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Evidence for stable square ice from quantum Monte Carlo
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Recent experiments on ice formed by water under nanoconfinement provide evidence for a two-dimensional
(2D) “square ice” phase. However, the interpretation of the experiments has been questioned and the stability
of square ice has become a matter of debate. Partially this is because the simulation approaches employed so
far (force fields and density functional theory) struggle to accurately describe the very small energy differences
between the relevant phases. Here we report a study of 2D ice using an accurate wave-function based electronic
structure approach, namely diffusion Monte Carlo (DMC). We find that at relatively high pressure, square ice
is indeed the lowest enthalpy phase examined, supporting the initial experimental claim. Moreover, at lower
pressures, a “pentagonal ice” phase (not yet observed experimentally) has the lowest enthalpy, and at ambient
pressure, the “pentagonal ice” phase is degenerate with a “hexagonal ice” phase. Our DMC results also allow
us to evaluate the accuracy of various density functional theory exchange-correlation functionals and force field
models, and in doing so we extend the understanding of how such methodologies perform to challenging 2D
structures presenting dangling hydrogen bonds.
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Recent transmission electron microscopy (TEM) measure-
ments and classical molecular dynamics simulations report
that a new two-dimensional (2D) square phase of ice forms [1].
This phase is not part of the bulk ice phase diagram, but it
was suggested that it is stabilized under confinement because
of lateral pressure, estimated to be in the gigapascal (GPa),
arising from the van der Waals (vdW) attraction between
the graphene sheets. However, these experiments have been
questioned [2], with it even being suggested that it is sodium
chloride contamination and not ice that is responsible for the
square symmetry observed. So far, it is not clear under what
conditions (if any) square ice is stable.

Theoretical investigations of the stability of confined
2D ice at high lateral pressures can, in principle, help in
disentangling this issue and in complementing experimental
findings [3–10]. From a theoretical perspective, the prediction
of square 2D ice can be traced back to Nagle’s 1970’s “unit
model” of ice [3]. However, later atomistic force field (FF)
simulations found that 2D ice prefers a buckled rhombic
structure [4,5]. More recently, density functional theory (DFT)
based investigations [6–9] have been performed. However,
these have produced qualitatively different results depending
on the precise details of the calculations and, in particular,
on the choice of exchange-correlation (XC) functional. For
instance, Chen et al. [7] found hexagonal and pentagonal
structures to be stable phases at low pressures (Fig. 1). They
also found that square ice is only stable in the GPa pressure
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regime and that even at these pressures it is only favored
enthalpicly by <10 meV/H2O (1/4 kcal/mol). Meanwhile,
DFT results of Corsetti et al. [6] showed that the square
ice structure is more stable than the hexagonal phase at all
pressures. These disparate findings raise serious questions
about the reliability of the adopted computational approaches
(both DFT and FF) applied so far to 2D ice. Indeed, this is
exemplary of a broader longstanding issue. The water and ice
phase diagram is extremely challenging for any computational
approach, because there can be competing phases within an
energy range of only a few tens of meV/H2O [11]. Achieving
this accuracy is often beyond the capabilities of DFT XC
functionals and most FF approaches [12,13]. Therefore, a
study of 2D ice with a more accurate theoretical method is
needed.

The development and application of electronic structure
approaches with meV accuracy is now a thriving area of
condensed matter research (see, e.g., Refs. [14–17]). Of the
various methods available, diffusion Monte Carlo (DMC)
is particularly attractive [18–24]. First, DMC has already
been shown to offer the requisite accuracy for bulk ice
phases by producing results in excellent agreement with
experiment [11,12,25,26]. Second, owing to recent improve-
ments in computational efficiency [27], it is now possible to
obtain converged results on the large unit cells that must be
considered when treating 2D ice with a many-body electronic
structure approach. With this in mind, herein we report a
DMC study of 2D ice. Our DMC calculations reveal that
hexagonal and pentagonal phases are indeed the most stable
2D ice phases identified at low pressures. Perhaps of more
interest, though, DMC calculations at 2 GPa clearly support
the existence of square ice at a high lateral pressure. As a
further step we then use our DMC reference data to understand
how the much more widely used DFT and FF approaches
perform for such systems, so as to provide guidance for
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FIG. 1. The four most relevant 2D ice structures considered as
part of this study: hexagonal (H), pentagonal (P), square (S), and
rhombic (R). The gray boxes represent the primitive unit cells.

future studies on 2D ice and interfacial water. From this,
several DFT XC functionals which perform well are identified
and we also find that commonly used FFs such as extended
simple point charge (SPC/E) [28] and four-point-transferable
intermolecular potential (TIP4P) [29] tend to overstabilize
high-density phases, helping to explain why such phases have
been widely observed in FF studies.

Previous DFT studies suggest that four structures—
hexagonal, pentagonal, square, and rhombic (see Fig. 1)—are
the most stable monolayer ice structures [7], so these are the
focus of the current study. In the rhombic and square structures
the water molecules are fourfold coordinated, as in bulk ice,
but are arranged in the plane. The pentagonal and hexagonal
structures have water molecules arranged similarly to a cut in
bulk ice, so that there are some water molecules that are not
fourfold coordinated and some with dangling hydrogen bonds.
Specifically, in the hexagonal structure all water molecules
are threefold coordinated and one-half of them have one
dangling hydrogen bond; in the pentagonal structure, one-third
of the water molecules have one dangling hydrogen bond
and are fourfold coordinated, and the remaining molecules
are threefold coordinated and have no dangling bonds. The
CASINO code [30] has been used for the DMC calculations
using Dirac-Fock pseudopotentials [31,32] with the locality
approximation [33]. Slater-Jastrow trial wave functions with
single Slater determinants were used and the single particle or-
bitals obtained from DFT-LDA (local density approximation)
plane wave calculations reexpanded in terms of B splines [34].
We used the DMC algorithm with the prescriptions of Zen
et al. [27], which allows a DMC time step as large as

0.02 a.u. to be used with negligible time step errors. DMC
calculations have been performed on structures optimized with
DFT at a range of lateral pressures and under a uniform 2D
confining potential fitted to DMC for values for the water-
graphene interaction [35]. See Ref. [7] and the Supplemental
Material therein for details of the confining potential used and
discussions on the impact of using explicit graphene as the
confining material. The structures used for DMC calculations
have been obtained by performing geometry optimizations
with the optimized Perdew-Burke-Ernzerhof–van der Waals
(optPBE-vdW) functional [36]. Additional calculations have
also been performed on selected structures obtained from
the revised PBE-vdW (revPBE-vdW) functional [36], leading
to similar results, as detailed in the Supplemental Material
(SM) [37]. Further details of the setups used in the DMC,
DFT, and FF calculations are also included in the SM.

In order to assess the stability of the different 2D ice
structures, it is necessary to consider their enthalpy (H ) at
0 K [37]. The enthalpy is the sum of the binding energy
Eb [38], the confinement energy Econf , the pressure volume
work (PV ), and the zero point energy (ZPE). To begin, we
first discuss the accurate evaluation of Eb using DMC. In
DMC, and other many-body methods, finite size (FS) errors
can be sizable unless large supercells and/or correction terms
are considered [39–41]. Since we are concerned with very
small energy differences between the various phases, we have
carefully addressed this issue with a series of calculations
for increasing supercell size. Supercells with eight up to
as many as 192 water molecules were considered, and for
each system considered DMC simulations were run until the
stochastic error of Eb was � 3 meV/H2O. The results obtained
are plotted in Fig. 2 as a function of the inverse number
of water molecules in the simulated supercell 1/Nw. From
these calculations we have extrapolated Eb for the different
structures to infinite system size. The extrapolated binding
energies are summarized in Table I from where it can be seen
that the hexagonal phase has the largest binding energy and
the pentagonal phase is only marginally (4 meV/H2O) less
stable. These calculations also reveal that the FS error leads
to an overestimate of Eb by more than 10 meV/H2O in the
smallest cells (Nw < 20), and the relative energies between the
different structures are fairly insensitive to the size of the cell
used. We note that the Nw → ∞ extrapolations are obtained
by assuming that FS errors are proportional to 1/Nw. In the
SM we show that other choices do not alter the extrapolated
values of Eb [37].

With the binding energies obtained, the enthalpies can be
further calculated considering Econf , PV , and ZPE. Each of
these additional terms has been obtained with DFT, and upon
putting everything together, we find that at vanishing pressure
the pentagonal and hexagonal structures have essentially the
same enthalpy. The values obtained come within 1 meV/H2O
of each other, which is within the stochastic errors of our DMC
simulations (3 meV/H2O). Although it is hard to differentiate
the pentagonal and the hexagonal structures at vanishing
pressure, based on the enthalpies obtained we would expect
the higher-density pentagonal phase to become more stable
than the hexagonal phase at small applied pressure, as first
proposed using DFT [7]. The square and rhombic structures
are 13 and 42 meV/H2O higher in enthalpy, respectively, than
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FIG. 2. DMC binding energies Eb for the zero pressure structures
of free-standing 2D ice in the hexagonal (H), pentagonal (P), square
(S), and rhombic (R) structures (see Fig. 1) as a function of the
inverse number of water molecules in the simulation cell 1/Nw . Open
symbols correspond to DMC evaluations of Eb, and error bars are one
standard deviation. For each point we indicate the supercell size in
terms of the primitive unit cell. The solid symbols on the yellow
region are the extrapolated values E∞ from a fit with the function
E(Nw) = E∞ − c/Nw; values and errors of the fit are reported on the
top right corner.

the pentagonal structure at zero pressure. Note that the rhombic
structure is buckled, thus also the confining energy penalizes
it compared to the other structures.

In the 2D ice phase diagram, the question of the stability of
square ice is particularly interesting because it is arguably the
only experimentally observed 2D ice, and disagreements exist
between FFs and DFT, and also within DFT itself [1,2,6,7].
We have already seen that the square phase is less stable
than the pentagonal and hexagonal phases at low pressures.
However, it has been estimated that the pressure in graphene
nanocapillaries can be as large as several GPa due to the van
der Waals forces pulling the graphene sheets together [1].
Therefore, we carried out DMC calculations on structures at
2 GPa. In Table I we report results for pentagonal, square, and
rhombic structures; the hexagonal structure becomes unstable
at 2 GPa. We find that the square structure is indeed the most
stable. Its enthalpy is lower than the pentagonal structure
by 28 meV/H2O and lower than the rhombic structure by
17 meV/H2O. Although this study has focused on relative
enthalpies at 0 K, we have also estimated the relative free
energies of the various phases by taking into account the
vibrational contributions to the free energies. As shown in
the SM (Table SII) at 300 K the square phase remains the most
stable phase at 2 GPa.

DMC has helped to clarify the relative stabilities of the
various 2D ices at ambient and high pressure. We now use
these DMC benchmarks to understand how various DFT XC
functionals and FF models perform on such structures. This is
important to establish as DFT and FFs are widely used to ex-
amine 2D ice, interfacial, and confined water. Here we discuss

TABLE I. Properties of the various 2D ice structures at zero
pressure and 2 GPa. The values reported are the binding energy
Eb (meV/H2O) obtained from DMC, the confinement energy Econf

(meV/H2O), the lateral area per water A (Å2/H2O), the pressure
volume work PV = P × A × w (meV/H2O; w is the width of
the confinement), the zero point energy (ZPE) (meV/H2O), and
the enthalpy H (inclusive of ZPE). Also reported is the enthalpy
difference with respect to the most stable structure: �pen = (H ) −
(H )[pentagonal] at zero pressure, �sq = (H ) − (H )[square] at 2 GPa.
All the DMC stochastic errors associated with Eb are � 3 meV/H2O.
Econf , A, PV , and ZPE were obtained using DFT with the optPBE-
vdW functional. See SM for additional details.

Pressure Eb Econf A PV ZPE H

0 �pen

Hexagonal −423 21 9.728 0 676 274 1
Pentagonal −419 20 8.635 0 672 273 0
Square −404 18 7.974 0 672 286 13
Rhombic −389 37 7.999 0 667 315 42
2 GPa �sq

Pentagonal −380 52 7.710 577 674 923 28
Square −374 47 7.193 539 683 895 0
Rhombic −385 99 6.905 517 681 912 17

the main indications that come out of these comparisons. In
Fig. 3 (left panel) we plot the average error in the binding
energy of 2D ice structures as obtained from a variety of
approaches. From this we find that several XC functionals,

FIG. 3. The left panel reports the average error (blue bars) for the
Eb evaluations, taking DMC as the reference, using a selection of XC
functionals. See the SM for information on each method. The right
panel reports the energy difference Eb − Ehex

b at zero pressure for
each of the considered methods. The benchmark DMC evaluations
are shown as color-coded bands, the widths of which represent the
stochastic error (i.e., ±σ ). Color and symbol conventions are the same
as in the previous figures. Results are on optPBE-vdW optimized
structures at zero pressure. Similar plots for relaxed structures and
for 2 GPa are reported in the SM.
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FIG. 4. Binding energy difference E − EDMC with respect to
DMC for various DFT XC functionals and FF models for the 2D
and some bulk (3D) ice structures at zero pressure. For clarity, only a
subset of the FF potentials and DFT XC functionals are plotted here;
data with other approaches are included in the SM. Bulk ice results
are taken from Refs. [11,25] (DMC and DFT) and Ref. [42] (FF). In
both panels the densities of the phases increase from left to right.

namely, HSE-vdW(TS), rPW86-vdW-DF2, optB88-vdW,
optB86b-vdW, optPBE-vdW, BLYP-D3atm, and PBE perform
well, yielding an average error of <25 meV/H2O. Apart from
binding energies averaged over the four structures, it is also
crucial to predict correct relative energies. As shown by the
relative energies of the four 2D ice structures (Fig. 3 right),
we find that only the vdW inclusive approaches mentioned
above provide satisfactory predictions. The long-range part
of the vdW force therefore plays an important role in 2D
ice. Interestingly, SCAN, a recently developed meta-GGA
(generalized gradient approximation) functional that partially
accounts for the medium-range vdW force [43,44], does not
perform particularly well for these systems and overbinds all
phases.

Extending the analysis, in Fig. 4 we plot the energy error of
several XC functionals and FFs for both 2D and 3D ice. Results
are shown in order of increasing density for both 2D and 3D
ice. On comparing 2D and 3D ice we find that while vdW is
important in 2D it plays a smaller role than it is known to play
in 3D [11,25]. This can be seen, for example, by comparing
the slopes of the PBE curves in 2D and 3D, where it can be
seen that the PBE curve in 3D is much steeper. We also show
in the SM that the reduced significance of vdW is due to the
lower coordination of water molecules in 2D ice than in 3D.
The difference of the vdW contribution in 2D and 3D leads
to a contrasting performance of some of the vdW functionals
for 2D and 3D ice, as shown in Fig. 4. Overall, we find that
the rPW86-vdW-DF2 functional yields the smallest errors for
both 2D and 3D ice structures, and represents a good choice
for future studies of these and related systems.

In Fig. 4 we also present results with several FF models
which have been widely used to study confined water and
ice [1,4,5,45,46]. Our calculations show that the SPC/E

and TIP4P models overestimate the binding energy of the
high-density 2D ice structures more than the low-density
ones. The difference between the errors on the hexagonal and
rhombic structures is about 40 meV/H2O for TIP4P and about
60 meV/H2O for SPC/E. This error comes from both the
Coulomb and the van der Waals components of the potential
(Fig. S6). Results of TIP4P/2005 [47] and TIP4P/Ice [48]
are also reported in the SM and typically they show a
consistent shift of energy for all structures compared with
TIP4P. Therefore, our results help to explain why rhombic and
square structures are often seen in 2D ice simulations using
these models. We have also performed calculations using the
mW model [49], a widely used coarse-grained model of water.
Although it significantly underestimates the binding energies
of the 2D ice structures by approximately 50 meV/H2O, it does
very well in reproducing the relative energies of 2D ice. This
good performance on the relative energies is also consistent
with the fact that a pentagonal ice structure has been observed
in mW simulations of confined water [46].

To conclude, our large-scale DMC simulations of 2D ice
reveal that at ambient pressure the most stable structures are
hexagonal and pentagonal phases. In addition, our calculations
show that at high pressure, 2D square ice is more stable at 0 K
than the other phases considered. The data and insight obtained
here are important for current understanding of confined 2D ice
in general and are also relevant to the TEM measurements of
Algara-Siller et al. [1]. We note that, although our calculations
find that square ice is stable, they do not rule out the possibility,
as suggested by Zhou et al., that sodium chloride could have
been observed in the initial measurements [2]. The influence
of finite temperature, growth kinetics, and the finite size of the
particles that form have also yet to be investigated in detail.
Clearly more work is needed from experiment and theory
in order to substantiate the existence of square ice, and to
potentially observe the predicted pentagonal ice phase. Finally,
from a theoretical point of view, our study reveals the different
performance of many widely used DFT functionals and FF
models on 2D ice. We find that the role of vdW forces in 2D
and 3D ice is different, thus it is important to consider both
2D and 3D ice in order to reach a consistent picture of vdW
inclusive XC functionals. We also rationalize observations in
previous FF studies by showing that widely used FF models
incorrectly stabilize the high-density 2D ice phases.
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