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Quality Assessment of Ambulatory ECG Using
Wavelet Entropy of the HRV Signal

Christina Orphanidou and Ivana Drobnjak

Abstract—Data in recordings obtained from ambulatory
patients using wearable sensors are often corrupted by mo-
tion artefact and are, in general, noisier than the data ob-
tained from the nonmobile patients. Identifying and ignoring
erroneous measurements from these data is very important,
if wearable sensors are to be incorporated into clinical prac-
tice. In this paper, we propose a novel Signal Quality Index,
intended to assess whether reliable heart rates can be ob-
tained from a single channel of ECG collected from ambu-
latory patients, using wearable sensors. The proposed sys-
tem is based on wavelet entropy measurements of the heart
rate variability signal. The system was trained and tested on
expert-labeled data from a particular wearable sensor and
was also tested on labeled data from a different sensor. The
sensitivities and specificities achieved were 94% and 98%,
respectively, on data from the same sensor as the training
set, and 91% and 97%, respectively, on data from a different
sensor, indicating the potential of the system to generalize
across different sensors. Because the system relies on a
single channel of ECG, it has the potential for inclusion in
applications using wearable sensors and in the most basic
clinical environments.

Index Terms—Electrocardiogram (ECG), heart rate (HR),
heart rate variability (HRV), signal quality, wavelets, wear-
able sensors.

I. INTRODUCTION

THERE is a widespread consensus that wearable sensors
will be a key part of delivering healthcare in the future.

However, for them to be successfully incorporated into clinical
practice, the technology needs to advance to a reliable level. The
issue of identifying unreliable data is particularly important, as
data obtained from ambulatory patients, the patients more likely
to benefit from the use of wearable sensors, are more likely to
contain artefact than data obtained from bed-bound patients [1].

The electrocardiogram (ECG), routinely collected from hos-
pital patients, is often contaminated with noise leading to unre-
liable vital sign measurements. Erroneous vital sign measure-
ments may result in a large number of false alerts that can lead to
the phenomenon of “alarm fatigue,” whereby ward staff become
desensitized to and ultimately ignore alerts from the monitoring
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systems [1], [2]. Furthermore, abnormal vital sign measure-
ments, found to be significant predictors of adverse events and
mortality in hospital patients [3], [4], may go unnoticed, thus
compromising patient care and health outcomes.

In the past few years, a lot of research activity was directed to-
ward the development of artefact detection (AD) algorithms for
physiological signals, either based on a single signal (the ECG
or the photoplethysmogram (PPG)), or combining information
from several different signals, or multiple channels of the same
signal. A comprehensive review of AD techniques in critical care
units was recently published in [5]. The review highlights the
complexity of the task: algorithms must be shown to generalize
across units, manufacturers, and patient populations [2], [5].

Recently the proposed AD algorithms, reporting positive re-
sults, are based on the fusion of different features extracted
from multiple signals, such as the ECG, the PPG, and the ar-
terial blood pressure signal [6]. In the case of the ECG, the
proposed quality assessment methods were based on features,
such as metrics of agreement between two different QRS de-
tectors [6], [7] and spectral density ratios between different
frequency bands [7]. Especially when frequency-based features
were used, the type of rhythm present was shown to be impor-
tant (i.e., whether a particular type of arrhythmia is present)
with algorithms needing to be tailored to the specific variety
of arrhythmia [2]. Despite the impressive results reported by
many of the proposed algorithms, the same issues persist: most
proposed systems are tailored to a specific patient population,
sensor, or manufacturer, and would require modification for val-
idation and reuse with a different one. Algorithms requiring the
presence of different signals or multiple channels of the same
signal will not be usable in many clinical environments (e.g.,
in the context of m-health applications for the third world). Fi-
nally, often, the proposed algorithms are trained on nonclinical
data with artificial noise. This is an important weakness since
systems targeted for use by possibly anxious, unwell patients
for extended periods of time need to be designed so as to reflect
these characteristics in the algorithm specifications. Recently,
a single channel Signal Quality Index (SQI) was proposed for
the ECG based on QRS template matching [1], [8], trained and
validated on real-world clinical data. While the proposed system
showed promise, its performance was not consistent across all
sensors tested.

In this paper, we propose a new algorithm for classifying
segments of ECG as “acceptable” or “unacceptable” (for ob-
taining reliable heart rate (HR) measurements), which is based
on spectral analysis of the heart rate variability (HRV) signal.
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HRV refers to the variation over time of the intervals between
consecutive heartbeats. Since the heart rhythm is modulated by
the autonomic nervous system (ANS), HRV is thought to reflect
the activity of the sympathetic and parasympathetic branches
of the ANS [9]. Analysis of HRV has been found to be clini-
cally useful in evaluating a number of cardiovascular conditions
and disorders [9], [10]. The beat-to-beat changes reflected in
the HRV signal, occur at multiple frequencies and the signal
is, in general, regarded as the sum of several physiologically
relevant components occurring at different frequency subbands:
the very low-frequency (VLF) component (frequencies below
0.03 Hz), which is modulated by the renin-angiotensin system;
the low-frequency (LF) component (0.03–0.15 Hz), which is
thought to be related to both sympathetic and parasympathetic
activity of the heart; and the high-frequency (HF) component
(0.15–0.4 Hz), which is mostly related to the parasympathetic
system and has been found to contain the respiration frequency
[9]–[12] (the upper and lower bounds of these spectral compo-
nents are not strictly defined and may appear slightly different
in some research articles).

Our proposal is to use the spectral characteristics of the HRV
signal as a measure for assessing signal quality. The HRV signal
derived from a “clean” segment of ECG is rich in physiologi-
cally relevant information with the literature indicating that the
upper frequency limit of the highest band for HRV analysis is
0.4 Hz. Our hypothesis is, therefore, that the HRV signal de-
rived from a “clean” segment of ECG should have most of its
energy concentrated in the frequency bands below 0.4 Hz. In the
presence of noise, errors in the detection of QRS peaks will re-
sult in a distorted HRV signal. The distorted HRV signal would
probably have a disordered distribution of energy in the differ-
ent frequency bands and would presumably contain increased
energy in nonphysiologically relevant bands as well. Our ra-
tionale, therefore, is that the spectral content of HRV signals
obtained from “clean” segments of ECG would differ from that
of the distorted HRV signals obtained from “noisy” segments.
Furthermore, since the HRV signal may be obtained in a stan-
dardized way from any ECG signal of sufficiently high sampling
rate, using a universal QRS detector, it has the potential to be the
basis of an SQI which can generalize across different sensors
and manufacturer specifications. An important consideration for
any application involving HRV spectral analysis is the window
size required for any useful indices to be obtained. While the
standard recommendation for obtaining reliable HRV measure-
ments has been set at a minimum of 5 min [11], studies have
shown that HF components can be satisfactorily analyzed in
window sizes as small as 20 s [13]. To balance the requirement
of real-time implementation and the need to identify meaning-
ful differences between “clean” and “noisy” signals, we chose a
window size of 30 s. While this window size is not sufficiently
large for clearly identifying VLF and LF components in the
HRV signal, it is large enough to identify differences between
“clean” and “noisy” signals in the HF band.

For the spectral analysis of the HRV signal, we propose using
wavelet entropy measurements. Wavelet entropy has been pro-
posed in the past as a measure for diagnosing congestive heart
failure [14] and for the prognosis of cardiovascular risk [15]
from the HRV signal; however, to the best of our knowledge,

it has not been used in the context of signal quality assessment
via the HRV signal. We chose to use wavelet entropy measure-
ments because the main idea fits well with our task at hand; if
a system exhibits “disordered” behavior at a specific frequency
subband, a high-entropy value will be obtained. Therefore, the
distorted HRV signal obtained from a “noisy” segment of ECG
will have high-entropy values in different subbands compared
to the true HRV signal obtained from a “clean” segment of ECG
which should have most of its energy contained in the physio-
logically relevant subbands. Since our aim is for the proposed
SQI to work in the presence of different (and multiple) kinds of
noise, the wavelet decomposition scheme offers the flexibility
that all the signal frequency components may be examined and
taken into consideration when building the classifier, such that
different types of noise can be accounted for.

The relationship between the wavelet entropy measurements
and occurrences of noise was learned using support vector ma-
chines (SVM) leading to a classifier which labels segments of
ECG signal as “acceptable” (clean) or “unacceptable” (noisy).

Finally, in contrast to many other proposed systems, we used
real clinical data for training and validating the system, obtained
from ambulatory patients using wearable sensors, therefore con-
taining realistic noise.

II. METHODS

A. Database Used

For this study, ECG data were taken from a database which
was collected as a part of feasibility study investigating the
suitability of commercially available wearable sensors for clin-
ical use [16]. The patient population consisted of adult patients
recruited from the acute medical, acute surgical, and care-of-
the-elderly wards at the John Radcliffe Hospital in Oxford who
were able to move around unassisted. An ambulatory score rang-
ing from 1 to 5 was recorded for each patient with one being
“bed bound” and five being “able to mobilize independently.”
The range of ambulatory scores was 1–5 for the participating
patients with a mean of 4.5 and a median of 5 [16]. For this
study, we used data obtained using two different systems: the
Equivital EQ-02 LifeMonitor (Hidalgo, Swavesey, U.K.) and
the Dyna-Vision DVM012S (RS-TechMedic, Langedijk, The
Netherlands). The Equivital EQ-02 was attached to a belt worn
around the patient’s chest. The ECG was sampled at 256 Hz
with a 10-bit resolution. The Dyna-Vision DVM012S samples
the ECG through at 100 Hz with 12-bit resolution using con-
ventional ECG leads attached to adhesive wet gel electrodes.

ECG recordings were collected from 18 patients. Of these, 11
records (denoted JRD−ECG ) were captured using Dyna-Vision
DVM012S monitors (123 h of recording) and seven (denoted
JRE−ECG ) were captured using Equivital EQ-02 LifeMonitors
(63 h of recording).

B. Development of SQI

1) Training Data and Labeling: To develop the SQI, we
used a total of 1100 30-s segments of ECG. Seven-hundred
segments were used for training the algorithm and 400 for test-
ing it. The 700 segments used for training were taken from
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Fig. 1. Example ECG samples from the training set with associated
labels: (a) “Acceptable.” (b) “Acceptable” (borderline case). (c) “Unac-
ceptable” (borderline case). (d) “Unacceptable”.

the JRE−ECG database, and comprised of 100 segments ran-
domly drawn from each one of the seven subjects’ record-
ings. The test set comprised of 200 segments randomly chosen
from the JRE−ECG database and 200 randomly chosen from the
JRD−ECG (total of 400 segments). We deliberately chose to train
the classifier on data from a single sensor, in order to compare
its performance on data from the same versus a different sensor,
and assess its potential for generalizing across different sensors
and manufacturers. All 1100 ECG segments were annotated by
a biomedical engineer, expert on ECG analysis, based on the
following rule:

“An ECG segment is labeled as ‘acceptable’ if a human
expert can confidently derive a reliable HR from it, by counting
the number of R-peaks over a fixed time interval. Otherwise it
is labeled as ‘unacceptable.”’

More specifically, the annotator was instructed to allow for
a single noisy segment in a sample, provided it was smaller in
length than approximately two beat periods. This was based on
the fact that samples were 30 s long and the presence of a single
noisy segment, not longer than two beat periods, would still
result to a HR within an acceptable error range.

In total, 47% of the segments were labeled as “acceptable”
and 53% as “unacceptable.” Examples of “acceptable” and “un-
acceptable” ECG segments are shown in Fig. 1.

2) SQI Algorithm: Fig. 2 shows a flowchart of the proposed
SQI classifier.

The first step of the proposed SQI algorithm is to perform
QRS detection on an ECG sample using the Hamilton and Tomp-
kins algorithm [17] and apply a simple feasibility rule: the HR
extrapolated from the 30-s sample must fall within a physiolog-
ically probable range of 40–180 beats per minute (bpm). If this
condition is not satisfied, the ECG sample is immediately clas-
sified as “unacceptable.” Otherwise, the HRV signal is extracted
and analyzed using discrete wavelet decomposition. The entropy
of the wavelet coefficients at the different wavelet subbands is
then calculated. Vectors containing the entropies measured at
the different wavelet decomposition levels are then taken as the
feature vectors of each sample (the feature extraction process is
shown in Fig. 3). In a final step, the feature vector is fed into
a SVM classifier, previously trained using the labeled training
data, and the sample is classified as “acceptable” or “unaccept-

Fig. 2. Flowchart of the proposed SQI algorithm.

able.” The different steps in creating the SQI are explained in
detail in the next section.

a) Extracting the HRV Signal: For obtaining the HRV
signal, the R–R interval time series was created for each ECG
sample by calculating the periods between consecutive R-peaks.
The HRV signal was then obtained by applying spline interpo-
lation at the recommended frequency of 4 Hz [11] to the R–R
interval time series. Fig. 4 shows an example of a “clean” and a
“noisy” ECG segment, their extracted HRV signals, and associ-
ated HRV spectra. As can be seen, the erroneous identification
of additional R-peaks in the noisy sections of the signal result
in the appearance of “dips” resulting in a distorted HRV signal
which has power in frequencies higher than the ones commonly
present in the HRV signal. (The appearance of additional erro-
neous R-peaks was the most common error we observed in the
presence of noise).

b) Wavelet Transform and Wavelet Entropy: The
wavelet transform describes signals in terms of coefficients and
allows the representation of the temporal features of a signal at
different resolutions. A signal f(t) can be decomposed as [18]:

f (t) =
∑

j

∑

k

dj,kψj,k (t) =
∑

j

fj (t) (1)

where j, k ∈ Z and ψ(t) is the mother wavelet. To obtain the
wavelet coefficientsdj,k at different frequency bands, the mother
wavelet is dilated and translated. The wavelet coefficients at each
level j are then given by the inner product

dj,k = 〈f (t) , ψj,k (t)〉 =
1√
2j

∫
f (t)ψ

(
2−j t− k

)
dt (2)

In practice, application of the discrete wavelet transform is
done via successive application of a two-channel perfect recon-
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Fig. 3. Flowchart of the feature extraction algorithm.

Fig. 4. “Acceptable” (left) and “unacceptable” (right) ECG samples and identified R-peaks (in black dots) (top) with extracted HRV signals (middle)
and associated FFT spectrum (bottom) taken from the training set. As can be seen in the “unacceptable” case, the identification of false R-peaks
caused by the presence of noise, results in “dips” which distort the HRV signal (indicated by arrows). These dips alter the spectrum of the extracted
HRV signal. Please note that for the ease of interpretation, HRV spectrums were plotted in different scales. As expected, the spectrum of the
distorted HRV signal on the right has energy in frequencies higher than the physiologically relevant upper limit of 0.4 Hz.

struction filter bank comprising of a low-pass and high-pass
filter, followed by decimation by a factor of 2. The result of
applying this filter bank is a set of approximation wavelet co-
efficients, resulting from the application of the low-pass filter,
and a set of detail coefficients, resulting from the application
of the high-pass filter, at different decomposition levels. The
frequency bands associated with every decomposition level de-
pend on the sampling frequency fs of the signal and the number
of decomposition levels depends on the characteristics of the
studied signal. In our case, the extracted HRV signal is sam-
pled at 4 Hz and the successive breakdown of the different
frequency bands can be seen in Fig. 3 for a five-level wavelet
decomposition. The rationale behind using a five-level wavelet
decomposition was that for a window size of 30 s and under the
assumption that at least four cycles are required for a reliable
frequency-based estimate to be made, the minimum frequency

that can be observed is 0.125 Hz (max period of 7.5 s); thus, any
decomposition beyond five levels would not contain any valu-
able additional information. Once the wavelet coefficients are
calculated at each level, the Shannon entropy can be calculated,
giving a measure of the disorder at each decomposition level.
Mathematically, the Shannon entropy of the details coefficients
of f at level j can be expressed as [19]:

Ej = −
∑

k

dj,k
2 log

(
dj,k

2) . (3)

Consequently, for the five-level wavelet decomposition, the
result is a 6-D vector containing the wavelet entropy values
measured in decomposition levels A5 ,D5 ,D4 , D3 ,D2 , andD1 .

In addition to varying the levels of decomposition, we also
tested different mother wavelets from the coiflet, daubechies,
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and biorthogonal families in order to obtain the optimum one
for the application at hand.

c) Feature Selection: Before feeding the feature vec-
tors into the classifier, we performed standard two-sample t-
tests on the training data in order to determine which features
better differentiate between “acceptable” and “unacceptable”
ECG segments. A two-sample t-test essentially tests the null
hypothesis that two different sets of observations come from
distributions of equal means [20]. By performing a t-test to the
features extracted from the “acceptable” and “unacceptable”
ECG segments, we calculate the p-value which is the probabil-
ity of observing the given data assuming the null hypothesis is
true. If the p-value is sufficiently small (typically smaller than
0.05 although different thresholds may be used for different ap-
plications), then the null hypothesis can be rejected, and we may
conclude that the two groups of observations come from differ-
ent distributions. While not a “hard” metric, the p-value can be
taken as an indicator of feature separability since the smaller
the value, the more likely it is that the two sets of observed data
(“acceptable” and “unacceptable”) come from different distri-
butions.

d) Machine Learning Using SVM: The SVM algo-
rithm is a powerful classifier which combines the simplicity of a
linear process for separating high-dimensional feature data with
the sometimes necessary complexity of nonlinear modeling of
the input data in order to obtain the high-dimensional feature
space [21].

Our application considers the commonly used two-class clas-
sifier formulation, in which N-dimensional patterns xi and
class labels yi are trained in order to estimate a function
f : RN → {±1} such that f will correctly classify new ex-
amples (x, y), that is f(x) = y for examples (x, y), which
were generated from the same underlying probability distribu-
tion P (x, y) as the training data [21]. The SVM classifier is
based on the class of hyperplanes

(w · x) + b = 0, w ∈ RN , b ∈ R (4)

where the decision function is given by

f (x) = sign ((w · x) + b) . (5)

The optimal hyperplane, defined as the one with the max-
imal margin of separation between the two classes, can be
uniquely constructed by solving a constrained optimization
problem whose solution w has an expansion w =

∑
i vixi in

terms of training patterns that lie on the margin, the so-called
support vectors.

Because (4) and (5) depend only on dot products between
patterns, it is possible to map the training data nonlinearly into a
higher dimensional feature space F , via a map Φ, and construct
the optimal separating hyperplane in F . This is accomplished
by substituting Φ(xi) for each pattern xi by simple kernels k
such that

k (x,xi) := ((Φ (x) · Φ(xi)). (6)

The decision boundary then becomes

f (x) = sign

(
l∑

i=1

vi · k (x,xi) + b

)
(7)

where the parameters vi are computed as the solution of a
quadratic programming problem.

For our application, we investigated the performance of
quadratic, polynomial, and radial basis function (RBF) kernels,
and obtained the best performance using a RBF kernel, which
is given by

k (x, y) = exp
(
−‖x− y‖2

)
/2σ2 (8)

where σ is a scaling factor [21].
e) Training and Evaluation of the Proposed Ap-

proach: We ranked the features based on the p-value and pre-
sented them to the SVM classifier for training and testing, using
six different combinations of features: model A included only
the highest ranked feature, model B the two highest ranked fea-
tures, model C the three highest ranked features, and so forth,
until model F which included all wavelet entropy measurements.
The best model was chosen as the one with the best classifica-
tion accuracy compared to the manual annotations. Accuracy
was determined by calculating the percentage of correctly clas-
sified samples (true positives plus true negatives) with respect
to the total number of samples.

The true positive rate (sensitivity) and true negative rate
(specificity) were also calculated in order to get a measure of
the type of misclassifications occurring. The model with the
maximum accuracy was then used to classify the two test sets.
In assessing the performance of the proposed system on the test
data, we calculated the sensitivity, specificity, and accuracy with
respect to the manual annotations first using only the feasibility
rule and then using the full system (feasibility rule and SVM
classification), in order to put into context the contribution of
the various steps of the proposed approach.

f) Measurement of HRs: In order to illustrate the ef-
fect of using the SQI on the reliability of HRs obtained from
wearable sensors, we ran the SQI on the entire JRE−ECG and
JRD−ECG databases, and calculated the HRs in beats per minute
(bpm) in successive 30-s windows using

HR =
60 × fs

RRmedian
(9)

where fs is the sampling rate and RRmedian is the median R–R
interval in the 30 s segment. We then calculated the coeffi-
cient of variation of the HRs obtained from segments classified
as “acceptable” or “unacceptable” for the entire database. The
coefficient of variation is a measure of the variability of a mea-
surement relative to its mean and is given by

r =
σ

μ
(10)

where σ is the standard deviation and μ is the sample mean.

III. RESULTS

A. Feature Selection

Table I shows the six features ranked by the p-value. All fea-
tures had a p-value less than 0.05 indicating that they all have
strong discriminant power. In fact, most features had a p-value of
almost 0. Interestingly, level D2 (1–2 Hz) had the lowest p-value
since the HRV signals obtained from “acceptable” ECG seg-
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TABLE I
WAVELET ENTROPY FEATURES RANKED BY THEIR p-VALUES

Wavelet Level Frequency Band p-value

D2 1–2 Hz <0.001
D5 0.125–0.25 Hz <0.001
D4 0.25–0.5 Hz <0.001
D3 0.5–1 Hz <0.001
D1 2–4 Hz <0.001
A5 0–0.125 Hz 0.007

TABLE II
CLASSIFICATION PERFORMANCE OF TRAINING SET FOR DIFFERENT

COMBINATIONS OF WAVELET ENTROPY FEATURES

Combination Features Accuracy (%) Sensitivity (%) Specificity (%)

A D2 95.1 91.4 99.1
B D2 , D5 95.4 91.7 99.4
C D2 ,D4 ,D5 96.0 92.3 99.1
D D2 , D3 , D4 ,D5 96.0 92.3 99.1
E D1 , D2 , D3 , D4 ,D5 96.0 92.3 99.1
F D1 , D2 , D3 , D4 ,D5 ,A 5 96.0 92.3 99.1

ments have hardly any energy in that frequency band, whereas
the presence of HF noise in the “unacceptable” segments altered
the spectra of the resulting HRV signals causing high-entropy
values in the D2 band. The least discrimination power was ob-
served in the approximation coefficients A5 (0–0.125 Hz). As
explained in Section II-B, because of the relatively short dura-
tion of ECG segments used, no meaningful spectral information
can be expected for frequencies below 0.125 Hz. As a result,
any differences in the entropy values of the approximation coef-
ficients at level A5 do not have any physiological justification,
but are mostly random.

B. Training and Model Selection

Because of the excellent discriminant power of our feature
vector, we initially checked the performance of a simple linear
classifier on the training data, using all six features, using the
well-known linear discriminant analysis [22]. The accuracy ob-
tained on the training data was 86% with a sensitivity of 99%
and a specificity of 75%. While the results showed a fairly good
linear separability of the data, the high number of false pos-
itives indicated that a more complex system was needed. We
then proceeded to test the proposed SVM system with differ-
ent combinations of features in order to obtain the best model.
Table II shows the accuracy, sensitivity, and specificity values,
with respect to the manual annotations, obtained on the train-
ing set using the different combinations of features using the
“db12” wavelet basis. As is evident, the inclusion of additional
features after model C caused no improvement in the classifi-
cation accuracy. In fact, just using a single measure of entropy
(model A) gave extremely good results and the improvement of
adding additional features was marginal. Because of the small
dimensionality of our feature space, it is possible to choose the
marginally better model C as the optimum model of the clas-
sifier. We found little to no difference in the performance of
the classifier when using different wavelet bases. We, therefore,

TABLE III
PERFORMANCE OF CLASSIFIER ON TEST SETS USING ONLY FEASIBILITY

RULE OR THE FULL SYSTEM

Database used Method Accuracy (%) Sensitivity (%) Specificity (%)

JRE-ECG Feasibility 75 77 74
Full System 96 94 98

JRD-ECG Feasibility 66 59 73
Full System 94 91 97

Fig 5. Histogram of HR values obtained from “acceptable” ECG seg-
ments (in dark gray) and “unacceptable” ECG segments (in dashed out-
line) over the entire database, as classified by the proposed SQI.

used a “db12” basis and feature combination C to classify the
two test sets.

C. Classification Performance of SQI on Test Sets

Table III shows the accuracy, sensitivity, and specificity val-
ues, with respect to the manual annotations, on the two test sets.
On the first test set, drawn from the JRE−ECG database, i.e.,
the same database as the training data, using only the feasibility
rule, the accuracy was 75%, and the sensitivity and specificity
were 77% and 74%, respectively. Using the full system, the ac-
curacy was 96% and the sensitivity and specificity were 94%
and 98%, respectively.

On the second test set, drawn from the JRD−ECG database,
using only the feasibility rule, the accuracy was 66% and the
sensitivity and specificity were 59% and 73%, respectively. Us-
ing the full system, the accuracy was 94% and the sensitivity
and specificity were 91% and 97%, respectively. As is evident,
the performance of the SQI on data obtained using the same
sensor as the training set was slightly better; however, the per-
formance of the system on data from a different sensor was also
satisfactory.

D. Reliability of HR Measurements

Fig. 5 shows a histogram of the HR values obtained from “ac-
ceptable” and “unacceptable” segments of ECG, over the entire
database, as classified by the proposed SQI. As is evident, the
dispersion of “unacceptable” HR values is much greater than
that of the “acceptable” HR values. The coefficient of variation
of all the measured HR values was 0.74. For the HR values
obtained from “unacceptable” segments, it was 1.42, while for
the ones obtained from “acceptable” segments, it was 0.16. The
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Fig. 6. HR values obtained from a 290-min continuous ambulatory ECG record. Measurements classified as “acceptable” are in black plus signs
and ones classified as “unacceptable” are in gray crosses. It is evident that application of the SQI significantly decreases the dispersion of HR
values.

effect of application of the SQI can be more easily seen by look-
ing at the HR values obtained from a typical noisy continuous
ECG recording. Fig. 6 shows a 290-min noisy continuous ECG
record taken from the JRE−ECG database. HR values from ECG
segments classified as “acceptable” are shown in black plus
signs and HR values from segments classified as “unaccept-
able” are shown in gray crosses. It is evident that application of
the SQI increases the reliability of the HR measurements since
the amount of dispersion is reduced. For a healthy person or
a patient in a stable condition, HR measurements are not an-
ticipated to vary greatly in time. While it could be argued that
HR values outside the physiologically viable range would be
rejected by any monitoring system, a substantial proportion of
HR values within the physiologically viable range would still
be likely to cause a false alert (this can be attested by the per-
formance metrics presented in Table III which show that using
only the feasibility rule, we still have a large number of false
negatives which would result in false alerts). Application of the
SQI would likely suppress most of these false alerts.

IV. DISCUSSION

In this paper, we presented an SQI for the ECG, intended to
provide real-time assessment of the suitability of ECG signals
for deriving reliable HR values. Our approach attempted to ad-
dress some of the persisting issues of existing algorithms and
systems: many are either tailored to a specific patient popula-
tion, sensor, or manufacturer or require the presence of multiple
channels of information, which is unrealistic in many clinical
environments. Furthermore, most algorithms are trained on non-
clinical data, often corrupted by artificial noise. Our proposed
algorithm is designed for a single channel of ECG and is novel
in that it is based on the analysis of the frequency content of the
HRV signal, a signal rich in physiologically relevant information
[12].

Our hypothesis was that the distribution of energy across the
spectrum of the derived HRV signal would be different when
comparing “clean” and “noisy” ECG segments. The reason is
that errors in QRS detection, caused by the presence of noise,
result in a distorted HRV signal with altered frequency con-
tent. Spectral analysis of the HRV was done by using discrete
wavelet decomposition followed by the measurement of the en-
tropy at each decomposition level, a measure of the distortion
of the specific frequency subband. We then ranked the different

frequency subbands based on the discriminant power of their
wavelet entropy measurements, as indicated by the result of a
two-sample t-test, and tested different combinations of features
in order to find the optimal model of our classifier. Interest-
ingly, the frequency subband with the strongest discriminant
power was the 1–2 Hz frequency band (D2) which does not
contain any physiologically meaningful information. Addition
of the 0.125–0.25 Hz (D5) and 0.25–0.5 Hz (D4) frequency
bands, containing the physiologically meaningful information
of the HRV signal, caused only a marginal improvement to the
performance of the classifier. An explanation for this could be
the fact that the distortion of the HRV signal in the presence
of HF noise significantly increases the wavelet entropy in the
1–2 Hz frequency band for “noisy” ECG samples compared
to “clean” ones and that alone has a high enough discriminant
power to differentiate most samples. Despite the fact that the
0.125–0.25 and 0.25–0.5 Hz frequency bands contain the phys-
iologically meaningful information, both “clean” and “noisy”
samples have strong wavelet entropy in those levels and their
discriminant power is less significant.

The system was trained on data from ambulatory hospital pa-
tients, using wearable sensors. To investigate the generalization
properties of the system, we evaluated the SQI on data obtained
using the same sensor as the training data and on data obtained
using a different sensor. Sensitivity and specificity of 94% and
98%, respectively, were obtained on data from the same sensor
as the training data and 91% and 97%, respectively, on data from
a different sensor. Finally, we investigated the effect of the SQI
on the reliability of HR values obtained from ambulatory data
by calculating HR values from continuous records of ambula-
tory ECG and calculating the coefficient of variation of the HRs
with and without using the SQI. Application of the SQI reduced
the coefficient of variation from 0.74 to 0.16, which is a more
realistic value for subjects who are not in physiological distress
during monitoring.

The proposed SQI is intrinsically linked to the QRS detector
used both because of the application of the feasibility rule and
in the wavelet entropy analysis after. Errors in the detection of
R-peaks (either identifying erroneous R-peaks or missing actual
R-peaks) result in a distorted HRV signal with altered frequency
content and it is these exact alterations which the classifier is
searching for in order to perform the classification. As a re-
sult, the proposed system relies on the use of the Hamilton and
Tompkins algorithm [17]. However, an attractive property of our
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approach is that since it is based only on the extraction of the
HRV signal, provided the Hamilton and Tompkins algorithm is
used, it can be extracted in the same way from any ECG sig-
nal, promising a technique with good generalization properties.
A limitation of using the HRV signal is the requirement of a
relatively high sampling rate of the ECG signal. The standard
recommendation is for the ECG to be sampled at 250–500 Hz
although, a minimum of 100 Hz would also be acceptable pro-
vided that an algorithm of interpolation (e.g., parabolic) (such
as the Hamilton and Tompkins algorithm we used [17]) is used
to detect the R-peak [11]. While these standards are defined for
optimizing the physiological interpretation of the HRV charac-
teristics, which is outside the scope of our proposed approach,
given that our algorithm is based on comparing the distribution
of energy across different frequency bands of the HRV signal,
the minimum requirement of 100 Hz would need to be satis-
fied. The method is, thus, limited to systems with a minimum
sampling rate of 100 Hz. Additionally to balance the limitation
of real-time implementation, we picked segments of 30-s dura-
tion which means that LF and VLF frequency bands were not
considered. A longer duration of signal would likely improve
the performance of the classifier by identifying further differ-
ences between clean and noisy signals in lower frequency bands
(with strong physiological content) but would compromise the
possibility of usage of the SQI as part of real-time monitoring
systems.

The binary classification scheme we propose was shown to
significantly improve the reliability of HR measurements. An
undesirable result, however, is that for extended periods of time,
no reliable HR measurement is obtained (this can be clearly ob-
served on Fig. 6). While this is a reflection of the quality of the
data, and may be temporarily resolved via a sample-and-hold
scheme, it may be the case that in certain clinical scenarios, it
would be preferable to obtain “moderately erroneous” HR val-
ues at a higher frequency than no HR values at all for extended
periods of time. This could be implemented by a more flexible
fuzzy classification scheme which would assign different relia-
bility indices to HR measurements and could be adapted by the
users depending on their specific needs.

V. CONCLUSION

The system described in this paper has been shown to cor-
rectly classify ECG segments from ambulatory sensors as “ac-
ceptable” and “unacceptable” and, as a consequence, signifi-
cantly increase the reliability of HR measurements obtained. It
has shown potential for generalizing to different sensors and
systems. Finally, in contrast to many recently proposed systems
requiring the presence of multiple signals or multiple channels
of the same signal, our system requires a single channel of ECG
making it very promising for inclusion in applications using
wearable sensors and in the most basic clinical environments.
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