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The recent progress of linear-scaling or O(N) methods in the density functional theory (DFT) is remarkable.

In this paper, we show that all-atom molecular dynamics simulations on complex biological systems based

on DFT are now possible using our linear-scaling DFT code Conquest. We first overview the calculation

methods used in Conquest and explain the method introduced recently to realise efficient and robust

first-principles molecular dynamics (FPMD) with O(N) DFT. Then we show that we can perform reliable

all-atom FPMD simulations on a hydrated DNA model containing about 3400 atoms. We also report that

the velocity scaling method is both reliable and useful to control the temperature of the FPMD simulation of

this system. Based on these results, we conclude that Conquest is ready to do reliable FPMD simulations

on complex biological systems.

1. Introduction

Molecular simulation technology is now commonly used to explore biological phenomena

of biomolecular systems. It helps us understand the mechanism of various biological

phenomena, including enzyme reactions, photoexcitations, molecular interactions and so

on.1) Although most molecular simulations of biological systems use parametrised inter-

atomic potentials, the reliability of such empirical potentials in various environments

or for some phenomena is sometimes doubtful. So it is important that we should be

able to perform molecular simulations based on quantum mechanics. However, the cost

of quantum simulations, such as first-principles (FP) simulations based on the density

functional theory (DFT), is usually very expensive, especially for large systems. As is

well known, the CPU time of normal DFT calculations is proportional to the cube
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of the number of atoms N in the simulation cell. It is very difficult and expensive to

treat systems containing more than 1000 atoms within DFT. To reduce this demanding

cost, quantum mechanics and molecular mechanics (QM/MM) hybrid method or its

molecular dynamics version (QM/MM-MD) is often used for molecular simulations on

biological systems. However, it is usually impossible to remove the effect of the artificial

boundary between the two regions introduced in the hybrid calculations. There are

increasing demands for all-atom DFT simulations on complex biological systems.

In this respect, the recent advances in computational techniques for large-scale DFT

calculations called linear-scaling or O(N) method, whose calculation cost is only pro-

portional to N , is encouraging.2) We have been developing our own linear-scaling DFT

code called Conquest3) and have recently demonstrated that we can treat million-atom

systems with DFT using the code.4,5) We also recently introduced a method to realise

efficient and reliable first-principles molecular dynamics (FPMD) on large systems, by

combining the O(N) DFT and extended Lagrangian Born-Oppenheimer molecular dy-

namics (XL-BOMD) methods.6) We investigated the requirements for calculations with

accurate O(N) FPMD simulations and actually performed FPMD on a very large crys-

talline silicon system, containing 32,768 atoms.7) We expect that we can also employ

this technique on large and complex biological systems.

In this paper, we overview the calculation methods used in Conquest, and explain

the combined method for efficient and accurate FPMD simulations. Then, we show that

we can do reliable all-atom FPMD simulations on a test DNA model, a DNA decamer

hydrated with a large number of water molecules, consisting of about 3400 atoms. We

demonstrate that the FPMD simulations on the hydrated DNA system are robust and

accurate.

2. Linear-scaling first-principles molecular dynamics method

2.1 Linear-scaling DFT code Conquest

In this subsection, we first overview the computational methods and recent progress of

the Conquest code.

In Conquest, we use the Kohn-Sham density matrix defined as

ρ(r, r′) =
∑

n

fnΨn(r)Ψ∗

n(r′), (1)

where Ψn(r) is the eigenfunction (Kohn-Sham orbitals) of the Kohn-Sham Hamiltonian

for the band index n, and fn is its occupation number.8–10) The total energy based on
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DFT can be calculated from the density matrix, with the use of the pseudopotential

method and standard exchange-correlation functionals such as the local density ap-

proximation (LDA) or a generalised gradient approximation (GGA). It should be noted

that an efficient technique to calculate the exact exchange term has been recently in-

troduced11) to the code, and thus hybrid functionals are also now available.

In Conquest, we represent the density matrix by localised orbitals called ”support

functions”, φiα(r), with the matrix elements Kiα,jβ which are the coefficients of the

density matrix expressed in this non-orthogonal basis of support functions.

ρ(r, r′) =
∑

iα,jβ

φiα(r)Kiα,jβφjβ(r′), (2)

The support function φiα(r) for the orbital α is centred on the atom i and is non-zero

only inside the ”support region”. The support functions themselves are represented in

terms of basis functions, and two types of basis sets are available in Conquest: B-

splines on regular grids;12) and numerical pseudo-atomic orbitals (PAOs).13–15) When

B-splines are used, we can systematically improve the accuracy of the basis set by re-

ducing the grid spacing and can reach the planewave accuracy. On the other hand, we

can employ efficient calculations with a reasonable accuracy by using PAOs as basis

sets. Even with PAO basis sets, we can improve the accuracy by increasing the num-

ber of basis functions, but the computational cost usually increases very rapidly. We

have recently introduced a method to treat such accurate but large PAO basis sets effi-

ciently.16–18) With this method, called the multisite support function (MSSF) method,

we can perform accurate calculations without increasing the CPU time significantly.

The matrix Kiα,jβ is obtained either by the conventional diagonalization method,

or by a linear-scaling (or O(N)) method. In the case of O(N) calculations, Conquest

uses the desnity matrix minimisation (DMM) method proposed by Li et al.19) In this

method, we express the matrix K following McWeeny’s purification transformation,20)

K = 3LSL − 2LSLSL, (3)

to impose weak idempotency on the density matrix. Here, the matrix L is called the

auxiliary density matrix and S (Siα,jβ = 〈φiα|φjβ〉) is the overlap matrix between the

support functions. To achieve the O(N) behaviour using the locality of density matrix,

we introduce a spatial cut-off RL on the L-matrix: Liα,jβ = 0 for |Ri − Rj| > RL,

where Ri are the atomic positions. Then we calculate the matrix elements Liα,jβ which

minimise the DFT total energy using numerical optimisation methods, such as the
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Fig. 1. Total energy of a hydrated DNA system, whose structure is shown in Fig. 2, as a function

of RL, the cutoff range of the auxiliary density matrix L. Total energy obtained by

non-self-consistent technique (NonSCF) is also prensented.

residual minimisation method21,22) One of the big advantages of DMM method is that

it satisfies the variational principle and we can monitor the accuracy of the O(N)

calculations by checking the RL dependence of the total energy. Figure 1 shows the

RL dependence of the total energy for a DNA system, which is the target of the MD

study shown in the next section. Here, the total energy using Harris-Foulkes functional

obtained by non-self-consisten (NSC) technique23,24) is also presented together with

the DFT total energy using the self-consistent-field (SCF) charge density. This graph

shows that the total energy converges as the cutoff applied to the L matrix is increased,

regardless of the self-consistency. We can also see that the result with the NSC technique

converges faster than the SCF result. It is probably due to the fact that the electronic

structure by NSC usually has a larger energy gap than SCF and is more localised. We

also note that tests on smaller systems (dry DNA with NSC) show that it converges to

the exact diagonalisation result.25)

Another strong point of Conquest is its excellent efficiency on massively parallel

computers. Since Conquest uses the locality of the electronic structure, it also has an

advantage in parallelisation. We recently reported its parallel efficiency on K computer

and showed that it has almost ideal parallel efficiency even when we use more than

200,000 cores.5,26) It was also demonstrated that we can now treat million-atom systems

using the Conquest code on such large-scale parallel computers. Using this ability of

the code, the code has been used for structure relaxations on the nano-scale systems of

semiconductor surfaces.27,28)
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2.2 Molecular dynamics with the Conquest code

Even though we can now calculate the total energy and atomic forces29,30) of very large

systems using the O(N) DFT method, this does not guarantee that stable, efficient and

accurate FPMD simulations are also possible in practice. There are two types of methods

widely used in the conventional FPMD simulations: Car-Parrinello MD (CPMD) and

Born-Oppenheimer MD (BOMD). To realise O(N) FPMD simulations, we adopt the

BOMD method since we do not want to have the ambiguity of fictitious mass, which

is used in CPMD simulations. Another advantage of the BOMD method is we can use

larger time step than CPMD. However, it should be noted that the stability or accuracy

of the BOMD simulations strongly depends on the accuracy of the calcualted forces. We

usually use an iterative method to calculate the ground state of the electronic structure

even in the conventional methods. It is well known that we can have an unphysical

energy drift, if the electronic structure is not well converged and the calculated forces

are not accurate enough. This problem is closely related to the time reversibility of the

optimised electronic structure. In order to solve this problem, Niklasson et al. recently

proposed a new method called the extended Lagrangian Borm-Oppenheimer MD (XL-

BOMD) method. With this method, the time reversibility of the electronic structure is

maintained and the stability of the BOMD simulations are greatly improved.6,31,32)

Recently, we combined this XL-BOMD scheme with the DMM method and demon-

strated that the combined method enables us to do efficient and reliable FPMD with

the O(N) method.7) The Lagrangian in the XL-BOMD scheme LXBO is defined in the

following way, using the Lagrangian in the usual BOMD method LBO,

LXBO
(

X, Ẋ,R, Ṙ
)

= LBO
(

R, Ṙ
)

+
µ

2
Tr

[

Ẋ2
]

−
µω2

2
Tr

[

(LS − X)2] (4)

where the matrix X is a sparse matrix introduced to prepare the initial guess of

L matrix at each MD step. µ is the fictitious electronic mass, and ω is the curvature

of the electronic harmonic potential. As in the original XL-BOMD method, if we take

the limit µ → 0, LXBO becomes LBO and we have two equations of motion for nuclear

positions and X, respectively. If we apply the time-reversible Verlet scheme to calculate

X using the equation of motion, we have

X(t + δt) = 2X(t) − X(t − δt) + δt2ω2(L(t)S(t) − X(t)) (5)

which shows that X(t) is time reversible and evolves in a harmonic potential centred
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around the ground-state L(t)S(t). We can expect that a good initial guess for the L-

matrix, which will obey time reversal symmetry, can be calculated by multiplying X

and S−1 (in Conquest, the sparse approximate inverse S is computed using Hotelling’s

method33)). As a result, the optimised L matrix also satisfies time reversibility and

the trajectories of FPMD simulations become stable and accurate. In practice, for the

numerical propagation of the matrix X, we use an equation of motion with a dissipative

term to maintain numerical stability of the matrix X.34)

In our previous study, we clarified the effects of control parameters used in the DMM

method in the FPMD simulations. We have found that even when the total energy is

not fully converged, MD trajectories are almost the same as those in more accurate

MD simulations. We also demonstrated that reliable MD simulations can be actually

performed on 32,768-atom crystalline silicon system using 1024 CPUs (8192 cores) of the

K computer. Since we have already shown that parallel efficiency of Conquest is ideal

even when using more than 200,000 cores, we can conclude that FPMD simulations on

million-atom systems are now available using a big supercomputer like the K computer.

3. All-atom FPMD simulations on a hydrated DNA system with the Conquest

code

Although we already demonstrated the practical ability of the combined (DMM+XL-

BOMD) method, the examples of FPMD simulations using Conquest have been lim-

ited to simple systems so far, such as crystalline silicon or bulk water. In this section,

we present another example of MD simulations on a more complex system, a hydrated

DNA system, whose structure is shown in Fig. 2. The system was studied in our pre-

vious work,25) and consists of DNA 10 base pairs (d(CCATTAATGG)2 in PDB ID:

1WQZ) of 634 atoms, 9 Mg atoms as counter ions, and 932 H2O molecules, being 3,439

atoms in total. The initial structure is prepared by classical MD simulation using the

AMBER9 with the force fields of PARM9935) for the DNA atoms and TIP3P for water

molecules. In classical MD simulations, the system is equilibrated with constant pres-

sure and the structure at the last step is adopted for the initial structure of the FPMD

simulation. Figure 3 shows the energy profile of the FPMD simulation in the micro-

canonical case (NVE simulation). In this O(N) FPMD simulation, periodic bound-

ary condition, single-zeta with polarization (SZP) basis set, Perdew-Burke-Ernzerhof

(PBE)36) exchange-correlation functional, non-self-consistent (NSC) technique with the

Harris-Foulkes energy functional, the cutoff range of 16 bohr for L matrix, and the nu-
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Fig. 2. Structure of a DNA decamer (PDB ID:1WQZ) hydrated with 934 water molecules,

consisting of about 3400 atoms.

merical integration grid cutoff of 75 Ha are used. It should be noted that the SZP basis

set used in the present MD simulations tends to show slightly larger error compared

with DZP basis set. For example, the mean absolute error of the bond lengths in the

adenine molecule is 0.05 Å using the SZP basis set, while it is 0.02 Å with DZP.

However, we believe that the qualitative aspects reported in this paper are not affected

by the choice of the basis set. As a dissipation term in the equation of motion for the

X matrix, we consider the terms up to the order of 5. The time step is 0.5 fs and the

initial temperature for the atomic velocity is 300K.

The most important point we can see from Fig. 3 is that the total energy, which

is the sum of the potential energy (DFT total energy) and kinetic energy of nuclei, is

constant during the simulation. This means that the present method is reliable also

for this complex system. We can also see that the potential and the kinetic energies

of the system both fluctuate relatively large in the early stage (up to about 50 MD

steps). This probably shows a rapid response to the the differences of chemical bonds

between classical force fields and the Conquest calculation with the present conditions.

However, after about one hundred MD steps, these two energies show much slower

changes. We do not clearly understand why we have such behaviour, but we expect

that using the initial structure given by classical MD simulations would help to reduce
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Fig. 3. Energy profile in the FPMD simulation of the hydrated DNA system (NVE simulation).

Total energy (green), potential energy (blue), and kinetic energy (red) are shown.

the simulation time for the equilibration of FPMD simulations.

Next we investigate the temperature-controlled FPMD simulations by the velocity

scaling method. Figure 4 shows the energy profiles of the FPMD simulation of the same

hydrated DNA system, at the temperature of 300K (a) and 600K (b), respectively. In

this method, we simply rescale the velocity at each MD step to make the average of

the kinetic energy same as a given temperature, and use the corrected velocity in the

equation of motion for nuclei. In Fig. 4, the profiles of the kinetic energy calculated

with the velocities before the correction are plotted, together with the potential energy

and total energy.

As can be seen in Fig. 4, although the fluctuation of the kinetic energy defined

by the velocities before the correction is large in the early stages (0-50 MD steps), the

change of the kinetic energy becomes very small after 50 MD steps. In both cases, i.e.

at 300K and 600K, the kinetic energy is close to the correct temperature after around

120 steps, and the profile of the total energy is becoming flat. This rapid convergence

should be useful to control the temperature in FPMD simulations. We expect that it

is also possible to do stable micro-canonical (NVE) MD simulations around the given

temperature after we employ the velocity scaling method for a short time. This may

be a useful technique for FPMD on similar hydrated biological systems. We have also

recently implemented another method to control the temperature, the Nose-Hoover-

chain method. The stability of this method with the DMM+XL-BOMD scheme will

be reported elsewhere. We believe these techniques will contribute to realise many

efficient, reliable and accurate FPMD simulations on complex biological systems in the

near future.
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Fig. 4. Energy profile of the FPMD simulation on the hydrated DNA system (NVT simulation)

with the velocity scaling method at 300K (a) and 600K (b); total energy (green), potential energy

(blue), and kinetic energy (red) calcualted from the atomic velocities before the correction.

4. Summary

The linear-scaling or O(N) code Conquest has the ability to treat million-atom sys-

tems based on DFT. In this paper, we first gave an overview of the methods used in

the code and introduced recent progress, especially the newly introduced method which

combines the DMM and XL-BOMD methods to realise accurate and efficient FPMD

simulations with the O(N) method.

Then, we demonstrated that the method can be also applied to a complex biological

system, a hydrated DNA system, containing about 3400 atoms. We have shown that

the total energy is conserved accurately in the micro-canonical simulations when the

combined method (DMM+XL-BOMD) is applied. Furthermore, we found the velocity

scaling method is useful to control the temperature of the FPMD simulation of this

system. Based on these results, we can conclude that Conquest is ready to do reliable

FPMD simulations on complex biological systems.
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