
2 September/October 2016 Copublished by the IEEE Computer and Reliability Societies 1540-7993/16/$33.00 © 2016 IEEE

THE SECURITY–USABILITY TRADEOFF MYTH

Barriers to Usable Security? Three
Organizational Case Studies

Deanna D. Caputo | MITRE
Shari Lawrence Pfleeger | Pfleeger Consulting Group
M. Angela Sasse | University College London
Paul Ammann, Jeff Offutt, and Lin Deng | George Mason University

Usable security assumes that when security functions are more usable, people are more likely to use
them, leading to an improvement in overall security. Existing software design and engineering processes
provide little guidance for leveraging this in the development of applications. Three case studies explore
organizational attempts to provide usable security products.

S ecurity products are designed to keep individual
and corporate users’ systems safe from threats,

but such products are effective only if employees and
customers are able and willing to use them—and use
them properly. When asked about involving usability
experts in their work, software project managers often
explained why they didn’t find such experts useful. One
manager said, “I would rather hire a Wiccan, because
at least they have a spell book.” Security developers are
finally realizing through experience and data that many
users ignore or circumvent unusable security products.
Prompted by lost sales, lost time, and a profusion of
misuse errors, developers want to build usable security
into their projects. The July 2009 National Academy
of Sciences Workshop identified several challenges to
advancing research in usability, security, and privacy,
including inconsistent terminology and definitions;
limited access to data; scarcity of expertise; unfamiliar-
ity with work at the intersection of usability, security,
and privacy; and difficulty of moving security usability
research results into practice.1

To date, many developers claim to have thoughtfully
integrated user-centered design into their processes to
reach a usable security goal. However, usable security
involves much more than interfaces. It addresses how
people think about and use their computer systems,
particularly in the context of how they do their jobs.
Good usable security accounts for differences in user
experience, needs, skills, and attitudes as well as chang-
ing tasks and business needs. In addition, successful
developers will need to build usable security into pro-
cesses spanning the system’s life cycle, from conception
through design, implementation, and evolution, rather
than addressing only a single user at one point in the
software development process.

A rich body of behavioral science results can be mined
to improve the likelihood of successful usable security.
Two of the authors of this article, Shari Lawrence Pfleeger
and Deanna D. Caputo, have mapped out several promis-
ing areas where behavioral science results could be applied
to significantly improve usable security, including under-
standing heuristics, biases, framing, and cognitive load.2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79548272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.computer.org/security 3

Other researchers point to studies of human–computer
interaction that can form a basis for improving usability.3

This article describes the findings of three case stud-
ies, each of which explores a unique organization’s
attempts to improve the usability of its security products.

Usable Security Needs a Different
Approach
In August 2011, the Institute for Information Infra-
structure Protection (I3P) convened a National Insti-
tute of Standards and Technology (NIST)-sponsored
workshop to encourage practitioners to take the next
step in advancing research in usable security: integrat-
ing actions promoting usable security in all stages of
the software development life cycle.4 Participants in
the Software and Usable Security Aligned for Good
Engineering (SAUSAGE) Workshop observed that
the intersection of usability and security is problematic
because making software robustly secure often entails
controlling or limiting user actions in ways that reduce
perceived usability (and perhaps utility and adoption
of the software). This has led to an unproven yet persis-
tent belief on the part of some developers that there is
a tradeoff between usability and security, which makes
usable security unachievable if true. Therefore, one of
the workshop’s recommendations was to conduct a
series of case studies to investigate how organizations
deliver usable security and how they evaluate the effects
of changes they implement. As a consequence, NIST
and the US Department of Homeland Security funded
a multidisciplinary team of researchers to develop a uni-
form case study methodology and apply it to three dif-
ferent organizations. This article describes the results of
this two-year project to understand what leads to or hin-
ders the development of usable security.

Although some developers know—from experience
or published research—that most users ignore or cir-
cumvent unusable security products, others still erro-
neously think there’s a tradeoff between usability and
security and that users should make extra efforts to be
secure. For example, Adam Beautement and colleagues
found that users will ignore or circumvent security that
takes too much time and effort and therefore under-
mines productivity.5 Unfortunately, existing software
design and engineering processes provide little guidance
for leveraging usability and security in the development
of next-generation end-user applications—neither do
they suggest how to make existing security products
and services more usable in cost-effective ways. All soft-
ware engineering processes should address human deci-
sion making and behavior, but system developers and
designers are rarely taught how to improve system char-
acteristics while maintaining decision-making effective-
ness. To address these gaps, this research focused on

developing case studies of usable security design and
implementation that could be used both in understand-
ing the problems and in informing organizations about
solutions. In particular, these case studies investigated
how to incorporate usability and security in software
engineering processes.

The case studies were based on a series of inter-
views with key developers, designers, and managers.
The interview questions drew on principles of activity
theory,6,7 which support identification of the organiza-
tional drivers and constraints that shape team behav-
ior and influence design and development processes.
Activity theory, coupled with questions about human–
computer interaction, ensures that broader contextual
drivers are accounted for in both the design and evalua-
tion of technological products. It’s valuable in directing
researcher attention beyond individual cognitive tasks
to identify and assess how contextual factors, such as
organizational structure, the build environment, project
funding, and reward systems, influence team and indi-
vidual approaches to task accomplishment.

Consequently, the research team looked at organiza-
tional factors in software development and deployment
that could affect activities intended to integrate usable
security into software development. For example, how a
software development team perceives or relates to end
users is likely to influence how it balances and imple-
ments usability and security in its software designs. In
many large organizations, software teams work at a sig-
nificant distance from the real-world end users of their
products. Other times, software functions are developed
in response to development requests from customers
who aren’t end users and who might be poorly informed
about what end users actually do, resulting in software
that fails to meet the usability needs of real end users.

For this study, usable security is motivated by the
assumption that when security functions are more
usable, users will be more likely to use them, leading to an
improvement in overall security. In this work, the research
team adopted the International Organization for Stan-
dardization (ISO) definition of usability: “The extent to
which a product can be used by specified users to achieve
goals with effectiveness, efficiency, and satisfaction in a
specific context of use.”8 Based on this definition, the team
defined usable security as “delivering the required levels of
security and also user effectiveness, efficiency, and satis-
faction.” Recognizing the importance of performing rigor-
ous case studies and drawing on solid behavioral science,
this multidisciplinary research team brought together
computer, social, and behavioral scientists from three dif-
ferent institutions with expertise in software engineer-
ing, including software security, testing, process, design,
and usability, as well as experience in applying social and
behavioral science methods to security.

4 IEEE Security & Privacy September/October 2016

THE SECURITY–USABILITY TRADEOFF MYTH

These three case studies are intended to form the
basis of a growing corpus of studies that will help the
security and usability communities understand how to
make security products more usable. Indeed, it is hoped
that eventually the lack of usability will no longer be an
excuse for users to circumvent security software, sys-
tems, or procedures.

Methodology
Any credible investigation into what makes security
more usable must necessarily involve an understand-
ing of the users, their motivations, and their tasks. As
David Alan Grier noted, “We can’t understand our cur-
rent state of affairs without knowing the way we thought
and acted in the past any more than we can fully under-
stand a neighborhood without remembering the forces
that shaped it.”9 To explore the environment in which
usable security is embedded, we employed behavioral
science techniques that explore context and motivation.
In particular, the intent was to document the organi-
zational efforts and expertise involved in developing a
security product that has been constructed or enhanced
to make it more usable. Because the goal was to identify
factors that lead to success, the case study methodology
involved three things: stating tentative hypotheses, eval-
uating the degree of control over variables, and taking
steps to ensure the meaningfulness of the investigation.

Michael Agar noted, “In its classic form, a hypoth-
esis is a statement of the co-variation between two vari-
ables. … On the other hand, hypothesis has a broader
sense as ‘an idea to check out.’ … Something learned in
a conversation becomes a hypothesis to check in fur-
ther conversations or observations.”10 Unlike experi-
ments, in which sampling and control over all variables
drive the research design, it’s not appropriate in this
type of exploratory research to expect every variable to
have precise theoretical and operational definitions. An
initial definition may be the starting point for discus-
sion of a concept, but researchers might find that some
people use the same language with very different mean-
ings. Thus, this usable security case study methodology
blends several approaches drawn from psychological
and anthropological case study techniques so that sys-
tematization and study design, combined with careful
elicitation of data from appropriate sources, can ensure
that the evidence supporting the hypotheses is credible.
In this way, as the corpus of usable security case studies
expands, findings from individual cases can be explored
and tested in other environments, leading to a broad
understanding of how, when, and under which condi-
tions to provide usable security.

The three organizations studied were selected
to help explain three things: why each organization
added usability and security elements to its software

development process, how and where they added them,
and how the organization determined that the resulting
software was usable and secure. For each organization,
we sought findings that could be supported by argu-
ments that support or refute hypothesized theories.
Initially, the research team hypothesized three possible
explanations of why changes in the software develop-
ment process might lead to more usable security:

 ■ The “key individual” theory: Improved outcomes
resulted not from the process changes but instead
from the efforts of a single individual who cares about
usable security.

 ■ The “experienced team” theory: Improved outcomes
resulted not from the process changes but instead
from the team’s prior experience in building usable
security.

 ■ The “incentives” theory: Improved outcomes resulted
not from the process changes but from incentives
placed on team performance with respect to usable
security.

To ensure the meaningfulness of the investigation
at multiple levels, we developed a set of interview ques-
tions for each of three units of analysis levels: developer,
product manager, and senior manager. The final inter-
view protocol can be found in the “Interview Questions
for Case Studies” sidebar. To verify that the investiga-
tion was meaningful and confirm anticipated control
over variables before carrying out the reported case
studies, the team first performed a pilot study of the
full protocol. This test of the questions, ordering, and
interactions not only helped us understand and practice
the steps but also demonstrated that the original sets of
questions were too long and repetitive. The questions
in the sidebar represent the revised questions, updated
after the pilot test.

Once the case study methodology and interview
questions were piloted and well documented, the
team obtained approval of the study design from each
research organization’s Human Subjects Review Com-
mittee to ensure that sensitive data was adequately
protected. The research team took many measures to
protect the volunteering organizations’ intellectual
property and reputations. These measures included
having both subjects and research team members sign
nondisclosure agreements, anonymizing the orga-
nization names, encrypting all documents, avoiding
cloud services where control over documents could
be lost, and limiting or shredding all paper docu-
ments, such as notes or printouts. A more complete
discussion of the usable security case study method-
ology developed during this research program can be
found elsewhere.11

www.computer.org/security 5

Participating Organizations
We identified three providers of cybersecurity systems
willing to participate in our case studies. Each organi-
zation agreed to provide access to documentation of
its perceived need for usable security, the steps taken
to build usable security into its development pro-
cess, and data useful in evaluating the effects of using
the enhanced development process. Before the inter-
views, the research team made sure that the organiza-
tions understood the steps of the research process. In

particular, we asked about how problems and oppor-
tunities were recognized and addressed, and how the
corrections or enhancements were evaluated. In return
for their time and sharing, the organizations received a
confidential, informal, outside, usable security evalua-
tion by the senior research team of computer scientists,
psychologists, and an anthropologist. This evaluation
included a description of skills, processes used, gaps
in team composition (such as usability expertise), and
lessons learned during the development cycle that

Interview Questions for Case Studies

These questions were asked of participants at three levels of
inquiry that correspond to the three levels of analysis: software
development, product management, and higher management.
Within each level, we asked questions about security, usability, and
software development.

Section 1: Development Level
Please give us an overview of the product that we are discussing
today. Is this a new or legacy product? If possible, as part of your
overview, can we see a demo?

Security
1. Did the specifications you were given cover security aspects?

For instance, was a risk/threat analysis provided? Were security
mechanisms specified? What were the security challenges in
the project?

2. Were you given any specific security criteria to meet? (When
would the software be “secure enough”?)

3. Who were security tasks assigned to? Did a team member have
the role of “security champion”? If decisions were made, can
you walk us through the process?

4. Did you use any security design methods and tools? (Example:
misuse case analysis.)

5. Were any security assessments carried out during the project?
(Examples: code walkthrough, pen testing.) If so, what were the
results? What changes did you make in response?

6. Did you consult other team members, or other security
resources in the company, at any stage? If so, what was your
question, and what insights/help did you obtain?

7. Did you consult any external security resources—security
guidelines, CERT pages, threat analyses provided by consul-
tants—at any point? If so, did the resources help you to answer
the question?

Usability
1. Did the specification you were given cover usability aspects?

For instance, was the UI design provided? What were the us-
ability challenges in the project?

2. Were you given any specific usability criteria to meet? (When
would the software be “usable enough”?)

3. Who were usability tasks assigned to? Did a team member have
the role of “usability champion”? If decisions were made, can
you walk us through the process?

4. Did you use any usability methods and tools? (Examples: task
analysis, prototyping.)

5. Were any usability assessments carried out during the proj-
ect? (Examples: heuristic evaluation, user testing.) If so, what
were the results? Did you make any changes in response to
the findings?

6. Did you consult other team members, or other usability
resources in the company, at any stage? If so, what was your
question, and what insights/help did you obtain?

7. Did you consult any external usability resources—literature,
design guidelines—at any point? If so, what was your question?
Did the resources help you to answer the question?

Software Development
1. Did you follow a particular software development process on

this project? If so, how did it diverge from the official process?
2. Who produced the usability and security requirements for the

project?
3. Did you encounter conflicting usability and security require-

ments in this project? If so, what were the choices? Can you
walk us through your decision process?

4. Did the software development process support the decision? If
yes, how? If not, why not?

5. Did you consult any internal or external resources—colleagues,
developer forum—to help you solve the problem? If so, what
information was helpful to you?

6. How did you conduct the testing during the software devel-
opment process? What were the results? Did you test your
security mechanisms for usability?

7. Did you perform an evaluation of usability and/or security of

Continued on page XX

6 IEEE Security & Privacy September/October 2016

THE SECURITY–USABILITY TRADEOFF MYTH

produced the more usable software. These documents
could be used by the organizations to raise awareness
internally about good practices, teach other software
developers how to adopt them, and identify areas of
skill or process that are ripe for further improvement.
The interviews and discussions provided both manag-
ers and practitioners with an opportunity to reflect on
and document their activities and outcomes—actions
often not taken when staff members are busy.

The three case study organizations had several com-
monalities. All three are large companies (between

14,000 and 300,000 employees), and all use a large
number of applications and products (some home-
grown, others purchased). All three companies have
more than one business location.

The organizations also had significant differences.
The three companies have very different customers,
including federal and private. More important, they pri-
oritize security and usability very differently. The orga-
nizations ranged from a “security first” corporate culture
with a low tolerance for deliberate security violations to
one in which security isn’t typically the initial focus of

your project? If so, how did you conduct the evaluation? Did
you contact actual users?

8. In the software development process, when was usable security
considered and implemented? (Examples: at the same time as
other regular features, or after everything is done.)

9. How were usability and security handled during mainte-
nance activities?

10. What percentage of the total project effort was spent on us-
able security?

Section 2: Product Level
Please give us an overview of the product that we are discussing
today. If possible, as part of your overview, can we see a demo?

Security
1. What were the specific security goals/requirements for this

project?
2. Why were they important, and for whom? (Example: reputa-

tion of customer organization.)
3. Who identified the security goals, and how?
4. Were specific criteria for meeting security goals identified

(when the software would be “secure enough”)?

Usability
1. What were the specific usability goals/requirements for this

project?
2. Why were they important, and for whom? (Example: produc-

tivity of employees in customer organization.)
3. Who identified these usability goals, and how?
4. Were specific criteria for meeting usability goals identified

(when the software would be “usable enough”)?

Software Development
1. Were there specific goals for usability of the security mecha-

nisms in the software?
2. Why were they important, and for whom? (Example: so cus-

tomer organization would retain its own customers.)
3. Did you contact actual users?
4. Who identified the specific goals, and how?
5. What percentage of the total project effort was spent on us-

able security?
6. Did you test your security mechanisms for usability?

Level 3: Higher Management Level
Please give us an overview of the product that we are discussing
today. If possible, as part of your overview, can we see a demo?

Security
1. What were the specific security goals/requirements for this

project?
2. Why were they important, and for whom? (Example: reputa-

tion of customer organization.)
3. Who identified the security goals, and how?
4. Were specific criteria for meeting security goals identified

(when the software would be “secure enough”)?

Usability
1. What were the specific usability goals/requirements for this

project?
2. Why were they important, and for whom? (Example: produc-

tivity of employees in customer organization.)
3. Who identified these usability goals, and how?
4. Were specific criteria for meeting usability goals identified

(when the software would be “usable enough”)?

Software Development
1. Were there specific goals for usability of the security mecha-

nisms in the software?
2. Why were they important, and for whom? (Example: so cus-

tomer organization would retain its own customers.)
3. Did you contact future users?
4. Who identified the specific goals, and how?
5. What percentage of the total project effort was spent on us-

able security?
6. Did you test your security mechanisms for usability?

Continued from page XX

www.computer.org/security 7

each business unit; in the latter, a drop in product sales
drove a focus on usability.

Data Collection and Analysis
The research team made a two-day visit to each orga-
nization’s site to learn both why and how the security
was designed to be usable and how the product’s secu-
rity and usability were evaluated. We questioned rep-
resentative software developers, product managers,
and senior managers using interviews, so that no staff
member’s work was interrupted for more than an hour
or two. Some staff members were asked follow-up ques-
tions by email or telephone. An important part of the
case study methodology is the fact that we intentionally
didn’t define usability or security for the interviewees
so that we could get a sense of how they perceived those
characteristics. Instead, we asked them to provide cri-
teria for successful security and usability. In addition,
their responses to interview questions revealed their
working definitions and assumptions, especially con-
cerning usability.

At least three team members took detailed notes at
each interview. Each team member read every set of
notes, highlighted the important statements, identi-
fied key actors and processes, and resolved differences
among datasets for each interviewee. Then, the rec-
onciled notes were qualitatively coded independently
by three team members and analyzed, using Atlas.ti
software, to assist in identifying relationships across
concepts and interviews. Qualitative coding is a method-
ology in the behavioral sciences that refers to the pro-
cess of reading text and then assigning labels to words
and phrases to classify concepts and assign meaning.
Coding had least two steps: assigning initial labels to
text, and then reviewing the codes to focus the descrip-
tors and extract meaning. For example, the second,
more focused step might eliminate some codes, com-
bine others into categories, and identify links or themes
that connect some codes to others. The goal is to dis-
cover relationships that wouldn’t likely be found simply
by reading the text.

Then, one organization at a time, we used the cod-
ing results for each organization to evaluate key factors
contributing to some aspect of usable security. We sent
findings to each organization separately, so that its rep-
resentatives could correct any errors in understanding,
transcription, attribution, or fact. Because of the sen-
sitivity of these individual organizational findings, we
don’t discuss them individually in detail. Rather, analysis
focuses on the data across organizations to identify pat-
terns that improve usable security or inhibit its success.

Cross-Case Findings
Although each case study is designed to be pursued on

its own, the research team created a consistent method-
ology to enable multiple-case study analysis. A multi-
ple-case comparison not only strengthens results when
commonalities are identified but can also suggest new
hypotheses based on variation in context and results.
Across cases, the focus was on why and how case results
differed or were the same.

The three organizations agreed to participate in the
case studies because, at some point in their business
processes, each not only recognized the importance of
usable security but also made changes to try to improve
its security products’ usability. The analysis revealed
additional important commonalities:

 ■ each had small development teams, even though all
three were large companies;

 ■ each focused mainly on making the remote access
process or the access review and revocation process
more usable;

 ■ each had an agile-inspired, informal development pro-
cess, in which developers followed the spirit though
not necessarily the letter of a particular agile process;

 ■ the staff in each organization had different ideas about
what usability is; and

 ■ the staff in each organization had different ideas about
the relationship between usability and security.

None of the organizations had defined criteria or
measurements for usability or security. They didn’t
perform formal usability testing, so the teams couldn’t
assess if usability really improved for the users they
were specifically targeting. Similarly, there was little or
no formal security evaluation, so the teams also couldn’t
assess if better usability improved security. Most inter-
viewees stated that they intended to conduct security
evaluations (and some actually thought they had) but
were unable to articulate any such process when asked.
In addition, no organization used business modeling to
determine if investment in usable security would pay
off, and in what ways. But even without this key infor-
mation, several important conclusions can be drawn.

Pleasure versus Pain
Each organization responded more to pain than to plea-
sure; that is, in each organization, usability was mostly
a “grudge sale,” in which managers responded more to
financial pressures—reduced sales, increased competi-
tion, or escalating cost of use—than to reasoned argu-
ments about the need for usability. The pain was usually
evidenced by user complaints (internal or external)
from large numbers of customers or from influential
individuals, such as corporate executive officers who
couldn’t use an application. Most often, usable security
was seen as an optional cost, not as an opportunity or

8 IEEE Security & Privacy September/October 2016

THE SECURITY–USABILITY TRADEOFF MYTH

a competitive advantage. As one interviewee summa-
rized, “Usability groups are available to anyone who has
money to support them. We usually pass on the costs
to our customers. We let the customers decide whether
usability is important enough to pay for.”

Economics and Incentives
None of the case study organizations were motivated
simply by providing usable security as a dimension of
quality and as the right thing to do in building a system.
Instead, based on the research team’s observations, eco-
nomics and incentives were the key factors that initiated
a push for usable security. Because those who deliver
secure applications with poor usability generally don’t
bear the resulting cost, complaints about unusable secu-
rity are relayed to developers and then often ignored.
Moreover, additional budget isn’t allocated to devel-
opment for usability unless it affects the organization
in a big way. Thus, addressing, measuring, and track-
ing these costs is necessary but very difficult. There’s
little reward for usable security, and there are few con-
sequences for bad usability or failed attempts at usable
security. In other words, developers simply don’t feel
the pain inflicted by bad usability.

Differing Definitions
When asked what usability really means, respondents
offered radically different definitions. Some equated
usability with productivity: fewer keystrokes leading
to lower cost, or novel features leading to business
improvements. Some defined usability in terms of access
for new users, devices, or platforms. Only a few indi-
viduals thought about usability as a way of increasing
security: fewer user errors or increased willingness to
comply with security rules. One interviewee described
a seamless user experience in which security doesn’t
get in the way: “Users need to get to the resources they
need, and do what they want and when without think-
ing.” These differences in understanding mean that con-
sistent measurement of improvements in usability can
be daunting, and there’s no one-size-fits-all metric to
apply.

This diverse view of what usable security means
was exacerbated by the dearth of developers who real-
ize that delivering usable security goes deeper than the
interface. Developers interviewed rarely had any under-
standing of

 ■ general user characteristics, such as the capabilities
and limitations of human perception and cognition;

 ■ their target users’ primary tasks and the associated
performance constraints; or

 ■ the context of use (physical, social, and temporal) of
security applications or processes.

Consequently, they had no idea how a particular security
solution might affect an individual or an organization.

Achieved Usability
Another finding is that usable security wasn’t always
achieved. Without clear evaluation criteria or anything
measurable, “usable security” was in the eye of each
individual beholder. Even within the same organiza-
tion, different participants had different ideas of what
this meant.

Delivery
Even when they understood what usability might look
like, developers didn’t always see a need to deliver it. In
particular, developers didn’t understand the impact of
lack of usability on individual performance and well-
being, organizational productivity, or the effectiveness
of security. For example, one interviewee said, “This
technology was built to address some of these diffi-
culties to solve existing problems without negatively
changing the user experience. Hence, input from the
actual users didn’t seem relevant.” The developers con-
fused user knowledge with their own in-depth knowl-
edge of the product, falsely assuming that user needs
were the same as “how we [the developers] think it
should be used.” Many also viewed usability knowledge
and methods as “common sense” (which they naturally
felt they possessed in abundance), not as a specialist dis-
cipline with relevant knowledge and methods.

“Developer Knows Best”
Underlying the view of usability as common sense was
the belief that “developers know best.” They considered
themselves as users of the product in question, and thus
saw little or no need to engage with target users. The fol-
lowing quotes capture this perfectly: “I can see a prob-
lem before the users see it; I can go in and troubleshoot.
I use it myself,” and “A lot of our background comes
from running around helping users out. That’s given us
a good perspective of what users need and what their
complaints will be. We kind of have a sense based on
our experience.” Yet, all developers admitted that they
were not taught usability in their computer science or
security programs and didn’t have any on-the-job or
work-sponsored training, either. Despite not knowing
how a product might be used “in the wild,” develop-
ers believe they know a product well and know how to
improve it. This gap in training and awareness leads the
developers to focus on optimizing features they under-
stand while ignoring potentially important improve-
ments that could be guided by user feedback. This bias
toward “developer knows best,” in addition to the belief
that there is a tradeoff between usability and security,
also means that many developers accept guidance only

www.computer.org/security 9

from other developers. In particular, these developers
don’t value recommendations from usability special-
ists, who are viewed as people who “cannot code,” and
thus have no understanding of what would be required
to deliver the designs they recommend. We found that
these cultural differences were very real and common
and created barriers to communication and delivery of
usable security.

Discussion
The cross-case findings are fascinating in many ways,
including the degree to which they reveal cultural biases
hinted at in the original National Academies study. Dif-
ferences in jargon and concept were only a small part of
the cultural divide; differences in training and thinking
led to dismissal of impor-
tant user feedback.

Revisiting the
three theories hypoth-
esized in the “Meth-
odology” section of
this article, we found
no support for theory
1 (the key individual)
or theory 2 (the experienced team). However, the case
studies did find some support for the incentives theory:
the companies were motivated to improve the usability
of their security products only when it was clear that such
improvement would decrease the negative consequences
of the usability problems. To be specific, in one case the
goal was to decrease calls to the help desk, which was
staffed by the security team. In another case, the goal was
to reduce the loss in market share that was due to a public
negative report on the product’s usability. In the third, the
goal was to reduce the institutional cost of thousands of
employees wasting time with unusable systems.

In other words, if usable security was important
to the organization in terms of increased compliance
with security policies or increased sales, then a way was
found to make security more usable. Indeed, in one
case, when the motivation was withdrawn, the organi-
zation reverted to less usable security. Please keep in
mind that only three case studies have been completed
to date, so significantly more data is necessary before
these theories can be appropriately evaluated.

Increasing Usable Security
Based on the findings, at least two options appear worth
exploring to potentially increase usable security.

Assign responsibility for usable security to those who can
deliver it. Currently, in most organizations, the IT help
desk is the first place a user goes when experiencing sys-
tem problems. Thus, the help desk is taxed with the costs

of poor usable security. The problems are measured
in user complaints, and the help desk’s effectiveness is
measured by how quickly it can remedy concerns, even
when it can’t fix the problem. What if the number of
user complaints was a metric affecting the performance
reviews of the software’s designers or developers? Or,
what if usable security was defined to include not only
features but also lack of failures? Developers might then
take increased ownership of failures in usable security
and eventually take steps to design usable security into
products during early development stages.

Provide training on usability and usable security—in
school and on the job. Developers need a basic under-
standing of the complexity of human capabilities

and limitations, as well
as human activity
and productivity, to
appreciate the com-
plementary expertise
offered by a usability
expert. One devel-
oper familiar with
usability said, “Focus

groups are important. But I want to engage people and
test it out because there will be ways in which they use
it that are never thought of. …The moral of the story
is that I’ve got experience and it doesn’t account for all
the ways in which a user is going to use something that
we haven’t anticipated.” Mutual respect between devel-
opers and usability experts might encourage the devel-
opers to see through different eyes and observe that
unusable security isn’t secure because users will find
workarounds to get their primary tasks done that will
reduce intended security.

Open Questions
In addition, our cross-case findings suggest several
important open questions that need answers if usable
security is to be respected and accepted by developers.

Is motivation more important than process? We began
this study expecting to find places in the software devel-
opment process where usability knowledge and pro-
cesses could be best inserted. But what if a solution is
not only about process, or even mainly about process?
The role of process is to make sure people do what their
organization wants, regardless of personal motivation.
What we saw is that textbook or mandated software
development processes weren’t followed routinely or
even valued; their adoption occurred only when devel-
opers valued them and were personally motivated to
use them. The three case study organizations were
motivated by time or cost pressures, which caused them

What if the number of user complaints was
a metric affecting the performance reviews
of the software’s designers or developers?

10 IEEE Security & Privacy September/October 2016

THE SECURITY–USABILITY TRADEOFF MYTH

to avoid usability processes. However, poor usability
meant reduced access and thus reduced productivity for
users. Poor usability led to inefficiencies, and one aspect
of usability is efficient use of user time, especially when
the task is secondary. A senior development team mem-
ber recognized that, consequently, poor usability meant
sales were dropping. So, what is the role of motivation
in encouraging consider-
ation of usable secu-
rity during system
design, development,
and sustainment and
how do we determine
what those motiva-
tions are?

How do we overcome cultural barriers? The case studies
identified and described barriers among development,
security, and usability experts, but there are also barriers
among different parts of a company that have different
perceptions of the value of usable security. For example,
developers might not value usable security, but sales
and marketing staff could understand its value in dis-
tinguishing the product or service in the marketplace.
Perhaps a shared lexicon about usability, productivity,
security, and related concepts would reduce translation
errors in communication among these experts.

How do we encourage developers to value usability when
they don’t bear the cost of not addressing usable security?
Although organizations must clearly specify the usable
security requirements, that isn’t enough. To develop-
ers, usability often is considered only after functionality
and security. What if the value of usable security were
monetized so that the cost of putting usability analysis
into the process is weighed against the expense of the
help desk support needed when products aren’t usable?
In so doing, creating a business case for usable security
might help. An organization can motivate developers by
providing incentives or disincentives, or it can imple-
ment a process that ensures that usability is considered,
regardless of whether people are motivated. If develop-
ers knew there was a formal usability evaluation, and
products not meeting the usability threshold wouldn’t
get released, they would very likely pay a lot more atten-
tion to the test criteria.

Does risk-based security make security more usable than
compliance-based security? When reviewing the appro-
priateness of assigned system accesses, some manag-
ers focus their review only on those systems or data
exhibiting the most operational, reputational, or finan-
cial risk. This attempt at efficiency replaces early, more
straightforward approaches in which each manager is

required to do a complete review of everyone’s access to
everything. In other words, today’s organizations try to
improve usability by framing security choices in terms of
risk rather than compliance. The advantages go beyond
reducing the size of the set needing scrutiny. Some
organizational managers argued that risk-based security
is more flexible and can more quickly handle changes

to software development
requirements. It’s not
clear whether this
risk-based approach
actually improves
security. What’s clear
is that compliance
increases: manag-
ers are most likely

to complete the review if they have a smaller set of
accesses to evaluate. What are some necessary and suf-
ficient actions that will increase security in a risk-based
system? That is, how small can the size of the evaluated
accesses be so that it encourages compliance, and how
small is so small that it sacrifices security?

Lessons Learned and a Call for More Case
Studies
At the beginning of the project, we documented several
hypotheses about usable security to visit after analysis
and see what had been learned. Based on the data find-
ings, three of these hypotheses are false:

 ■ Usability is common sense; no experts needed.
 ■ If we make a product harder to use, then it’s more

secure.
 ■ There’s always a tradeoff between usability and security.

However, the data collected leaves uncertainty about
the truth or falsity of one hypothesis, which therefore
needs further investigation: usable security is expensive.
Measures of impact are needed to decide if this hypoth-
esis is true or false.

Some of these hypotheses might be true in some
situations and false in others. Indeed, each of the three
motivators for usable security posited at the beginning
of our studies (key individual, experienced team, and
incentives) could well be important to some extent in
every organization. Although our three cases are too few
for generalization, a larger corpus of case studies based
on the same methodology is likely to suggest whether,
when, and how these and other characteristics contrib-
ute to usable security.

Replicability
To perform the case studies, we purposely defined a
methodology for three types of interviews that other

Today’s organizations try to improve
usability by framing security choices in
terms of risk rather than compliance.

www.computer.org/security 11

organizations can use at least to evaluate themselves, if
not to enable other researchers to evaluate other orga-
nizations and compare the results with other studies in
the corpus. Some clear lessons learned can be drawn
from the creation, application, and evaluation of these
three case studies that will be useful as other researchers
apply the methodology to other organizations.

Legal Concerns
In finding willing organizations to study, legal con-
cerns kept several organizations away. We approached
a handful of organizations that had clearly been suc-
cessful in making their security applications more
usable. At the development and product levels, staff
members were eager to share their stories. But the
organization’s legal staff was concerned that impor-
tant corporate intellectual property or secrets might
be revealed, so permission to proceed wasn’t granted.
The lesson? Make sure to talk to someone senior
about the benefits of the research so he or she directs
the lawyers to make it happen and manage the associ-
ated risks.

Costs
In finding willing organizations to study, time and
cost were major concerns. The organizations donated
significant amounts of time from expensive indi-
viduals, and in some cases, real money for travel. It’s
imperative to make a strong case for the benefits to
the organizations of the study and to provide them
with valuable feedback.

Diversity
In building a case study team, having diverse back-
grounds of team members is a strength. Our research
team included several types of behavioral scientists,
software engineering experts, and usability experts.
Their different perspectives enriched discussions and
strengthened the methodological approach.

Interviews
In the organizations being studied, having a single point
of contact is helpful in setting up interviews, finding the
right people and projects, and arranging logistics. Many
interviews must be done remotely, so reliable technol-
ogy is essential to enable both the researchers and the
interviewees to concentrate on the interview content.
Be aware, though, that project demands often trump
research demands, so to keep interviews short, repeat
visits or follow-up questions might be needed. Finally,
different cultures are interacting, so it’s important to
obtain interviewees’ background information (edu-
cation, training, and experience), which can help to
explain what’s observed.

In applying the methodology, get background
information after the interviews, rather than before.
Interviewees usually have limited time to spend in an
interview, so the background information can be gath-
ered through paper and electronic means after the fact.
In addition, interviewees were more interested in shar-
ing their background after they met with the research
team and had a positive interaction that built trust.

Piloting
As we noted earlier, piloting is extremely important,
even if only to use the methodology to learn how it
works, what works, and what doesn’t work well. The
pilot study in this project led to numerous significant
improvements in the interview questions.

Focus
It’s important to be clear from the start that the study
relates to only one security product; gathering data on
more than one product can introduce too many variables.

Other Considerations
A review of the findings also suggests that other vari-
ables, such as team size and organizational culture,
should be identified and used to scope out where addi-
tional case studies should be done. Barbara Kitchenham
and her colleagues point out that case studies sample
from the variables (rather than over the variables, as
experiments do), so additional cases are more useful
when they increase the representativeness of the corpus
of organizations studied.12 These additional case stud-
ies should use the same methodology, enabling more
effective cross-case analyses. The goal is to increase
knowledge and understanding as this corpus grows.
Based on the findings from these three case studies,
future case studies that could add tremendous value to
a corpus would include smaller companies, larger devel-
opment teams, government or nonprofit organizations,
and nonaccess control products.

O ne valuable addition to the executed design
would be formal testing to determine whether

the resulting products improved in usability and secu-
rity. We requested the products for such testing, but
these organizations were concerned about their intel-
lectual property and weren’t willing to hand over the
products for independent testing. Instead, we had to
rely on demonstrations and specifically ask “how do
you know” questions when the organizations claimed
improved usability. This is a good example of how a
theoretical study design must be modified to reflect
organizational constraints. Future case studies should
continue to request formal testing.

12 IEEE Security & Privacy September/October 2016

THE SECURITY–USABILITY TRADEOFF MYTH

Acknowledgments
This work was prepared under cooperative agreement
70NANB11H169 from the National Institute of Standards
and Technology (NIST) and the US Department of Com-
merce, and under award 2006-CS-001-000001 from the US
Department of Homeland Security. The statements, findings,
conclusions, and recommendations are those of the authors
and do not necessarily reflect the views of NIST, the US
Department of Commerce, or the US Department of Home-
land Security. In addition to the authors, researchers on this
project include Richard Pietravalle (MITRE) and Laura
McNamara (Sandia National Laboratory).

References
1. National Research Council, Toward Better Usability, Secu-

rity, and Privacy of Information Technology: Report of a
Workshop, Nat’l Academies Press, 2010.

2. S.L. Pfleeger and D.D. Caputo, “Leveraging Behavioral
Science to Mitigate Cyber Security Risk,” Computers &
Security, vol. 31, no. 4, 2012, pp. 597–611.

3. M.A. Sasse, S. Brostoff, and D. Weirich, “Transforming
the ‘Weakest Link’: A Human/Computer Interaction
Approach to Usable and Effective Security,” BT Technol-
ogy J., vol. 19, no. 3, 2001, pp. 122–131.

4. S.L. Pfleeger, Draft report on NIST Workshop, 2011; upon
request of program manager mary.theofanos@nist.gov.

5. A. Beautement, M.A. Sasse, and M. Wonham, “The Com-
pliance Budget: Managing Security Behaviour in Organ-
isations,” Proc. 2008 Workshop New Security Paradigms
(NSPW 08), 2008, pp. 47–58.

6. B. Nardi, ed., Context and Consciousness: Activity Theory
and Human-Computer Interaction, MIT Press, 1996.

7. Y. Engeström, “Innovative Learning in Work Teams: Ana-
lysing Cycles of Knowledge Creation in Practice,” Per-
spectives on Activity Theory, Cambridge Univ. Press, 1999,
pp. 377–406.

8. ISO 9241-210: Ergonomics of Human-System Interaction—
Part 210: Human-Centered Design for Interactive Systems,
Int’l Organization for Standardization, 2010; www.iso
.org/iso/iso_catalogue/catalogue_tc/catalogue_detail
.htm?csnumber=52075.

9. D.A. Grier, “The Tenor of Our Times,” Computer, vol. 46,
no. 8, 2013, p. 128.

10. M.H. Agar, The Professional Stranger: An Informal Intro-
duction to Ethnography, 2nd ed., Academic Press, 1996.

11. S.L. Pfleeger et al., “Studying Usable Security: How to
Design and Conduct Case Studies,” submitted for publi-
cation to Computers & Security.

12. B. Kitchenham, L. Pickard, and S.L. Pfleeger, “Case Stud-
ies for Method and Tool Evaluation,” IEEE Software, vol.
12, no. 4, 1995, pp. 52–62.

Deanna D. Caputo is a principal social psychologist at the
MITRE Corporation. Her research interests include

the intersection of behavioral science and computer
science, such as insider threats, cybersecurity, and
effective ways to change behavior. Caputo has a PhD
in social and personality psychology from Cornell
University. Contact her at dcaputo@mitre.org.

Shari Lawrence Pfleeger was the project manager for this
usable security project. Pfleeger has a PhD in informa-
tion technology from George Mason University. She
is now retired. Contact her at shari@pfleeger.com.

M. Angela Sasse is a professor at University Col-
lege London. Sasse has a PhD in computer science
from the University of Birmingham. Contact her at
a.sasse@cs.ucl.ac.uk.

Paul Ammann is an associate professor in the Depart-
ment of Computer Science at George Mason Univer-
sity. His research interests include software testing,
usability, and security. Amman has a PhD in computer
science from University of Virginia. Contact him at
pammann@gmu.edu.

Jeff Offutt is a full professor of software engineering
at George Mason University. His research interests
include test automation, Web application engineer-
ing, mutation testing, and critical software. He is edi-
tor in chief of Wiley’s Software Testing, Verification,
and Reliability and coauthor of Introduction to Soft-
ware Testing. Offutt has a PhD in information and
computer science from the Georgia Institute of Tech-
nology. Contact him at offutt@gmu.edu.

Lin Deng is a PhD candidate in information technology
at George Mason University. His research interests
include testing mobile applications. Contact him at
ldeng2@gmu.edu.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

