Molecular characterisation of FFPE pancreatic tumours treated with 5-Fluorouracil (5-FU) and Sonodynamic Therapy (SDT) using whole transcriptome analysis

Saif-U-Rehman Khan, Ryan Levi Seah, Rifat Hamoudi, Nikolitsa Nomikou

UCL Division of Surgery & Interventional Science

Introduction

- •Current standards of care in pancreatic cancer (PC), such as surgical resection and chemoradiotherapy, remain ineffective in improving overall survival rates in PC
- •Sonodynamic therapy (**SDT**) is a novel treatment modality that utilises ultrasound in conjunction with sonosensitisers to destroy tumors in a site-specific manner¹
 •This study aimed to investigate
- This study aimed to investigate the effect of 5-Fluorouracil (**5-FU**) and SDT on expression levels of genes involved in aberrant signaling in PC using Next Generation Sequencing technology such as the Ion Proton™ System

•Bioinformatics analysis was performed using R/bioconductor and Database for Annotation, Visualization and Integrated Discovery (DAVID)

Results

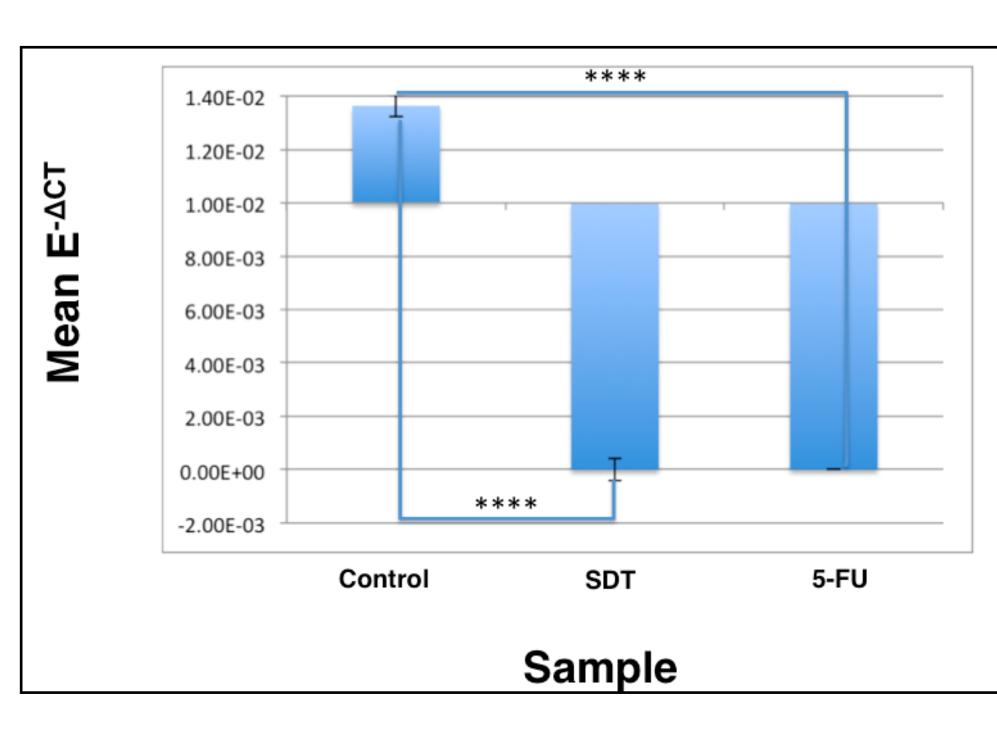


Figure 1. Mean $E^{-\Delta CT}$ of three samples. $E^{-\Delta CT}$ was calculated by taking $2^{-(CT \text{ gene of interest} - CT \text{ reference gene})}$ for each sample. Error bars represent standard error of

the mean where n = 3

IONTHOO ION

Figure 2. Unsupervised hierarchical clustering was applied to normalised RNA-seq values using R/Bioconductor.

A heatmap representation of differentially expressed genes among all samples was generated

- •Statistically significant differences in BCL3 expression levels between SDT and control (p = 0.001) and 5-FU and control (p = 0.001) were observed (Figure 1.)
- •Clustering's heatmap shows different transcriptomic signatures between three transcripts suggesting that each treatment targets different transcriptomic signature (Figure 2.)

Discussion

- •BCL3 expression was lower in both SDT and 5-FU treated samples compared to as untreated control sample, both suggesting treatment BCL3 modalities cause lower expression levels
- •Functional clustering revealed the involvement of G-Protein coupled receptors (GPCR) and signal transduction pathways in PC
- •Bioinformatics analysis also revealed two genes that showed the highest levels of differential expression between treated and untreated samples:
 - •ATP1B1 had 8.94 times lower expression levels in 5-FU sample compared to control, and this plays an integral role in the membrane protein Na+/K+-ATPase involved in energy production³
 - •RUNDC1 had 6.99 times higher expression levels in SDT sample compared to control, and this is associated with a transcription factor that is involved with ubiquitination⁴
- •Further work will validate the presence of ATP1B1 and RUNDC1 using qRT-PCR, by performing *in vitro* studies on untreated and treated cell lines

Materials & Methods

- •RNA extraction was performed on 3 FFPE specimens of BxPC-3 human pancreatic adenocarcinoma cells in a mouse model that were subjected to the following treatments²:
 - 1.Untreated (Control)
 - 2.440uM **5-FU**
 - 3.O₂MB-RB* and 440uM 5-FU treated with ultrasound (**SDT**)
- •Sample validation was performed using qRT-PCR, qPCR and a bioanalyser
- •Whole transcriptome amplification was performed using an Ion AmpliSeq™ RNA Library Kit Whole transcriptome sequencing was performed using the Ion Proton™ System on amplified transcriptomes
- * Oxygen-carrying microbubbles with covalently attached rose bengal on their surface

References

- 1.Trendowski. *Chemotherapy Research and Practice*. **2015**, 2015.
- 2.McEwan et. al. *Biotmaterials*. **2016**, 80.
- 3.National Centre for Biotechnology Information. **2016**. 4.STRING. **2016**.