# Diagonal resolutions for metacyclic groups 

FEA Johnson and JJ Remez


#### Abstract

We show the finite metacyclic groups $G(p, q)$ admit a class of projective resolutions which are periodic of period $2 q$ and which in addition possess the properties that a) the differentials are $2 \times 2$ diagonal matrices; b) the Swan-Wall finiteness obstruction (cf [21], [22]) vanishes. We obtain thereby a purely algebraic proof of Petrie's Theorem ([16]) that $G(p, q)$ has free period $2 q$.


Keywords: Diagonal resolution; metacyclic group.
Mathematics Subject Classification (AMS 2010):
Primary 16E05; 20C10: Secondary 18E30

## §0 : Introduction:

The metacyclic group $G(p, q)=C_{p} \rtimes C_{q}$ is the semi-direct product of cyclic groups where $p$ is an odd prime, $q$ is a divisor of $p-1$ and where $C_{q}$ acts on $C_{p}$ via the natural imbedding $C_{q} \hookrightarrow \operatorname{Aut}\left(C_{p}\right)$. It is known that $G(p, q)$ has cohomological period $2 q$ and hence (cf [21], [22]) the trivial module $\mathbb{Z}$ has a finitely generated projective resolution of period $2 q$ over the integral group ring $\Lambda=\mathbb{Z}[G(p, q)]$. In this paper we show that each $G(p, q)$ admits a projective resolution

$$
\Delta_{*}=\left(\cdots \rightarrow \Delta_{2 n+1} \xrightarrow{\partial_{2 n+1}} \Delta_{2 n} \xrightarrow{\partial_{2 n}} \Delta_{2 n-1} \xrightarrow{\partial_{2 n-1}} \cdots \cdots \xrightarrow{\partial_{2}} \Delta_{1} \xrightarrow{\partial_{1}} \Delta_{0} \rightarrow \mathbb{Z} \rightarrow 0\right)
$$

of diagonal type described by the following conditions (i) - (iii):
(i) $\Delta_{0}=\Lambda$;
(ii) for each $k \geq 1 \quad \Delta_{2 k-1}=\Lambda \oplus \Lambda$ and $\quad \Delta_{2 k}=P(k) \oplus \Lambda \quad$ where $P(k)$ is a projective module of rank 1 over $\Lambda$;
(iii) for each $k \geq 2$ the differential $\partial_{k}$ has the diagonal form $\partial_{k}=\left(\begin{array}{cc}\partial_{k}^{+} & 0 \\ 0 & \partial_{k}^{-}\end{array}\right)$.

Such a resolution is periodic of period $2 q$ when $P(k+m q)=P(k)$ and $\partial_{k+2 m q}^{ \pm}=\partial_{k}^{ \pm}$ for all $k, m \geq 1$; in addition it is said to be almost free when

$$
\bigoplus_{r=1}^{q-1} P(r) \cong \Lambda^{(q-1)} \text { and } P(q) \cong \Lambda
$$

Theorem A: For any odd prime $p$ and any divisor $q$ of $p-1$, the trivial module $\mathbb{Z}$ admits an almost free resolution of diagonal type and period $2 q$ over $\Lambda=\mathbb{Z}[G(p, q)]$.

In general, if the finite group $G$ has cohomological period $2 q$ then its free period is $2 \delta q$ where $\delta$ is a positive integer which divides the order of the projective class group $\widetilde{K}_{0}(\mathbb{Z}[G])$. Moreover, there are cases known in which $\delta>1$; for example, certain generalised quaternionic groups $Q(8 ; p, q)$ (cf [1], [13], [14] ). However, Theorem A implies that in the present case $\delta=1$; that is:
Theorem B : The group $G(p, q)$ has free period $2 q$.

The conclusion of Theorem B follows implicitly from the main theorem of Petrie's paper [16], where it is proved in a topological context by showing that a certain surgery obstruction vanishes. By contrast, our proof is purely module theoretic.

In the proof of Theorem A the lower strand of the resolution is easily constructed, being induced up from the standard resolution of $C_{q}$ thus:

$$
\ldots \Lambda \xrightarrow{y-1} \Lambda \xrightarrow{\Sigma_{y}} \Lambda \xrightarrow{y-1} \Lambda \xrightarrow{\Sigma_{y}} \Lambda \xrightarrow{y-1} \Lambda \xrightarrow{\Sigma_{y}} \Lambda \xrightarrow{y-1} \Lambda \xrightarrow{\Sigma_{y}} \ldots
$$

By contrast, far more work is required to construct the upper strand

$$
\cdots \xrightarrow{\partial_{2 n+2}^{+}} \Lambda \xrightarrow{\partial_{2 n+1}^{+}} P(n) \xrightarrow{\partial_{2 n}^{+}} \Lambda \xrightarrow{\partial_{2 n-1}^{+}} P(n-1) \xrightarrow{\partial_{2 n-2}^{+}} \Lambda \xrightarrow{\partial_{2 n-3}^{+}} \ldots
$$

To do this we first describe $\Lambda$ as a fibre product


Here $A$ is a ring of cyclotomic integers which ramifies completely over $p ; \pi \in A$ is the unique prime over $p ; \mathcal{T}_{q}(A, \pi)$ is the following quasi-triangular subring of $M_{q}(A)$

$$
\mathcal{T}_{q}(A, \pi)=\left\{X=\left(x_{r s}\right)_{1 \leq r, s \leq n} \in M_{q}(A) \mid x_{r s} \in(\pi) \text { if } r>s\right\} .
$$

We denote by $R(i)$ the $i^{\text {th }}$ row of $\mathcal{T}_{q}(A, \pi)$ considered as a right $\Lambda$-module so that

$$
\mathcal{T}_{q}(A, \pi) \cong R(1) \oplus R(2) \oplus \cdots \oplus R(q)
$$

The obvious projections $\Lambda \rightarrow \mathcal{T}_{q}(A, \pi)$ and $\mathcal{T}_{q}(A, \pi) \rightarrow R(i)$ compose to give a surjection $p_{i}: \Lambda \rightarrow R(i)$. In particular, each $R(i)$ is monogenic ${ }^{\dagger}$; that is, generated by a single element over $\Lambda$. Defining $K(i)=\operatorname{Ker}\left(p_{i}: \Lambda \rightarrow R(i)\right)$ we first show:

Theorem C : There exists an exact sequence of the following form

$$
\mathfrak{S}(q)=(0 \longrightarrow R(1) \quad \Lambda \xrightarrow{K(q)} \Lambda \longrightarrow R(q) \longrightarrow 0)
$$

We refer to $\mathfrak{S}(q)$ as a basic sequence; it demonstrates the non-obvious fact that $K(q)$ is also monogenic. From the existence of $\mathfrak{S}(q)$ we proceed to deduce:

Theorem D : For $1 \leq i \leq q-1$ there are exact sequences over $\Lambda$ of the form

$$
\mathfrak{S}(i)=\left(0 \longrightarrow R(i+1) \longrightarrow P(i) \xrightarrow{\frac{K(i)}{\nearrow}} \Lambda \longrightarrow R(i) \longrightarrow 0\right)
$$

where $P(2), \ldots, P(q)$ are projective modules of rank 1 such that $\bigoplus_{i=2}^{q} P(i) \cong \Lambda^{q-1}$.
$\dagger$ The referee points out that monogenic modules are frequently called cyclic modules.

Splicing the segments $\mathfrak{S}(i)$ together with $\mathfrak{S}(q)$ gives the exact sequence which constitutes the upper strand in Theorem A, namely:


The possibility of constructing such diagonal resolutions originates from the fact that the augmentation ideal $I_{G}$ of $G=G(p, q)$ decomposes as a direct sum

$$
I_{G} \cong \overline{I_{C}} \oplus[y-1)
$$

Here $y$ is a generator of $C_{q}$ and $[y-1)$ is the right ideal of $\Lambda$ generated by $y-1$ whilst $\overline{I_{C}}$ is the Galois module obtained from the action of $C_{q}$ on the augmentation ideal $I_{C}$ of $C_{p}$; as we shall see, $\overline{I_{C}}$ is isomorphic to $R(1)$. The existence of such a direct sum decomposition has been known for many years (cf. the paper of Gruenberg and Roggenkamp [7]). However, in the interests of clarity and completeness we give a direct proof (see $\S 5$ below).

Beyond Theorem A it is tempting to conjecture that each $G(p, q)$ admits a diagonal resolution with the additional property that each $P(i) \cong \Lambda$. Such a resolution is called strongly diagonal ; in fact our proof of Theorem D shows that the $p$-adic completion $\widehat{\Lambda}$ admits such a strongly diagonal resolution. In [10] the first named author showed the existence of strongly diagonal resolutions in all the cases $G(p, 2)$; that is, for the dihedral groups of order $2 p$. For $q \geq 3$, the task of constructing resolutions of this stronger type is less straightforward. If the sequences $\mathfrak{S}(1), \ldots, \mathfrak{S}(q-1)$ could be modified to the form

$$
\mathfrak{S}(i)^{\prime}=(0 \longrightarrow R(i+1) \longrightarrow \Lambda \xrightarrow{K(i)} \Lambda \longrightarrow R(i) \longrightarrow 0)
$$

we could splice them together with $\mathfrak{S}(q)$ to give an exact sequence of period $2 q$

to form the upper strand in a strongly diagonal resolution. This in turn would imply that each $K(i)$ is monogenic, a fact which is yet to be established in general.

Apart from the dihedral groups, strongly diagonal resolutions were previously known to exist only for the groups $G(5,4)$ and $G(7,3)$, ([15], [19]), both cases being established by direct calculation. Elsewhere [11] we shall establish the existence of $\mathfrak{S}(1)^{\prime}, \ldots, \mathfrak{S}(q-1)^{\prime}$ for certain small values of $p$ and $q$. In particular, we are able to show the existence of strongly diagonal resolutions in the cases;
$G(5,4) ; \quad G(7,3), G(7,6) ; \quad G(11,5), G(11,10) ; \quad G(13,3), G(13,4), G(13,6) ;$
$G(17,4) ; \quad G(19,3), G(19,6), G(19,9)$.
The authors wish to thank the referee whose careful attention to detail revealed a number of notational inconsistencies.
$\S 1$ : Some standard modules over $\mathbb{Z}[G(p, q)]$
For each integer $n \geq 2$ we denote by $C_{n}$ the cyclic group $C_{n}=\left\langle x \mid x^{n}=1\right\rangle$. For the remainder of this paper we fix an odd prime $p$, an integral divisor $q$ of $p-1$ and write $d=(p-1) / q$. Recalling that $\operatorname{Aut}\left(C_{p}\right) \cong C_{p-1}$ then there exists an element $\theta \in \operatorname{Aut}\left(C_{p}\right)$ such that $\operatorname{ord}(\theta)=q$. Taking $y$ to be a generator of $C_{q}$ and making a once and for all choice of $\theta$ with order $q$, we construct the semi-direct product $G(p, q)=C_{p} \rtimes_{h} C_{q}$ where $h: C_{q} \rightarrow \operatorname{Aut}\left(C_{p}\right)$ is the homomorphism $h(y)=\theta$. There is then a unique integer $a$ in the range $1 \leq a \leq p-1$ such that $\theta(x)=x^{a}$ and $G(p, q)$ then has the presentation

$$
G(p, q)=\left\langle x, y \mid x^{p}=y^{q}=1 ; y x y^{-1}=x^{a}\right\rangle .
$$

The integer $a$ will have a fixed meaning in what follows. We denote by $\Lambda$ the integral group ring $\Lambda=\mathbb{Z}[G(p, q)]$ and by $i: \mathbb{Z}\left[C_{p}\right] \hookrightarrow \Lambda$ and $j: \mathbb{Z}\left[C_{q}\right] \hookrightarrow \Lambda$ the respective inclusions. Indecomposable lattices over $\Lambda$ have been classified up to genus, though not up to isomorphism, by $\mathrm{Pu}[17]$. Here we shall need only a small selection from Pu's list. Depending on context, $\mathbb{Z}$ may denote the trivial module over any of the group rings $\Lambda$, $\mathbb{Z}\left[C_{p}\right]$ or $\mathbb{Z}\left[C_{q}\right]$. Moreover $I_{C}$ will denote the augmentation ideal of $\mathbb{Z}\left[C_{p}\right]$ and $I_{Q}$ the augmentation ideal of $\mathbb{Z}\left[C_{q}\right]$. Clearly $I_{C}$ is defined by the exact sequence of $\mathbb{Z}\left[C_{p}\right]$-modules

$$
0 \rightarrow I_{C} \stackrel{\iota}{\hookrightarrow} \mathbb{Z}\left[C_{p}\right] \stackrel{\epsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

On dualising we get an exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{\epsilon^{*}} \mathbb{Z}\left[C_{p}\right] \xrightarrow{\iota^{*}} I_{C}^{*} \rightarrow 0$ where $\epsilon^{*}(1)=\Sigma_{x}=$ $1+x+x^{2}+\cdots+x^{p-1}$. It is a standard and easily verified fact that
(1.1) $I_{C}^{*}$ and $I_{C}$ are isomorphic as $\mathbb{Z}\left[C_{p}\right]$-modules.

If $i_{*}(-)$ denotes 'extension of scalars' from $\mathbb{Z}\left[C_{p}\right]$-modules to $\Lambda$-modules then:
(1.2) $i_{*}\left(I_{C}\right)$ and $i_{*}\left(I_{C}^{*}\right)$ are isomorphic as $\Lambda$-modules.

As $I_{C}^{*}$ and $I_{C}$ are not actually identical we find it convenient to distinguish between them. We identify the dual $I_{C}^{*}$ with the quotient $\mathbb{Z}\left[C_{p}\right] /\left(\Sigma_{x}\right)$. As $\left(\Sigma_{x}\right)$ is a two-sided ideal in $\mathbb{Z}\left[C_{p}\right]$ then $I_{C}^{*}$ is naturally a ring; indeed, putting $\zeta=\exp (2 \pi i / p)$ then:
(1.3) There is a ring isomorphism $I_{C}^{*} \cong \mathbb{Z}[\zeta]$.

If $M$ is a module over $\mathbb{Z}\left[C_{p}\right]$ then by a Galois structure on $M$ we mean an additive automorphism $\Theta: M \rightarrow M$ such that $\Theta^{q}=\operatorname{Id}_{M}$ and $\Theta(m \cdot x)=\Theta(m) \cdot \theta(x)$ for all $m \in M$ where $\theta$ is our chosen automorphism of $C_{p}$. By a Galois lattice we shall mean a pair $(M, \Theta)$ where $M$ is a lattice over $\mathbb{Z}\left[C_{p}\right]$ and $\Theta$ is a Galois structure on $M$. The Galois lattice $(M, \Theta)$ becomes a (right) lattice over $\Lambda$ via the action

$$
m \cdot x^{r} y^{s} b=\Theta^{-s}\left(m \cdot x^{r}\right)
$$

Significant examples of Galois lattices arise from ideals of $\mathbb{Z}\left[C_{p}\right]$ which satisfy $\theta(J)=J$. For such an ideal $J$ we put $\bar{J}=\left(J, \Theta_{J}\right)$ where $\Theta_{J}$ is the restriction of $\theta$ to $J$. Thus we obtain Galois lattices $\overline{\mathbb{Z}\left[C_{p}\right]}, \overline{I_{C}}$ and $\overline{(x-1)^{k} I_{C}}(k \geq 1)$. Similarly we denote by $\overline{I_{C}^{*}}$ the Galois lattice obtained from the dual of the augmentation ideal. Evidently $\overline{I_{C}^{*}}$ is a quotient $\overline{I_{C}^{*}}=\overline{\mathbb{Z}\left[C_{p}\right]} /\left(\Sigma_{x}\right)$. This last module is fundamental in what follows and we note the following properties which characterise it amongst $\Lambda$-modules.

Proposition 1.4: Let $M$ be a $\Lambda$-lattice satisfying the following three conditions:
(i) there exists $\mu \in M$ such that $\mu \cdot y=\mu$ and $M=\operatorname{span}_{\mathbb{Z}}\left\{\mu \cdot x^{r} \mid 0 \leq r \leq p-1\right\}$;
(ii) $\operatorname{rk}_{\mathbb{Z}}(M)=p-1$.
(iii) $m \cdot \Sigma_{x}=0$ for each $m \in M$;

Then $M \cong_{\Lambda} \overline{I_{C}^{*}}$ and $\left\{\mu \cdot x^{r} \mid 0 \leq r \leq p-2\right\}$ is a $\mathbb{Z}$-basis for $M$.
Proof: We note that conditions (ii) and (iii) above are satisfied for $\overline{I_{C}^{*}}$. Let $\mathfrak{n}: \overline{\mathbb{Z}}\left[C_{p}\right] \rightarrow \overline{I_{C}^{*}}$ be the natural mapping and put $\eta=\mathfrak{b}(1)$. Then $\eta \cdot y=\eta$ and $\left\{\eta \cdot x^{r} \mid 0 \leq r \leq p-2\right\}$ is a $\mathbb{Z}$-basis for $\overline{I_{C}^{*}}$. Now suppose that $M$ is a $\Lambda$-lattice satisfying conditions (i), (ii) and (iii) and consider the homomorphism of abelian groups $\Psi: \overline{I_{C}^{*}} \rightarrow M$ defined on the basis $\left\{\eta \cdot x^{r} \mid 0 \leq r \leq p-1\right\} \quad$ by $\Psi\left(\eta \cdot x^{r}\right)=\mu \cdot x^{r}$. As $M=\operatorname{span}_{\mathbb{Z}}\left\{\mu \cdot x^{r} \mid 0 \leq r \leq p-1\right\}$ then $\Psi$ is necessarily surjective and as $\mathrm{rk}_{\mathbb{Z}}\left(\overline{I_{C}^{*}}\right)=\operatorname{rk}_{\mathbb{Z}}(M)=p-1$ then $\Psi$ is bijective and $\left\{\mu \cdot x^{r} \mid 0 \leq r \leq p-2\right\}$ is a $\mathbb{Z}$-basis for $M$. Evidently $\Psi$ is now an isomorphism of $\mathbb{Z}\left[C_{p}\right]$-modules. Moreover from the identities $\eta \cdot y=\eta$ and $\mu \cdot y=\mu$ it follows easily that $\Psi$ is also an isomorphism over $\Lambda$.

For any Galois lattice $(M, \Theta)$ there is an isomorphism of abelian groups

$$
\Psi: \mathbb{Z}\left[C_{q}\right] \otimes(M, \Theta) \xrightarrow{\simeq} i_{*}(M) \quad\left(=M \otimes_{\mathbb{Z}\left[C_{p}\right]} \Lambda\right)
$$

defined by taking $\Psi\left(y^{b} \otimes m\right)=\Theta^{-b}(m) \otimes y^{b}$. It is straightforward to check that $\Psi$ is also a homomorphism of (right) $\Lambda$-modules. We obtain:
Proposition 1.5: $\mathbb{Z}\left[C_{q}\right] \otimes(M, \Theta) \cong i_{*}(M)$ for any Galois lattice $(M, \Theta)$.
Taking $J=\mathbb{Z}\left[C_{p}\right]$ and noting that $i_{*}\left(\mathbb{Z}\left[C_{p}\right]\right)=\Lambda$ we now see from (1.5) that :

$$
\begin{equation*}
\mathbb{Z}\left[C_{q}\right] \otimes \overline{\mathbb{Z}\left[C_{p}\right]} \cong \Lambda \tag{1.6}
\end{equation*}
$$

In contrast to (1.1), $\overline{I_{C}^{*}}$ is not isomorphic to $\overline{I_{C}}$ and $\overline{(x-1)^{k} I_{C}}$ is not, in general, isomorphic to either $\overline{I_{C}^{*}}$ or $\overline{I_{C}}$.

Let $Z$ be a set with $|Z|=q$ on which $\widehat{C_{q}}=\left\{1, \theta, \ldots, \theta^{q-1}\right\}$ acts transitively on the left; for each $z \in Z$ let $F(z)$ be the free $\mathbb{Z}\left[C_{p}\right]$-module of rank 1 with basis element $[z]$ and put $F(Z)=\bigoplus_{z \in Z} F(z)$. Then $F(Z)$ is a Galois module with Galois structure $\Theta$ where

$$
\Theta\left([z] \cdot x^{r}\right)=\left[\theta_{*}(z)\right] \cdot \theta\left(x^{r}\right)
$$

and it is straightforward to see that, as $\Lambda$-modules, $F(Z) \cong \Lambda$. More generally, suppose that $Z$ is a finite set on which $\widehat{C_{q}}$ acts freely on the left and denote by $Z=Z_{1} \amalg \cdots \cdots \amalg Z_{m}$ the partition of $Z$ into disjoint orbits where each $\left|Z_{i}\right|=q$. By the above, $F\left(Z_{i}\right) \cong \Lambda$ for each $i$ so that $F(Z)=\bigoplus_{i=1}^{m} F\left(Z_{i}\right) \cong \Lambda^{m}$; that is:
(1.7) If $Z$ is a finite set on which $\widehat{C_{q}}$ acts freely with $m$ orbits then $F(Z) \cong \Lambda^{m}$.

We first prove:
Proposition $1.8: \quad \overline{I_{C}} \otimes\left[\Sigma_{y}\right) \cong \Lambda^{d}$.
Proof : Note that $i^{*}\left(\overline{I_{C}} \otimes\left[\Sigma_{y}\right)\right) \cong I_{C} \otimes \mathbb{Z}\left[C_{p}\right] \cong \bigoplus_{e=1}^{p-1} F(e)$ where $F(e)$ is the free module of rank 1 over $\mathbb{Z}\left[C_{p}\right]$ on the basis element $\left(x^{e}-1\right) \otimes \Sigma_{y}$. Now $\widehat{C_{q}}=\left\{\operatorname{Id}, \theta, \theta^{2}, \ldots, \theta^{q-1}\right\}$ acts freely on $Z=\left\{\left(x^{e}-1\right) \otimes \Sigma_{y} \mid 1 \leq e \leq p-1\right\}$. via the action

$$
\theta_{*}\left(\left(x^{e}-1\right) \otimes \Sigma_{y}\right)=\left(\theta\left(x^{e}\right)-1\right) \otimes \Sigma_{y}
$$

under which $Z$ decomposes as a disjoint union $Z_{1} \amalg \ldots \ldots \ldots . \amalg Z_{d}$ of $d=\frac{(p-1)}{q}$ cyclic orbits. In the above notation, $\overline{I_{C}} \otimes\left[\Sigma_{y}\right) \cong \bigoplus_{r=1}^{d} F\left(Z_{r}\right) \cong \Lambda^{d}$.
Corollary 1.9 : $\overline{I_{C}} \otimes[y-1) \cong \Lambda^{d(q-1)}$.
Proof: The exact sequence $0 \rightarrow[y-1) \rightarrow \Lambda \rightarrow\left[\Sigma_{y}\right) \rightarrow 0$ gives an exact sequence

$$
0 \rightarrow \overline{I_{C}} \otimes[y-1) \rightarrow \overline{I_{C}} \otimes \Lambda \rightarrow \overline{I_{C}} \otimes\left[\Sigma_{y}\right) \rightarrow 0
$$

As $\overline{I_{C}} \otimes\left[\Sigma_{y}\right) \cong \Lambda^{d}$ this latter sequence splits. Hence $\overline{I_{C}} \otimes[y-1) \oplus \Lambda^{d} \cong \Lambda^{p-1}$ so that $\overline{I_{C}} \otimes[y-1)$ is stably free of rank $p-d-1$. As $\Lambda$ satisfies the Eichler condition then, by the Swan-Jacobinski Theorem $\overline{I_{C}} \otimes[y-1) \cong \Lambda^{p-d-1}$. However $p-d-1=d(q-1)$ and so $\overline{I_{C}} \otimes[y-1) \cong \Lambda^{d(q-1)}$ as claimed

For any $\Lambda$-lattices $A, B, \quad(A \otimes B)^{*} \cong A^{*} \otimes B^{*}$. As $\Lambda$ and $[y-1)$ are self-dual then:
Corollary 1.10: $\overline{I_{C}^{*}} \otimes[y-1) \cong \Lambda^{d(q-1)}$.
It is a standard consequence of Frobenius reciprocity that $M \otimes \Lambda \cong \Lambda^{m}$ whenever $M$ is a $\Lambda$-lattice with $\mathrm{rk}_{\mathbb{Z}}(M)=m$. In particular:

$$
\begin{equation*}
\overline{I_{C}^{*}} \otimes \Lambda \cong \Lambda^{(p-1)} \tag{1.11}
\end{equation*}
$$

§2 : A fibre product decomposition for $\mathbb{Z}[G(p, q)]$ :
As is well known, $\mathbb{Z}\left[C_{p}\right]$ has a canonical fibre product decomposition

where $\epsilon: \mathbb{Z}\left[C_{p}\right] \rightarrow \mathbb{Z}$ is the augmentation map and $\mathbb{F}_{p}$ is the field with $p$ elements. To proceed, we briefly recall the cyclic algebra construction. Thus let $S$ denote a commutative ring and $\theta: S \rightarrow S$ a ring automorphism of finite order dividing $q$; in particular, $\theta$ satisfies the identity $\theta^{q}=$ Id. The cyclic ring $\mathcal{C}_{q}(S, \theta)$ is then the (two-sided) free $S$-module

$$
\mathcal{C}_{q}(S, \theta)=S \mathbf{1}+S \mathbf{y} \ldots+S \mathbf{y}^{n-1}
$$

of rank $q$ with basis $\left\{\mathbf{1}, \mathbf{y}, \ldots \mathbf{y}^{q-1}\right\}$ and with multiplication determined by the relations

$$
\mathbf{y}^{q}=\mathbf{1} \quad ; \quad \mathbf{y} \xi=\theta(\xi) \mathbf{y} \quad(\xi \in S)
$$

So defined, $\mathcal{C}_{q}(S, \theta)$ is an extension ring of $S$. In the fibre product (2.1) $\theta$ induces a ring automorphism of order $q$ on $\mathbb{Z}\left[C_{p}\right]$. As $\theta$ fixes $\Sigma_{x}$ then $\theta$ induces a ring automorphism on the quotient $I_{C}^{*}=\mathbb{Z}\left[C_{p}\right] /\left(\Sigma_{x}\right)$. Likewise the augmentation ideal $I_{C}$ is stable under $\theta$ and $\theta$ induces the identity automorphism both on the quotient $\mathbb{Z}=\mathbb{Z}\left[C_{p}\right] / I_{C}$ and $\mathbb{F}_{p}$. As the homomorphisms in (2.1) are equivariant with respect to these ring automorphisms we may apply the cyclic algebra construction $\mathcal{C}_{q}(-, \theta)$ to (2.1). Identifying $\mathcal{C}_{q}\left(\mathbb{Z}\left[C_{p}\right]=\mathbb{Z}(G(p, q)\right.$,
$\mathcal{C}_{q}(\mathbb{Z})=\mathbb{Z}\left[C_{q}\right], \mathcal{C}_{q}\left(\mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[C_{q}\right]$ we obtain a fibre product

$$
\begin{array}{ccc}
\mathbb{Z}[G(p, q)] & \rightarrow & \mathcal{C}_{q}\left(I_{C}^{*}, \theta\right) \\
\downarrow & & \downarrow  \tag{2.2}\\
\mathbb{Z}\left[C_{q}\right] & \rightarrow & \mathbb{F}_{p}\left[C_{q}\right] .
\end{array}
$$

To proceed to a more tractable description of $\mathcal{C}_{q}\left(I^{*}, \theta\right)$ we first make the identification $\mathcal{C}_{q}\left(I^{*}, \theta\right) \otimes \mathbb{Q} \cong \mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta)$ where, as above, $\zeta$ is a primitive $p^{t h}$ root of unity. We note ([2], Lemma 3) that $p=(\zeta-1)^{p-1} u$ for some unit $u \in \mathbb{Z}(\zeta)^{*}$. In particular:
(2.3) $\quad p$ ramifies completely in $\mathbb{Z}(\zeta)$.

Applying $-\otimes \mathbb{Q}$ to $(2.2)$ we see that $\mathbb{Q}[G(p, q)] \cong \mathbb{Q}\left[C_{q}\right] \times \mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta)$ as $\mathbb{F}_{p}\left[C_{q}\right] \otimes \mathbb{Q}=0$. Thus $\mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta)$ is a semisimple $\mathbb{Q}$-algebra. Moreover the centre $\mathcal{Z}\left(\mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta)\right)$ is a field, namely the subfield $\mathbb{Q}(\zeta)^{\theta}$ of $\mathbb{Q}(\zeta)$ fixed by $\theta$; hence:
(2.4) $\quad \mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta)$ is a simple $\mathbb{Q}$-algebra.
§3 : A quasi-triangular representation of $G(p, q)$ :
If $B$ is commutative ring and $I \triangleleft B$ is an ideal we denote by

$$
\mathcal{T}_{q}(B, I)=\left\{X=\left(x_{r s}\right)_{1 \leq r, s \leq n} \in M_{q}(B) \mid x_{r s} \in I \text { if } r>s\right\}
$$

the ring of upper quasi-triangular matrices over $B$ relative to $I$; when $I=\{0\}$ then $\mathcal{T}_{q}(B,\{0\})=\mathcal{T}_{q}(B)$ is simply the ring of upper triangular matrices over $B$. We denote by $\mathcal{U}_{q}(B, I), \mathcal{U}_{q}(B)$ the corresponding unit groups. Under the induced homomorphism $\mathrm{q}: M_{q}(B) \rightarrow M_{q}(B / I)$ we have

$$
\begin{equation*}
\mathcal{T}_{q}(B, I)=\mathfrak{q}^{-1}\left(\mathcal{T}_{q}((B / I))\right. \tag{3.1}
\end{equation*}
$$

Likewise from the induced map on unit groups $\ddagger: \mathrm{GL}_{q}(B) \rightarrow \mathrm{GL}_{q}(B / I)$ we see

$$
\begin{equation*}
\mathcal{U}_{q}(B, I)=\mathfrak{q}^{-1}\left(\mathcal{U}_{q}(B / I)\right) . \tag{3.2}
\end{equation*}
$$

Note that $\theta$ acts on $\mathbb{Z}(\zeta)$ via the isomorphism $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \cong C_{p-1}$. Let $A=\mathbb{Z}[\zeta]^{\theta}$ denote the subring fixed by $\theta$. Putting $\pi=(\zeta-1)^{q}$, it follows from (2.3) that:
(3.3) $p$ ramifies completely in $A$ and $\pi$ is the unique prime in $A$ over $p$.

We shall show that $\mathcal{C}_{q}\left(I^{*}, \theta\right) \cong \mathcal{T}_{q}(A, \pi)$. This may be regarded as a concrete form of Rosen's Theorem [20]. Whilst this isomorphism is known in principle (cf p. 358 of [18]), for the purpose of calculation it is necessary to give an explicit description. To this end observe that $\left\{1, \zeta, \ldots, \zeta^{q-1}\right\}$ is an $A$-basis for $\mathbb{Z}(\zeta)$. On writing successively

$$
\begin{aligned}
\zeta & =(\zeta-1)+c \\
\zeta^{2} & =(\zeta-1)^{2}+c \\
\zeta^{r} & =(\zeta-1)^{r}-\sum_{k=0}^{r-1}(-1)^{r-k}\binom{r}{k} \zeta^{k}
\end{aligned}
$$

we may make a sequence of elementary basis transformations to show that:

$$
\begin{equation*}
\left\{(\zeta-1)^{q-1},(\zeta-1)^{q-2}, \ldots,(\zeta-1), 1\right\} \text { is an } A \text {-basis for } \mathbb{Z}(\zeta) . \tag{3.4}
\end{equation*}
$$

$G(p, q)$ acts on the right of $\mathbb{Z}(\zeta)$ by $\mathbb{Z} \cdot\left(x^{r} y^{s}\right)=\theta^{-s}\left(\mathbb{Z} \cdot \zeta^{-r}\right)$. Via the basis of (3.4), this action gives a representation $\lambda: G(p, q) \rightarrow \mathrm{GL}_{q}(A)$ where $\lambda\left(x^{-1}\right)$ is given by

$$
\lambda\left(x^{-1}\right)\left[(\zeta-1)^{r}\right]=\left\{\begin{array}{cccc}
(\zeta-1)^{r+1} & +(\zeta-1)^{r} & 1 \leq r \leq q-2 \\
\pi & +(\zeta-1)^{q-1} & r=q-1 .
\end{array}\right.
$$

Hence the matrix of $\lambda\left(x^{-1}\right)$ takes the quasi-triangular form

$$
\lambda\left(x^{-1}\right)=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & \ldots & & 0 & 0 \\
0 & 1 & 1 & 0 & \ldots & & 0 & 0 \\
& & & \ddots & & & & \\
& & & & \ddots & & & \\
& & & & & \ddots & & \\
0 & 0 & 0 & 0 & \ldots & & 1 & 1 \\
\pi & 0 & 0 & 0 & \ldots & & 0 & 1
\end{array}\right)
$$

As $x^{-1}$ generates $C_{p}$, the restriction of $\lambda$ to $C_{p}$ is also quasi-triangular; that is:

$$
\begin{equation*}
\lambda\left(C_{p}\right) \subset \mathcal{U}_{q}(A, \pi) . \tag{3.5}
\end{equation*}
$$

It follows that the full representation $\lambda: G(p, q) \rightarrow G L_{q}(A)$ is also quasi-triangular. To see this, let $X \in M_{q}(A)$ be an upper triangular matrix; we say that $X$ is unitriangular when in addition $X_{i i}=1$ for all $i$. A unitriangular matrix $X$ will be called a generalized Jordan block when in addition $X_{i j} \neq 0 \Longleftrightarrow j=i$ or $j=i+1$. The following is straightforward.
Proposition 3.6 : Let $A$ be a commutative integral domain, let $X, Z \in M_{q}(A)$ be unitriangular matrices and suppose that $Y \in M_{q}(A)$ satisfies $X Y=Y Z$; if $X$ is a generalized Jordan block then $Y$ is upper triangular.
Let $\mathfrak{t}: G L_{q}(A) \rightarrow G L_{q}(A / \pi)$ denote the canonical homomorphism. The above expression for $\lambda\left(x^{-1}\right)$ shows that $\natural \circ \lambda\left(x^{-1}\right)$ is a generalized Jordan block. Hence for all $r$, $\circ \lambda\left(x^{r}\right)$ is unitriangular. Writing $\theta(x)=x^{t}$ then $x \cdot y^{-1}=y^{-1} x^{t}$ so that

$$
\text { দ○ } \lambda(x) \text { দ○ } \lambda\left(y^{-1}\right)=\text { দ○ } \lambda\left(y^{-1}\right) \text { দ○ } \lambda\left(x^{t}\right) .
$$

Taking $X=$ দ๐ $\lambda(x), Y=$ দ○ $\lambda\left(y^{-1}\right)$ and $Z=$ দ○ $\lambda\left(x^{t}\right)$ in (3.6) shows that $\mathfrak{\text { b }} \lambda\left(y^{-1}\right)$ is upper triangular. As $y^{-1}$ generates $C_{q}$ then $\operatorname{Im}(\nvdash \lambda) \subset \mathcal{U}_{q}(A / \pi)=\natural^{-1}\left(\mathcal{U}_{q}(A / \pi)\right)$; thus:
Theorem 3.7: $\lambda\left(G(p, q) \subset \mathcal{U}_{q}(A, \pi)\right.$.
Consequently $\lambda$ induces a ring homomorphism $\lambda_{*}: \mathbb{Z}[G(p, q)] \longrightarrow \mathcal{T}_{q}(A, \pi)$. Noting that $\lambda_{*}\left(\Sigma_{x}\right)=0$ then $\lambda_{*}$ induces ring homomorphisms

$$
\widehat{\lambda}_{*}: \mathcal{C}_{q}\left(I^{*}, \theta\right) \rightarrow \mathcal{T}_{q}(A, \pi) \quad ; \quad \widehat{\lambda}_{*} \otimes \operatorname{Id}: \mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta) \quad \rightarrow \quad M_{q}(A \otimes \mathbb{Q}) .
$$

As $\mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta)$ is a simple $\mathbb{Q}$-algebra then $\widehat{\lambda}_{*} \otimes \operatorname{Id}: \mathcal{C}_{q}(\mathbb{Q}(\zeta), \theta) \rightarrow M_{q}(A \otimes \mathbb{Q})$ is injective and hence also:
(3.8) $\hat{\lambda}_{*}: \mathcal{C}_{q}\left(I^{*}, \theta\right) \rightarrow \mathcal{T}_{q}(A, \pi)$ is injective.

In fact $\lambda_{*}$ is also surjective. To see this, suppose that $\mathcal{C}, \mathcal{T}$ are both orders in the same finite dimensional semisimple $\mathbb{Q}$-algebra and that $\lambda: \mathcal{C} \rightarrow \mathcal{T}$ is an injective ring homomorphism. As $\mathcal{C}, \mathcal{T}$ both have the same $\mathbb{Z}$-rank it follows that $\lambda(\mathcal{C})$ has finite index $\delta$ in $\mathcal{T}$. Furthermore $\delta$ is determined by the relation $\mathcal{D i s c}(\mathcal{T})=\delta^{2} \mathcal{D} \operatorname{isc}(\mathcal{C})$ between discriminants. In our case, taking $\mathcal{C}=\mathcal{C}_{q}\left(I^{*}, \theta\right)$ and $\mathcal{T}=\mathcal{T}_{q}(A, \pi)$, one may calculate (cf [18] Chapter 2) that:

$$
\begin{equation*}
\mathcal{D} \operatorname{isc}\left(\mathcal{C}_{q}\left(I^{*}, \theta\right)\right)= \pm \mathcal{D} \operatorname{isc}\left(\mathcal{T}_{q}(A, \pi)\right)= \pm \pi^{q(q-1)} q^{q^{2}} \tag{3.9}
\end{equation*}
$$

In consequence, $\delta=1$. Thus as previously claimed $\widehat{\lambda}_{*}$ is surjective; hence:
Theorem 3.10: $\widehat{\lambda}_{*}: \mathcal{C}_{q}\left(I^{*}, \theta\right) \rightarrow \mathcal{T}_{q}(A, \pi)$ is a ring isomorphism.
We may now re-interpret (2.2) as a fibre square of the form
(3.11)

$$
\begin{array}{ccc}
\mathbb{Z}[G(p, q)] & \rightarrow & \mathcal{T}_{q}(A, \pi) \\
\downarrow & & \downarrow \\
\mathbb{Z}\left[C_{q}\right] & \rightarrow & \mathbb{F}_{p}\left[C_{q}\right]
\end{array}
$$

We note that $\mathcal{C}_{q}\left(I_{C}^{*}, \theta\right)$ is simply another description of the induced module $i_{*}\left(I_{C}^{*}\right)$. As $\mathcal{T}_{q}(A, \pi) \cong \mathcal{C}_{q}\left(I_{C}^{*}, \theta\right)$ it follows from (1.2) that:
(3.12) $\quad i_{*}\left(I_{C}\right) \cong i_{*}\left(I_{C}^{*}\right) \cong \mathcal{T}_{q}(A, \pi)$.

Whilst the quasi-triangularity of $\lambda_{*}\left(x^{-1}\right)$ is evident by construction, that of $\lambda_{*}\left(y^{-1}\right)$ is known only implicitly from (3.7). To complete our account we elicit some explicit information on the form of $\lambda_{*}\left(y^{-1}\right)$. For $0 \leq k \leq q-2$ define

$$
U(k)=\operatorname{span}_{A}\left\{(\zeta-1)^{r} \mid k+1 \leq r \leq q-1\right\}
$$

and put $U(k)=0$ for $q-1 \leq k$. Recalling that $(\zeta-1)^{q} \in(\pi)$ it is straightforward to check that:

$$
\begin{equation*}
U(k) U(l) \subset U(k+l+1)+(\pi) \tag{3.13}
\end{equation*}
$$

We now consider the Galois action given by $\Theta(\zeta)=\zeta^{a}$.
Proposition 3.14: For each $k, 1 \leq k \leq q-1$ there are elements $v(k) \in U(k)$ and $\pi(k) \in(\pi)$ such that $\Theta\left[(\zeta-1)^{k}\right]=a^{k}(\zeta-1)^{k}+v(k)+\pi(k)$.
Proof: Observe that $\Theta(\zeta-1)=\Theta(\zeta)-1=\zeta^{a}-1$ and that

$$
\begin{aligned}
\zeta^{a}-1 & =((\zeta-1)+1)^{a}-\frac{1}{a} \\
& =a(\zeta-1)+\sum_{s=2}^{a}\binom{a}{s}(\zeta-1)^{s} .
\end{aligned}
$$

Let $\mathcal{P}(k)$ be the statement for $\Theta\left[(\zeta-1)^{k}\right]$. Then $\mathcal{P}(1)$ is verified on putting

$$
v(1)=\sum_{s=2}^{a}\binom{a}{s}(\zeta-1)^{s} \text { and } \pi(1)=0
$$

Suppose $\mathcal{P}(r)$ is true for $1 \leq r \leq k$ where $k<q-1$. As $\Theta$ is a ring homomorphism then

$$
\begin{aligned}
& \Theta\left[(\zeta-1)^{k+1}\right]=\Theta(\zeta-1) \cdot \Theta\left[(\zeta-1)^{k}\right] \\
& =\quad[a(\zeta-1)+v(1)] \cdot\left[a^{k}(\zeta-1)^{k}+v(k)+\pi(k)\right] \\
& =\quad a^{k+1}(\zeta-1)^{k+1}+\Upsilon+\Psi \\
& \left\{\begin{array}{lll}
\Upsilon & = & a^{k} v(1)(\zeta-1)^{k}+a(\zeta-1) v(k)+v(1) v(k) \\
\Psi & = & {[a(\zeta-1)+v(1)] \pi(k) .}
\end{array}\right.
\end{aligned}
$$

where

Clearly $\Psi \in(\pi)$ whilst $\Upsilon \in U(k+1)+(\pi)$ by (3.13). Thus for some $v(k+1) \in U(k+1)$ and $\pi(k+1) \in(\pi)$ we have

$$
\Upsilon+\Psi=v(k+1)+\pi(k+1) .
$$

Hence $\Theta\left[(\zeta-1)^{k+1}\right]=a^{k+1}(\zeta-1)^{k+1}+v(k+1)+\pi(k+1)$ verifying $\mathcal{P}(k+1)$.
Any $Y \in M_{q}(A, \pi)$ can be written uniquely as a sum

$$
\begin{equation*}
Y=\Delta(Y)+U(Y)+L(Y) \tag{3.15}
\end{equation*}
$$

where $\Delta(Y)$ is diagonal, $U(Y)$ is strictly upper triangular and $L(Y)$ is strictly lower triangular. Moreover, as $Y \in \mathcal{T}_{q}(A, \pi)$ then $L(Y)=\pi L^{\prime}(Y)$ for some strictly lower triangular matrix $L^{\prime}(Y)$. If $\mu_{0}, \mu_{1}, \cdots \mu_{q-1} \in A$ we denote by $\Delta\left(\mu_{q-1}, \ldots, \mu_{0}\right)$ the diagonal $q \times q$ matrix

$$
\Delta\left(\mu_{q-1}, \ldots, \mu_{0}\right)=\left(\begin{array}{ccccc}
\mu_{q-1} & & & & \\
& \mu_{q-2} & & & \\
& & \ddots & & \\
& & & \mu_{1} & \\
& & & & \mu_{0}
\end{array}\right)
$$

It follows from (3.15) that, with respect to the basis $\left\{(\zeta-1)^{q-k}\right\}_{1 \leq k \leq q}$ for $I_{C}^{*}$, the matrix $M(\Theta)$ of $\Theta$ takes the form $M(\Theta)=\Delta\left(a^{q-1}, a^{q-2}, \ldots, a, 1\right)+U+\Pi$ where $U$ is a strictly upper triangular and $\Pi=\pi \cdot X$ for some $X \in M_{q}(A)$. Let $X=\Delta^{\prime}+U^{\prime}+L^{\prime}$ be the decomposition of $X$ given in (3.15) and write $\Delta^{\prime}=\Delta\left(\xi_{q-1}, \xi_{q-2}, \ldots, \xi_{1}, \xi_{0}\right)$ for some $\xi_{i} \in A$. Writing $U(\Theta)=U+\pi U^{\prime}$ and $L(\Theta)=\pi L^{\prime}$ we see that with respect to the basis $\left\{(\zeta-1)^{q-k}\right\}_{1 \leq k \leq q}$ for $I_{C}^{*}$, the matrix $M(\Theta)$ takes the form
(3.16) $M(\Theta)=\Delta\left(a^{q-1}+\pi \xi_{q-1}, a^{q-2}+\pi \xi_{q-2}, \ldots, a+\pi \xi_{1}, 1+\pi \xi_{0}\right)+U(\Theta)+L(\Theta)$
where $U(\Theta)$ is strictly upper triangular and $L(\Theta)$ is strictly lower triangular. Denoting by $\bar{M}(\Theta)$ the reduction of $M(\Theta) \bmod \pi$ we see that:

$$
\bar{M}(\theta)=\left(\begin{array}{cccccc}
a^{q-1} & * & * & * & * & * \\
& a^{q-2} & * & * & * & * \\
& & & \ddots & & \\
& & & & a^{1} & * \\
& & & & & 1
\end{array}\right)
$$

As $a^{-r}=a^{q-r} \bmod q$ then:

$$
\bar{M}\left(\theta^{-1}\right)=\left(\begin{array}{cccccc}
a & * & * & * & * & *  \tag{3.17}\\
& a^{2} & * & * & * & * \\
& & & \ddots & & \\
& & & & a^{q-1} & * \\
& & & & & 1
\end{array}\right) .
$$

$\S 4$ : Properties of the modules $R(i)$ :
We decompose $\mathcal{T}_{q}(A, \pi)$ as direct sum of right $\Lambda$-modules thus

$$
\begin{equation*}
\mathcal{T}_{q}(A, \pi) \cong R(1) \oplus R(2) \oplus \cdots \oplus R(q) \tag{4.1}
\end{equation*}
$$

where $R(i)$ is the $i^{\text {th }}$ row of $\mathcal{T}_{q}(A, \pi)$. Each $R(i)$ is free over $A$ with $\operatorname{rk}_{A}(R(i))=q$. However there is an isomorphism

$$
\begin{equation*}
\mathcal{T}_{q}(A, \pi) \otimes_{A} A / \pi \cong \mathcal{T}_{q}(A / \pi) \tag{4.2}
\end{equation*}
$$

under which $R(i)$ descends to $\breve{R}(i)$, the $i^{\text {th }}$-row of $\mathcal{T}_{q}(A / \pi)$. The modules $\breve{R}(i)$ are pairwise isomorphically distinct over $\mathcal{T}_{q}(A / \pi)$ as $\mathrm{rk}_{A / \pi}[\breve{R}(i)]=q+1-i$. Hence:

$$
\begin{equation*}
R(i) \cong_{\Lambda} R(j) \Longleftrightarrow i=j \tag{4.3}
\end{equation*}
$$

We proceed to study the duality properties of the $R(i)$. Fix the following notation

$$
\mathcal{T}_{q}=\mathcal{T}_{q}(A, \pi) \quad ; \quad R(i)=i^{\text {th }} \text { row of } \mathcal{T}_{q} \quad ; \quad C(j)=j^{\text {th }} \text { column of } \mathcal{T}_{q} .
$$

Then $R(i), C(j)$ are respectively right and left ideals in $\mathcal{T}_{q}$. Define $Q=\left(q_{i j}\right) \in M_{q}(A)$ by

$$
q_{i j}=\left\{\begin{array}{cc}
1 & i+j=q+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Clearly $Q=Q^{t}=Q^{-1}$. Define $\theta: \mathcal{T}_{q} \rightarrow \mathcal{T}_{q}$ by $\theta(A)=Q A^{t} Q$. Then $\theta$ is an anti-involution on $\mathcal{T}_{q}$ which takes a left ideal $J$ to a right ideal $\theta(J)$; in particular:
(4.4) $\quad \theta(C(k))=R(q+1-k)$.

If $M$ is a right $\mathcal{T}_{q}$-module then $\operatorname{Hom}_{\mathcal{T}_{q}}\left(M, \mathcal{T}_{q}\right)$ is a left $\mathcal{T}_{q}$-module. In particular:
(4.5) $\operatorname{Hom}_{\mathcal{T}_{q}}\left(R(k), \mathcal{T}_{q}\right) \cong C(k)$.

We use $\theta$ to convert a left $\mathcal{T}_{q}$-module $M$ to a right $\mathcal{T}_{q}$-module ${ }^{\theta} M$ by means of

$$
m * \alpha=\theta(\alpha) m
$$

where $m \in M$ and $\alpha \in \mathcal{T}_{q}$. Note that if $J$ is a left ideal in $\mathcal{T}_{q}$ then $\theta(J)$ is a right ideal in $\mathcal{T}_{q}$; moreover, we see that $\theta$ induces an isomorphism of right $\mathcal{T}_{q}$-modules

$$
\theta:{ }^{\theta} J \xrightarrow{\simeq} \theta(J) .
$$

If $M$ is a right module its dual module $M^{*}$, defined by $M^{*}={ }^{\theta} \operatorname{Hom}_{\mathcal{T}_{q}}\left(M, \mathcal{T}_{q}\right)$, is also a right module. It follows from (4.4) and (4.5) that:
(4.6) $\quad R(k)^{*} \cong R(q+1-k)$.

Choose $\bar{a} \in\{1,2, \ldots, p-1\}$ to satisfy $\theta(x)=x^{\bar{a}}\left(=y x y^{-1}\right)$. Then $y^{q}-1$ factorises completely over $\mathbb{F}_{p}$ as $y^{q}-1=(y-1)(y-\bar{a})\left(y-\bar{a}^{2}\right) \ldots\left(y-\bar{a}^{q-1}\right)$. Hence

$$
\begin{equation*}
\mathbb{F}_{p}\left[C_{q}\right] \cong \mathbb{F}_{p}(\bar{a}) \times \mathbb{F}_{p}\left(\bar{a}^{2}\right) \times \cdots \times \mathbb{F}_{p}\left(\bar{a}^{q-1}\right) \times \mathbb{F}_{p}(1) \tag{4.7}
\end{equation*}
$$

where $\mathbb{F}_{p}\left(\bar{a}^{k}\right)$ is the 1 -dimensional $\mathbb{F}_{p}\left[C_{q}\right]$-module on which $y$ acts by $y \cdot \mathbf{z}=\bar{a}^{k} \mathbf{z}$.
Proposition 4.8: There is an exact sequence $0 \rightarrow R(1) \hookrightarrow R(q) \rightarrow \mathbb{F}_{p}(1) \rightarrow 0$.
Proof: Consider the $q \times q$ matrix $\Gamma=\lambda\left(x^{-1}-1\right)$ so that

$$
\Gamma=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 \\
\pi & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

Then $\Gamma^{q}=\pi \cdot \mathrm{I}_{q}$. Define $\quad \Gamma_{*}: \mathcal{T}_{q}(A, \pi) \rightarrow \mathcal{T}_{q}(A, \pi)$ by $\Gamma_{*}(\beta)=\Gamma \cdot \beta$. Then $\Gamma_{*}$ is a homomorphism of right $\mathcal{T}_{q}(A, \pi)$ modules and is evidently injective as $\pi$ is a nonzero element of the integral domain $I_{C}^{*}$. Write a typical element $\beta \in R(1)$ as

$$
\beta=\left(\begin{array}{ccccc}
b_{1} & b_{2} & \ldots & b_{q-1} & b_{q} \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0
\end{array}\right) \text { so that } \Gamma_{*}(\beta)=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\pi b_{1} & \pi b_{2} & \ldots & \pi b_{q-1} & \pi b_{q}
\end{array}\right) .
$$

Thus $R(1) \cong \Gamma_{*}(R(1)) \subset R(q)$. However, a typical element $\gamma \in R(q)$ has the form

$$
\gamma=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 \\
\pi c_{1} & \pi c_{2} & \ldots & \pi c_{q-1} & c_{q}
\end{array}\right) \in R(q)
$$

which differs from an element of $\Gamma_{*}(R(1))$ only in the $(q, q)^{t h}$ entry. As abelian groups, $R(q) / \Gamma_{*}(R(1)) \cong A / \pi \cong \mathbb{F}_{p}$. Finally, from the form of $\lambda\left(y^{-1}\right) \in \mathcal{T}_{q}(A / \pi)$,

$$
\lambda\left(y^{-1}\right)=\left(\begin{array}{cccccc}
\bar{a} & * & * & * & * & * \\
& \bar{a}^{2} & * & * & * & * \\
& & \bar{a}^{3} & * & * & * \\
& & & \ddots & & \\
& & & & \bar{a}^{q-1} & * \\
& & & & & 1
\end{array}\right)
$$

$y$ acts trivially on the right of the $(q, q)^{t h}$ entry. Thus, $R(q) / \Gamma_{*}(R(1)) \cong_{\Lambda} \mathbb{F}_{p}(1)$. Hence, as claimed, we have an exact sequence of $\Lambda$-modules $0 \rightarrow R(1) \stackrel{\Gamma_{*}}{\rightarrow} R(q) \rightarrow \mathbb{F}_{p}(1) \rightarrow 0$.
In the remaining cases we have :

Proposition 4.9: For $1 \leq k \leq q-1$ there are exact sequences of $\Lambda$-modules

$$
0 \rightarrow R(k+1) \hookrightarrow R(k) \rightarrow \mathbb{F}_{p}\left(\bar{a}^{k}\right) \rightarrow 0 .
$$

Proof : First note that $\Gamma_{*}(R(k+1)) \subset R(k)$ for $1 \leq k \leq q-1$.
To make this statement precise consider a typical element

$$
\beta=\left(\begin{array}{cccccccc}
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\pi b_{1} & \ldots & \pi b_{k-1} & \pi b_{k} & b_{k+1} & b_{k+2} & \ldots & b_{q} \\
\vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) \in R(k+1) .
$$

Then

$$
\Gamma_{*}(\beta)=\left(\begin{array}{cccccccc}
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\pi b_{1} & \ldots & \pi b_{k-1} & \pi b_{k} & b_{k+1} & b_{k+2} & \ldots & b_{q} \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) \in R(k) .
$$

Thus $R(k+1) \cong \Gamma_{*}(R(k+1)) \subset R(k)$. A typical element $\gamma \in R(k)$ has the form

$$
\gamma=\left(\begin{array}{cccccccc}
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\pi c_{1} & \ldots & \pi c_{k-1} & c_{k} & c_{k+1} & c_{k+2} & \ldots & c_{q} \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) \in R(k)
$$

which differs from a typical element of $\Gamma_{*}(R(k+1))$ only in the $(k, k)^{t h}$ entry, showing that, as abelian groups, $R(k) / \Gamma_{*}(R(k+1)) \cong A / \pi \cong \mathbb{F}_{p}$. Finally, from (3.17) the reduction $\lambda\left(y^{-1}\right) \in \mathcal{T}_{q}(A / \pi)$ takes the form

$$
\lambda\left(y^{-1}\right)=\left(\begin{array}{ccccccccc}
\bar{a} & * & * & * & * & * & * & * & * \\
& \bar{a}^{2} & * & * & * & * & * & * & * \\
& & \ddots & & & & & & \\
& & & & \bar{a}^{k} & * & * & * & * \\
& & & & & & \ddots & & \\
& & & & & & & \bar{a}^{q-1} & * \\
& & & & & & & & 1
\end{array}\right)
$$

Hence in the right action in the quotient, $y$ acts on the $(k, k)^{t h}$ entry as multiplication by $\bar{a}^{k}$. Thus, as $\Lambda$-modules, $R(k) / \Gamma_{*}(R(k+1)) \cong \mathbb{F}_{p}\left(\bar{a}^{k}\right) \quad$ so, as claimed, we get an exact sequence $0 \rightarrow R(k+1) \stackrel{\Gamma_{*}}{\hookrightarrow} R(k) \rightarrow \mathbb{F}_{p}\left(\bar{a}^{k}\right) \rightarrow 0$.
It is useful to describe $R(1)$ and $R(q)$ as Galois modules. One first checks that $R(q)$ satisfies conditions (i), (ii) and (iii) of (1.4). In particular $\mu=(0,0, \ldots, 0,1) \in R(q)$ satisfies $\mu \cdot y=\mu$. Thus it follows from (1.4) that:

Proposition 4.10 : $R(q) \cong \overline{I_{C}^{*}}$.
It is straightforward to see that $\overline{\bar{I}_{C}^{*}} \cong\left(\overline{I_{C}}\right)^{*}$. From (4.6) and (4.10) it follows that:
(4.11) $\quad R(1) \cong \overline{I_{C}}$.

## §5: Decomposing the augmentation ideal of $\Lambda$ :

The collection $\left\{E_{r}\right\}_{1 \leq r \leq p q-1}$ is an integral basis for $I_{G}$ where

$$
\begin{cases}E_{(k-1) p+s}=y^{k} x^{s}-1 & \text { for } 1 \leq k \leq q-1 \quad \text { and } \quad 1 \leq s \leq p . \\ E_{(q-1) p+s}=x^{s}-1 & \text { for } 1 \leq s \leq p-1 .\end{cases}
$$

Make the change of basis to $\left\{\Phi_{r}\right\}_{1 \leq r \leq p q-1}$ where

Then $\left\{\Phi_{r}\right\}_{1 \leq r \leq p(q-1)}$ is an integral basis for the right ideal $[y-1)$ as

$$
\left\{\begin{array}{lll}
\Phi_{(k-1) p+s} & =\left(y^{k}-1\right) x^{s} & \text { for } 1 \leq k \leq q-1 \quad \text { and } \quad 1 \leq s \leq p-1 \\
\Phi_{k p} & =y^{k}-1 & \text { for } 1 \leq k \leq q-1 .
\end{array}\right.
$$

As this extends to an integral basis for $I_{G}$ is follows that $I_{G} /[y-1)$ is free over $\mathbb{Z}$. Moreover if $\ddagger: I_{G} \rightarrow I_{G} /[y-1)$ is the identification map then
(5.1) $\quad \mathrm{h}\left(\Phi_{(q-1) p+s}\right)_{1 \leq s \leq p-1}$ is an integral basis for $I_{G} /[y-1)$.

However $\mathfrak{h}\left(\Phi_{(q-1) p+s}\right)=\mathfrak{h}\left(x^{s}-1\right)$ from which we see easily that $I_{G} /[y-1)$ is isomorphic to $I_{C}$ as a module over $\mathbb{Z}\left[C_{p}\right]$. Computing the action of $y^{-1}$ on $I_{G}$ we find

$$
\begin{aligned}
\left(x^{s}-1\right) \cdot y^{-1} & =x^{s} y^{-1}-y^{-1} \\
& =y^{q-1}\left(x^{\theta_{*}(s)}-1\right) \\
& =\left(y^{q-1}-1\right)\left(x^{\theta_{*}(s)}-1\right)+\left(x^{\theta_{*}(s)}-1\right)
\end{aligned}
$$

Write $X^{s}-1=\mathfrak{q}\left(x^{s}-1\right)$ so that $\left(X^{s}-1\right)_{1 \leq s \leq p-1}$ is an integral basis for $I_{G} /[y-1)$. Observing that $\left(y^{q-1}-1\right)\left(x^{\theta *(s)}-1\right) \in[y-1)$ the above calculation thereby shows

$$
\left(X^{s}-1\right) \cdot y^{-1}=X^{\theta_{*}(s)}-1
$$

which coincides with the Galois action on $\overline{I_{C}}$. Thus $I_{G} /[y-1) \cong \overline{I_{C}}$ and we have shown (5.2) There exists an exact sequence $0 \rightarrow[y-1) \rightarrow I_{G} \rightarrow \overline{I_{C}} \rightarrow 0$.

We proceed to show that the exact sequence of (5.2) splits. To economise on notation we use boldface symbols Hom, Ext ${ }^{k}$ when describing homomorphisms and extensions of $\Lambda$-modules and standard Roman font, Hom and Ext ${ }^{k}$, when referring to homomorphisms and extensions of modules over $\mathbb{Z}\left[C_{p}\right]$. First note that

$$
\operatorname{Ext}^{k}\left(\mathbb{Z}, I_{C}\right) \quad \cong \quad\left\{\begin{array}{cc}
\mathbb{Z} / p & k=1  \tag{5.3}\\
0 & k=2
\end{array}\right.
$$

Any $\mathbb{Z}\left[C_{q}\right]$-module becomes a module over $\Lambda$ via the projection $\Lambda \rightarrow \mathbb{Z}\left[C_{q}\right]$. Thus:
Proposition 5.4: $\quad \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right) \cong \mathbb{Z} / p \quad$ for all $k \quad(1 \leq k \leq q)$.
Proof : Let $i$ denote the inclusion $i: \mathbb{Z}\left[C_{p}\right] \hookrightarrow \Lambda$. Applying the induced representation functor $i_{*}$ to the exact sequence $0 \rightarrow I_{C} \rightarrow \mathbb{Z}\left[C_{p}\right] \rightarrow \mathbb{Z} \rightarrow 0$ gives an exact sequence

$$
\begin{equation*}
0 \rightarrow i_{*}\left(I_{C}\right) \rightarrow \Lambda \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \tag{}
\end{equation*}
$$

Now $i_{*}\left(I_{C}\right) \cong \bigoplus_{t=1}^{q} R(t)$ so that (*) can be re-written as an extension

$$
\begin{equation*}
0 \rightarrow \bigoplus_{t=1}^{q} R(t) \rightarrow \Lambda \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \tag{**}
\end{equation*}
$$

which is classified by cohomology classes $c=\left(c_{t}\right)_{1 \leq t \leq q}$ where $c_{t} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(t)\right)$. If $\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right)=0$ then $\Lambda$ decomposes as a direct sum $\Lambda \cong R(k) \oplus X$ where the module $X$ occurs in the extension

$$
0 \rightarrow \bigoplus_{t \neq k} R(t) \rightarrow X \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0
$$

classified by the sequence $\left(c_{t}\right)_{t \neq k}$. However $\Lambda$, being the integral group ring of a finite group, is indecomposable (cf [4] p.678). Consequently each $c_{k} \neq 0$ and hence each $\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right) \neq 0$. Now note that $i^{*}\left(\mathbb{Z}\left[C_{q}\right]\right) \cong \mathbb{Z}^{q}$; from the Eckmann-Shapiro isomorphism $\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], i_{*}\left(I_{C}\right)\right) \cong \operatorname{Ext}^{1}\left(i^{*}\left(\mathbb{Z}\left[C_{q}\right]\right), I_{C}\right)$ and (5.3) we see that

$$
\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], i_{*}\left(I_{C}\right)\right) \cong \operatorname{Ext}^{1}\left(\mathbb{Z}, I_{C}\right)^{q} \cong \underbrace{\mathbb{Z} / p \oplus \cdots \oplus \mathbb{Z} / p}_{q} .
$$

As above, $i_{*}\left(I_{C}\right) \cong \bigoplus_{k=1}^{q} R(k)$. Hence $\bigoplus_{k=1}^{q} \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right) \cong \underbrace{\mathbb{Z} / p \oplus \cdots \oplus \mathbb{Z} / p}_{q}$. As $\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right) \neq 0$ then each $\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right) \cong \mathbb{Z} / p$ as claimed.

From the Eckmann-Shapiro isomorphism $\operatorname{Ext}^{2}\left(\mathbb{Z}, i_{*}\left(I_{C}\right)\right) \cong \operatorname{Ext}^{2}\left(\mathbb{Z}, I_{C}\right)$ we see from (5.3) that $\operatorname{Ext}^{2}\left(\mathbb{Z}, i_{*}\left(I_{C}\right)\right)=0$. However

$$
\bigoplus_{k=1}^{q} \operatorname{Ext}^{2}(\mathbb{Z}, R(k)) \cong \mathbf{E x t}^{2}\left(\mathbb{Z}, \bigoplus_{k=1}^{q} R(k)\right) \cong \mathbf{E x t}^{2}\left(\mathbb{Z}, i_{*}\left(I_{C}\right)\right)
$$

from which it follows that:

$$
\begin{equation*}
\boldsymbol{E x t}^{2}(\mathbb{Z}, R(k))=0 \quad \text { for all } k \quad(1 \leq k \leq q) \tag{5.5}
\end{equation*}
$$

Now $\operatorname{Hom}\left(i^{*}\left(I_{Q}\right), I_{C}\right) \cong \operatorname{Hom}\left(\mathbb{Z}, I_{C}\right)^{(q)}=0$. From the Eckmann-Shapiro isomorphism
$\boldsymbol{\operatorname { H o m }}\left(I_{Q}, i_{*}\left(I_{C}\right)\right) \cong \operatorname{Hom}\left(i^{*}\left(I_{Q}\right), I_{C}\right)$ we see that $\boldsymbol{\operatorname { H o m }}\left(I_{Q}, i_{*}\left(I_{C}\right)\right) \cong 0$. Hence
(5.6) $\quad \operatorname{Hom}\left(I_{Q}, R(k)\right)=0 \quad$ for all $k \quad(1 \leq k \leq q)$.

As $\mathbb{Z}\left[C_{p}\right]$ is indecomposable, from the exact sequence $0 \rightarrow \overline{I_{C}} \rightarrow \overline{\mathbb{Z}\left[C_{p}\right]} \rightarrow \mathbb{Z} \rightarrow 0$ it follows that $\left.\operatorname{Ext}^{1}\left(\mathbb{Z}, \overline{I_{C}}\right)\right) \neq 0$. As $\overline{I_{C}} \cong R(1)$ then $\operatorname{Ext}^{1}(\mathbb{Z}, R(1)) \neq 0$. However, $\operatorname{Ext}^{1}\left(\mathbb{Z}, i_{*}\left(I_{C}\right)\right) \cong \operatorname{Ext}^{1}\left(i^{*}(\mathbb{Z}), I_{C}\right) \cong \operatorname{Ext}^{1}\left(\mathbb{Z}, I_{C}\right) \cong \mathbb{Z} / p$ so that

$$
\bigoplus_{k=1}^{q} \operatorname{Ext}^{1}(\mathbb{Z}, R(k)) \cong \mathbb{Z} / p
$$

As $\operatorname{Ext}^{1}(\mathbb{Z}, R(1)) \neq 0$ it follows that:

$$
\operatorname{Ext}^{1}(\mathbb{Z}, R(k)) \quad \cong\left\{\begin{array}{cc}
\mathbb{Z} / p & k=1  \tag{5.7}\\
0 & k \neq 1
\end{array}\right.
$$

Applying $\operatorname{Hom}(-, R(k))$ to the exact sequence $0 \rightarrow I_{Q} \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow \mathbb{Z} \rightarrow 0$ we obtain a long exact sequence in cohomology, from which, in conjunction with (5.4), (5.5) and (5.6), we extract the following portion:

$$
\begin{array}{cccccc}
\operatorname{Hom}\left(I_{Q}, R(k)\right) & \rightarrow \boldsymbol{E x t}^{1}(\mathbb{Z}, R(k)) & \rightarrow \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right) & \rightarrow \boldsymbol{E x t}^{1}\left(I_{Q}, R(k)\right) & \rightarrow \boldsymbol{E x t}^{2}(\mathbb{Z}, R(k)) \\
\| & \| & \| & \| & \| \\
0 & \rightarrow \boldsymbol{E x t}^{1}(\mathbb{Z}, R(k)) & \rightarrow \quad \mathbb{Z} / p & \rightarrow \boldsymbol{E x t}^{1}\left(I_{Q}, R(k)\right) & \rightarrow & 0 .
\end{array}
$$

In the case $k=1$ then $\operatorname{Ext}^{1}(\mathbb{Z}, R(1)) \cong \mathbb{Z} / p$ so that $\operatorname{Ext}^{1}\left(I_{Q}, R(1)\right)=0$ whilst if $k \neq 1$ then $\operatorname{Ext}^{1}(\mathbb{Z}, R(k))=0$ so that $\operatorname{Ext}^{1}\left(I_{Q}, R(k)\right) \cong \mathbb{Z} / p$; that is:

$$
\operatorname{Ext}^{1}\left(I_{Q}, R(k)\right) \quad \cong\left\{\begin{array}{cc}
0 & k=1  \tag{5.8}\\
\mathbb{Z} / p & k \neq 1
\end{array}\right.
$$

Theorem 5.9: $I_{G}$ decomposes as a direct sum $I_{G} \cong \overline{I_{C}} \oplus Y$ for some $\Lambda$-module $Y$.
Proof : First consider the exact sequence $0 \rightarrow I_{C} \rightarrow \mathbb{Z}\left[C_{p}\right] \rightarrow \mathbb{Z} \rightarrow 0$. By taking induced representations we obtain an exact sequence $0 \rightarrow i_{*}\left(I_{C}\right) \longrightarrow \Lambda \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0$. As $i_{*}\left(I_{C}\right) \cong \bigoplus_{k=1}^{q} R(k)$ and $p^{-1}\left(I_{Q}\right)=I_{G}$ we obtain an exact sequence

$$
0 \longrightarrow \bigoplus_{k=1}^{q} R(k) \longrightarrow I_{G} \xrightarrow{p} I_{Q} \longrightarrow 0
$$

classified by a sequence of cohomology classes $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{q}\right)$ where $c_{k} \in \operatorname{Ext}^{1}\left(I_{Q}, R(k)\right)$. As $c_{1} \in \operatorname{Ext}^{1}\left(I_{Q}, R(1)\right)=0$ then $I_{G} \cong R(1) \oplus Y$ where $Y$ is given as the extension

$$
0 \longrightarrow \bigoplus_{k \neq 1} R(k) \longrightarrow Y \xrightarrow{p} I_{Q} \longrightarrow 0
$$

classified by $\left(c_{2}, \ldots, c_{q}\right)$. The conclusion follows as $R(1) \cong \overline{I_{C}}$.
As above we continue to use boldface symbols Hom, Ext ${ }^{a}$ when describing homomorphisms and extensions of $\Lambda$-modules but we now use italics $H o m, E x t^{a}$ when referring to homomorphisms and extensions of modules over $\mathbb{Z}\left[C_{q}\right]$. Let $j: \mathbb{Z}\left[C_{q}\right] \hookrightarrow \Lambda$ denote the inclusion; we note that $[y-1)=j_{*}\left(I_{Q}\right)$ and $j^{*}\left(\overline{I_{C}}\right) \cong \mathbb{Z}^{p-1}$; thus $\left.\operatorname{Hom}\left([y-1), \overline{I_{C}}\right)\right) \cong \operatorname{Hom}\left(I_{Q}, \mathbb{Z}^{p-1}\right)$ However $\operatorname{Hom}\left(I_{Q}, \mathbb{Z}\right)=0$ so that we have:
(5.10) $\left.\operatorname{Hom}\left([y-1), \overline{I_{C}}\right)\right)=0$

Corollary 5.11: The exact sequence of (5.2) splits.
Proof : It suffices to construct a right splitting of (5.2); that is, a $\Lambda$-homomorphism $s: I_{G} /[y-1) \rightarrow I_{G}$ such that $\downarrow \circ s=\operatorname{Id}$ where, as above, $\bigsqcup: I_{G} \rightarrow I_{G} /[y-1)$ is the identification map. We first show that the isomorphism $I_{G} \cong Y \oplus \overline{I_{C}}$ of (5.9) implies that $Y \cong[y-1)$. Thus let $\varphi: I_{G} \rightarrow Y \oplus \overline{I_{C}}$ be the isomorphism of (5.9) and let $\psi$ denote the projection $\psi:[y-1) \oplus \overline{I_{C}} \rightarrow \overline{I_{C}}$. The restriction $\psi \circ \varphi_{\mid(y-1)}:[y-1) \rightarrow \overline{I_{C}}$ is necessarily zero by (5.10). Hence $\varphi$ restricts to an injection

$$
\varphi_{\mid[y-1)}:[y-1) \rightarrow Y
$$

and induces an isomorphism $\varphi_{*}: I_{G} /[y-1) \rightarrow\left(Y / \varphi([y-1)) \oplus \overline{I_{C}}\right.$. Clearly we have $\left.\mathrm{rk}_{\mathbb{Z}}([y-1))=\operatorname{rk}_{\mathbb{Z}}(Y)\right)=p(q-1)$, from which it follows that $Y / \varphi([y-1))$ is finite. However, $I_{G} /[y-1)$ is torsion free so that $Y / \varphi([y-1))=0$ and $\varphi:[y-1) \xrightarrow{\simeq} Y$ is the required isomorphism. Consequently $[y-1) \oplus \overline{I_{C}} \cong I_{G}$. As $\overline{I_{C}} \cong I_{G} /[y-1)$ it follows that there is an isomorphism $h:[y-1) \oplus I_{G} /[y-1) \rightarrow I_{G}$. As $\operatorname{Coker}(\natural) \cong \overline{I_{C}}$, it follows, again from (5.10), that $h([y-1)) \subset \operatorname{Ker}(\boxed{\square})=[y-1)$. As $h$ injective then $\operatorname{Ker}(\natural) / h([y-1))$ is finite. However, the quotient $\left([y-1) \oplus I_{G} /[y-1)\right) /[y-1) \cong \overline{I_{C}}$ is torsion free, so that $h([y-1))=\operatorname{Ker}(\square)$. Thus $I_{G}$ decomposes as the internal direct sum $I_{G}=\operatorname{Ker}\left(\llcorner ) \dot{+} h\left(I_{G} /[y-1)\right)\right.$. Take $\sigma$ to be the restriction of $\mathfrak{\circ} \circ h$ to $I_{G} /[y-1)$. Then $\sigma=\sharp \circ h: I_{G} /[y-1) \xrightarrow{\simeq} I_{G} /[y-1)$ is an isomorphism and $s=h \circ \sigma^{-1}: I_{G} /[y-1) \rightarrow I_{G}$ is the required right splitting of (5.2).
Corollary 5.12: $\quad I_{G}$ decomposes as a direct sum $I_{G} \cong[y-1) \oplus \overline{I_{C}}$.

## $\S 6$ : Proof of Theorem C :

It follows from (5.12) that there is an exact sequence $0 \rightarrow \overline{I_{C}} \oplus[y-1) \rightarrow \Lambda \rightarrow \mathbb{Z} \rightarrow 0$. Applying $\overline{I_{C}^{*}} \otimes-$ we obtain an exact sequence

$$
0 \rightarrow\left(\overline{I_{C}^{*}} \otimes \overline{I_{C}}\right) \oplus\left(\overline{I_{C}^{*}} \otimes[y-1)\right) \rightarrow \overline{I_{C}^{*}} \otimes \Lambda \rightarrow \overline{I_{C}^{*}} \otimes \mathbb{Z} \rightarrow 0
$$

which, by (1.10), (1.11) we may write more conveniently as

$$
\begin{equation*}
0 \rightarrow\left(\overline{I_{C}^{*}} \otimes \overline{I_{C}}\right) \oplus \Lambda^{d(q-1)} \rightarrow \Lambda^{p-1} \rightarrow \overline{I_{C}^{*}} \rightarrow 0 . \tag{6.1}
\end{equation*}
$$

As $\Lambda^{d(q-1)}$ and $\overline{I_{C}^{*}} \otimes \overline{I_{C}}$ are self-dual, then dualisation of (6.1) gives an exact sequence

$$
\begin{equation*}
0 \rightarrow \overline{I_{C}} \rightarrow \Lambda^{p-1} \rightarrow\left(\overline{I_{C}^{*}} \otimes \overline{I_{C}}\right) \oplus \Lambda^{d(q-1)} \rightarrow 0 \tag{6.2}
\end{equation*}
$$

Splicing (6.1) and (6.2) together gives an exact sequence

$$
\begin{equation*}
0 \rightarrow \overline{I_{C}} \longrightarrow \Lambda^{(p-1)} \longrightarrow \Lambda^{(p-1)} \longrightarrow \overline{\bar{I}_{C}^{*}} \rightarrow 0 \tag{6.3}
\end{equation*}
$$

However, $\overline{I_{C}^{*}}$ is monogenic and finitely presented so there is an exact sequence

$$
\begin{equation*}
0 \rightarrow K \longrightarrow \Lambda^{b} \longrightarrow \Lambda \longrightarrow \overline{I_{C}^{*}} \rightarrow 0 \tag{6.4}
\end{equation*}
$$

Comparison of (6.3) and (6.4) via the generalised form of Schanuel's Lemma (cf [21]) gives

$$
\begin{equation*}
\overline{I_{C}} \oplus \Lambda^{p+b-1} \cong K \oplus \Lambda^{p} \tag{6.5}
\end{equation*}
$$

We may modify (6.4) successively, first to an exact sequence

$$
\begin{equation*}
0 \rightarrow K \oplus \Lambda^{p} \longrightarrow \Lambda^{p+b} \longrightarrow \Lambda \longrightarrow \overline{I_{C}^{*}} \rightarrow 0 \tag{6.6}
\end{equation*}
$$

Then, using (6.5), to an exact sequence

$$
\begin{equation*}
0 \rightarrow \overline{I_{C}} \oplus \Lambda^{p+b-1} \xrightarrow{j} \Lambda^{p+b} \longrightarrow \Lambda \longrightarrow \overline{I_{C}^{*}} \rightarrow 0 \tag{6.7}
\end{equation*}
$$

Finally to an exact sequence

$$
\begin{equation*}
0 \rightarrow \overline{I_{C}} \longrightarrow S \longrightarrow \Lambda \longrightarrow \overline{I_{C}^{*}} \rightarrow 0 \tag{6.8}
\end{equation*}
$$

where $S=\Lambda^{p+b} / j\left(\Lambda^{p+b-1}\right)$. It follows from the 'de-stabilisation theorem' of [9] (Prop. 5.17 , p. 97 ) that $S$ is projective. Moreover, from the exact sequence

$$
0 \rightarrow \Lambda^{p+b-1} \xrightarrow{j} \Lambda^{p+b} \rightarrow S \rightarrow 0
$$

we see that $S \oplus \Lambda^{p+b-1} \cong \Lambda^{p+b}$. That is, $S$ is stably free of rank 1. However, $\Lambda$ satisfies the Eichler condition so that, by the Swan-Jacobinski Theorem ([5] §51),

$$
S \cong \Lambda
$$

Substitution of $S \cong \Lambda$ back into (6.8) gives the required basic sequence for $\Lambda$.

$$
\begin{equation*}
0 \longrightarrow \overline{I_{C}} \longrightarrow \Lambda \xrightarrow{\nearrow / \bigwedge^{K(q)}} \Lambda \longrightarrow \overline{I_{C}^{*}} \longrightarrow 0 \tag{6.9}
\end{equation*}
$$

where $K(q)$ is the kernel of the surjection $\Lambda \rightarrow \overline{I_{C}^{*}}$, so proving Theorem C.

## §7: Some cohomological considerations :

We continue to write Ext $^{a}$ (resp. Ext ${ }^{a}$ ) when referring to extensions of modules over $\Lambda$ (resp. $\mathbb{Z}\left[C_{p}\right]$ ). Observe that $i_{*}\left(I_{C}^{*}\right) \cong \mathcal{T}_{q} \cong \bigoplus_{r=1}^{q} R(r)$ and $i^{*}(R(r)) \cong I_{C}^{*}$. From the first Eckmann-Shapiro relation we obtain:

$$
\begin{aligned}
\operatorname{Ext}^{2}\left(\mathcal{T}_{q}, \mathcal{T}_{q}\right) & \cong \bigoplus_{r=1}^{q} \operatorname{Ext}^{2}\left(i_{*}\left(I_{C}^{*}\right), R(r)\right) \\
& \cong \bigoplus_{r=1}^{q} \operatorname{Ext}^{2}\left(I_{C}^{*}, i^{*}(R(r))\right. \\
& \cong \bigoplus_{r=1}^{q} \operatorname{Ext}^{2}\left(I_{C}^{*}, I_{C}^{*}\right)
\end{aligned}
$$

Noting that $\operatorname{Ext}^{2}\left(I_{C}^{*}, I_{C}^{*}\right) \cong \mathbb{Z} / p$ then $\operatorname{Ext}^{2}\left(\mathcal{T}_{q}, \mathcal{T}_{q}\right) \cong \underbrace{\mathbb{Z} / p \oplus \cdots \oplus \mathbb{Z} / p}_{q}$. Likewise from the second Eckmann-Shapiro relation we deduce that

$$
\begin{aligned}
\operatorname{Ext}^{2}\left(R(r), \mathcal{T}_{q}\right) & \cong \operatorname{Ext}^{2}\left(R(r), i_{*}\left(I_{C}^{*}\right)\right. \\
& \cong \operatorname{Ext}^{2}\left(i^{*}\left(R(r), I_{C}^{*}\right)\right. \\
& \cong \operatorname{Ext}^{2}\left(I_{C}^{*}, I_{C}^{*}\right) .
\end{aligned}
$$

Hence we see that $\operatorname{Ext}^{2}\left(R(r), \mathcal{T}_{q}\right) \cong \mathbb{Z} / p$. Writing $\mathcal{T}_{q} \cong \bigoplus_{s=1}^{q} R(s)$ we have $\bigoplus_{s=1}^{q} \operatorname{Ext}^{2}(R(r), R(s)) \cong \mathbb{Z} / p$. As $\mathbb{Z} / p$ is indecomposable then for each $r \in\{1, \ldots, q\}$ there exists $\sigma(r) \in\{1, \ldots, q\}$ such that:

$$
\operatorname{Ext}^{2}(R(r), R(s)) \cong\left\{\begin{array}{cl}
\mathbb{Z} / p & s=\sigma(r)  \tag{7.1}\\
0 & s \neq \sigma(r) .
\end{array}\right.
$$

The correspondence $i \mapsto \sigma(i)$ evidently defines a mapping $\sigma:\{1, \ldots, q\} \rightarrow\{1, \ldots, q\}$. As $R(1) \cong \overline{I_{C}}$ and $R(q) \cong \overline{I_{C}^{*}}$ it follows from (6.9) that $\sigma(q)=1$. We claim that the mapping $\sigma:\{1, \ldots, q\} \rightarrow\{1, \ldots, q\}$ is bijective. It suffices to show that $\sigma$ is surjective. Suppose not; then there exists $k \in\{1, \ldots, q\}$ such that for all $i \in\{1, \ldots, q\} \quad \operatorname{Ext}^{2}(R(i), R(k))=0$. Thus $\operatorname{Ext}^{2}\left(\mathcal{T}_{q}, R(k)\right)=\bigoplus_{i=1}^{q} \operatorname{Ext}^{2}(R(i), R(k))=0$. By duality

$$
\operatorname{Ext}^{2}\left(R(k)^{*}, \mathcal{T}_{q}^{*}\right)=0
$$

However, $R(k)^{*} \cong R(q+1-k)$ and $\mathcal{T}_{q}^{*} \cong \mathcal{T}_{q} \cong \bigoplus_{s=1}^{q} R(s)$ so that, for all $s \in\{1, \ldots, q\}$

$$
\boldsymbol{E x t}^{2}(R(q+1-k), R(s))=0 .
$$

This contradicts (7.1) above. Thus $\sigma$ is surjective and hence bijective. To summarise:
Proposition 7.2: There exists a (necessarily unique) permutation $\sigma$ of $\{1, \ldots, q\}$ satisfying $\sigma(q)=1$ with the property that, for each $i \in\{1, \ldots, q\}$,

$$
\operatorname{Ext}^{2}(R(i), R(j)) \cong\left\{\begin{array}{cl}
\mathbb{Z} / p & j=\sigma(i) \\
0 & j \neq \sigma(i)
\end{array}\right.
$$

Each $R(i)$ is monogenic; hence for each $i \in\{1, \ldots, q\}$ there is an exact sequence

$$
\begin{equation*}
\mathcal{X}(i)=(0 \rightarrow K(i) \rightarrow \Lambda \rightarrow R(i) \rightarrow 0) \tag{7.3}
\end{equation*}
$$

so that, by dimension shifting, $\quad \operatorname{Ext}^{1}(K(i), R(j)) \cong\left\{\begin{array}{cl}\mathbb{Z} / p & j=\sigma(i) \\ 0 & j \neq \sigma(i) .\end{array}\right.$
Recall from $\S 1$ that $\mathbb{Z}\left[C_{q}\right] \otimes \overline{I_{C}} \cong i_{*}\left(I_{C}\right) \cong i_{*}\left(I_{C}^{*}\right) \cong \mathbb{Z}\left[C_{q}\right] \otimes \overline{I_{C}^{*}}$ and that $\mathbb{Z}\left[C_{q}\right] \otimes \Lambda \cong \Lambda^{q}$. Applying the functor $\mathbb{Z}\left[C_{q}\right] \otimes-$ to (6.9) gives an exact sequence

where $K=\mathbb{Z}\left[C_{q}\right] \otimes K(q)$. By (3.12), $i_{*}\left(I_{C}\right) \cong \mathcal{T}_{q}(A, \pi) \cong \bigoplus_{i=1}^{q} R(i)$. Moreover $\bigoplus_{i=1}^{q} R(i) \cong \bigoplus_{i=1}^{q} R(\sigma(i))$ so that we have an exact sequence

$$
\begin{equation*}
K \tag{7.4}
\end{equation*}
$$

On comparing the portion $0 \rightarrow K \rightarrow \Lambda^{q} \rightarrow \bigoplus_{i=1}^{q} R(i) \rightarrow 0$ of (7.4) with

$$
\bigoplus_{i=1}^{q} \mathcal{S}(i)=\left(0 \rightarrow \bigoplus_{i=1}^{q} K(i) \rightarrow \Lambda^{q} \rightarrow \bigoplus_{i=1}^{q} R(i) \rightarrow 0\right)
$$

it follows from Schanuel's Lemma that $K \oplus \Lambda^{q} \cong\left(\bigoplus_{i=1}^{q} K(i)\right) \oplus \Lambda^{q}$. We claim
Proposition 7.5 : There exists an exact sequence of the form

$$
0 \rightarrow \bigoplus_{i=1}^{q} R(\sigma(i)) \rightarrow \Lambda^{q} \rightarrow \bigoplus_{i=1}^{q} K(i) \rightarrow 0
$$

Proof : Modify the portion $0 \rightarrow \bigoplus_{i=1}^{q} R(\sigma(i)) \rightarrow \Lambda^{q} \rightarrow K \rightarrow 0$ of (7.4) first to $0 \rightarrow \bigoplus_{i=1}^{q} R(\sigma(i)) \rightarrow \Lambda^{q} \oplus \Lambda^{q} \rightarrow K \oplus \Lambda^{q} \rightarrow 0$, then, using the other half of (7.4), to

$$
0 \rightarrow \bigoplus_{i=1}^{q} R(\sigma(i)) \longrightarrow \Lambda^{2 q} \longrightarrow\left(\bigoplus_{i=1}^{q} K(i)\right) \oplus \Lambda^{q} \rightarrow 0 .
$$

Dualisation gives $0 \rightarrow\left(\bigoplus_{i=1}^{q} K(i)^{*}\right) \oplus \Lambda^{q} \xrightarrow{\iota} \Lambda^{2 q} \longrightarrow \bigoplus_{i=1}^{q} R(\sigma(i))^{*} \rightarrow 0$
which we modify again to $0 \rightarrow \bigoplus_{i=1}^{q} K(i)^{*} \rightarrow \Lambda^{2 q} /\left(\iota\left(\Lambda^{q}\right)\right) \rightarrow \bigoplus_{i=1}^{q} R(\sigma(i))^{*} \rightarrow 0$.
Again by the 'de-stabilisation theorem' of [7] we see that $\Lambda^{2 q} /\left(\iota\left(\Lambda^{q}\right)\right.$ is stably free of rank $q$ over $\Lambda$. By the Swan-Jacobinski Theorem, $\Lambda^{2 q} /\left(\iota\left(\Lambda^{q}\right) \cong \Lambda^{q}\right.$ there is an exact sequence

$$
0 \rightarrow \bigoplus_{i=1}^{q} K(i)^{*} \longrightarrow \Lambda^{q} \longrightarrow \bigoplus_{i=1}^{q} R(\sigma(i))^{*} \rightarrow 0
$$

Re-dualisation gives the desired sequence $0 \rightarrow \bigoplus_{i=1}^{q} R(\sigma(i)) \rightarrow \Lambda^{q} \rightarrow \bigoplus_{i=1}^{q} K(i) \rightarrow 0$.
Theorem 7.6 : For each $i$ there exists an exact sequence

$$
\mathcal{W}(i)=(0 \rightarrow R(\sigma(i)) \longrightarrow P(i) \longrightarrow K(i) \rightarrow 0) .
$$

in which $P(i)$ is projective of rank 1 over $\Lambda$. Moreover, $\bigoplus_{i=1}^{q} P(i) \cong \Lambda^{q}$.
Proof : Let $[\mathcal{W}]$ denote the congruence class of the extension constructed in (7.5),

$$
\mathcal{W}=\left(0 \rightarrow \bigoplus_{j=1}^{q} R(\sigma(j)) \rightarrow \Lambda^{q} \rightarrow \bigoplus_{i=1}^{q} K(i) \rightarrow 0\right)
$$

Then $[\mathcal{W}] \in \operatorname{Ext}^{1}\left(\bigoplus_{i=1}^{q} K(i), \bigoplus_{j=1}^{q} R(\sigma(j))\right) \cong \bigoplus_{i, j=1}^{q} \operatorname{Ext}^{1}(K(i), R(\sigma(j)))$. Dimension shifting applied to (7.2) shows that $\operatorname{Ext}^{1}(K(i), R(j))=0$ when $j \neq \sigma(i)$ so that

$$
\operatorname{Ext}^{1}\left(\bigoplus_{i=1}^{q} K(i), \bigoplus_{j=1}^{q} R(\sigma(j))\right) \cong \bigoplus_{i=1}^{q} \operatorname{Ext}^{1}(K(i), R(\sigma(i)))
$$

and $\mathcal{W}$ is congruent to a direct sum $\mathcal{W} \approx \mathcal{W}(1) \oplus \cdots \oplus \mathcal{W}(q)$ where $\mathcal{W}(i)$ has the form $\mathcal{W}(i)=(0 \rightarrow R(\sigma(i)) \rightarrow P(i) \rightarrow K(i) \rightarrow 0)$. In particular, $\Lambda^{q} \cong P(1) \oplus \cdots \oplus P(q)$ so that each $P(i)$ is projective. By Swan's 'local freeness' theorem ([4], §32) each $P(i) \otimes \mathbb{Q}$ is free over $\Lambda \otimes \mathbb{Q}$. As each $P(i)$ is nonzero, a straightforward calculation of $\mathbb{Z}$-ranks shows that $\mathrm{rk}_{\Lambda}(P(i))=1$.
Splicing the exact sequence $\mathcal{X}(i)$ of (7.3) with $\mathcal{W}(i)$ of (7.6) gives an extension

$$
\begin{equation*}
\mathcal{Z}(i)=(0 \longrightarrow R(\sigma(i)) \longrightarrow P(i) \xrightarrow{K(i)} \Lambda \longrightarrow R(i) \longrightarrow 0) . \tag{7.7}
\end{equation*}
$$

For future reference, we note again that $\sigma(q)=1$ and that $P(q)=\Lambda$ in the basic sequence $\mathcal{Z}(q)=\mathfrak{S}(q)$. We now proceed to determine the permutation $\sigma$.

## §8: A p-adic construction :

Denote by $\widehat{\mathbb{Z}}$ the ring of $p$-adic integers and by $\widehat{\Lambda}=\Lambda \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ the $p$-adic completion of $\Lambda$. For any $\Lambda$-lattice $M$, we denote by $\widehat{M}=M \otimes_{\Lambda} \widehat{\Lambda}$. the corresponding $\widehat{\Lambda}$-lattice. We have $p$-adic analogues of (4.8) and (4.9):
(8.1) There is an exact sequence of $\widehat{\Lambda}$-modules $0 \rightarrow \widehat{R}(1) \hookrightarrow \widehat{R}(q) \rightarrow \mathbb{F}_{p}(1) \rightarrow 0$.
(8.2) For $1 \leq k \leq q-1$ there are exact sequences of $\widehat{\Lambda}$-modules

$$
0 \rightarrow \widehat{R}(k+1) \hookrightarrow \widehat{R}(k) \rightarrow \mathbb{F}_{p}\left(\bar{a}^{k}\right) \rightarrow 0 .
$$

Let $\mathfrak{q}: \widehat{\mathbb{Z}} \rightarrow \mathbb{F}_{p}$ be the canonical mapping. There exists a $q^{\text {th }}$ root of unity $\widehat{a} \in \widehat{\mathbb{Z}}$ such that $\mathfrak{h}(\widehat{a})=\bar{a}$. so that $\hat{\lambda}\left(y^{-1}\right)$ takes the form

$$
\widehat{\lambda}\left(y^{-1}\right)=\left(\begin{array}{cccccc}
\widehat{a} & * & * & * & * & * \\
& \widehat{a}^{2} & * & * & * & * \\
& & \widehat{a}^{3} & * & * & * \\
& & & \ddots & & \\
& & & & \widehat{a}^{q-1} & * \\
& & & & & 1
\end{array}\right) .
$$

Let $\widehat{\mathbb{Z}}\left(\widehat{a}^{k}\right)$ denote the $\widehat{\mathbb{Z}}\left[C_{q}\right]$ module whose underlying $\widehat{\mathbb{Z}}$ module is $\widehat{\mathbb{Z}}$ on which $y$ acts, on the right, as multiplication by $\widehat{a}^{k}$.
Proposition 8.3: $\quad \widehat{R}(k+1) \cong_{\widehat{\Lambda}} \widehat{R}(k) \otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}(\widehat{a}) \quad$ for $1 \leq k \leq q-1$.
Proof : There is a canonical ring homomorphism $\mathcal{T}_{q}(\widehat{A}, \widehat{\pi}) \rightarrow \mathbb{F}_{p}\left[C_{q}\right]$ whose kernel is the Jacobson radical of $\mathcal{T}_{q}(\widehat{A}, \widehat{\pi})$. However from the product structure of (4.7) it follows by Rosen's Theorem $([4],[20])$ that $\mathcal{T}_{q}(\widehat{A}, \widehat{\pi})$ decomposes uniquely as a direct sum of ideals

$$
\mathcal{T}_{q}(\widehat{A}, \widehat{\pi}) \cong \widehat{J}_{1} \oplus \cdots \oplus \widehat{J}_{q}
$$

where $\widehat{J}_{k} / \widehat{J}_{k} \cap \operatorname{rad}\left(\mathcal{T}_{q}(\widehat{A}, \widehat{\pi})\right) \cong \mathbb{F}_{p}[\bar{a} k]$. However $\quad \mathcal{T}_{q}(\widehat{A}, \widehat{\pi}) \cong \widehat{R}(1) \oplus \cdots \oplus \widehat{R}(q)$ and so, by $(8.2), \widehat{R}(k) / \widehat{R}(k) \cap \operatorname{rad}\left(\mathcal{T}_{q}(\widehat{A}, \widehat{\pi})\right) \cong \mathbb{F}\left[\bar{a}^{k}\right]$ so that $\widehat{J}_{k}=\widehat{R}(k)$. Now consider the exact sequence $0 \rightarrow i_{*}\left(\widehat{I}_{C}\right) \rightarrow \widehat{\Lambda} \rightarrow \widehat{\mathbb{Z}}\left[C_{q}\right] \rightarrow 0$ and take tensor product $-\otimes \widehat{\mathbb{Z}}[\widehat{a}]$. As $\widehat{\Lambda} \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \widehat{\Lambda}$ and $\widehat{\mathbb{Z}}\left[C_{q}\right] \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \widehat{\mathbb{Z}}\left[C_{q}\right]$ it follows that $i_{*}\left(\widehat{I}_{C}\right) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong i_{*}\left(\widehat{I}_{C}\right)$. As in (3.12), $\quad i_{*}\left(\widehat{I}_{C}\right) \cong \mathcal{T}_{q}(\widehat{A}, \widehat{\pi})$ so that $\mathcal{T}_{q}(\widehat{A}, \widehat{\pi}) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \mathcal{T}_{q}(\widehat{A}, \widehat{\pi})$. By uniqueness of the above decomposition it follows that there is a permutation $\tau$ of $\{1, \ldots, q\}$ such that $\widehat{R}(k) \otimes \widehat{\mathbb{Z}}[a] \cong \widehat{R}(\tau(k))$. The permutation is easily determined; as $\widehat{R}(k) \rightarrow \mathbb{F}_{p}\left[\bar{a}^{k}\right]$ it follows that $\widehat{R}(k) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \rightarrow \mathbb{F}_{p}\left[\bar{a}^{k}\right] \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \mathbb{F}_{p}\left[\bar{a}^{k+1}\right]$. As $\widehat{R}(k+1) \rightarrow \mathbb{F}_{p}\left[\bar{a}^{k+1}\right]$ we see that $\widehat{R}(k) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \widehat{R}(k+1)$ as claimed.
Corollary 8.4: $\quad \widehat{R}(k+1) \cong_{\widehat{\Lambda}} \widehat{R}(1) \otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}\left(\widehat{a}^{k}\right) \quad$ for $1 \leq k \leq q-1$.
Corollary 8.5 : $\quad \widehat{R}(1) \cong_{\widehat{\Lambda}} \widehat{R}(q) \otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}(\widehat{a})$.
Start with a basic sequence $0 \rightarrow \overline{I_{C}} \longrightarrow \Lambda \longrightarrow \Lambda \rightarrow \overline{I_{C}^{*}} \rightarrow 0$ and, using (4.10), (4.11) rewrite in 'row notation' thus


Applying $-\otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ to (8.6) gives an exact sequence

$$
\begin{equation*}
0 \longrightarrow \widehat{R}(1) \longrightarrow \widehat{\Lambda} \xrightarrow{\widehat{K}(q)} \widehat{\Lambda} \longrightarrow \widehat{R}(q) \longrightarrow 0 . \tag{8.7}
\end{equation*}
$$

On applying $-\otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}(\widehat{a})$ to (8.7) iteratively and appealing to (8.3) and (8.5) we generate exact sequences $\widehat{\mathbf{S}(\mathbf{k})}$ with $2 \leq k \leq q$ thus.
$\widehat{\mathbf{S}(\mathrm{k})}$

$$
0 \longrightarrow \widehat{R}(k) \longrightarrow \widehat{\Lambda} \xrightarrow{\widehat{K}} \longrightarrow \widehat{R}(k-1) \longrightarrow 0 .
$$

Splicing the sequences $\widehat{\mathbf{S}(\mathbf{k})}$ together gives the following periodic sequence of length $2 q$ which shows that strongly diagonal resolutions exist at the $p$-adic level.


## §9 : Proof of Theorem D :

As above $\widehat{\mathbb{Z}}$ will denote the completion of $\mathbb{Z}$ at $p$. We denote by $\mathcal{D}$ er the derived module category of the group ring $\widehat{\Lambda}=\widehat{\mathbb{Z}}[G]$ and by ' $\approx$ ' the relation of isomorphism in $\mathcal{D e r}$. A standard calculation (cf [8] p. 133) gives

$$
\operatorname{End}_{\mathcal{D e r}}(\widehat{\mathbb{Z}}) \cong \widehat{\mathbb{Z}} /|G| \cong \widehat{\mathbb{Z}} / p q
$$

As $q$ is invertible in $\widehat{\mathbb{Z}}$ this simplifies to $\operatorname{End}_{\mathcal{D e r}}(\widehat{\mathbb{Z}}) \cong \mathbb{Z} / p$. Given a lattice $L$ over $\widehat{\mathbb{Z}}$, $\mathbf{D}_{n}(L)$ will denote the $n^{\text {th }}$ generalised syzygy of $L$. Then (cf [8] p.107) for each $n \geq 1$ there is a ring isomorphism $\operatorname{End}_{\mathcal{D e r}}\left(\mathbf{D}_{n}(L)\right) \cong \operatorname{End}_{\mathcal{D e r}}(L)$. In particular:

$$
\begin{equation*}
\operatorname{End}_{\mathcal{D e r}}\left(\mathbf{D}_{n}(\widehat{\mathbb{Z}})\right) \cong \mathbb{Z} / p \text { for all } n \geq 1 \tag{9.1}
\end{equation*}
$$

For lattices $L, M$ over $\widehat{\Lambda}$, Yoneda's cohomological interpretation of module extensions ([23]; see also Chap III of [12]) gives an isomorphism $\operatorname{Ext}^{n}(L, M) \cong H^{n}(L, M)$. Also the Corepresentation Theorem (cf [8], p.78, more generally Chap. 5 of [9]) computes cohomology in the derived module category as $H^{n}(L, M) \cong \operatorname{Hom}_{\mathcal{D e r}}\left(\mathbf{D}_{n}(L), M\right)$. Combining the two we see that:

$$
\begin{equation*}
\operatorname{Ext}^{n}(L, M) \cong \operatorname{Hom}_{\mathcal{D e r}}\left(\mathbf{D}_{n}(L), M\right) \text { for } n \geq 1 \tag{9.2}
\end{equation*}
$$

In particular, $\operatorname{Ext}^{2}\left(\mathbf{D}_{i}(\widehat{\mathbb{Z}}), \mathbf{D}_{i+2}(\widehat{\mathbb{Z}})\right) \cong \operatorname{End}_{\mathcal{D e r}}\left(\mathbf{D}_{i+2}(\widehat{\mathbb{Z}})\right)$ so that, by (9.1),

$$
\begin{equation*}
\operatorname{Ext}^{2}\left(\mathbf{D}_{i}(\widehat{\mathbb{Z}}), \mathbf{D}_{i+2}(\widehat{\mathbb{Z}})\right) \cong \mathbb{Z} / p \text { for all } i \geq 1 \tag{9.3}
\end{equation*}
$$

Next we note:
Proposition 9.4: $[y-1) \otimes \widehat{\mathbb{Z}}$ is projective as a module over $\widehat{\mathbb{Z}}[G]$.
Proof : Let $j: \widehat{\mathbb{Z}}\left[C_{q}\right] \hookrightarrow \widehat{\mathbb{Z}}[G]$ be the inclusion of group rings and let $I\left(C_{q}\right)$ denote the augmentation ideal in $\widehat{\mathbb{Z}}\left[C_{q}\right]$. As $q$ is invertible in $\widehat{\mathbb{Z}}$ it follows, as in the proof of Maschke's Theorem, that $I\left(C_{q}\right) \oplus \widehat{\mathbb{Z}} \cong \widehat{\mathbb{Z}}\left[C_{q}\right]$. Hence $j_{*}\left(I\left(C_{q}\right)\right) \oplus j_{*}(\widehat{\mathbb{Z}}) \cong j_{*}\left(\widehat{\mathbb{Z}}\left[C_{q}\right]\right) \cong \widehat{\mathbb{Z}}[G]$. Thus $j_{*}\left(I\left(C_{q}\right)\right)$ is projective over $\widehat{\mathbb{Z}}[G]$. The result now follows as $[y-1) \otimes \widehat{\mathbb{Z}}=j_{*}\left(I\left(C_{q}\right)\right)$.
Theorem 9.5: $\sigma$ is the $q$-cycle given by $\sigma(i)=i+1$ for $1 \leq i \leq q-1$ and $\sigma(q)=1$.
Proof : Consider the following statements $\mathbf{P}(i)$ for $1 \leq i \leq q-1$ :
$\mathbf{P}(i): \quad \widehat{R(i)} \approx \mathbf{D}_{2 i-1}(\widehat{\mathbb{Z}}) \quad$ and $\quad \sigma(r)=r+1 \quad$ for $1 \leq r<i$.
We have already observed that $\sigma(q)=1$ so it will suffice to prove that each $\mathbf{P}(i)$ is true. Recall from (5.9) that the augmentation ideal $I(G)$ splits as a direct sum

$$
I(G)=\overline{I_{C}} \oplus[y-1) \cong R(1) \oplus[y-1)
$$

From the augmentation sequence $0 \rightarrow \widehat{R(1)} \oplus([y-1) \otimes \widehat{\mathbb{Z}}) \longrightarrow \widehat{\mathbb{Z}}[G] \longrightarrow \widehat{\mathbb{Z}} \rightarrow 0$ we see from (9.4) that $\widehat{R(1)} \approx \mathbf{D}_{1}(\widehat{\mathbb{Z}})$ so establishing $\mathbf{P}(1)$. Now suppose that $\mathbf{P}(i)$ is true for $i<q$ and note that the sequence $\widehat{\mathbf{S}(\mathbf{i})}$ of $\S 8$ has the form
$\widehat{\mathbf{S}(\mathbf{i})}$

$$
0 \longrightarrow \widehat{R(i+1)} \longrightarrow \widehat{\Lambda} \xrightarrow{\nearrow} \widehat{\Lambda} \longrightarrow \widehat{R(i)} \longrightarrow 0
$$

Hence $\widehat{R(i+1)} \approx \mathbf{D}_{2}(\widehat{R(i)})$. The inductive hypothesis $\widehat{R(i)} \approx \mathbf{D}_{2 i-1}(\widehat{\mathbb{Z}})$ now implies $(*) \quad \widehat{R(i+1)} \approx \mathbf{D}_{2 i+1}(\widehat{\mathbb{Z}})$.
Consequently $\left.\operatorname{Ext}^{2}(\widehat{R(i)}, \widehat{R(i+1})\right) \cong \operatorname{Ext}^{2}\left(\mathbf{D}_{2 i-1}(\widehat{\mathbb{Z}}), \mathbf{D}_{2 i+1}(\widehat{\mathbb{Z}})\right) \cong \mathbb{Z} / p$. In particular, $\operatorname{Ext}^{2}(\widehat{R(i)}, \widehat{R(i+1)}) \neq 0$. However, by (7.2) there exists a unique $j \in\{1, \ldots, q\}$ such that $\operatorname{Ext}^{2}(\widehat{R(i)}, \widehat{R(j)}) \neq 0$ namely $j=\sigma(i)$. Consequently, $\sigma(i)=i+1$ and $\mathbf{P}(i) \Rightarrow \mathbf{P}(i+1)$ as claimed.
On writing $1 \equiv q+1 \bmod q$ the sequences $\mathcal{Z}(i)$ of (7.7) now become

$$
\begin{equation*}
\mathcal{Z}(i)=(0 \longrightarrow R(i+1)) \longrightarrow P(i) \xrightarrow{\nearrow} \Lambda \longrightarrow R(i) \longrightarrow 0) . \tag{9.7}
\end{equation*}
$$

By splicing the sequences $\mathcal{Z}(i)$ we thereby obtain the following exact sequence

in which each $P(i)$ is projective of rank 1 over $\Lambda$ and, by (6.9), $P(q)=\Lambda$. As in (7.6)

$$
\left(\bigoplus_{i=1}^{q-1} P(i)\right) \oplus \Lambda \cong \bigoplus_{i=1}^{q} P(i) \cong \Lambda^{q} .
$$

Hence $\bigoplus_{i=1}^{q-1} P(i)$ is stably free of rank $q-1$ and so, by the Swan-Jacobinski Theorem,

$$
\begin{equation*}
\bigoplus_{i=1}^{q-1} P(i) \cong \Lambda^{q-1} . \tag{9.8}
\end{equation*}
$$

This completes the proof of Theorem D.

## $\S 10$ : Proof of Theorem A:

Consider the exact sequences $\{\mathcal{Z}(i)\}_{1 \leq i \leq q}$ constructed in (9.7) above. Defining $\mathcal{Z}(n)=$ $\mathcal{Z}(i)$ when $n \equiv i \bmod q$ we obtain exact sequences $\{\mathcal{Z}(n)\}_{n \in \mathbb{Z}}$. Splicing the sequences $\mathcal{Z}(n)$ together gives the following exact sequence

$$
\mathcal{S}_{+}=\left(\ldots \xrightarrow{\partial_{2 n+3}^{+}} P(n+1) \xrightarrow{\partial_{2 n+2}^{+}} \Lambda \xrightarrow{\partial_{2 n+1}^{+}} P(n) \xrightarrow{\partial_{2 n}^{+}} \Lambda \xrightarrow{\partial_{2 n-1}^{+}} P(n-1) \xrightarrow{\left.\partial_{2 n-2}^{+} \cdots\right)}\right.
$$

where $\partial_{2 n-1}^{+}=\iota_{n} \circ \pi_{n}$ and $\partial_{2 n}^{+}=\alpha_{n}$. Taking $\partial_{2 n-1}^{-}=(y-1)_{*}$ and $\partial_{2 n}^{+}=\left(\Sigma_{y}\right)_{*}$ where $\Sigma_{y}=1+y+\cdots+y^{q-1}$ it is straightforward to see that the following sequence $\mathcal{S}_{-}$is exact
$\mathcal{S}_{-}=\quad\left(\quad \cdots \rightarrow \Lambda \xrightarrow{\partial_{2 n+3}^{-}} \Lambda \xrightarrow{\partial_{2 n+2}^{-}} \Lambda \xrightarrow{\partial_{2 n+1}^{-}} \Lambda \xrightarrow{\partial_{2 n}^{-}} \Lambda \xrightarrow{\partial_{2 n-1}^{-}} \Lambda \xrightarrow{\partial_{2 n-2}^{-}} \ldots \ldots\right)$.

Indeed, if $j: C_{q} \hookrightarrow G(p, q)$ is the inclusion then $\mathcal{S}_{-}$is the induced resolution $\mathcal{S}_{-}=j_{*}(\mathcal{E})$ where $\mathcal{E}$ is the standard resolution of $\mathbb{Z}$ over $\mathbb{Z}\left[C_{q}\right]$
$\mathcal{E}=\quad\left(\quad \cdots \xrightarrow{y-1} \mathbb{Z}\left[C_{q}\right] \xrightarrow{\Sigma_{y}} \mathbb{Z}\left[C_{q}\right] \xrightarrow{y-1} \mathbb{Z}\left[C_{q}\right] \xrightarrow{\Sigma_{y}} \mathbb{Z}\left[C_{q}\right] \xrightarrow{y-1} \mathbb{Z}\left[C_{q}\right] \xrightarrow{\Sigma_{y}} \ldots \ldots.\right)$.
Taking direct sums we obtain the following exact sequence

Evidently $\mathcal{S}_{+} \oplus \mathcal{S}_{-}$is infinite in both directions and is periodic with period $2 q$. Truncating at the third differential gives an exact sequence, infinite to the left:

$$
\ldots \xrightarrow{\left(\begin{array}{cc}
\partial_{5}^{+} & 0  \tag{10.1}\\
0 & \partial_{5}^{-}
\end{array}\right)} P(2) \oplus \Lambda \xrightarrow{\left(\begin{array}{cc}
\partial_{4}^{+} & 0 \\
0 & \partial_{4}^{-}
\end{array}\right)} \Lambda \oplus \Lambda \xrightarrow{\left(\begin{array}{cc}
\partial_{3}^{+} & 0 \\
0 & \partial_{3}^{-}
\end{array}\right)} P(1) \oplus \Lambda
$$

However, we also have an exact sequence

$$
\begin{gather*}
P(1) \oplus \Lambda \xrightarrow{\left(\begin{array}{cc}
\partial_{2}^{+} & 0 \\
0 & \partial_{2}^{-}
\end{array}\right)} \Lambda \oplus \Lambda \xrightarrow{\partial_{1}^{+}+\partial_{1}^{-}} \Lambda \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0  \tag{10.2}\\
\overline{I_{C}} \oplus[y-1)
\end{gather*}
$$

Merging the two gives a complete resolution of $\mathbb{Z}$ which begins
and continues
and where

$$
\left\{\begin{array}{cccccc}
P(q) & = & \Lambda & ; & P(k+m q) & =P(k) \\
\partial_{k+2 m q}^{+} & = & \partial_{k}^{+} & ; & \partial_{k+2 m}^{-} & = \\
\partial_{k}^{-} .
\end{array}\right.
$$

We have constructed a diagonal resolution of $\mathbb{Z}$ with period $2 q$. Moreover, by (9.8), $\bigoplus_{i=1}^{q-1} P(i) \cong \Lambda^{q-1}$. This completes the proof of Theorem A.

## §11: Proof of Theorem B :

By a projective $n$-segment $\mathcal{P}$ we shall mean an exact sequence of $\Lambda$-modules

$$
\mathcal{P}=\left(0 \rightarrow N \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow M \rightarrow 0\right)
$$

where $\quad P_{1}, \ldots, P_{n}$ are finitely generated projective $\Lambda$-modules. Given a projective $n$ segment $\mathcal{P}$ we recall the Swan-Wall finiteness obstruction $\chi(\mathcal{P})$ is defined by

$$
\chi(\mathcal{P})=\sum_{r=1}^{n}(-1)^{r}\left[P_{r}\right] \in \widetilde{K}_{0}(\Lambda)
$$

We say that a projective $n$-segment $\mathcal{P}$ is free when each $P_{r}$ is free. It is well known and straightforward to prove that:

Proposition 11.1: If $n \geq 2$ and $\mathcal{P}=\left(0 \rightarrow N \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow M \rightarrow 0\right)$ is a projective $n$-segment with $\chi(\mathcal{P})=0$ then there exists a free $n$-segment

$$
\mathcal{F}=\left(0 \rightarrow N \rightarrow \Lambda^{a_{n}} \rightarrow \Lambda^{a_{n-1}} \rightarrow \cdots \rightarrow \Lambda^{a_{1}} \rightarrow M \rightarrow 0\right) .
$$

Put $\left.\mathcal{Y}=(0 \rightarrow[y-1) \rightarrow \Lambda) \xrightarrow{\Sigma_{y}} \Lambda \rightarrow[y-1) \rightarrow 0\right)$. and for $1 \leq i \leq q-1$ denote by $\mathcal{W}(i)$ the direct sum $\mathcal{W}(i)=\mathcal{Z}(i) \oplus \mathcal{Y}$ where $\mathcal{Z}(i)$ constructed as in (9.7). Then $\mathcal{W}(i)$ is a projective 2-stem $\mathcal{W}(i)=(0 \rightarrow R(i+1) \oplus[y-1) \rightarrow P(i) \oplus \Lambda \rightarrow \Lambda \oplus \Lambda \rightarrow R(i) \oplus[y-1) \rightarrow 0)$. Splicing the sequences $\mathcal{W}(i)$ together by Yoneda product gives a projective (2q-2)-stem $\mathcal{Q}=\mathcal{W}(q-1) \circ \mathcal{W}(q-2) \circ \cdots \circ \mathcal{W}(1)$ thus:

$$
\begin{gathered}
\mathcal{Q}=\left(0 \rightarrow R(q) \oplus[y-1) \rightarrow Q_{2 q-2} \rightarrow\right. \\
Q_{r}= \begin{cases}\Lambda \oplus \Lambda & r \text { odd } \\
\Lambda \oplus P(r / 2) & r \text { even. }\end{cases}
\end{gathered}
$$

where

Then $\chi(\mathcal{Q})=\sum_{s=1}^{q-1}[P(s)]=\left[\bigoplus_{s=1}^{q-1} P(s)\right]$. However, by (9.8), $\bigoplus_{s=1}^{q-1} P(s) \cong \Lambda^{q-1}$. Hence $\chi(\mathcal{Q})=0$. By (4.11) and (5.12) we see that $R(1) \oplus[y-1) \cong I_{G}$. However $R(q) \cong R(1)^{*}$ and $[y-1) \cong[y-1)^{*}$ so that $R(q) \oplus[y-1) \cong I_{G}^{*}$. We have constructed a projective ( $2 q-2$ )-segment

$$
\mathcal{Q}=\left(0 \rightarrow I_{G}^{*} \rightarrow Q_{2 q-2} \rightarrow \cdots \rightarrow Q_{1} \rightarrow I_{G} \rightarrow 0\right)
$$

with $\chi(\mathcal{Q})=0$. It follows immediately from (11.1) that:
(11.2) There exists a free (2q-2)-segment $\left(0 \rightarrow I_{G}^{*} \rightarrow \Lambda^{a_{2 q-2}} \rightarrow \cdots \rightarrow \Lambda^{a_{1}} \rightarrow I_{G} \rightarrow 0\right)$.

Corollary 11.3 : There exists a free $2 q$-segment

$$
\mathcal{S}=\left(0 \rightarrow \mathbb{Z} \rightarrow \Lambda \rightarrow \Lambda^{a_{2 q-2}} \rightarrow \cdots \rightarrow \Lambda^{a_{1}} \rightarrow \Lambda \rightarrow \mathbb{Z} \rightarrow 0\right) .
$$

Proof : Let $\mathcal{E}$ be the standard exact sequence $\mathcal{E}=\left(0 \rightarrow I_{G} \rightarrow \Lambda \rightarrow \mathbb{Z} \rightarrow 0\right)$. The dual sequence has the form $\mathcal{E}^{*}=\left(0 \rightarrow \mathbb{Z} \rightarrow \Lambda \rightarrow I_{G}^{*} \rightarrow 0\right)$. Taking $\mathcal{F}$ to be the free $(2 q-2)$-segment constructed in (11.2) we see that the Yoneda product $\mathcal{S}=\mathcal{E}^{*} \circ \mathcal{F} \circ \mathcal{E}$ is a free $2 q$-segment of the required form

$$
\mathcal{S}=\left(0 \rightarrow \mathbb{Z} \rightarrow \Lambda \rightarrow \Lambda^{a_{2 q-2}} \rightarrow \cdots \rightarrow \Lambda^{a_{1}} \rightarrow \Lambda \rightarrow \mathbb{Z} \rightarrow 0\right) .
$$

Theorem B is now immediate, being a slightly weaker statement than (11.3).

## F.E.A. Johnson

Department of Mathematics

## University College London

Gower Street, London WC1E 6BT, U.K.
e-mail address : feaj@math.ucl.ac.uk

## J.J. Remez

## Department of Mathematics

University College London
Gower Street, London WC1E 6BT, U.K.
e-mail address : j.remez@alumni.ucl.ac.uk

## REFERENCES

[1] : S.Bentzen and I. Madsen ; On the Swan subgroup of certain periodic groups. Math. Ann. 264 (1983) 447-474.
[2] : B.J. Birch; Cyclotomic fields and Kummer extensions; pp 85-93 of 'Algebraic Number Theory' JWS Cassels and A. Fröhlich (Editors). Academic Press 1965.
[4] : C.W. Curtis and I. Reiner ; Methods of Representation Theory; Volume I. Wiley-Interscience, 1981.
[5] : C.W. Curtis and I. Reiner ; Methods of Representation Theory; Volume II. Wiley-Interscience, 1987.
[7]: K.W. Gruenberg and K.W. Roggenkamp; Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. Lond. Math. Soc. 31 (1975) 149-166.
[8]: F.E.A. Johnson; Stable modules and the D(2)-problem. LMS Lecture Notes In Mathematics, vol. 301. CUP 2003.
[9] : F.E.A. Johnson; Syzygies and homotopy theory. Springer-Verlag 2011.
[10] : F.E.A. Johnson ; Syzygies and diagonal resolutions for dihedral groups. Communications in Algebra 44 (2015) 2034-2047.
[11] : F.E.A. Johnson and J.J. Remez; Strongly diagonal resolutions for metacyclic groups. (in preparation).
[12] : S. Mac Lane ; Homology. Springer-Verlag 1963.
[13] : R.J. Milgram ; Evaluating the Swan finiteness obstruction for periodic groups (preprint, Stanford University 1979).
[14] : R.J. Milgram ; Odd index subgroups of units in cyclotomic fields and applications : pp 269-298 of Lecture Notes in Mathematics, vol. 854, Springer-Verlag, 1981.
[15] : A.J. Nadim. A periodic monogenic resolution. PhD Thesis, University College London 2015.
[16] : T. Petrie; Free metacyclic group actions on homotopy spheres. Ann. of Math. 94 (1971) 108-124.
[17]: L.C. Pu. Integral representations of non-abelian groups of order $p q$. Michigan Journal of Mathematics 12 (1965) 231-246.
[18] : I. Reiner; Maximal Orders. Academic Press, 1975.
[19] : J.J. Remez; Diagonal resolutions for the metacyclic groups $G(p q)$. PhD Thesis, University College London 2012.
[20] : M. Rosen; Representations of twisted group rings. PhD Thesis, Princeton University 1963.
[21] : R.G. Swan ; Periodic resolutions for finite groups. Ann.of Math. 72 (1960) 267-291.
[22] : C.T.C. Wall ; Periodic projective resolutions.
Proc. London Math. Soc. 39 (1979) 509-553.
[23] : N. Yoneda; On the homology theory of modules. J. Fac. Sci. Tokyo, Sec. I, 7 (1954) 193- 227.

