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Background: Darunavir is considered to have a high genetic barrier to resistance. Most darunavir-associated drug
resistance mutations (DRMs) have been identified through correlation of baseline genotype with virological
response in clinical trials. However, there is little information on DRMs that are directly selected by darunavir in
clinical settings.

Objectives: We examined darunavir DRMs emerging in clinical practice in the UK.

Patients and methods: Baseline and post-exposure protease genotypes were compared for individuals in the UK
Collaborative HIV Cohort Study who had received darunavir; analyses were stratified for PI history. A selection
analysis was used to compare the evolution of subtype B proteases in darunavir recipients and matched PI-
naive controls.

Results: Of 6918 people who had received darunavir, 386 had resistance tests pre- and post-exposure. Overall,
2.8% (11/386) of these participants developed emergent darunavir DRMs. The prevalence of baseline DRMs was
1.0% (2/198) among PI-naive participants and 13.8% (26/188) among PI-experienced participants. Emergent
DRMs developed in 2.0% of the PI-naive group (4 mutations) and 3.7% of the PI-experienced group (12 muta-
tions). Codon 77 was positively selected in the PI-naive darunavir cases, but not in the control group.

Conclusions: Our findings suggest that although emergent darunavir resistance is rare, it may be more common
among PI-experienced patients than those who are PI-naive. Further investigation is required to explore whether
codon 77 is a novel site involved in darunavir susceptibility.

Introduction
Darunavir is a preferred antiretroviral agent in several HIV treat-
ment guidelines for therapy-naive and experienced patients.1 – 3

This second-generation PI is generally well tolerated and is per-
ceived to have a high genetic barrier to resistance. Darunavir-
associated drug resistance mutations (DRMs) have been largely
identified by analyses that examined the correlation between base-
line genotype and virological response. However, there is less infor-
mation on DRMs that are directly selected by darunavir in clinical
settings.

Darunavir is considered less likely to cause clinically significant
resistance than most PIs as it requires the HIV-1 protease gene to
mutate several times to produce a corresponding reduction in
phenotypic drug susceptibility.4 Eleven darunavir-associated
DRMs are recognized by the International Antiviral Society
(IAS)-USA.5 These occur at 10 protease positions and include six
major mutations (shown in bold) and five minor amino acid sub-
stitutions: V11I, V32I, L33F, I47V, I50V, I54L, I54M, T74P, L76V,
I84V and L89V. Darunavir DRMs were inferred from the POWER
studies, clinical trials that established the efficacy of this agent
in treatment-experienced patients, including those with baseline
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PI resistance.6,7 In the POWER studies, around half of participants
that had baseline viruses with between zero and two DRMs
achieved virological suppression at week 48, but this fell to 26%
when three or more mutations were present. Two subsequent
randomized controlled trials, TITAN and ARTEMIS, demonstrated
the non-inferiority of darunavir compared with lopinavir in
treatment-experienced and treatment-naive patients, respect-
ively.8,9 The TITAN trial also showed a worse outcome in those
with at least three pre-existing darunavir DRMs, as in this sub-
group only 60% achieved viral suppression, compared with 90%
overall.8 Observational data have been used to create genotypic
resistance interpretation tools to predict the response to daruna-
vir therapy based on the presence of specific baseline protease
mutations. A study of 880 patients drawn from large European
databases identified five baseline mutations that were associated
with a reduced 8 week virological response to a darunavir-
containing salvage regimen (L10F, V11L, I54M, T74P and V82I)
and six mutations that were associated with an improved
response (K20T, E34D, I64L, V82A, I85V and I93L).10

There are no studies to our knowledge of the emergence of
darunavir resistance in clinical practice settings in the UK. The
UK HIV Drug Resistance Database (UKHDRD) is a repository of
genotypic resistance tests performed as part of routine clinical
care, and currently contains over 100000 HIV pol sequences.11

These are linked to demographic and clinical information provided
by the UK Collaborative HIV Cohort (UK CHIC) study, which merges
data from some of the largest HIV clinics in the UK.12 Over 6000
UK CHIC study participants have received darunavir since its intro-
duction in 2007. This large national cohort with longitudinal viral
genetic data presents an ideal opportunity to determine the DRMs
that emerge during therapy in clinical practice. We aimed to iden-
tify emergent mutations by comparing the HIV-1 protease
sequences obtained from individuals before and after darunavir
exposure. We used a positive selection analysis approach that
compared non-synonymous and synonymous mutations across
the protease gene to identify codons not previously implicated
in darunavir resistance.

Patients and methods
UK CHIC participants (all aged over 16 years) were eligible for the study if
they had received at least 30 days of a darunavir-containing regimen and
had both a ‘baseline’ (defined as any time prior to darunavir exposure) and
‘post-exposure’ genotypic resistance test result (obtained either during
darunavir therapy or within 30 days of stopping this agent). Participants
were excluded if they had received another PI for ≥90 days between the
baseline and post-exposure tests, to avoid attributing the effect of other
agents to darunavir. A 90 day period was allowed to enable a resistance
test result to be obtained and acted upon prior to switching to darunavir
from another PI. Only genotypes with a complete protease sequence were
considered. If more than one baseline genotypic test had been performed,
the one closest to the start of darunavir was used. If more than one post-
exposure test had been performed, the results were combined and there-
fore reflect cumulative resistance. All ART regimens that included daruna-
vir were considered. Information on the dosing frequency (once or twice
daily) was not recorded. The prevalence at baseline of darunavir DRMs,
defined according to the IAS-USA 2015 list,5 was assessed from the base-
line protease sequences. Emergent DRMs were identified by comparing the
baseline and post-exposure sequences for each individual. Viral subtypes
were determined by analysing the pol sequence with the REGA HIV subtyp-
ing tool version 3.13,14 All analyses were stratified by history of exposure to

other PIs prior to initiating darunavir. Statistical analyses were performed
with Stata/IC 13.1 software (StataCorp LP, College Station, TX, USA).

Selection pressure was examined by estimating non-synonymous (dN)
and synonymous (dS) substitution rates during darunavir therapy using
the HyPhy software package available on Datamonkey, a web-based inter-
face.15,16 The dN:dS ratio was calculated for amino acid sites 5–99 of the
protease gene and positive selection was inferred if dN.dS. The analysis
was restricted to those with subtype B infection to avoid introducing bias
from inter-subtype variability in WT amino acids and polymorphic loci. A
case control approach was used for the positive selection analysis. Cases
met the study eligibility criteria above and additionally had not been
exposed to any other PIs prior to initiating darunavir. To distinguish the
effects of darunavir therapy selection pressure from the natural evolution
of the protease gene over time, we selected controls who met the same
inclusion criteria, but who were PI-naive and had initiated an NNRTI-based
ART regimen. For each case, two controls were randomly chosen, matched
by calendar year of initiation of either darunavir or NNRTI. The selection
pressure analysis was performed using three different codon-based algo-
rithms: fixed effects likelihood (FEL), single likelihood ancestor counting
(SLAC) and fast unconstrained Bayesian approximation (FUBAR) using a
cut-off P value ,0.05 for FEL and SLAC, and a posterior probability
.0.95 for FUBAR.17,18 A starting phylogenetic tree was supplied for each
analysis that was inferred by maximum-likelihood method in FastTree
using a general time reversible nucleotide model of substitution.19 A single
breakpoint recombination tree was used if recombination was detected.
Sites were considered to be positively selected if this was confirmed by
at least two of the three algorithms.

Results
A total of 6918 UK CHIC participants had received darunavir up to
the end of 2012, of whom 386 met the inclusion criteria (Figure 1).
Reasons for exclusion were lack of baseline and post-exposure
resistance tests with complete protease sequences and receipt
of another PI for ≥90 days following the baseline test. The

6918 participants received
darunavir therapy

1909 participants had no
baseline genotype
before darunavir

4290 participants had no
repeat genotype during
darunavir or within 30 days
of stopping

719 participants had
baseline and post-exposure
genotypes 306 participants received

another PI for ≥90 days 
between baseline test and
darunavir start

27 participants had
incomplete protease
sequences

386 participants had
baseline and post-exposure
genotypes eligible for
analysis

Figure 1. Flow chart: study participant selection.
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characteristics of the study participants are shown in Table 1. There
was a preponderance of men, with sex between men accounting
for around half of the known modes of HIV acquisition. The major-
ity of participants were viraemic at darunavir initiation. Of these
386 participants, 198 (51%) were PI-naive and 188 (49%) had a
history of PI use prior to darunavir. In PI-experienced participants
the most common previous PIs were lopinavir (135 participants,
72%), atazanavir (93 participants, 49%) and saquinavir (68 parti-
cipants, 36%). One hundred and forty-eight (79%) PI-experienced
participants were in receipt of ARTat the time of the baseline resist-
ance test compared with 54 (27%) PI-naive participants.

Overall, 11 of the 386 participants (2.8%) accumulated a total of
16 emergent darunavir DRMs during darunavir therapy: 4×V11I,
4×V32I, 2×L33F, 2×I54L, 3×L76V and 1×I84V (Table 2). The
median time on darunavir until the post-exposure test with emer-
gent DRMs was 5.8 months (IQR 2.1–10.0). The earliest emergent
mutation was V32I, which was present after only 13 days of ther-
apy, in a person who had a test showing WT protease sequence
1 month prior to starting darunavir. Baseline darunavir DRMs
were present in the sequences of two (1.0%) of the PI-naive parti-
cipants (T74P and L33F), compared with 26 (13.8%) PI-experienced

participants, who had a total of 53 DRMs prior to darunavir expos-
ure. Neither of the PI-naive participants with baseline mutations
went on to develop emergent mutations in their post-exposure
genotypes, but four (2.0%) PI-naive participants who did not
have DRMs at baseline were found to have developed resistance
on subsequent testing (2×V11I, V32I, L76V). Among the
PI-experienced group, seven people (3.7%) developed a total of
12 emergent DRMs, of whom five had also had baseline mutations.
Not all baseline mutations were fixed as the dominant residues at
those protease positions, and of the 55 DRMs present in baseline
sequences, 12 were not detected in post-exposure tests.

The selection pressure analysis included the 108 PI-naive study
participants with subtype B infection and 216 controls who had
received an NNRTI-containing regimen. The time between base-
line and post-exposure genotypes was 18.7 months (IQR 6.7–
35.6) for the PI-naive darunavir group and 18.7 months (6.8–
36.4) for the NNRTI controls. Three protease positions were posi-
tively selected in at least two algorithms, of which two were not
deemed to be a result of darunavir selection pressure as positive
selection was also demonstrated in the NNRTI control group (pro-
tease positions 12 and 37); see Table 3. Codon 77 was the only site

Table 1. Participant characteristics

All participants
(n¼386)

PI-naive
(n¼198)

PI-experienced
(n¼188)

Male sex, n (%) 284 (74) 155 (78) 129 (69)

Age (years), median (IQR) 42 (36–47) 41 (35–48) 42 (37–47)

Ethnicity, n (%)
white 208 (55) 108 (56) 100 (54)
black 137 (36) 67 (35) 70 (38)
other 34 (9) 19 (10) 15 (8)

Mode of transmission, n (%)
MSM 185 (51) 95 (52) 90 (50)
heterosexual 154 (43) 75 (41) 79 (44)
injection drug use 10 (3) 3 (2) 7 (4)
other 12 (3) 8 (4) 4 (2)

Subtype, n (%)
A 37 (10) 17 (9) 20 (11)
B 208 (54) 108 (55) 100 (53)
C 67 (17) 37 (19) 30 (16)
CRF02_AG 32 (8) 16 (8) 16 (9)
other 42 (11) 20 (10) 22 (12)

Calendar year of darunavir start, median (IQR) 2009 (2008–10) 2010 (2009–11) 2009 (2008–10)
CD4+ cell count at darunavir start (cells/mm3), median (IQR) 242 (90–460) 248 (90–453) 235 (88–460)
Viral suppression at darunavir start, n (%) 28 (8) 18 (10) 10 (5)
HIV RNA at darunavir start (log10 copies/mL), median (IQR) 4.3 (2.9–5.2) 4.7 (2.8–5.5) 4.1 (2.9–4.9)
Time from baseline test to darunavir start (days), median (IQR) 51 (22–133) 71 (21–460) 43 (24–69)
Time from darunavir start to post-exposure test (days), median (IQR) 211 (106–441) 168 (68–370) 270 (133–500)
Viral suppression, RNA ≤50 copies/mL, occurred prior to post-exposure test, n (%) 171 (48) 79 (44) 92 (51)
Log10 drop in RNA if no viral suppression (log10 copies/mL), median (IQR) 0.3 (20.2–1.8) 0.5 (20.2–2.2) 0.3 (20.2–1.1)
HIV RNA at post-exposure test (log10 copies/mL), median (IQR) 3.3 (2.4–4.5) 3.2 (2.3–4.6) 3.4 (2.6–4.5)

Missing data: ethnicity (4 PI-naive, 3 PI-experienced); mode of transmission (17, 8); CD4+ cell count (23, 12); HIV RNA at start (22, 6); RNA measurement
between darunavir and post-exposure test (20, 7); RNA at post-exposure test (19, 8).
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that was positively selected in the PI-naive group alone (FUBAR
posterior probability¼0.99; FEL P¼0.017; SLAC P¼0.002).

Discussion
This national cohort study shows that ,3% of people with base-
line and post-darunavir genotypic tests developed emergent
mutations, which supports the perception that darunavir has a
high genetic barrier to resistance. PI-experienced participants
were more likely to harbour darunavir DRMs at baseline than
PI-naive individuals, probably as a result of cross-resistance
from previously acquired protease mutations. None of the
IAS-USA darunavir-associated mutations is unique to that agent
and some people had been exposed to up to six different PIs
before commencing darunavir. The PI-experienced group also
had a greater incidence of emergent mutations than PI-naive par-
ticipants. Possible explanations include the reappearance of
archived mutations that had been selected previously by other
PI agents, but were not replicating during baseline testing.
Alternatively, there may have been resistant minority variants cir-
culating at levels too low to detect by standard Sanger sequen-
cing, which then flourished under the selective pressure of
darunavir therapy to become the consensus viral sequence at

that protease position. This hypothesis is supported by the rapid
emergence of V32I after only 13 days of therapy in a person
who had been treated previously with five different PIs, which sug-
gests the presence of existing DRMs within the viral population
rather than a spontaneous occurrence. In the PI-naive group it
is more likely that emergent resistance mutations arose de novo
and then replicated during therapy.

The selection analysis was used to explore the evolution of
subtype B protease genes under the selective pressure of daruna-
vir. This showed that non-synonymous mutations at codon 77
were positively selected during darunavir therapy, compared
with matched PI-naive controls receiving an NNRTI-based regi-
men. Codon 77 is a polymorphic site that has been identified as
one of the strongly positively selected sites in protease.20 In the
Stanford HIV drug resistance database, 66% of subtype B prote-
ase sequences from PI-naive patients code for valine (V) at this
position and 34% for isoleucine (I).21 The V77I substitution is
associated with minor resistance to older PIs, namely indinavir,
saquinavir and nelfinavir, but has not been implicated in darunavir
resistance. The adjacent position, 76, is a known resistance-
associated site so it may be that mutations of codon 77 represent
compensatory changes that are important for the development of
darunavir resistance. An in silico structural study has shown that

Table 2. Participants with emergent IAS-USA darunavir mutations

Participants

IAS-USA darunavir mutations
Other IAS-USA PI

mutations
Previous

PI (n) Subtype
Time to DRMb

(months)
ART with
darunavir11I 32I 33F 47V 50V 54M 54L 74P 76V 84V 89V

1 B 36I, 60E, 69K, 89M, 93L 0 C 1.2 RAL
2 B 10I, 20I, 36I, 69K, 89M 0 K 2.1 ABC/3TC
3 B 10I, 36I, 62V, 77I, 93L 0 B 5.8 TDF/FTC
4 B 10F, 20R, 36I, 46I, 54V,

69K, 71V, 82A,
89M, 93L

0 C 10.0 TDF/FTC

5 B 62V, 63P, 77I, 93L 1 B 7.3 FTC/TDF
6 A B A 10V, 36L, 48V, 54S, 58E,

62V, 63P, 71I, 73S,
82A, 90M

4a B 9.2 T20/TDF

7 B A A 10I, 20R, 36I, 48V, 54S,
62V, 63P, 64V, 71V,
82A, 93M

5a B 11.4 T20/NVP/
FTC/TDF

8 A B A A A A 10F, 20R, 36I, 36L, 46I,
62V, 63P, 71T,
90M, 93L

3a B 4.5 ETR/TDF

9 B B 36I, 46I, 63P, 69K, 82I,
89M, 93L

2a C 26.6 FTC/TDF

10 B B B A 10I, 20T, 36I, 46I, 54V,
58E, 63P, 69K,
82L, 89M

6a G 2.8 ddI/TDF

11 B B A B A A 10I, 36L, 43T, 46L, 54V,
58E, 63P, 82T, 89I

5 B 0.4c T20/ETR/
3TC/TDF

RAL, raltegravir; ABC, abacavir; 3TC, lamivudine; TDF, tenofovir; FTC, emtricitabine; T20, enfuvirtide; NVP, nevirapine; ETR, etravirine; ddI, didanosine; B,
emergent mutation; A, baseline mutation.
aParticipant received another PI for ,90 days following baseline test.
bTime from start of darunavir to post-exposure genotype with emergent darunavir DRM.
c32I detected at 0.4 months, 11I and 54L detected at 9 months.
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HIV-1 proteases containing the V77I substitution impact the cavity
size of the protease active site and its binding affinity for nelfina-
vir.22 Phenotypic experiments may be warranted to explore
whether codon 77 is involved in darunavir susceptibility. It is sur-
prising that the present analysis did not identify more positively
selected darunavir resistance-associated sites, but this could
reflect the rarity of emergent resistance to this agent.

This analysis of data from clinical practice settings indicates that
emergent darunavir resistance is uncommon. This corroborates the
findings of clinical trials, including the TITAN study, in which only
1.7% (5/298) of patients in the darunavir arm developed emergent
darunavir DRMs not detected in previous testing, all of whom were
PI-experienced prior to enrolment.8 This compared with 6.4% (19/
297) of patients who developed emergent lopinavir DRMs in the
lopinavir arm. The most common emergent darunavir mutations
were V32I, L33F, I47V, I54L, T74P and L76V.23 In the ARTEMIS
trial, 343 treatment-naive participants were randomized to a
darunavir-containing regimen and there were 4 cases of emergent
minor PI mutations in the 43 participants with baseline and repeat
genotypes.9 The ODIN trial compared once-daily darunavir with
twice-daily dosing in addition to an optimized background regimen
in 590 treatment-experienced patients.24 Around half were
PI-experienced and those with baseline darunavir DRMs were
excluded. Baseline and endpoint genotypes were available for
102 patients, but only 2 developed emergent darunavir mutations
(one participant in the once-daily arm developed V32I, M46I, L76V
and I84V and another in the twice-daily arm developed L33F and
I50V).23 Emergent resistance was seen more frequently in trials
with highly treatment-experienced patients. A pooled analysis of
the POWER studies and the darunavir arms of the DUET trials,
which compared darunavir with etravirine, found that 41% of par-
ticipants with virological failure had developed V32I and 25%
developed I54L or I54M. Other mutations that emerged during
these trials were V11I, I15V, L33F, I47V, I50V and L89V.23

There are limited data on the protease mutations that emerge
during darunavir therapy in other clinical practice settings. A

French study described 25 highly treatment-experienced patients,
with an average of five previous PIs, who failed darunavir ther-
apy.25 The median time from darunavir initiation to sampling
was 34 weeks (IQR 12 –104), by which point 18 patients had
developed darunavir DRMs including V11I, V32I, L33F/I, I47V/A,
I50V, I54L/M and L89I/M/V. A greater risk of emergent mutations
was seen in those with two or three baseline DRMs and with
ongoing viral replication after 24 weeks of treatment. A Spanish
cohort of 24 patients who failed darunavir salvage therapy each
developed a median of three emergent darunavir DRMs (IQR 1–4),
including V11I, V32I, L33F, I47V, I54L, L54M, I84V and L89V.26

There is considerable overlap in the mutations that emerged in
clinical trials and cohort studies and those observed in the present
analysis (V11I, V32I, L33F, I54L, L76V and I84V). The previous
cohort studies reported a much higher risk of emergent resistance
than we observed; however, the inclusion of patients only receiving
darunavir as a last resort, following multiple treatment regimen fail-
ures, limits their external validity to the broader clinical setting in the
UK, where darunavir is widely used as first- and second-line therapy.
A 2011 analysis of the UKHDRD looked at the response to lopinavir-
containing regimens in PI-naive participants.27 Eight hundred and
eleven participants experienced virological failure and 286 had a
resistance test following failure. Of those, 32 (11%) had protease
resistance mutations and the most common were I54V, M46I,
V82A and L76V. This study showed a higher prevalence of lopinavir-
associated DRMs during failure on this agent than we found of
darunavir-associated DRMs during darunavir in the same population.
It may be expected that darunavir would perform better in this
regard; however, the two studies are not directly comparable. The
lopinavir study participants did not have baseline resistance tests
for comparison, and the fact that this analysis was conducted sev-
eral years ago means that there could be differences in clinical prac-
tice in terms of when a PI may be prescribed and requesting
resistance tests during virological failure.

A strength of the present study is the large number of study
participants, receiving care at a range of HIV treatment centres,

Table 3. Protease gene positive selection analysis

Codon

PI-naive
Positive

selectiond

NNRTI controls
Positive

selectiondSLACa FELb FUBARc SLACa FELb FUBARc

12 29.47 (0.004) 1 (0.018) 0.18 (0.96) + 42.57 (0.002) 4.90 (0.045) 0.10 (0.91) +
35 17.96 (0.164) 2.48 (0.217) 0.12 (0.86) 65.60 (0.002) 4.56 (0.018) 0.19 (0.97) +
37 75.10 (<0.001) 1 (<0.001) 0.649 (1.0) + 123.97 (<0.001) 2.08 (0.125) 0.484 (0.97) +
62 12.37 (0.269) 1.78 (0.551) 0.07 (0.73) 59.36 (0.002) 1 (0.005) 0.221 (0.98) +
63 0.28 (0.553) 1.22 (0.484) 0.02 (0.04) 37.51 (0.135) 1.76 (0.027) 0.435 (0.99) +
64 18.24 (0.01) 1 (0.127) 0.10 (0.83) 10.11 (0.436) 0.84 (0.730) 20.02 (0.48)
77 43.22 (0.002) 6.50 (0.017) 0.584 (0.99) + 43.59 (0.018) 2.07 (0.150) 0.11 (0.83)
93 5.47 (0.437) 0.70 (0.541) 20.15 (0.31) 40.00 (0.01) 3.61 (0.044) 0.16 (0.94) +

adN 2 dS (P value); P,0.05 level of significance (the probability of observing as many or fewer synonymous changes, computed using an extended
binomial distribution). dN is the non-synonymous substitution rate at the site. dS is the synonymous substitution rate at the site.
bdN/dS (P value); P,0.05 level of significance using a likelihood test (P value of dS¼dN versus dS=dN test).
cb 2 a (posterior probability); posterior probability.0.95 level of significance (probability a,b; the posterior probability of positive diversifying selection
estimated by an empirical Bayes method). a is the posterior mean synonymous substitution rate. b is the posterior mean non-synonymous substitu-
tion rate.
dSite positively selected by at least two algorithms (bold text).
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ensuring a sample that is broadly representative of the darunavir-
treated population in the UK. Another advantage is that, in con-
trast to most studies of genotypic resistance, this analysis exam-
ines the within-host evolution of the protease gene during
darunavir therapy rather than relying on the baseline sequence
alone to infer genetic predictors of failure. However, this approach
also has some limitations. For example, emergent mutations
could have been missed if clinicians were less likely to request
resistance testing following virological failure with darunavir
because they did not expect this agent to cause significant resist-
ance. Conversely, the rate of emergent resistance attributable to
darunavir could have been overestimated in this study as five
patients with emergent DRMs had received other PIs following
baseline testing. A further drawback is the lack of information
on darunavir dosing frequency. A higher dose of darunavir
(600 mg twice daily, instead of the usual 800 mg once daily)
tends to be used in patients with baseline darunavir-associated
mutations and this practice may impact on the development of
emergent resistance. Another shortcoming is that the HIV pol
sequencing routinely performed for clinical care uses the Sanger
methodology, which can only reliably detect minority species
down to �20% prevalence. It is hoped that next-generation
sequencing technology will enable a fuller depiction of viral popu-
lation dynamics and quantification of resistant minority variants.
Longitudinal studies using this technology could explore the role
of pre-existing minority variants in emerging resistance. WGS
may also reveal mutations in regions other than pol, such as
gag, which has been implicated in the development of PI resist-
ance.28 – 31 This study confirms that emergent darunavir resist-
ance is rare in UK clinical settings. However, multiple darunavir
mutations do emerge during therapy in a minority of patients,
and therefore repeat genotyping in the case of poor virological
response may still be warranted to detect resistance and guide
management decisions.
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