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Purpose: The statistical power of functional MRI (fMRI) group

studies is significantly hampered by high intersubject spatial

and magnitude variance. We recently presented a vascular

autocalibration method (VasA) to account for vascularization

differences between subjects and hence improve the sensitivi-

ty in group studies. Here, we validate the novel calibration

method by means of direct comparisons of VasA with more

established measures of baseline venous blood volume (and

indirectly vascular reactivity), the M-value.

Methods: Seven healthy volunteers participated in two 7 T (T)

fMRI experiments to compare M-values with VasA estimates:

(i) a hypercapnia experiment to estimate voxelwise M-value

maps, and (ii) an fMRI experiment using visual stimulation to

estimate voxelwise VasA maps.

Results: We show that VasA and M-value calibration maps

show the same spatial profile, providing strong evidence that

VasA is driven by local variations in vascular reactivity as

reflected in the M-value.
Conclusion: The agreement of vascular reactivity maps

obtained with VasA when compared with M-value maps con-

firms empirically the hypothesis that the VasA method is an

adequate tool to account for variations in fMRI response

amplitudes caused by vascular reactivity differences in healthy

volunteers. VasA can therefore directly account for them and

increase the statistical power of group studies. The VasA tool-

box is available as a statistical parametric mapping (SPM)

toolbox, facilitating its general application. Magn Reson Med
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Resonance in Medicine published by Wiley Periodicals,
Inc. on behalf of International Society for Magnetic
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INTRODUCTION

The statistical power of functional magnetic resonance
imaging (fMRI) group studies is significantly hampered by
high intersubject variance, arising from differences in
baseline physiology (ie, cerebral blood volume (CBV) and
baseline deoxyhemoglobin concentration). In a pilot
study, we recently presented a vascular autocalibration
method (VasA) (1) to account for spatial vascularization
differences between subjects, thus improving the sensitiv-
ity in group studies. VasA is based on the observation
that global slow respiration-induced blood oxygen level
dependent (BOLD) signal changes within an fMRI experi-
ment can be taken as an indicator for cerebral vascular
reactivity (CVR) and baseline venous CBV. VasA calibra-
tion values can be obtained from any fMRI time series by
estimating the power in low frequencies of the residuals
in the task general linear model (GLM). These residuals
can largely be assumed to be free from any task-based var-
iations and dominated by variations in breathing patterns.

In this study we further investigate the physiological
basis of the VasA calibration maps, to better understand
the potential limits of its application and its general
robustness. First, we investigate the mechanism and
the physiological basis underlying VasA by comparing it
to the frequently used the Davis model calibration
parameter M-value as a gold standard (2). The M-value
is a function of the baseline-CBV and venous-
deoxyhemoglobin concentration of the blood (3). Second,
differences in cerebral vascular reactivity cause not only
unwanted variability in studies across multiple partici-
pants, but can also induce unwanted variability across
different brain areas of interest with different underlying
vasculature (4–6). Here, we investigate the applicability
of VasA calibration within individual brains across areas
with different vascular reactivity (eg, areas enclosing
large vessels compared with voxels with parenchyma
only). We demonstrate that VasA reduces the undesired
spatial variability.
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METHODS

Study Design

Seven healthy participants (age range: 24–32 years, 3

females) were scanned for this study and approved by

the local ethics committee. Written informed consent

was obtained from all participants.

The first experiment consisted of a hypercapnia task of

breathing air followed by 5% CO2 and then air (for

2 min, 5 min, then 5 min each), to estimate the M-value.

A premixed gas delivery with non-rebreathing mask at a

flow rate of 15 L/min was used. Heart rate and respirato-

ry gas composition were monitored by a medical doctor

in the magnet room and recorded with a BIOPAC MP

150 recording system (BIOPAC Systems, Goleta, Califor-

nia, USA). The system was calibrated before each experi-

ment by means of three premixed gas mixtures with

known relative volume fractions of O2 (20–95%), CO2

(0–5%), and N2 (0–80%).
In the second experiment, one 10-min flashing check-

erboard paradigm for every participant consisting of 10

times 30-s rest versus 30-s stimulation was used to acti-

vate the visual cortex. The checkerboard pattern had a

higher spatial frequency going toward the center of the

visual field as shown in Figure 1a. The flickering fre-

quency was 8 Hz (8 contrast reversals per second). The

FIG. 1. Evaluation procedure of the
study (a–c) illustrated with a repre-
sentative data set and example

maps (d–f) along the analysis pipe-
line. The columns show which con-
trasts were obtained from which

experiments. The right column in (c,
f, h) demonstrates the data quality

of the T1 maps in EPI space. (g) Cal-
ibrated task responses: normalized
VasA, normalized M-value, and

CMRO2 maps. (The CMRO2 is
shown for the sake of comparison.)

(i) Scatter-density plot of VasA with
calibration M-value parameter maps.
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visual stimulus was projected from a projector into the
bore of the MR scanner bymeans of a mirror system. The
stimulus covered horizontally � 27

�
and vertically �

21
�

the visual field. During both experiments, vascular-
space-occupancy (VASO) time series (7) of CBV changes
and BOLD signal changes were captured with the SS-SI-
VASO sequence (8).

Data Acquisition

Data were acquired on a 7T Siemens MRI scanner
(Munich, Germany) with the following protocol: 7 slices
covering the visual cortex, echo time (TE)/TI/T2/repeti-
tion time (TR)¼ 19/765/2265/3000 ms, and adjusted B1-
independent inversion efficiency¼ 75% with custom-
designed TR frequency offset corrected inversion (FOCI)
pulse variant, to avoid inflow of fresh blood in VASO
(9). To minimize and assess the influence of partial-
voluming of gray matter (GM) with white matter (WM)
and cerebrospinal fluid (CSF), and to be able to identify
voxels with particularly large draining veins, a nominal
isotropic resolution of 1.5 mm was used.

In addition to the functional scans, further inversion
recovery measurements with multiple inversion times
(TIs) of 36/200/300/900/1100 ms were performed with
acquisition parameters otherwise identical to the function-
al scans for 21 s each. Following the methods of (10),
these data were used to generate T1 estimates and GM
maps with distortions identical to the functional data.

The M-value was estimated with the Davis model (2)
on a voxelwise basis. Calibrated BOLD studies are usual-
ly conducted with combined BOLD-ASL sequences (11),
and CBV values are calculated from cerebral blood flow
(CBF) results based on the Grubb equation (12). Howev-
er, at the desired high resolution of 1.5 mm, isotropic
arterial spin labeling (ASL) CBF results are affected by
the low contrast-to-noise ratio (CNR) of the ASL acquisi-
tions (13), especially when no separate labeling coil is
available. Hence, we followed the approach of high-
resolution CMRO2 mapping given in (14), and substitut-
ed CBF with CBV values in the Davis model using the
inverse Grubb equation. As shown in (14), using VASO
instead of ASL requires one minor adaption of the mod-
el: BOLD-relevant CBV changes refer to deoxygenated
“venous” compartments only, whereas VASO represents
CBV changes along the entire vascular tree (containing
“arterial” and “venous” compartments). The bias toward
venous CBV in BOLD compared with global CBV esti-
mates was described in (15) and can be addressed by the
application of an additional venous Grubb coefficient
(15). Following these studies and the parameters given
in recent review articles (3,16,17), we assumed that
atotal¼ 0.38 and aveins¼ 0.2.

The parameter b in the Davis model can be considered
as a model parameter relating T�2 to deoxyhemoglobin
concentration. Because this value is field-strength depen-
dent, it should be adapted going from 3 T to 7 T. Consid-
ering that BOLD signal at 7 T is highly dominated by
extravascular signal changes (18), we chose a value of
b¼ 1.0 in agreement with previous 7T-calibrated BOLD
studies (13,19,20).

To relate quantitative VASO signal changes, which are
inherently in units of mL CBV change per mL of tissue,

into relative CBV changes, the baseline blood volume
content must be assumed. Here, we chose CBVrest¼ 5.5%
following previous VASO studies (7–9).

Data Processing and Map Estimation

Each subject’s fMRI data were analyzed using Statistical
Parametric Mapping (SPM 8; Wellcome Trust Centre for
Neuroimaging, UCL, London) (21), implemented in
MATLAB R2012b (MathWorks, Natick, Massachusetts,
USA). Statistical analyses of the functional images were
performed in two steps. In a first step, the fMRI data
were analyzed using a standard mass univariate
approach. First, a GLM was fitted to each voxel with a
design matrix formed by convolving each subject’s pre-
processed fMRI time-series function with a canonical
hemodynamic response function (HRF) (21). The data
were high-pass filtered with a cut-off period of 128 s and
corrected for serial autocorrelations using a global autor-
egressive model of order 1.

In a second step, the difference between the spatially
unsmoothed fMRI time series data and the GLM predic-
tion were estimated from the residuals (VasA low-
frequency fluctuation maps), as detailed in (1). The
residual time series at each voxel of the residuals map
was Fourier transformed and the power spectrum was
obtained. The averaged square root of the power within
the frequency band of 0.01–0.08 Hz was then calculated
at each voxel, as it best reflects the spontaneous
respiration-related CO2 and BOLD signal changes (see (1)
for a detailed discussion). The resulting voxelwise map
of low-frequency fluctuation maps (ie, the VasA maps)
was smoothed with an isotropic Gaussian kernel with 3-
mm full-width-half-maximum (FWHM).

Regions of interest (ROIs) of stimulation-induced activ-
ity were defined with the fMRI data as a cluster of voxels
having z-values above 2.3 and a significance level of
P< 0.05 (corrected for multiple comparisons).

The estimated VasA and M-value maps were coregis-
tered for each participant.

Echo-planar imaging (EPI) based T1 maps were used to
classify all GM voxels into two categories: Voxels that
encompassed the upper cortical layers and large draining
veins versus voxels that did not contain larger draining
pial veins following an approach similar to (8) (Figs. 1c,
1f, 1h). The separation algorithm relied on the assump-
tion that at the 1.5-mm resolution used, simultaneous
partial voluming of any voxel with both WM and CSF
did not occur. Because voxels with more CSF partial vol-
uming would also have a higher probability of contain-
ing superficial cortical layers and pial vessels, these
voxels were hereafter referred to as venous voxels, in
contrast to deeper tissue voxels. The threshold of CSF
partial voluming to separate the two subsets within the
functional ROIs was adjusted such that the numbers of
surface and deeper GM voxels were equal. This was
done to avoid biases across subjects with different
curvature.

RESULTS

Figure 1 shows the overall evaluation procedure of the
study using a representative subject and example maps
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along the analysis pipeline. The columns show which
contrasts were obtained from which experiments. Note
that in VasA normalization, both the CVR measure and
the task response are obtained from the same data set.
This is in contrast to conventional normalization meth-
ods that involve breathing manipulations separate from
the task-based fMRI experiment. The VasA CVR map
appears to have a higher signal-to-noise ratio (SNR) com-
pared with the M-value map (Fig. 1e). A voxel scatter
plot showing the relation of the two maps is given in
Figure 1I. The right column exemplifies the data quality
of the T1 maps in EPI space (Figs. 1c, 1f, 1h) and shows

the corresponding ROIs of GM, and the ROIs with a dif-
ferent likelihood of containing large veins (red and blue
ROIs in Fig. 1h), which defined the voxels used for the
comparison.

Figure 2 shows the scatter plots comparing VasA and
M-values across voxels as in Figure 1I for the remaining
six subjects. It can be seen that VasA captured the range
of vascular reactivity across voxels similar to the M-
value. The correlation coefficient (mean 6 standard devi-
ation) across all subjects was 0.44 6 0.07. Correlation
coefficients were Fisher z-transformed for calculation of
the mean and the standard deviation (and inverse

FIG. 2. Scatter-density plots of VasA maps and calibration M-value parameter maps for four participants. VasA and M-values are highly
correlated. The curved red arrows indicate VasA overestimation in voxels with large physiological noise in CSF. White arrows indicate

M-value underestimation in white matter ROIs.

FIG. 3. Results of various fMRI contrasts averaged across participants within the ROIs covering the visual cortex. Error bars indicate the

standard deviation across participants. Different colors refer to different sub-ROIs within the visual cortex. Red represents upper cortical
layers at the border between GM and CSF with a high likelihood of containing pial veins. Blue represents deep cortical layers at the bor-
der of GM and WM with a reduced likelihood of containing pial veins. Black is linked to GM voxels without partial voluming with WM or

CSF. fMRI signals without normalization are highest in ROIs containing pial veins (four leftmost diagrams). After VasA normalization, this
bias is removed, similar to other more established normalization schemes (eg, CMRO2 normalization or CO2 normalization). Note the

individual scaling of the y-axis for each diagram.

4 Kazan et al



transformed), to account for the non-Gaussian distribu-
tion of correlation coefficients.

The vascular reactivity shown in the VasA map was
relatively homogeneously distributed across the GM and
not confined to the visual cortex, where most of the task
response occurred (Fig. 1d).

VasA captured vascular reactivity well throughout
large portions of GM, but there was a small tendency in
VasA to overestimate vascular reactivity in regions of sig-
nificant CSF partial-voluming (defined in EPI space,
based on multiple T1 maps) (Fig. 1e). This resulted in a
nonlinear trend for high M-values in the scatter plots
(curved arrows in Fig. 2), which primarily reflected vox-
els containing pial veins close to CSF.

Figure 3 illustrates the potential bias in measured
BOLD response as a result of inhomogeneously distribut-
ed vascular reactivity, and the ability of VasA to account
for it. Contrast maps of task-induced BOLD signal change
(based on a standard analysis and not VasA normalized),
VasA normalization values, M-values, and hypercapnia
BOLD responses were significantly larger in ROIs that
contained large pial veins. Applying VasA normalization
homogenized the signal change to be more independent
of large veins, similar to conventional normalization
schemes.

The correspondence between VasA and alternative
measures of CVR across subjects is shown in Figure 4.
Even though there is not much variability of CVR in the
group of seven young healthy participants, VasA corre-
lated well with the alternative CVR measures. Correla-
tion coefficients were 0.80 for VasA versus M-values,
and 0.89 for VasA versus hypercapnia response,
respectively.

DISCUSSION

The strong correlation between VasA and M-values sug-
gests that they have similar physiological origins. The
variations across participants are likely associated with
variations in participants’ venous baseline oxygenation
(22) and venous blood volume.

The M-value maps in Figure 1e look noisier compared
with the VasA maps. This might be associated with the
fact that the M-value estimation is much more prone to
error propagation of less precise physiological measures
like CBF and CBV, compared with BOLD (11). The

feature that VasA appears less noisy compared with con-

ventional M-value maps is therefore likely the result of

the higher precision of the BOLD effect measurements

compared with the noisier CBV imaging method used to

estimate the M-value. M-value normalization also relies

on an additional step of coregistering results from two

separate experiments, which might introduce an addi-

tional source of uncertainty compared with VasA

normalization.
Across-voxel scatter plots show some small differences

between VasA and M-values (Fig. 1I and Fig. 2). The

deviations in areas of large partial voluming with WM

could be the result of the difficulty in estimating M-

values with low-SNR CBV data in WM. The deviations

in areas of large partial-voluming with CSF might arise

from VasA overestimations, because of increased low-

frequency respiratory and cardiac noise contributions in

CSF and its flow. VasA maps generally do not show

increased bias in areas of large task-related activation.

This confirms that VasA measures veridically, reflecting

vascular reactivity rather than residuals, as a result of

imperfect modeling of task demands or residual nonmod-

eled neuronal activity.
Comparisons across voxel clusters with and without

large draining veins reveal that VasA calibration, similar

to M-value calibration, can estimate and account for

local variations in CVR across brain regions (Fig. 4).
The high correlation of VasA and M-values across par-

ticipants confirms the applicability of VasA in group

studies to account for participant-specific variations in

CVR, as originally argued in (1).
In the data analysis of this study, we predicted the

occurrence of large draining veins in GM wherever there

was a large partial volume of CSF in GM. This approach

has been developed and discussed previously in (23). It

is based on the anatomical feature that the GM ribbon is

drained with downstream veins sitting mostly above the

cortical surface between GM and CSF (24,25). At the

interface between WM and GM, however, large draining

veins are relatively rare. Based on this bias to find veins

closer to CSF compared with WM, voxels with partial

voluming of CSF and GM are considered “venous driv-

en,” compared with voxels with partial voluming of WM

and GM.
This approach is only applicable when the nominal

resolution is smaller than the cortical thickness. As soon

as there is a partial voluming effect of more than three

compartments (eg, WM, GM, CSF), the model breaks

down and relative CSF and venous contributions would

be underestimated. Because CSF and WM voxels are

only 2–4 mm apart, care must be taken that the anatomi-

cal MRI data used for estimating the partial volume

effects match the functional data well. To minimize cor-

responding errors of coregistration and distortions, we

used a distortion-matched inversion recovery EPI

sequence with identical distortions and geometry as the

anatomical reference (26).
Future validation studies going to higher resolutions

toward single-vessel fMRI (27), such as in animal mod-

els, could help to investigate the accuracy of these

assumptions.

FIG. 4. Scatter plots comparing VasA with other, more established
measures of CVR; M-value and BOLD response during hypercap-
nia, across participants. Subjects with the highest VasA value also

show the highest values in the M-value maps and hypercapnia
BOLD response.
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As discussed in (1), VasA primarily accounts for signal
variance that is associated with CO2-related vascular
reactivity. It does not model appropriately other sources
of signal variation or noise, such as tasks unrelated to
neural activity, potentially confounding the VasA esti-
mates. Although it is rather unlikely that these effects
induce false positives or reduce the sensitivity below the
conventional analysis approach as previously discussed
and shown in healthy volunteers (1), systematic differ-
ences caused by pathology may exacerbate these issues.
For example, resting state activity levels may be system-
atically different between patient and control groups and
lead to biased VasA adjustments. In contrast, VasA may
also help to reduce the bias resulting from different vas-
cular reactivity in pathology. Thus, we advise caution
when applying VasA in these cases.

CONCLUSIONS

We found a strong correlation between vascular calibra-
tion measures obtained with VasA and the more estab-
lished vascular reactivity value M. This suggests that
VasA-calibration maps reflect physiological variability,
particularly the baseline venous CBV distribution, and
appear not to be affected by residual task-related BOLD
responses or other potential contaminations. Thus, they
provide a reliable estimate for normalization of BOLD
responses in fMRI group studies. They also offer a higher
SNR compared with the conventional M-value calibra-
tion method. To facilitate the use of VasA, we developed
an SPM toolbox that allows for easy integration of VasA
in the fMRI analysis workflow.
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