
PHYSICAL REVIEW C 94, 055501 (2016)

Statistical analysis of β decays and the effective value of gA in the proton-neutron quasiparticle
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We perform a Markov chain Monte Carlo (MCMC) statistical analysis of a number of measured ground-
state-to-ground-state single β+/electron-capture and β− decays in the nuclear mass range of A = 62–142.
The corresponding experimental comparative half-lives (log f t values) are compared with the theoretical ones
obtained by the use of the proton-neutron quasiparticle random-phase approximation (pnQRPA) with G-matrix-
based effective interactions. The MCMC analysis is performed separately for 47 isobaric triplets and 28 more
extended isobaric chains of nuclei to extract values and uncertainties for the effective axial-vector coupling
constant gA in nuclear-structure calculations performed in the pnQRPA framework. As far as available, measured
half-lives for two-neutrino ββ− decays occurring in the studied isobaric chains are analyzed as well.
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I. INTRODUCTION

The neutrinoless double-β (0νββ) decays of atomic nuclei
serve as a forceful incentive to constantly drive nuclear-
structure calculations toward better performance. Analyses of
the potential experimental 0νββ outcomes in the future require
accurate knowledge of the related nuclear matrix elements
(NMEs) for the obtained data to serve in the best possible
ways to unravel the fundamental nature and mass of the
neutrino [1–4]. It is also tightly connected to the breaking of
lepton number asymmetry and has far reaching consequences
even on solutions on the baryon asymmetry of the universe
[5,6]. A host of models, ranging from the interacting shell
model (ISM) to various mean-field theories, have been used
in the calculations. The resulting NMEs have been analyzed
in the review article [7]. Most of the calculations have been
pursued in the framework of the proton-neutron quasiparticle
random-phase approximation (pnQRPA) [8].

In these many calculations it has been noticed that several
aspects of nuclear structure make an impact on the resulting
values of the NMEs: the chosen valence space and orbital
occupancies [9–11], the shell-closure effects [7,12], and the de-
formation [13–16]. Only lately has the important aspect of the
effective value of the axial-vector coupling constant gA been
addressed within a few models like the pnQRPA [17–21], the
ISM [22–25], and the interacting boson model 2 (IBA-2) [26].

A particular problem with the pnQRPA calculations, not
present in the other calculations, is the unsettled value of
the particle-particle interaction parameter gpp describing the
strength of the proton-neutron interaction in the 1+ channel.
Since the introduction of this parameter [27,28] it has been
attempted to fix its values by the inspection of measured
single-β-decay rates [29,30] or 2νββ-decay rates [31–34].
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Here we make an attempt to relate the values of gpp to the
values of gA through the data on β-decay rates associated
with the transitions between an even-even nucleus and an
odd-odd nucleus. The data on these decays are presented
as comparative half-lives (log f t values) and comparing
them with the corresponding computed ones one can make
conclusions about the possible correlations of these two key
parameters of calculation. As a mathematical aid we use the
Markov chain Monte Carlo (MCMC) statistical analysis of
47 isobaric triplets and 28 more extended isobaric chains of
nuclei. In the isobaric triplets there are two β-decay branches,
left and right, between the central and lateral nuclei, and in the
extended isobaric chains more complex systems of consecutive
central and lateral nuclei can form. To estimate the theoretical
uncertainty inherent in the pnQRPA framework we include the
full parametric freedom available. This means we introduce an
uncertainty in the particle-hole interaction parameter gph. In
addition we treat both gpp and gph as parameters specific only
to a given β+/electron capture (EC) or β−-decay transition
pair. This opens up a large parametric freedom that has not
been explored before.

Our analysis is intended to address the importance of
quenching, i.e., the suppression of gA with respect to its free
value gA = 1.269. Quenched values as low as gA ≈ 0.4 have
been reported for example in the IBM-2 model [26]; because
0νββ decay depends on gA as ∝ g4

A, this could reduce the
decay by orders of magnitude, having a serious impact on the
observability of 0νββ decay in experiments. Whether such
strong quenching actually applies to 0νββ is not a question
we can answer here, because we touch here on only the 1+
multipolarity of the multipole decomposition of a 0νββ decay
NME and because the 0νββ decay proceeds via a momentum
exchange much larger than that of the presently discussed
single-β and two-neutrino double-β decays.

The article is organized as follows. In Sec. II the basic
theoretical framework is briefly reviewed and the model-space
aspects and the adjustment of the model parameters are
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explained. In Sec. III we make a statistical analysis of the
effective value of gA. Here we try to chart the possible effective
values of the axial-vector coupling constant gA in model
calculations using the pnQRPA approach, using different
methods. Finally, in Sec. IV, we summarize and draw the
conclusions.

II. BRIEF SUMMARY OF THE THEORY

We begin by defining the comparative half-lives (log f t
values) of the 1+ ↔ 0+ Gamow–Teller transitions that form
the basis of the present analysis. The log f t value is defined
as [35]

log f t = log10(f0t1/2[s]) = log10

(
6147

BGT

)
, (1)

with

BGT = g2
A

2Ji + 1
|MGT(gpp,gph)|2 (2)

for the β+/EC or β− type of transitions. Here the half-life t1/2

has been given in seconds and f0 is the dimensionless leptonic
phase-space factor associated with the process. Ji is the spin
of the initial ground state and MGT is the Gamow-Teller NME
defined, e.g., in Ref. [35]. Here gA is the weak axial-vector
coupling constant, gpp the particle-particle interaction coupling
constant, and gph the particle-hole interaction coupling con-
stant as defined, e.g., in Refs. [36,37]. Methods of determining
the values of these constants are addressed in the next section.

The 2νββ decay half-life can be compactly written as[
t

(2ν)
1/2 (0+

i → 0+
f )

]−1 = g4
AG2ν |M (2ν)|2, (3)

where G2ν stands for the leptonic phase-space factor without
including gA in the way defined in Ref. [38]. The initial ground
state is denoted by 0+

i and the final ground state by 0+
f . The

2νββ NME M (2ν) can be written as

M (2ν) =
∑
m,n

MF(1+
m)〈1+

m|1+
n 〉MI(1+

n )

Dm

, (4)

where the quantity Dm is the energy denominator containing
the average energy of the 1+ states emerging from the
pnQRPA calculations in the initial and final even-even nuclei.
The summation is in general over all intermediate 1+ states
where 〈1+

m|1+
n 〉 is the overlap between two such states. We in

general treat the individual matrix elements for the transition
between the initial (final) state and the virtual intermediate
states, MI(F)(1

+
i ), as functions of separate sets of gpp and gph

couplings.
While we do not discuss 0νββ decay in detail in this

article, we briefly describe the theoretical calculation of
the corresponding half-life to illustrate the similarities and
differences to the above processes. The 0νββ-decay half-life
can be written as

[
t

(0ν)
1/2 (0+

i → 0+
f )

]−1 = g4
A,0ν

( 〈mν〉
me

)2

G0ν |M (0ν)|2, (5)

where G0ν stands for the leptonic phase-space factor without
including gA,0ν and the electron mass me in the way defined in

Ref. [38]. Here, we denote the effective axial coupling relevant
for 0νββ decay as gA,0ν to emphasize that its value may deviate
from the one determined in single-β and 2νββ decays. The
effective 0νββ neutrino mass is denoted as 〈mν〉. As before,
the initial ground state is denoted by 0+

i and the final ground
state by 0+

f .
The 2νββ-decay and 0νββ-decay half-lives share the same

strong dependence on gA as seen in Eqs. (3) and (5). It is
thus an essential first step to study the effective value of gA in
single-β and 2νββ decays. These studies tangent only the 1+
contribution to the 0νββ decay whereas it is known that higher
multipoles are very important for the 0νββ decay as well [39].
Some attempts to study these higher multipolarities by way of
single-β decays have been made lately [40,41]. It is thus not
straightforward to relate the single-β-decay and 2νββ-decay
studies to the value of the 0νββ NME, especially since the
former involves momentum transfers of a few MeV and
the latter involves a virtual neutrino with a momentum
exchange of the order of 100 MeV. This allows the possibility
that the effective value of gA gets momentum dependent
[24]. Related to this, the high-momentum exchange in 0νββ
decay makes the higher-Jπ states contribute appreciably to the
decay rate [42]. For these higher-lying states the quenching
of gA could be different from the low-lying states discussed
in the present work. It should be noted, however, that in the
pnQRPA no closure approximation is imposed in either modes
of double-β decay so that the individual contribution from
all intermediate states can be accessed in the case of 0νββ
decay, as well. These intermediate contributions vary strongly
from nucleus to nucleus and even some kind of single-state
dominance can be observed for some 0νββ decaying nuclei
[42]. For more details on the theoretical background, we refer
the reader to Ref. [20].

In the present calculations we obtain the single-particle
energies from a spherical Coulomb-corrected Woods-Saxon
(WS) potential with the standard parametrization of Bohr and
Mottelson [43]. This parametrization is optimized for nuclei
near the line of β stability and is thus well suited for the
presently studied nuclei. The single-particle orbitals used in
the calculations span the space 0f -1p-0g-2s-1d-0h11/2 for
the masses A = 62–80, 0f -1p-0g-2s-1d-0h for the masses
A = 98–108, and 0f -1p-0g-2s-1d-0h-1f -2p for the masses
A = 110–142. In these single-particle bases the proton and
neutron Fermi surfaces are well contained in the model space.
The Bonn-A G matrix has been used as the starting point for
the nucleon-nucleon interaction and it has been renormalized
in the standard way [37,44]: The quasiparticles are treated
in the BCS formalism and the pairing matrix elements are
scaled by a common strength parameter, separately for protons
and neutrons. In practice these factors are fitted such that the
lowest quasiparticle energies obtained from the BCS match the
experimentally deduced pairing gaps for protons and neutrons,
respectively. For closed major shells the pairing strength
parameters were taken from the closest even-even neighbor.

The wave functions of the 1+ states of the intermediate
nuclei have been produced by using the pnQRPA with the
particle-hole and particle-particle degrees of freedom (DOF)
[27] included. The particle-hole and particle-particle parts of
the proton-neutron two-body interaction are separately scaled
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by the gph and gpp parameters. The particle-hole parameter
affects the position of the Gamow-Teller giant resonance
(GTGR) in the odd-odd nucleus and its value is fixed by the
available systematics [35] on the location of the resonance:

�EGT = E(1+
GTGR) − E(0+

gs)

= [1.444(Z + 1/2)A−1/3 − 30.0(N − Z − 2)A−1

+ 5.57] MeV. (6)

The difference �EGT between the GTGR and the ground
state of the neighboring even-even reference nucleus thus
depends on the proton and neutron numbers (Z,N ) of the
reference nucleus, as well as on its mass number. In practice,
both the measured and the computed GTGRs have a width
and their locations are determined by the centroid (weighted
average) of the strengths associated with the individual 1+
states comprising the GTGR. In a pnQRPA calculation the
difference E(1+

GTGR) − E(0+
gs) in Eq. (6) gives the empirical

location of the centroid of the GTGR, which has to be matched
by the centroid of the pnQRPA computed strengths of the
1+ states presumed to belong to the GTGR. The computed
centroid depends strongly on the value of the gph parameter
and weakly on the choice of the set of 1+ states included in
the GTGR, the latter introducing an inherent source of error.
Throughout our calculations we assume that the value of gph

in a given system is determined with a relative error of 15% as
a source of theoretical uncertainty. This 15% error represents
a maximum deviation in gph such that the computed centroid
of the Gamow-Teller giant resonance is not meaninglessly far
from its empirical position as given by Eq. (6). Throughout
we denote with γph the normalized value of the particle-hole
parameter with respect to the value determined through the

FIG. 1. Double- and single-β-decay characteristics of the isobaric
triplet 100

42 Mo, 100
43 Tc, and 100

44 Ru. The experimental 2νββ half-lives and
the log f t values are discussed in Sec. III.

GTGR. The determination of the values of gpp, together with
the axial-vector coupling constant gA, is presented below.

As an example, Fig. 1 schematically shows the energy levels
and decay characteristics of a triplet of isobars: 100

42 Mo, 100
43 Tc,

and 100
44 Ru. Figure 2(a) displays the nuclear matrix elements of

the single-β decays 100
43 Tc → 100

42 Mo and 100
43 Tc → 102

44 Ru and
the 2νββ decay 102

42 Mo → 102
44 Ru as functions of gpp. The 1σ

and 2σ uncertainties due to a variation of the parameter gph

around its value determined by the GTGR are shown using
the colored bands. The dependence of the single-β NMEs
shows a typical behavior seen in many triplets where one NME
increases whereas the other decreases. This has the effect that
the dependence of the product of the NMEs on gpp can become
rather weak and consequently the value of gA can be extracted
from the product of the log f t values separately. This behavior
is not universal, as exemplified in Fig. 2(b) showing the NMEs
of the processes 68

31Ga → 68
30Zn and 68

32Ge → 68
31Ga (2νββ decay
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FIG. 2. (a) Nuclear matrix elements for the single-β decays 100
43 Tc → 100

42 Mo (red) and 100
43 Tc → 102

44 Ru (blue) and the 2νββ decay 102
42 Mo →

102
44 Ru (green) as a function of gpp. The colored bands show the uncertainty of the matrix elements with a 15% variation and a 30% variation of

gph around its value derived from the GTGR. (b) As before but for the single-β decays 68
31Ga → 68

30Zn (red) and 68
32Ge → 68

31Ga (blue).
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FIG. 3. Nuclear matrix element for the 2νββ decay 100
42 Mo →

100
44 Ru as a function of the left-leg and right-leg particle-particle

parameters gL
pp and gR

pp, respectively. The isocurves indicate constant
NME values as shown. The particle-hole parameters are set at their
GTGR values, γ L

ph = γ R
ph = 1.

is not possible here). Here, both NMEs rise with gpp, which
will couple the determination of gA and gpp as is discussed in
Sec. III. As can be seen, a variation of gph at the 15% level
generically has an effect on the matrix elements of the same
order, depending on the isotopes involved.

In Fig. 2 both the left-leg and the right-leg NMEs were
treated as depending on the same gpp as is assumed in most
analyses. As discussed above, we in turn treat the transitions
independently, each depending on separate parameters, gL

pp

and gR
pp. This has the immediate effect that the β-decay/EC

processes become statistically independent because they
now depend on different parameters. In addition, the NME
of the 2νββ decay (if allowed within a given triplet) now
becomes a function of both gL

pp and gR
pp. Figure 3 illustrates the

dependence of the NME for the 2νββ decay 102
42 Mo → 102

44 Ru.
The isocurves indicate constant values for the NME as shown.
The plot demonstrates that the left-leg and right-leg NMEs are
correlated such that the 2νββ remains approximately constant
if both depend on the same gpp � 0.7 [along the diagonal,
also compare with Fig. 2(a)]. This degeneracy is lifted if gL

pp

and gR
pp are allowed to vary independently. The dependence

on the particle-hole parameters, which we in turn also treat
as independent values, is neglected, and they are set at their
GTGR values, γ L

ph = γ R
ph = 1.

III. STATISTICAL ANALYSIS

A. Quenching of the axial-vector coupling constant

At this stage it is worth pointing to some other earlier works
devoted to the determination of the effective value of gA in
calculations using the pnQRPA model or other models. A

strongly reduced effective value of gA ≈ 0.6 was reported
in the shell-model calculations [45] in the mass A = 90–97
region. In a more recent shell-model study [25] values of about
gA ∼ 0.7 were obtained in the mass regions A = 128 and 130
and an even stronger quenching of gA = 0.56 was obtained for
A = 136. The first analysis performed in the pnQRPA model
was done in Ref. [17] where both the β-decay and the 2νββ-
decay data were analyzed for the A = 100 and 116 systems us-
ing a least-squares fit to determine the values gA = 0.74 (A =
100) and gA = 0.84 (A = 116). It is interesting to note that in
the first version [46] of Ref. [17] also the result gA = 0.39 for
the A = 128 system was quoted. An approximately monotonic
behavior of the effective values of gA was parametrized in
Ref. [26] by analyzing the magnitudes of NMEs produced by
the IBA-2 model. Values around gA = 0.5 were obtained. In
a later publication [47] the interacting boson-fermion-fermion
model, IBFFM-2, was adopted and the subsequent analyses
yielded highly suppressed values of gA ≈ 0.3 for the A = 128
nuclei. Recently a systematic approach to β and 2νββ decays
in the mass region A = 100–136 was performed [48]. The
suitability to the description of the global behavior of the β
and 2νββ decays, a linear model and an overall-quenched
gA ≈ 0.6 were examined. The present study is an extension of
this work as well as Refs. [18,20,29] to a wider mass region and
a refinement in the statistical analysis methods used to extract
information on the quenching of gA in this wider region.

The apparently low effective values of gA in the pnQRPA
could be attributed to missing the contributions of the complex
configurations beyond the two-quasiparticle (particle-hole)
configurations of the pnQRPA (see also Ref. [19]). On the
other hand, it was shown in Ref. [49] for the 2νββ decay of
76Ge and in Ref. [50] for the 2νββ decay of 100Mo that the
inclusion of the four-quasiparticle (two-particle–two-hole)
degrees of freedom in a higher-QRPA scheme [in this
case the proton-neutron microscopic anharmonic vibrator
approach (pnMAVA)] does not affect appreciably the
low-energy Gamow-Teller properties of pnQRPA. It is
yet unclear what is the primary reason for the rather low
effective values of gA and what is the share between the
model-dependent and model-independent contributions to
it. The model-independent quenching can be associated
with the non-nucleonic, i.e., isobaric degrees of freedom in
nuclear matter [51,52]. Contributions to the model-dependent
quenching come from the limitations in the single-particle
models’ space (ISM, IBA-2, IBFFM-2) or the lack of
complicated many-nucleon configurations (pnQRPA, IBA-2,
IBFFM-2). The determination of the effective values of gA in
different theory frameworks is an extremely interesting issue
and certainly necessitates further investigation in the future.

B. Fitting isobaric triplets

The basis of our analyses is provided by the experimental
log f t values of the relevant β decays/EC processes. They
are shown in Tables I and II, displaying the comparative
half-lives log f tL and log f tR for the left-leg decay and the
right-leg decay of a given triplet. The comparative half-lives
were calculated from the experimentally measured half-lives
listed in Ref. [53] incorporating the experimental uncertainty
in both the measured decay half-life and the Q value. In most
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TABLE I. Characteristics of the β+/EC and β− decays in isobaric triplets within the mass range A = 62–114 studied in the present article.
An isobaric triplet is identified by the mass number A and the lowest atomic number Z0 among the three isotopes. The isotopes in the triplets
are indicated along with their spin J and parity π (J π ). The arrows denote the direction of the relevant β+/EC, β− decay. The experimentally
determined comparative half-lives of the left transition and the right transition are given as log f tL and log f tR , respectively. 2νββ decaying
isotopes are underlined. The values of gA and gpp are determined in the triplet fit described in Sec. III B. Cases in which the best-fit χ 2

min is
in the range [0.5,2.2], indicating slight incompatibility with data, are highlighted with italic numbers. Cases with stronger discrepancy are
highlighted in bold. In all other cases a χ 2

min = 0 (within numerical tolerance) was found.

A Z0 Triplet log f t
exp
L log f t

exp
R gfit

A gfit
pp

62 28 Ni(0+) ← Cu(1+) ← Zn(0+) 5.1521 ± 0.0014 5.0117 ± 0.0010 0.75+0.21
−0.01 1.10+0.01

−0.40

64 28 Ni(0+) ← Cu(1+) → Zn(0+) 4.9931 ± 0.0022 5.3095 ± 0.0038 0.81+0.11
−0.04 0.92+0.09

−0.19

66 28 Ni(0+) → Cu(1+) → Zn(0+) 4.2754 ± 0.0094 5.3394 ± 0.0013 0.93+0.24
−0.01 0.82+0.04

−0.34

68 29 Cu(1+) → Zn(0+) ← Ga(1+) 5.7716 ± 0.0085 5.1918 ± 0.0012 0.70+0.06
−0.09 0.19+0.02

−0.01

68 30 Zn(0+) ← Ga(1+) ← Ge(0+) 5.1918 ± 0.0012 4.9955 ± 0.0224 0.50+0.08
−0.04 0.78+0.13

−0.21

70 29 Cu(1+) → Zn(0+) ← Ga(1+) 5.4317 ± 0.0138 4.7443 ± 0.0640

70 30 Zn(0+) ← Ga(1+) → Ge(0+) 4.7443 ± 0.0640 5.1021 ± 0.0018 1.10+0.13
−0.26 0.43+0.29

−0.15

78 34 Se(0+) ← Br(1+) → Kr(0+) 4.7460 ± 0.0040 >5.50 ± 0.01 0.42+0.02
−0.04 1.00+0.04

−0.02

80 33 As(1+) → Se(0+) ← Br(1+) 5.7460 ± 0.0099 4.6868 ± 0.0123 0.98+0.21
−0.08 0.34+0.04

−0.11

80 34 Se(0+) ← Br(1+) → Kr(0+) 4.6868 ± 0.0123 5.4953 ± 0.0024 0.90+0.33
−0.07 0.48+0.06

−0.23

80 35 Br(1+) → Kr(0+) ← Rb(1+) 5.4953 ± 0.0024 4.9208 ± 0.0514 1.40 0.27

98 39 Y(1+) → Zr(0+) → Nb(1+) 5.3740 ± 0.1660 4.1762 ± 0.0170 0.53+0.05
−0.03 0.68+0.06

−0.11

100 41 Nb(1+) → Mo(0+) ← Tc(1+) 5.1622 ± 0.0586 4.4047 ± 0.2414 0.61+0.14
−0.15 0.89+0.06

−0.08

100 42 Mo(0+) ← Tc(1+) → Ru(0+) 4.4047 ± 0.2414 4.6063 ± 0.0054 0.56+0.09
−0.12 0.96+0.05

−0.16

102 42 Mo(0+) → Tc(1+) → Ru(0+) 4.2079 ± 0.0362 4.8001 ± 0.0129 0.41+0.02
−0.02 0.68+0.05

−0.06

104 44 Ru(0+) ← Rh(1+) → Pd(0+) 4.3246 ± 0.1030 4.5555 ± 0.0056 0.59+0.05
−0.07 0.92+0.03

−0.06

106 45 Rh(1+) → Pd(0+) ← Ag(1+) 5.1899 ± 0.0060 4.9148 ± 0.0035 0.40+0.02
−0.02 0.87+0.01

−0.01

106 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.9148 ± 0.0035 > 4.18 ± 0.25 0.36+0.25
−0.04 1.00+0.13

−0.72

108 44 Ru(0+) → Rh(1+) → Pd(0+) 4.4885 ± 0.0223 5.5440 ± 0.0480 0.27+0.01
−0.02 0.69+0.04

−0.06

108 45 Rh(1+) → Pd(0+) ← Ag(1+) 5.5440 ± 0.0480 4.7085 ± 0.0372 0.43+0.03
−0.05 0.86+0.19

−0.01

108 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.7085 ± 0.0372 4.4410 ± 0.0080 0.49+0.02
−0.02 0.67+0.05

−0.08

110 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.0963 ± 0.0887 4.6762 ± 0.0021 0.77+0.06
−0.08 0.87+0.02

−0.04

112 48 Cd(0+) ← In(1+) → Sn(0+) 4.6342 ± 0.0378 4.1515 ± 0.0497 0.70+0.04
−0.03 0.61+0.07

−0.11

114 46 Pd(0+) → Ag(1+) → Cd(0+) 4.2124 ± 0.0153 5.1008 ± 0.0096 0.51+0.03
−0.03 0.49+0.06

−0.09

114 47 Ag(1+) → Cd(0+) ← In(1+) 5.1008 ± 0.0096 4.8877 ± 0.1470 0.54+0.06
−0.07 0.54+0.08

−0.13

114 48 Cd(0+) ← In(1+) → Sn(0+) 4.8877 ± 0.1470 4.4856 ± 0.0010 0.61+0.06
−0.01 0.46+0.15

−0.01

cases, the experimental uncertainty is negligible compared
to the theoretical uncertainties expected to be inherent in
nuclear model calculation; the errors in the values of the
comparative half-lives range between the per mil and the 10%
level. In two cases only, a lower limit is known. The range
of considered isotopes is dictated by the applicability of the
theory framework (the quasiparticle description for s-d shell
nuclei becomes questionable for lighter nuclei) and nature (for
example, the 1+ states are not the ground states in the odd-odd
systems in the mass gaps A = 72–76 and A = 82–96).

As far as available and relevant for our selection of isotopes
we also calculate the 2νββ-decay half-lives. The characteris-
tics of 2νββ decaying isotopes are shown in Table III giving
the phase-space factor G2ν and the experimental half-lives for
three of the isotopes. The fitted or predicted half-lives are
discussed below.

We start by fitting the triplets individually, i.e., we compare
the theoretically predicted log f t values of the left-leg and
right-leg decays in a triplet of Tables I and II with the
experimental data. For this purpose, we assume that both
decays depend on the same pair: gA, gpp. In addition we also
include a variation of the gph couplings independently for each
decay, with a 1σ deviation of 15% from its GTGR value.

Because we later work with a larger number of free
parameters and in systems that can be underconstrained, ex-
actly constrained, or overconstrained, we consistently perform
the fitting procedure using a straightforward MCMC based
on the Metropolis-Hastings algorithm [55]. Throughout our
calculations, we have verified that the uncertainties inherent
in the MCMC due to finite sampling, etc., are small compared
to the physical uncertainties. We always use a flat prior in the
given fitting parameters; i.e., they are randomly selected on a
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TABLE II. Same as Table I, but for isobaric triplets in the mass range A = 116–142.

A Z0 Triplet log f t
exp
L log f t

exp
R gfit

A gfit
pp

116 48 Cd(0+) ← In(1+) → Sn(0+) 4.4508 ± 0.1160 4.6839 ± 0.0025 0.84+0.08
−0.08 0.65+0.07

−0.11

118 48 Cd(0+) → In(1+) → Sn(0+) 3.9218 ± 0.0629 4.8147 ± 0.0263 0.88+0.09
−0.07 0.75+0.04

−0.09

118 49 In(1+) → Sn(0+) ← Sb(1+) 4.8147 ± 0.0263 4.5152 ± 0.0122 0.77+0.05
−0.06 0.65+0.03

−0.04

118 50 Sn(0+) ← Sb(1+) ← Te(0+) 4.5152 ± 0.0122 4.9749 ± 0.0579 0.77+0.06
−0.05 0.65+0.04

−0.14

120 48 Cd(0+) → In(1+) → Sn(0+) 4.0996 ± 0.0433 5.0483 ± 0.0183 0.74+0.07
−0.05 0.77+0.04

−0.08

120 49 In(1+) → Sn(0+) ← Sb(1+) 5.0483 ± 0.0183 4.5220 ± 0.0048 0.71+0.06
−0.06 0.74+0.03

−0.03

122 48 Cd(0+) → In(1+) → Sn(0+) 3.9717 ± 0.0451 5.1362 ± 0.0894 0.82+0.09
−0.06 0.85+0.05

−0.08

122 52 Te(0+) ← I(1+) ← Xe(0+) 4.9323 ± 0.0077 5.1804 ± 0.0154 0.50+0.04
−0.03 0.60+0.05

−0.12

122 53 I(1+) ← Xe(0+) ← Cs(1+) 5.1804 ± 0.0154 5.3606 ± 0.0102 0.43+0.04
−0.03 0.36+0.02

−0.02

124 54 Xe(0+) ← Cs(1+) ← Ba(0+) 5.0750 ± 0.0080 5.2074 ± 0.0216 0.39+0.03
−0.02 0.71+0.03

−0.06

126 54 Xe(0+) ← Cs(1+) ← Ba(0+) 5.0492 ± 0.0084 5.3577 ± 0.0135 0.44+0.03
−0.03 0.67+0.04

−0.08

128 52 Te(0+) ← I(1+) → Xe(0+) 5.0439 ± 0.0514 6.0825 ± 0.0055 0.55+0.08
−0.03 0.10+0.26

−0.05

128 53 I(1+) → Xe(0+) ← Cs(1+) 6.0825 ± 0.0055 4.8255 ± 0.0036 0.68+0.09
−0.07 0.43+0.01

−0.01

128 54 Xe(0+) ← Cs(1+) ← Ba(0+) 4.8255 ± 0.0036 5.3973 ± 0.0235 0.58+0.05
−0.05 0.65+0.04

−0.09

130 54 Xe(0+) ← Cs(1+) → Ba(0+) 5.0654 ± 0.0049 5.1314 ± 0.0692 0.78 0.10

134 56 Ba(0+) ← La(1+) ← Ce(0+) 4.8703 ± 0.0154 5.1920 ± 0.0790 0.73+0.07
−0.06 0.34+0.12

−0.13

138 58 Ce(0+) ← Pr(1+) ← Nd(0+) 4.5880 ± 0.0160 5.0934 ± 0.0422 0.98+0.08
−0.08 0.47+0.07

−0.14

140 58 Ce(0+) ← Pr(1+) ← Nd(0+) 4.4064 ± 0.0035 5.4279 ± 0.0643 1.00+0.09
−0.07 0.46+0.07

−0.16

140 59 Pr(1+) ← Nd(0+) ← Pm(1+) 5.4279 ± 0.0643 4.3085 ± 0.0129 1.30+0.06
−0.15 0.61+0.02

−0.03

140 60 Nd(0+) ← Pm(1+) ← Sm(0+) 4.3085 ± 0.0129 4.8933 ± 0.0214 1.20+0.08
−0.09 0.66+0.04

−0.08

140 61 Pm(1+) ← Sm(0+) ← Eu(1+) 4.8933 ± 0.0214 4.3916 ± 0.0142 1.20+0.10
−0.13 0.67+0.01

−0.01

140 62 Sm(0+) ← Eu(1+) ← Gd(0+) 4.3916 ± 0.0142 4.5357 ± 0.0266 1.10+0.08
−0.07 0.74+0.03

−0.07

142 60 Nd(0+) ← Pm(1+) ← Sm(0+) 4.4687 ± 0.0183 5.1656 ± 0.0151 1.00+0.08
−0.06 0.45+0.08

−0.12

142 61 Pm(1+) ← Sm(0+) ← Eu(1+) 5.1656 ± 0.0151 4.2736 ± 0.0239 1.30+0.03
−0.17 0.67+0.01

−0.02

TABLE III. Characteristics of 2νββ isotopes studied in the present article. The phase-space factors G2ν were calculated using the formalism
of Ref. [1]. The experimental half-lives were reported in Ref. [54]. The theoretically determined values [t (2ν)

1/2 ]triplet and [t (2ν)
1/2 ]multiplet are the

predictions for the 2νββ half-lives based on the triplet and multiplet single-β/EC fits described in Secs. III B and III C, respectively. The
italicized half-lives are derived in multiplet fits with a slight tension between data and theory. For 70Zn and 80Se, no meaningful multiplet result
could be derived due to the insufficient quality of the underlying fits.

A Z Isotope G2ν (yr−1) [t (2ν)
1/2 ]exp (yr) [t (2ν)

1/2 ]triplet (yr) [t (2ν)
1/2 ]multiplet (yr)

70 30 Zn 1.24 × 10−22 (7.0 ± 4.1) × 1022

80 34 Se 7.06 × 10−29 (2.6 ± 1.7) × 1029

100 42 Mo 3.87 × 10−18 (0.71 ± 0.04) × 1019 (1.1 ± 0.6) × 1019 (1.5 ± 0.6) × 1019

104 44 Ru 3.80 × 10−21 (7.8 ± 1.7) × 1021 (4.3 ± 3.7) × 1021

110 46 Pd 1.64 × 10−19 (1.5 ± 0.3) × 1020 (1.3 ± 0.4) × 1020

114 48 Cd 6.09 × 10−24 (7.0 ± 1.2) × 1024 (7.5 ± 1.2) × 1024

116 48 Cd 3.27 × 10−18 (2.85 ± 0.15) × 1019 (1.3 ± 0.3) × 1019 (1.2 ± 0.3) × 1019

122 50 Sn 4.45 × 10−25 - (2.2 ± 2.0) × 1027 (1.7 ± 0.7) × 1027

128 52 Te 3.61 × 10−22 (2.00 ± 0.30) × 1024 (0.8 ± 0.2) × 1024 (1.0 ± 0.2) × 1024
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linear scale within a given range. We always vary gA and gpp

in the range [0.1,1.4] and γph between [0.5,1.5].
In the current case, the fitting is based on a χ2 function

applied to a given triplet of the form

χ2
(
gA,gpp,γ

L
ph,γ

R
ph

) =
( log f t th

L

(
gA,gpp,γ

L
ph

) − log f t
exp
L

δ log f t
exp
L

)2

+
( log f t th

R

(
gA,gpp,γ

R
ph

)− log f t
exp
R

δ log f t
exp
R

)2

+
(

γ L
ph − 1

δγ L
ph

)2{
+

(
γ R

ph − 1

δγ R
ph

)2}
. (7)

Here, the experimental log f t
exp
L,R values along with their

experimental errors δ log f t
exp
L,R are taken from Tables I

and II. The theoretically determined log f t th
L,R are computed as

functions of the fitting parameters gA and gpp. In addition, they
depend on the variables γ

L,R
ph , which represent the particle-hole

parameters relative to values as derived from the energy of the
giant resonance, γ L,R

ph = g
L,R
ph /[gL,R

ph ]GTGR. The last two terms

in Eq. (7) correspond to using the γ
L,R
ph as nuisance parameters

with best-fit values of 1 and the deviations δγ
L,R
ph = 0.15.

In the case where only a lower limit on the experimental
log f t is known, the corresponding quadratic term in χ2 is
replaced by [max(0, log f t th − log f texp)/δ log f texp]2, i.e.,

log ftR
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FIG. 4. Fitting gA and gpp in selected isobar triplets: (A,Z0) = (100,42) (a), (116,48) (b), (128,52) (c), and (68,30) (d). The light-shaded
red and blue bands correspond to the individual 1σ constraint from the measurement of left-leg and right-leg β/EC decay, respectively, using the
simplified χ 2 in Eq. (8). The dark purple area gives the combined 1σ parameter area with the dot denoting the best fit. The first three examples
contain a measured 2νββ decaying isotope and the green band gives the corresponding parameter space. In addition to the experimental errors
from Tables I, II, and III, a common theoretically induced error of 10% in the respective observables is included.
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a single-sided exponential to represent the lower limit. Fi-
nally, the MCMC fit is performed using the fitness function
P = exp(−χ2/2).

With two (non-nuisance) parameters and two constraints,
the system is exactly determined and a solution with χ2 = 0
is generically expected. As is shown later, in some cases no
consistent solution can be found for the given experimental
data. As indicated by the curly brackets, for triplets in which
the central isotope is even-even (i.e., identified by an odd Z0),
both decay legs are regulated by the same gph and thus the fit
is performed with only one nuisance term and γ L

ph = γ R
ph.

Before discussing the results of the numerical fits, we would
like to illustrate how the experimental data constrains (gA,gpp)
in a few examples. By omitting the nuisance parameters and
shifting their induced uncertainty into a theoretical error on
the log f t , Eq. (7) simplifies to

χ2(gA,gpp) =
(

log f t th
L (gA,gpp) − log f t

exp
L

)2

(
δ log f t

exp
L

)2 + (δ log f t th)2

+
(

log f t th
R (gA,gpp) − log f t

exp
R

)2

(
δ log f t

exp
R

)2 + (δ log f t th)2
, (8)

resulting in a two-dimensional parameter space that can be
easily visualized. Figure 4 shows the χ2 fit based on Eq. (8) and
the individual contributions from the measurement of the left-
leg (red) and right-leg (blue) β/EC decays. In addition to the
experimental errors, the χ2 fit includes a common theoretical
uncertainty of δ log f t th = 10%. It has been chosen to be rather
unrealistically small to show the effect of the experimental
errors that otherwise are usually small compared to the
model uncertainty. In the first three cases (A,Z0) = (100,42)
[Fig. 4(a)], (116,48) [Fig. 4(b)], and (128,52) [Fig. 4(c)], the
triplet includes a 2νββ-decay isotope for which the half-life
has been measured, 100

42 Mo, 116
48 Cd, and 128

52 Te, respectively. The
green band gives the correspondingly allowed 1σ parameter
space. For 100

42 Mo (a) it overlaps well with the fit from the
β/EC decays. In the other two cases [Figs. 4(b) and 4(c)],

there is a tension between single-β/EC decay and 2νββ-decay
data in the chosen model, but in both cases the discrepancy
corresponds to a modest difference in gA, by less than 30%.
We discuss this discrepancy and possible causes at the end of
Sec. III C. In the A = 128 case [Fig. 4(c)], there are formally
two best-fit solutions, the significance of which we comment
on below. The final scenario [Fig. 4(d)] illustrates a case where
there is a tension between experimental data and theoretical
predictions; i.e., the minimal χ2 is different from zero.

For the actual numerical determination of the best-fit
parameters and their errors, we use Eq. (7), where we
include a 15% uncertainty in the value(s) of the particle-hole
nuisance parameter(s) gph to model an additional theoretical
uncertainty. Using the MCMC method described above, we
determine the best-fit values and 1σ errors for gfit

pp and gfit
A

in all triplets as given in Tables I and II. They are based on
the fully marginalized distribution for the given parameter,
but we omit secondary solutions for large gpp beyond the
divergence, cf. Fig. 4(c). These large values of gpp make the
pnQRPA solutions unstable and in the worst case the whole
set of pnQRPA solutions collapses because the condition of
small-amplitude motion of the RPA theory becomes seriously
violated [35].

In Tables I and II, the results highlighted with italic numbers
correspond to fitting results with a minimal χ2 value of the
order of 1, indicating a slight tension between the experimental
data and the theoretical predictions. As an example, the fitting
of triplet A = 68, Z0 = 30 is illustrated in Fig. 4(d). While
the numerical fit in Table I includes a larger theoretical
uncertainty from the variation of the left- and right-leg
particle-hole parameters γ

L,R
ph , this is not sufficient to achieve

a vanishing χ2
min. Similar behavior occurs for the other triplets

highlighted with italic numbers in the table. In such cases, the
statistical uncertainty likely underestimates the true theoretical
error.

For the triplets A = 80, Z0 = 35 and A = 130, Z0 = 54,
the minimal χ2 value is substantially different from zero
(χ2

min = 33 and 15, respectively), meaning that there is a large
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FIG. 5. gA (a) and gpp (b) determined in the individual triplet fits as a function of the mass number A, cf. Tables I and II. The error bars
denote the 1σ parameter ranges. The dark blue and light orange values correspond to triplet fits with best fit solution χ2

min = 0 (within numerical
tolerance) and ≈1, respectively. The horizontal lines and associated vertical double arrows indicate fits with a strong tension with data where
no meaningful error could be determined.
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tension. We still give the nominal best-fit values for gA and gpp,
highlighted in bold in these cases, to indicate the tendency of
the fit, but we do not quote an uncertainty. In fact, in both cases
the best fit is achieved at the limit of the considered parameter
space and the statistical uncertainty is rather meaningless.
Finally, for A = 70, Z0 = 29 no meaningful fit was achieved.
In all other cases, a minimal χ2 = 0 (within numerical
tolerance) was found. As can be seen in Tables I and II,
problems to fit the experimental data mostly occur for lighter
nuclei with A � 80. This could indicate the diminishing
flexibility of the pnQRPA model in going from the heavy
nuclei, with large active single-particle model spaces, towards
the lighter nuclei with small active model spaces, better suited
for shell-model description.

The results are also graphically illustrated in Fig. 5, as
a function of the mass number A. Analogous to the tables,
the light orange points and 1σ error bars represent triplet
fits with χ2

min ≈ 1 whereas the blue points correspond to
χ2

min = 0 (within numerical tolerance). The vertical double
arrows (and horizontal lines for the nominal best fit, where
applicable) indicate the cases with a strong tension with data
as discussed above. As seen in the plots, the best-fit values in
these scenarios are still in the right ballpark of the neighboring
fits.

The strongest feature in the plots is the rise of gA with larger
A from A = 98 to 142 accompanied with a fall of gpp. In this
region the effective gA increases from a strongly quenched
gA ≈ 0.4 around A = 100 to an essentially unquenched gA ≈
1.1 around A = 140. Although there is a considerable spread
in the values, the fitting results of triplets within the same
mass number A are largely compatible, illustrated by the
overlapping error bars in Fig. 5. The tendency for lighter nuclei
(A = 80 and below) is less clear and here the result is also
affected by the large number of cases with tension to data. The
tendency of a growing effective value of gA with mass number
for the A � 100 nuclei is in agreement with the linear model
of Ref. [48]. From Fig. 5(a) one can deduce the average value
of gA ≈ 0.6 for the A � 100 nuclei in accordance with the
analysis of Ref. [48].

Using the thus-fitted parameters, we calculate the predicted
2νββ decay half-lives for all relevant isotopes as listed
in Table III under [t (2ν)

1/2 ]triplet. The calculation includes the
correlation among gA, gpp, and gph; i.e., we use the full
probability density from the MCMC fit. Confirming the
expectation of the simple two-dimesional fits shown in Fig. 4,
the measured 2νββ-decay half-life of 100Mo is consistent with
the prediction within 1σ . On the other hand, the predictions for
116Cd and 128Te are too small by a factor of about 2 compared
to the experimental results. We further discuss this discrepancy
at the end of the next section. According to the calculated
half-lives, the 2νββ decay of the nucleus 110Pd would be an
interesting case to measure in the future.

C. Fitting isobaric multiplets

Under the assumption that gA is a function of the mass
number A only, as justified in the Introduction, we can extend
the analysis of individual triplets by fitting all β/EC decays
within a system (multiplet) of isobaric isotopes. This allows

TABLE IV. Isobaric multiplets of β+/EC and β− decaying
isotopes studied in the present article. An isobaric multiplet is
identified by the mass number A and the lowest atomic number
Z0 among its isotopes. The individual isotopes are indicated with
their atomic number and the arrows denote the direction of the
relevant β+/EC decays. The column “DOF” gives the degrees of
freedom, i.e., the number of free parameters (one gA and a gpp

for each even-even isotope) minus the number of experimental
constraints. 2νββ decaying isotopes are underlined. The values of
gA are determined in the isobar fits described in Sec. III C. Cases
in which the best-fit χ 2

min is in the range [0.8,1.5], indicating slight
tension with data, are highlighted with italic numbers. Cases with
stronger tension are highlighted in bold. In all other cases a χ2

min of
the order expected by the degrees of freedom was found.

A Z0 Multiplet DOF gfit
A

62 28 28 ← 29 ← 30 3-2 0.80+0.43
−0.01

64 28 28 ← 29 → 30 3-2 0.90+0.11
−0.09

66 28 28 → 29 → 30 3-2 1.00+0.19
−0.16

68 29 29 → 30 ← 31 ← 32 3-3 0.65+0.06
−0.07

70 29 29 → 30 ← 31 → 32 3-3

78 34 34 ← 35 → 36 3-2 0.35+0.59
−0.02

80 33 33 → 34 ← 35 → 36 ← 37 3-4 1.40

98 39 39 → 40 → 41 2-2 0.53+0.04
−0.03

100 41 41 → 42 ← 43 → 44 3-3 0.37+0.22
−0.00

102 42 42 → 43 → 44 3-2 0.34+0.16
−0.00

104 44 44 ← 45 → 46 3-2 0.59+0.28
−0.10

106 45 45 → 46 ← 47 → 48 3-3 0.40+0.02
−0.02

108 44 44 → 45 → 46 ← 47 → 48 4-4 0.41+0.01
−0.01

110 46 46 ← 47 → 48 3-2 0.71+0.38
−0.13

112 48 48 ← 49 → 50 3-2 0.67+0.19
−0.03

114 46 46 → 47 → 48 ← 49 → 50 4-4 0.60+0.03
−0.03

116 48 48 ← 49 → 50 3-2 0.68+0.38
−0.01

118 48 48 → 49 → 50 ← 51 ← 52 4-4 0.75+0.06
−0.04

120 48 48 → 49 → 50 ← 51 3-3 0.71+0.06
−0.05

122 48 48 → 49 → 50 | 52 ← 53 ← 54 ← 55 5-5 0.49+0.03
−0.03

124 54 54 ← 55 ← 56 3-2 0.34+0.20
−0.02

126 54 54 ← 55 ← 56 3-2 0.35+0.20
−0.02

128 52 52 ← 53 → 54 ← 55 ← 56 4-4 0.59+0.05
−0.06

130 54 54 ← 55 → 56 3-2 0.78

134 56 56 ← 57 ← 58 3-2 0.72+0.10
−0.08

138 58 58 ← 59 ← 60 3-2 0.92+0.20
−0.09

140 58 58 ← 59 ← 60 ← 61 ← 62 ← 63 ← 64 5-6 1.10+0.07
−0.09

142 60 60 ← 61 ← 62 ← 63 3-3 1.20+0.07
−0.12

us to incorporate the full experimental information available.
On the other hand, we endeavor to include the full parametric
uncertainty inherent in the pnQRPA models used in this study.
This means that for each isobaric multiplet we use a common
gA and a set of (gpp, gph) for each even-even isotope within
the multiplet. The resulting multiplets are listed in Table IV,
identified by (A,Z0) of the first isotope. The table indicates
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FIG. 6. Decay scheme for isotopes in the isobaric quintet A =
128, Z = 52–56. The different parameters gpp and gph used in the
fit for this multiplet are indicated for each even-even isotope in the
system. Together with gA, this leads to four (non-nuisance) parameters
compared to four constraints from the β/EC decays. The system also
contains the 2νββ isotope 128

52 Te decaying to 128
54 Xe.

all isotopes in the multiplet by their atomic number and the
arrows give the direction of the decays. The multiplicity within
the isobaric systems ranges from three to seven isotopes. The
triplets are obviously identical to the ones discussed in the
previous section but we would like to note that we now allow
for more parametric freedom because we use a separate gpp

for each even-even isotope. Almost all triplets contain two
even-even isotopes, i.e., two different gL

pp and gR
pp are used in

the fit. Only the triplet (98,39) contains a single even-even
isotope and the fit performed is identical to the one in the
previous section.

In general, the degree of freedom in a fit is given by the
number of free parameters (one gA and a gpp for each even-
even isotope) minus the number of experimental constraints
(number of measured β/EC decays). This difference is given
in Table IV under “DOF”, indicating that we encounter
underconstrained (DOF > 0), exactly constrained (DOF = 0),
and overconstrained (DOF < 0) systems. While we also
include a gph for each even-even isotope, this does not change
the number of degrees of freedom because the gph is treated as a
nuisance parameter. An example of the decays and parameters
involved is shown in Fig. 6 in the case of the multiplet (128,52).

The MCMC fitting procedure is analogous to the triplet case
with a χ2 function of the form of Eq. (7): there is a contribution
for each observable (β/EC decay), with the theoretically
calculated log f t values depending on the appropriate gi

pp and
γ i

ph and the global gA. In addition, there is a nuisance term for
each of the particle-hole parameters γ i

ph where we again use an
uncertainty of δγ i

ph = 0.15. As before, we use the experimental
measurements and errors of the β/EC decay log f t values from
Tables I and II.

An example of the result of an isobar fit is shown in
Fig. 7 displaying the probability density functions in three
different marginalized parameter planes as derived in the
isobaric system (100,41) containing the 2νββ-decay isotope
100
42 Mo. It is a quartet with two even-even isotopes and

thus described by the following three parameters, gA, gMo
pp ,

and gRu
pp , and two nuisance parameters, γ Mo

ph and γ Ru
ph . The

system is exactly constrained and consistent; thus the minimal
χ2 is zero. Nevertheless, there is a sizable uncertainty and
especially the parameter gRu

pp can vary strongly and no lower
limit can be determined at 2σ within the chosen parameter
range. In this case the two particle-particle parameters can
be very different. For example, the combination gMo

pp ≈ 0.7
and gRu

pp ≈ 0.1 is allowed by the combined experimental data
within 2σ . Another consequence of this is that gA is effectively
suppressed compared to the triplet fit because lower values are
statistically preferred for small gRu

pp . The experimental log f t

errors and the variation of γ Mo
ph and γ Ru

ph provide an additional
source of uncertainty.

The results of the fits are displayed in Table IV, which lists
the best-fit values and 1σ uncertainties of gA for all multiplets.
As in the case of the individual triplets, italicized values denote
multiplets in which there is a slight tension between the
combined experimental data and the theoretical predictions.
Comparing with Tables I and II, the tension for A = 62 and
80 is resolved by introducing the additional freedom in the
multiplet fits. On the other hand, the multiplets A = 108, 114,
122, and 128 exhibit slight tension, due to the larger number
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FIG. 7. Probability density function for the fit of the isobaric system A = 100, Z0 = 41 in three marginalizations of the parameter space:
gA − gMo

pp (a), gA − gRu
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FIG. 8. gA (a) and gpp (b) determined in the isobaric multiplet fits as a function of the mass number A, cf. Table IV. The error bars denote
the 1σ and 2σ parameter ranges. The blue values correspond to multiplets with a best-fit solution as expected by the degrees of freedom,
whereas light orange values denote a slight tension with χ2

min ≈ 1. In these cases, the underlying black and gray error lines give the 1σ and 2σ

range among the triplet fits, respectively, for comparison. The horizontal lines and associated vertical double arrows indicate fits with a strong
tension where no meaningful error could be determined.

of simultaneous constraints that dominate over the additional
freedom. The strong tension for A = 70, 80, and 130 remains
in the multiplet approach.

The results are also graphically displayed in Fig. 8(a), where
we plot the extracted values of gA as a function of the mass
number A, also showing the 1σ and 2σ uncertainties. It can
be directly compared to Fig. 5(a), and it can be seen that the
general behavior exhibited is similar in the two plots. Due to
the combined fit of all isobaric nuclei, the dependence on A

is smoother in Fig. 8(a), albeit with sometimes considerable
uncertainty for some multiplets, suggesting a systematic
dependence of gA with the mass number A within the range
98 � A � 142. The multiplets A = 108, 114, 122, and 128
with slight tension correspond to triplets with comparatively
large differences in the fitted gA values. This tension between
the triplet gA values leads to a worse fit when combining within
a multiplet and the resulting uncertainty likely underestimates
the true error in gA. For comparison in these cases, Fig. 8(a)
also shows the 1σ and 2σ range derived in the associated
triplet fits (i.e., the minimal and maximal extent in gA among
all triplets at the given uncertainty). This likely provides a
more realistic estimate of the uncertainty in gA.

Figure 8(b) shows gpp as a function of A within the
isobaric fits where each dot represents the best-fit point of
an individual gi

pp. As is illustrated in Fig. 7 and discussed
above, the freedom of allowing a different gpp per even-even
isotope introduces a degeneracy where individual gpp can vary
strongly. Figure 8(b) demonstrates that in almost all cases
at least one of the gpp can be small, hitting the limit of the
chosen variable range. As a result the apparent spread among
the gpp is large and there is only a tendency of squeezing
the range to lower values for increasing A. It should be
kept in mind that the fitting procedure also means that the
individual gpp values are correlated to satisfy the experimental
constraints. Despite the large freedom and large variability of
the gi

pp it is remarkable that the corresponding uncertainty
of gA remains comparatively small. This could indicate a

robustness of the underlying pnQRPA-based nuclear-structure
calculations against parameter variations.

Using the thus-fitted parameters, we calculate the predicted
2νββ-decay half-lives for all relevant isotopes as listed in
Table III under [t (2ν)

1/2 ]multiplet. The calculation includes the
correlation among the parameters gA, gi

pp, and γ i
ph; i.e., we use

the full probability density from the MCMC fit. Unfortunately,
many of the 2νββ isotopes are part of multiplets with a slight
or severe tension between experimental data and theoretical
prediction of the EC/β-decay fit. These are highlighted in
Table III as usual. The uncertainties quoted in these cases are
likely underestimates. The multiplet fits incorparating 116Cd
and 128Te are not able to relax the tension with the measured
2νββ-decay half-lives in these isotopes.

On the other hand, in the analysis carried out in Ref. [26]
a very weakly decreasing A dependence was obtained for
the effective value of gA in the IBA-2 and ISM frameworks.
The result was based on the comparison of the computed and
experimental half-lives of the 2νββ decays. This weak trend
is in line with the analysis of Ref. [48] where it was observed
that the constant gA = 0.6 reproduces better the measured
2νββ half-lives than the growing trend for gA obtained by the
β-decay analysis (see Table VI of Ref. [48]). In fact, having
a look at Fig. 4 as well as Table III of this work, in both
the triplet and multiplet analyses a decreasing multiplicative
factor of gA, as a function of the mass number A, would
bring the computed half-lives closer to the measured ones.
The fact that the analyses of the β decays and the 2νββ decays
give opposite trends is a sign that there are basic differences
between the two modes of decay. One difference is that for
the 2νββ decays more than one low-lying state can contribute
and the contribution coming from the first virtual 1+ state of
the intermediate nucleus does not exhaust the whole 2νββ
NME (see Table V of Ref. [48]). The balance between the
first contribution and the rest depends on the value of gpp in
a pnQRPA calculation, and the correlations of gA and gpp are
most likely different for the β and 2νββ decays.
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IV. CONCLUSIONS

In this work we studied single-β+/EC and β− decays for
a number of isobaric triplets and more complicated isobaric
chains of nuclei in the framework of the proton-neutron
quasiparticle random-phase approximation.

The present calculations have been done with G-matrix-
based two-nucleon interactions. By letting the value of the
axial-vector coupling constant gA vary freely, together with
the particle-particle interaction strength parameter gpp, we
have performed MCMC-based statistical analyses to chart the
effective values of gA in pnQRPA-based nuclear-structure
calculations. Within the statistical fits of complete isobaric
chains of nuclei we incorporated full parametric uncertainty
of the nuclear model by using independent gpp per even-even
isotope as well as an uncertainty in the particle-hole parameter
gph. We thus not only confirm previous results of an apparent
quenching of gA in an extended analysis but we also provide a

realistic estimate of the parametric uncertainty inherent in the
nuclear model. This is important, also, to compare with other
theory frameworks.

These findings may have some bearing on the studies of
the contributions of the low-lying 1+ intermediate states to
the highly interesting 0νββ NMEs. The relation of our present
results to the values of the 0νββ NMEs remains still an open
issue but we view the present study as an incentive to tackle
these issues in future investigations.
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F. Šimkovic, Overconstrained estimates of neutrinoless double
beta decay within the QRPA, arXiv:0711.3996v1.

[47] N. Yoshida and F. Iachello, Two-neutrino double-β decay in
the interacting boson-fermion model, Prog. Theor. Exp. Phys.
(2013) 043D01.

[48] P. Pirinen and J. Suhonen, Systematic approach to β and 2νββ

decays of mass A = 100–136 nuclei, Phys. Rev. C 91, 054309
(2015).

[49] J. Kotila, J. Suhonen, and D. S. Delion, Two-neutrino double
beta decay of 76Ge in an anharmonic vibrator approach, J. Phys.
G: Nucl. Part. Phys. 36, 045106 (2009).

[50] J. Kotila, J. Suhonen, and D. S. Delion, Description of the two-
neutrino ββ decay of 100Mo by pnMAVA, J. Phys. G: Nucl. Part.
Phys. 37, 015101 (2010).

[51] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
New York, 1975), Vol. II.

[52] A. Bohr and B. R. Mottelson, On the role of the δ resonance in
the effective spin-dependent moments of nuclei, Phys. Lett. B
100, 10 (1981).

[53] ENSDF at NNDC site, http://www.nndc.bnl.gov/.
[54] A. S. Barabash, Average and recommended half-life values for

two neutrino double beta decay: Upgrade-2013, AIP Conf. Proc.
1572, 11 (2013).

[55] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing,
Third Edition (Cambridge University, Cambridge, England,
2007).

055501-13

https://doi.org/10.1016/j.nuclphysa.2011.06.021
https://doi.org/10.1016/j.nuclphysa.2011.06.021
https://doi.org/10.1016/j.nuclphysa.2011.06.021
https://doi.org/10.1016/j.nuclphysa.2011.06.021
https://doi.org/10.1016/j.nuclphysa.2005.12.004
https://doi.org/10.1016/j.nuclphysa.2005.12.004
https://doi.org/10.1016/j.nuclphysa.2005.12.004
https://doi.org/10.1016/j.nuclphysa.2005.12.004
https://doi.org/10.1103/PhysRevC.75.051303
https://doi.org/10.1103/PhysRevC.75.051303
https://doi.org/10.1103/PhysRevC.75.051303
https://doi.org/10.1103/PhysRevC.75.051303
https://doi.org/10.1103/PhysRevC.76.024315
https://doi.org/10.1103/PhysRevC.76.024315
https://doi.org/10.1103/PhysRevC.76.024315
https://doi.org/10.1103/PhysRevC.76.024315
https://doi.org/10.1142/S0218301308009495
https://doi.org/10.1142/S0218301308009495
https://doi.org/10.1142/S0218301308009495
https://doi.org/10.1142/S0218301308009495
https://doi.org/10.1016/0370-2693(88)90002-0
https://doi.org/10.1016/0370-2693(88)90002-0
https://doi.org/10.1016/0370-2693(88)90002-0
https://doi.org/10.1016/0370-2693(88)90002-0
https://doi.org/10.1016/0375-9474(88)90041-3
https://doi.org/10.1016/0375-9474(88)90041-3
https://doi.org/10.1016/0375-9474(88)90041-3
https://doi.org/10.1016/0375-9474(88)90041-3
https://doi.org/10.1103/PhysRevC.85.034316
https://doi.org/10.1103/PhysRevC.85.034316
https://doi.org/10.1103/PhysRevC.85.034316
https://doi.org/10.1103/PhysRevC.85.034316
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1016/j.physletb.2013.12.051
https://doi.org/10.1016/j.physletb.2013.12.051
https://doi.org/10.1016/j.physletb.2013.12.051
https://doi.org/10.1016/j.physletb.2013.12.051
https://doi.org/10.1103/PhysRevC.93.034308
https://doi.org/10.1103/PhysRevC.93.034308
https://doi.org/10.1103/PhysRevC.93.034308
https://doi.org/10.1103/PhysRevC.93.034308
https://doi.org/10.1155/2016/4714829
https://doi.org/10.1155/2016/4714829
https://doi.org/10.1155/2016/4714829
https://doi.org/10.1155/2016/4714829
https://doi.org/10.1016/0375-9474(93)90602-T
https://doi.org/10.1016/0375-9474(93)90602-T
https://doi.org/10.1016/0375-9474(93)90602-T
https://doi.org/10.1016/0375-9474(93)90602-T
https://doi.org/10.1103/PhysRevC.72.024306
https://doi.org/10.1103/PhysRevC.72.024306
https://doi.org/10.1103/PhysRevC.72.024306
https://doi.org/10.1103/PhysRevC.72.024306
http://arxiv.org/abs/arXiv:0711.3996v1
https://doi.org/10.1093/ptep/ptt007
https://doi.org/10.1093/ptep/ptt007
https://doi.org/10.1093/ptep/ptt007
https://doi.org/10.1103/PhysRevC.91.054309
https://doi.org/10.1103/PhysRevC.91.054309
https://doi.org/10.1103/PhysRevC.91.054309
https://doi.org/10.1103/PhysRevC.91.054309
https://doi.org/10.1088/0954-3899/36/4/045106
https://doi.org/10.1088/0954-3899/36/4/045106
https://doi.org/10.1088/0954-3899/36/4/045106
https://doi.org/10.1088/0954-3899/36/4/045106
https://doi.org/10.1088/0954-3899/37/1/015101
https://doi.org/10.1088/0954-3899/37/1/015101
https://doi.org/10.1088/0954-3899/37/1/015101
https://doi.org/10.1088/0954-3899/37/1/015101
https://doi.org/10.1016/0370-2693(81)90274-4
https://doi.org/10.1016/0370-2693(81)90274-4
https://doi.org/10.1016/0370-2693(81)90274-4
https://doi.org/10.1016/0370-2693(81)90274-4
http://www.nndc.bnl.gov/
https://doi.org/10.1063/1.4856538
https://doi.org/10.1063/1.4856538
https://doi.org/10.1063/1.4856538
https://doi.org/10.1063/1.4856538



