(2)

This regularizer makes intuitive sense as it corre-
sponds to the smallest possible Kullback-Leibler di-
vergence between the generative and discriminative
models. We can see that if the generator pγ is
close to the distribution that generates the test data,
the method can potentially yield good performance.
However, in practice, γ is unknown and difficult to
set. In this work, we focus on several techniques
that can be used to estimate the generative parameter
vector γ on the training data, making the regularizer
data-dependent.

Minimizing the objective from Equation (1) is
equivalent to minimize the following function over
Θ× Γ:

L(θ, γ) := `(θ) + λEPγ(x,y)

[
log

(
pγ(y|x)

pθ(y|x)

)]
.

This estimator is called GENERE for Generative
Regularization and can be viewed as a Generative-
Discriminative Tradeoff estimator (GDT (Bouchard
and Triggs, 2004)) that smoothly interpolates be-
tween a purely un-regularized discriminative model
when λ = 0 and a generative model when λ tends to
infinity.

2.1 The GENERE Algorithm

The objective L(θ, γ) can also be written as an
expectation under a mixture distribution P̃γ :=

1
1+λ P̂+ λ

1+λPγ . The two components of this mixture
are the empirical data distribution P̂ and the gener-
ation distribution Pγ . The final objective is penal-
ized by the entropy of the the generation H(γ) :=
EPγ [log pγ(y|x)]:

L(θ, γ) = −(1 + λ)EP̃γ
[log pθ(y|x)]− λH(γ) . (3)

1Even if tractable, inference can be very costly: for exam-
ple, PCFG decoding can be done using dynamic programming
and has a cubic complexity in the length of the decoded sen-
tence, which is still too high for some applications with long
sentences.

This objective can be minimized using stochastic
gradient descent by sampling real data or generated
data according to the proportions 1

1+λ and λ
1+λ , re-

spectively. The pseudocode is provided in Algo-
rithm 1. It can be viewed as a variant of the RE-
INFORCE algorithm which is commonly used in Re-
inforcement Learning (Williams, 1988) using the
policy gradient. It is straightforward to verify that
at each iteration, GENERE computes a noisy esti-
mate of the exact gradient of the objective function
L(θ, γ) with respect to the model parameters θ and
the generation parameters2 γ.

An important quantity introduced in Algorithm 1
is the baseline value µ that approximates the average
log-likelihood of a point sampled according to P̃γ .
Since it is unknown in general, an average estimate
is obtained using a geometric averaging scheme with
a coefficient α that is typically set to 0.98.

Algorithm 1 The GENERE Algorithm

Require: P̂ : real data sampler
Require: Pγ : parametric data generator
Require: λ: generative regularization strength
Require: η: learning rate
Require: α: baseline smoothing coefficient

1: Initialize parameters θ, sampling coefficients γ
and baseline µ

2: for t = 1, 2, · · · do
3: x, y ∼ 1

1+λ P̂ + λ
1+λPγ

4: gθ ← ∇θ log pθ(y|x)
5: gγ ← (log pθ(y|x)− µ)∇γ log pγ(x, y)
6: (θ, γ)← (θ, γ)− η(gθ, gγ)
7: µ← αµ+ (1− α) log pθ(y|x)
8: end for

Generative models: interpretable sampling, in-
tractable inference Generative modeling is natu-
ral because we can consider latent variables that add
interpretable meaning to the different components of
the model. For example, in NLP we can define the
latent variable as being the relations that are men-
tioned in the sentence.

2The derivative with respect to γ, leads to Algorithm 1 with
µ = −1, but the algorithm is also valid for different values of µ
as the average gradient remains the same if we add a multiple of
∇γ log pγ(x, y) to the gradient gγ (line 5 in Algorithm 1) which
has zero-mean on average. Choosing µ to be the average of the
past gradient enables the gradient to have a lower variance.

1610

We could consider two main types of approaches
to choose a good structure for a parameterized data
generator:

• Discrete data structure: we can use efficient
algorithms, such as dynamic programming to
perform sampling and which can propagate the
gradient

• Continuous distribution: having a continuous
latent variable enables easy handling of corre-
lations across different parts of the model.

It is often laborious to design data generators
which can return the probability of the samples it
generates3, as well as the gradient of this probability
with respect to the input parameters γ.

In the next section, we show how to alleviate this
constraint by allowing any data-generating code to
be used with nearly no modification.

2.2 GENERE with a Black Box Sampler
Let us assume the data generator is a black box
that takes a K-dimensional seed vector as input
and outputs an input-output sample x, y. To enable
GENERE to be applied without having to modify the
code of data generators. The trick is to use a exist-
ing generator with parameter γ, and to create a new
generator that essentially adds noise to γ. This noise
will be denoted ∆ ∈ Γ. We used the following data
generation process:

1. Sample a Gaussian seed vector ∆ ∼ N (0, I)

2. Use the data generator Gz with seed value z :=
∆+γ to generate an input-output sample (x, y).

This two-step generation procedure enables the
gradient information to be computed using the den-
sity of a Gaussian distribution. The use of a stan-
dardized centered variable for the seed is justified
by the fact that the parametrization of Gz takes into
account possible shifts and rescaling. Formally, this
is equivalent to Algorithm 1 with the following gen-
erative model:

pγ(x, y) = E∆∼N (0,I) [gγ+∆(x, y)] (4)

3This difficulty comes from the fact that generators may be
using third-party code, such as rendering engines, grammars
sampler, and deterministic operations such a sorting that are
non-differentiable.

where gz is the density of the black-box data gen-
erator Gz for the seed value z ∈ RK . Ideally, the
second data generator that takes z as an input and
generates the input/output pair (x, y) should be close
to a deterministic function in order to allocate more
uncertainty in the trainable part of the model which
corresponds to the Gaussian distribution.4

Learning The pseudo-code for the Black Box
GENERE variant is shown in Algorithm 2. It is sim-
ilar to Algorithm 1, but here the sampling phase is
decomposed into the two steps: A random Gaussian
variable sampling followed by the black box sam-
pling of generators.

Algorithm 2 Black Box GENERE

Require: P̂ : real data sampler
Require: G(γ): black box data generator
Require: λ: generative regularization strength
Require: ηγ , ηθ: learning rates

1: Initialize parameters θ, sampling coefficients γ
and baseline µ

2: for t = 1, 2, · · · do
3: if 1

1+λ > U([0, 1]) then
4: x, y ∼ P̂
5: else
6: ∆ ∼ N (0, I)
7: x, y ∼ Gγ+∆

8: γ ← γ − ηγ(log pθ(y|x)− µ)∆
9: end if

10: θ ← θ − ηθ∇θ log pθ(y|x)
11: µ← αµ+ (1− α) log pθ(y|x)
12: end for

3 Application to Encoder-Decoder

In this section, we show that the GENERE algorithm
is well suited to tune data generators for problems
that are compatible with the encoder-decoder archi-
tecture commonly used in NLP.

3.1 Mixture-based Generators
In the experiments below, we consider mixture-
based generators with known components but
unknown mixture proportions. Formally, we

4What we mean by deterministic is that the black-box sam-
pler has the form δ{f(∆ + γ) = (x, y)}, where δ is the indica-
tor function.

1611

parametrize the proportions using a softmax link
σ(t) := exp(tk)/

∑K
k′=1 exp(tk′). In other words,

the data generator distribution is:

pγ(x, y) =
K∑

k=1

σk(γ + ∆)pk(x, y),

where pk(x, y) are data distributions, called base
generators, that are provided by domain experts, and
∆ is a K-dimensional centered Gaussian with an
identity covariance matrix. This class of genera-
tor makes sense in practice, as we typically build
multiple base generators pk(x, y), k = 1, · · · ,K,
without knowing ahead of time which one is the
most relevant. Then, the training data is used by
the GENERE algorithm to automatically learn the
optimal parameter γ that controls the contribution
{πk}Kk=1 of each of the base generators, equal to
πk := E∆∼N (0,I) [σk(γ + ∆)].

3.2 Synthetic Experiment

In this section, we illustrate how GENERE can learn
to identify the correct generator, when the data gen-
erating family is a mixture of multiple data genera-
tors and only one of these distributions – say p1 –
has been used to generate the data. The other dis-
tributions (p2, · · · , pK) are generating input-output
data samples (x, y) with different distributions.

We verified that the algorithm correctly identifies
the correct data distribution, and hence leads to bet-
ter generalization performances than what the model
achieves without the generator.

In this illustrative experiment, a simple text-to-
equation translation problem is created, where in-
puts are sentences describing an equation such as
“compute one plus three minus two”, and outputs are
symbolic equations, such as “X = 1 + 3 - 2”. Num-
bers were varying between -20 and 20, and equa-
tions could have 2 or 3 numbers with 2 or 3 opera-
tions.

As our model, we used a 20-dimensional
sequence-to-sequence model with LSTM recurrent
units. The model was initialized using 200 iterations
of standard gradient descent on the log-probability
of the output. GENERE was run for 500 iterations,
varying the fraction of real and generated samples
from 0% to 100%. A `2 regularization of magnitude

0.1 was applied to the model. The baseline smooth-
ing coefficient was set to 0.98 and the shrinkage pa-
rameter was set to 0.99. All the experiments were
repeated 10 times and a constant learning rate of 0.1
was used.

Results are shown on Figure 1, where the average
loss computed on the test data is plotted against the
fraction of real data used during learning.

We can see that the best generalization perfor-
mance is obtained when there is a balanced mix of
real and artificial data, but the proportion depends
on the amount of training data: on the left hand side,
the best performance is obtained with generated data
only, meaning that the number of training samples is
so small that GENERE only used the training data
to select the best base generator (the component p1),
and the best performance is attained using only gen-
erated data. The plot on the right hand side is in-
teresting because it contains more training data, and
the best performance is not obtained using only the
generator, but with 40% of the real data, illustrating
the fact that it is beneficial to jointly use real and
simulated data during training.

3.3 Math word problems
To illustrate the benefit of using generative regular-
ization, we considered a class of real world problems
for which obtaining data is costly: learning to an-
swer math exam problems. Prior work on this prob-
lem focuses on standard math problems given to stu-
dents aged between 8 and 10, such as the following:5

For Halloween Sarah received 66 pieces of
candy from neighbors and 15 pieces from
her older sister. If she only ate 9 pieces a
day, how long would the candy last her?

The answer is given by the following equation:
X = (66 + 15)/9 . Note that similarly to real world
school exams, giving the final answer of (9 in this
case) is not considered enough for the response to
be correct.

The only publicly available word problem
datasets we are aware of contain between 400 and
600 problems (see Table 2), which is not enough
to properly train sufficiently rich models that cap-
ture the link between the words and the quantities
involved in the problem.

5From the Common Core dataset (Roy and Roth, 2015)

1612

Figure 1: Test loss vs. fraction of real data used in GENERE on the text-to-equation experiment.

Sequence-to-sequence learning is the task of pre-
dicting an output sequence of symbols based on a
sequence of input symbols. It is tempting to cast the
problem of answering math exams as a sequence-
to-sequence problem: given the sequence of words
from the problem description, we can predict the se-
quence of symbols for the equation as output. Cur-
rently, the most successful models for sequence pre-
diction are Recurrent Neural Nets (RNN) with non-
linear transitions between states.

Treated as a translation problem, math word prob-
lem solving should be simpler than developing a
machine translation model between two human lan-
guages, as the output vocabulary (the math symbols)
is significantly smaller than any human vocabulary.
However, machine translation can be learned on mil-
lions of pairs of already translated sentences, and
such massive training datasets dwarf all previously
introduced math exam datasets.

We used standard benchmark data from the litera-
ture. The first one, AI2, was introduced by Hosseini
et al. (2014) and covers addition and subtraction of
one or two variables or two additions scraped from
two web pages. The second (IL), introduced by Roy
et al. (2015), contains single operator questions but
covers addition, subtraction, multiplication, and di-
vision, and was also obtained from two, although
different from AI2, web pages. The last data set
(CC) was introduced by Roy and Roth (2015) to
cover combinations of different operators and was
obtained from a fifth web page.

An overview of the equation patterns in the data
is shown in Table 1. It should be noted that there
are sometimes numbers mentioned in the problem

AI2 IL CC
X + Y X + Y X + Y− Z
X + Y + Z X− Y X ∗ (Y + Z)
X− Y X ∗ Y X ∗ (Y− Z)

X/Y (X + Y)/Z
(X− Y)/Z

Table 1: Patterns of the equations seen in the datasets for one

permutation of the placeholders.

AI2 IL CC
Train 198 214 300
Dev 66 108 100
Test 131 240 200

Total 395 562 600
Table 2: Math word problems dataset sizes.

description that are not used in the equation.
As there are no available train/dev/test splits in the

literature we introduced such splits for all three data
sets. For AI2 and CC, we simply split the data ran-
domly and for IL we opted to maintain the clusters
described in Roy and Roth (2015). We then used the
implementation of Roy and Roth (2015) provided by
the authors, which is the current state-of-the-art for
all three data sets, to obtain results to compare our
model against. The resulting data sizes are shown
on Table 2. We verified that there are no duplicate
problems, and our splits and a fork of the baseline
implementation are available online.6

3.4 Development of the Generator

Generators were organized as a set of 8 base genera-
tors pk, summarized in Table 4. Each base generator

6https://github.com/ninjin/roy_and_roth_2015

1613

John sprints to William’s apartment. The distance is 32 yards from John’s apartment to
William’s apartment. It takes John 2 hours to at the end get there. How fast did John go?

32 / 2

Sandra has 7 erasers. She grasps 7 more. The following day she grasps 18 whistles at the
local supermarket. How many erasers does Sandra have in all?

7 + 7

A pet store had 81 puppies In one day they sold 41 of them and put the rest into cages with 8
in each cage. How many cages did they use?

(81 - 41) / 8

S1 V1 Q1 O1 C1 S1(pronoun) V2 Q2 of O1(pronoun) and V2 the rest into O3(plural) with
Q3 in each O3. How many O3(plural) V3?

(Q1 - Q2) /
Q3

Table 3: Examples of generated sentences (first 3 rows). The last row is the template used to generate the 3rd example where

brackets indicate modifiers, symbols starting with ’S’ or ’O’ indicate a noun phrase for a subject or object, symbols with ’V’

indicate a verb phrase, and symbols with ’Q’ indicate a quantity. They are identified with a number to match multiple instances of

the same token.

has several functions associated with it. The func-
tions were written by a human over 3 days of full-
time development. The first group of base genera-
tors is only based on the type of symbol the equation
has, the second group is the pair (#1, #2) to represent
equations with one or two symbols. Finally, the last
two generators are more experimental as they corre-
spond to simple modifications applied to the avail-
able training data. The Noise ‘N’ generator picks
one or two random words from a training sample to
create a new (but very similar) problem. Finally, the
‘P’ generator is based on computing the statistics of
the words for the same question pattern (as one can
see in Table 1), and generates data using simple bi-
ased word samples, where words are distributed ac-
cording to their average positions in the training data
(positions are computed relatively to the quantities
appearing in the text, i.e. “before the first number”,
“between the 1st and the 2nd number”, etc.).

3.5 Implementation Details

We use a standard stacked RNN encoder-
decoder (Sutskever et al., 2014), where we
varied the recurrent unit between LSTM and
GRU (Cho et al., 2014), stack depth from 1 to 3,
the size of the hidden states from 4 to 512, and the
vocabulary threshold size. As input to the encoder,
we downloaded pre-trained 300-dimensional em-
beddings trained on Google News data using the
word2vec software (Mikolov et al., 2013). The
development data was used to tune these parameters
before performing the evaluation on the test set. We
obtained the best performances with a single stack,
GRU units, and a hidden state size of 256.

The problem...
+ contains at least one addition
- contains at least one subtraction
* contains at least one multiplication
/ contains at least one division
1 has a single mathematical operation
2 has a couple of mathematical operations
N is a training sample with words removed
P is based on word position frequencies

Table 4: The base generators to create math exam problems.

The optimization algorithm was based on stochas-
tic gradient descent using Adam as an adaptive step
size scheme (Kingma and Ba, 2014), with mini-
batches of size 32. A total of 256 epochs over the
data was used in all the experiments.

To evaluate the benefit of learning the data gener-
ator, we used a hybrid method as a baseline where
a fraction of the data is real and another fraction is
generated using the default parameters of the gen-
erators (i.e. a uniform distribution over all the base
generators). The optimal value for this fraction ob-
tained on the development set was 15% real data,
85% generated data. For GENERE, we used a fixed

AI2 IL CC Avg.
RR2015 82.4 75.4 55.5 71.1
100% Data 72.5 53.7 95.0 73.7
100% Gen 60.3 51.2 92.0 67.8
85%Gen + 15%Data 74.0 55.4 97.5 75.6
GENERE 77.9 56.7 98.5 77.7

Table 5: Test accuracies of the math-exam methods on the

available datasets averaged over 10 random runs.

1614

size learning rate of 0.1, the smoothing coefficient
was selected to be 0.5, and the shrinkage coefficient
to be 0.99.

We also compared our approach to the publicly
available math exam solver RR2015 (Roy and Roth,
2015). This method is based on a combination of
template-based features and categorizers. The ac-
curacy performance was measured by counting the
number of times the equation generated the correct
results, so that 10 + 7 and 7 + 10 would both be con-
sidered to be correct. Results are shown on Table 5.

We can see that there is a large difference in
performance between RR2015 and the RNN-based
encoder-decoder approach. While their method
seems to be very good on some datasets, it fails on
CC, which is the dataset in which one needs two
equations involving parentheses. On average, the
trend is the following: using data only does not suc-
ceed in giving good results, and we can see that with
generated data we are performing better already.
This could be explained by the fact that the gener-
ators’ vocabulary has a good overlap with the vo-
cabulary of the real data. However, mixing real and
generated data improves performance significantly.
When GENERE is used, the sampling is tuned to the
problem at hand and give better generalization per-
formance.

To understand if GENERE learned a meaning-
ful data generator, we inspected the coefficients
γ1, · · · , γ8 that are used to select the 8 data gener-
ators described earlier. This is shown is Figure 2.

The results are quite surprising at first sight: the
AI2 dataset only involves additions and subtractions,
but GENERE selects the generator generating divi-
sions as the most important. Investigating, we noted
that problems generated by the division generator
were reusing some lexical items that were present
in AI2, making the vocabulary very close to the
problems in AI2, even if it does not cover division.
We can also note that the differences in proportions
are quite small among the 4 symbols +,−, ∗ and /
across all the datasets. We can also clearly see that
the noisy generator ‘N’ and ‘P’ are not very relevant
in general. We explain this by the fact that the noise
induced by these generators is too artificial to gen-
erate relevant data for training. Their likelihood on
the model trained on real data remains small.

Figure 2: Base generators proportions learned by GENERE.

4 Conclusion

In this work, we argued that many problems can be
solved by high-capacity discriminative probabilistic
models, such as deep neural nets, at the expense of
a large amount of required training data. Unlike
the current trend which is to reduce the size of the
model, or to define features well targeted for the
task, we showed that we can completely decouple
the choice of the model and the design of a data gen-
erator. We proposed to allow data generators to be
“weakly” specified, leaving the undetermined coef-
ficients to be learned from data. We derived an ef-
ficient algorithm called GENERE, that jointly esti-
mates the parameters of the model and the undeter-
mined sampling coefficients, removing the need for
costly cross-validation. While this procedure could
be viewed as a generic way of building informa-
tive priors, it does not rely on a complex integra-
tion procedure such as Bayesian optimization, but
corresponds to a simple modification of the standard
stochastic optimization algorithms, where the sam-
pling alternates between the use of real and gener-
ated data. While the general framework assumes
that the sampling distribution is differentiable with
respect to its learnable parameters, we proposed a
Gaussian integration trick that does not require the

1615

data generator to be differentiable, enabling practi-
tioners to use any data sampling code, as long as the
generated data resembles the real data.

We also showed in the experiments, that a simple
way to parametrize a data generator is to use a mix-
ture of base generators, that might have been derived
independently. The GENERE algorithm learns auto-
matically the relative weights of these base genera-
tors, while optimizing the original model. While the
experiments only focused on sequence-to-sequence
decoding, our preliminary experiments with other
high-capacity deep neural nets seem promising.

Another future work direction is to derive efficient
mechanisms to guide the humans that are creating
the data generation programs. Indeed, there is a lack
of generic methodology to understand where to start
and which training data to use as inspiration to create
generators that generalize well to unseen data.

Acknowledgments

We would like to thank Subhro Roy for helping us
run his model on our new data splits. We are very
thankful to Thomas Demeester, Johannes Welbl and
Matko Bošnjak for their valuable feedback. Lastly,
we would like to thank the three anonymous review-
ers for their helpful comments and feedback.

This work was supported by a Marie Curie Ca-
reer Integration Award and an Allen Distinguished
Investigator Award.

References
Guillaume Bouchard and Bill Triggs. 2004. The trade-

off between generative and discriminative classifiers.
In 16th IASC International Symposium on Computa-
tional Statistics (COMPSTAT’04), pages 721–728.

Kyunghyun Cho, Bart Van Merriënboer, Çalar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October. Association for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280.

Albert Gatt and Ehud Reiter. 2009. Simplenlg: A realisa-
tion engine for practical applications. In Proceedings

of the 12th European Workshop on Natural Language
Generation, pages 90–93. Association for Computa-
tional Linguistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533, Doha, Qatar, October. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

P. Niyogi, F. Girosi, and T. Poggio. 1998. Incorporating
prior information in machine learning by creating vir-
tual examples. Proceedings of the IEEE, 86(11):2196–
2209, Nov.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. Knowledge and Data Engineering,
IEEE Transactions on, 22(10):1345–1359.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In In-
ternational Conference on Learning Representations.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752. Association for
Computational Linguistics.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transactions
of the Association for Computational Linguistics, 3:1–
13.

Bernhard Scholkopf and Alexander J Smola. 2001.
Learning with kernels: support vector machines, reg-
ularization, optimization, and beyond. MIT press.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2014. Gram-
mar as a foreign language. CoRR, abs/1412.7449.

Ronald J Williams. 1988. On the use of backpropaga-
tion in associative reinforcement learning. In Neural
Networks, 1988., IEEE International Conference on,
pages 263–270. IEEE.

1616

