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Figure 1: We present SmartAnnotator, an interactive tool to facilitate annotating RGBD images. The system starts by predicting labels using
learned priors while the user provides supervision by accepting the predicted bed label (the first dashed arrow). The system then locally
refines the bed geometry, and globally infers support relationships with pillows and resolves occluded parts of nightstand. The user then
simply approves all labels to end the annotation process (the second dashed arrow). SmartAnnotator enables the user to effortlessly annotate
this RGBD image simply by two clicks (one to confirm the bed; another to approve all) and took less than 5 secs in this example.

Abstract

RGBD images with high quality annotations in the form of geo-
metric (i.e., segmentation) and structural (i.e., how do the segments
are mutually related in 3D) information provide valuable priors to a
large number of scene and image manipulation applications. While
it is now simple to acquire RGBD images, annotating them, auto-
matically or manually, remains challenging especially in cluttered
noisy environments. We present SmartAnnotator, an interactive sys-
tem to facilitate annotating RGBD images. The system performs
the tedious tasks of grouping pixels, creating potential abstracted
cuboids, inferring object interactions in 3D, and comes up with
various hypotheses. The user simply has to flip through a list of
suggestions for segment labels, finalize a selection, and the system
updates the remaining hypotheses. As objects are finalized, the pro-
cess speeds up with fewer ambiguities to resolve. Further, as more
scenes are annotated, the system makes better suggestions based on
structural and geometric priors learns from the previous annotation
sessions. We test our system on a large number of database scenes
and report significant improvements over naive low-level annota-
tion tools.
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1 Introduction

Images with high quality semantic annotations provide rich source
of training data for a variety of supervised and semi-supervised al-
gorithms, both in computer graphics and computer vision. For ex-
ample, in scene understanding, algorithms extract cues from the an-
notated datasets to learn dominant relationships between object la-
bel and image contents. The trained models are then used as pri-
ors for manipulation, reconstruction, synthesis, etc. Beyond use
for training priors, such annotated datasets also provide qualitative
and quantitative groundtruth for evaluating segmentation and label-
ing algorithms. Gathering such data relies on heavy manual effort
with the user annotating images one at a time. The process is a te-

dious and time-consuming task, resulting in errors by the (tired)
users. State-of-the-art web-based image annotation tools (e.g., La-
belMe [Russell et al. 2008]) simplify the process by facilitating
collaborative annotation and offering easy-to-draw interfaces. The
users, however, still have to manually prescribe polygonal segments
and type in object labels individually. The situation is even worse
when dealing with challenging indoor images usually containing
cluttered objects with complex boundaries and heavy occlusion.

RGBD sensors (e.g., Microsoft Kinect) provide easy and afford-
able synchronized color and depth data. Not surprisingly, in the
context of scene understanding, priors learned by utilizing such
depth from correctly annotated RGBD data result in dramatic per-
formance gains. The annotation process, which inherits the prob-
lems of the image setting, is further complicated since the raw depth
data is often noisy, contains outliers, and suffers from occlusion.
Thus, while properly annotated depth data can be invaluable, the
manual annotation process itself is difficult posing a severe bottle-
neck.

Existing papers either work on 2D segments and treat depth data
as an additional feature channel (e.g., [Silberman et al. 2012; Ren
et al. 2012]), or reason about scene structure on the 3D patches
using point cloud (e.g., [Koppula et al. 2011]). Xiao et al. [2013]
introduced SUN3D, an annotated database of full 3D places, that
integrates depth data across multiple video frames into a full 3D
point cloud model. Yet, it still inherits the data quality issue and how
it could be exploited to reason the 3D structure of scene remains to
be explored. Unfortunately, we still lack a smart annotation tool that
utilizes depth data and simplifies the users’ task of annotating.

We present an interactive tool to annotate RGBD indoor images. As
output the system provides both image and scene level segmenta-
tion, segment labels, and structural relationships (e.g., contact, on-
top, etc.) among the segments. This is achieved via combining a
novel scene labeling scheme with object annotating tasks so that
they mutually assist each other. The system, in the background, per-
forms the tasks of computing segmentations, predicting the object
labels, and inferring the 3D structure of scene. The user simply su-



pervises the process by optionally providing initial scribbles and
then progressively accepting suggestions from the system. Thus the
user only selects among ordered suggestions (e.g., if a shown box is
‘bed’ versus ‘cabinet’) while the system updates its understanding
of the scene and proposes refined suggestions, both in terms of up-
dated tags and segments, for the remaining objects. At any point the
user can ‘approve all’ to finish the process. Figure 1 shows stages
from such a session (see also supplementary video).

Reconstructing a detailed 3D model from a single image remains an
ill-posed problem even in presence of depth cues. In the context of
indoor scenes comprising of man-made objects, we parse the scenes
into simple room layouts and a collection of approximate cuboids
using both color and depth information. Therefore, both geomet-
ric and structural priors (e.g., size, spatial and support relationships
among objects) are exploited via reasoning on this concise 3D rep-
resentation. Note that the prior progressively gets richer. Specifi-
cally, earlier scenes get encoded as prior, which in turn simplifies
annotation of subsequence RGBD images. The task becomes sim-
pler as the user processes more scenes.

Our system works in two phases: First, in a learning phase, we
bootstrap the scene labeling using a handful of labeled RGBD im-
ages (10 scenes) with properly refined 3D structures from where
the algorithm learns geometric and structural priors. Second, in the
key annotating phase, the input RGBD image is parsed into a 3D
structure followed by reasoning possible support relationships and
predicting the labels using the estimated cuboids and learned mod-
els, respectively. The user browses and confirms suggestions, i.e.,
labels, proposed by the system, while the algorithm immediately
refines dimension of cuboids, segmentations, support relationships,
and re-estimates the labels in response to user interactions. The pro-
cess continues until all the objects are properly labeled. The system
augments the existing dataset by appending the newly annotated
image. We evaluate the effectiveness of our system on benchmark
RGBD dataset (126 scenes) both in terms of performance and qual-
ity in annotation. With our tool, we demonstrate that annotating a
RGBD image could be done in a few user clicks and typing with-
out losing the accuracy in the annotated data (see supplementary
material and video).

Contributions. In summary, our main contributions include:

e an interactive annotation tool that enables user to annotate
RGBD indoor images quickly and accurately;

e combining the object annotating tasks with a novel scene la-
beling that exploits geometric and structural priors via rea-
soning on the 3D volumetric representation of RGBD images
using a room layout and cuboid relationships; and

e a context-driven 3D scene structure refinement to automat-
ically adjust the dimension and support relationships of
cuboids according to user annotation.

2 Related Work

Traditional image annotation. The ability to collect a large
amount of annotated images is crucial for applications in computer
vision. Russell et al. [2008] developed a web-based image annota-
tion tool, called LabelMe, to collect a large dataset of labeled im-
ages. It provides user an easy-to-use drawing interface to annotate
object at different level of complexity and allows a large population
of users to work collaboratively. Nowadays, LabelMe or variants
are popular forms of image annotation tool to serve many state-of-
the-art image datasets [Russell and Torralba 2009; Xiao et al. 2010].
However, such 2D annotation tool at most provides object labels
and their image segments, even the image itself contains rich depth
data from RGBD sensors [Silberman et al. 2012; Xiao et al. 2013].

In this paper, we utilize the depth data and propose an interactive
tool to facilitate annotating RGBD indoor images with rich data
in the context of both 2D image contents and 3D structure of the
scene. To the best of our knowledge, ours is among the first works
which aims at annotating RGBD images and we believe a dataset
with properly annotated depth data can be invaluable to advanced
scene understanding.

Indoor scene labeling. Indoor scene labeling has been exten-
sively studied in the field of scene understanding. While a huge
body of work has focused on designing good local image features
(e.g., SIFT and HOG), the growing popularity of depth sensors has
further renewed the perspective of traditional approaches to incor-
porate 3D features. Silberman and Fergus [2011] treated depth as an
additional channel and extracted image features from both color and
depth images to perform the labeling task. Later, Ren et al. [2012]
further investigated combining rich RGBD features and applied
context modeling using MRFs and a sgementation tree to obtain
dramatic performance gains. Instead of treating depth data as an ad-
ditional feature channel, Koppula et al. [2011] extracted various ge-
ometric and contextual features from 3D patches using point cloud.
In contrast, we propose a novel scene labeling algorithm that rea-
sons on the 3D structure of the scene, which consists of a simple
room layout and a collection of cuboids inferred from depth data.
This goes beyond the scope of traditional scene labeling.

Image-based 3D scene modeling. Reconstructing detailed 3D
scenes from images has been widely investigated both in computer
graphics and computer vision. Although it is well-known that a
properly constructed 3D scene can be useful in versatile applica-
tions including scene understanding [Gupta et al. 2010; Hedau et al.
2010] and image manipulation [Karsch et al. 2011; Zheng et al.
2012], missing depth information in camera projection makes the
problem ill-posed. Hence, methods usually rely on detecting image
features or high-level annotation from user to guide the reconstruc-
tion and simplified the 3D representation in a form of popup pla-
nar segments [Russell and Torralba 2009; Saxena et al. 2009] or
approximate primitives such as cuboid [Hedau et al. 2010; Gupta
et al. 2010]. For example, according to Manhattan world assump-
tion [Coughlan and Yuille 2003], Hedau et al. [2010] extracted van-
ishing points from straight line cues and parsed the geometry of a
room using 3D oriented boxes. While Gupta et al. [2010] used user
annotation and applied geometric and physical constraints on a 3D
parse graph, and modeled the scenes using axis-aligned blocks.

Motivated by the availability of depth data from RGBD sensors,
a recent progress has been made in modeling scenes from RGBD
images. However, the high frame-rate in acquisition comes at the
cost of data quality and parts of data are easily lost due to occlu-
sion. Jiang and Xiao [2013] formulated the problem of matching
cuboids to segments as minimizing the local fitting error (e.g., mini-
mize distance from 3D points to visible faces of cuboid) via evaluat-
ing global structure constraints (e.g., small occlusion among nearby
cuboids). Further, Jia et al. [2013] incorporated support and stabil-
ity inference into the matching pipeline to obtain plausible cuboid
configuration. Our approach of fitting cuboids is mainly inspired by
previous ones and is adapted in a simplified formation to facilitate
interactive performance.

3 Overview

To annotate a RGBD indoor image with 2D/3D information in-
cluding image and scene level segmentation, segment labels, and
structural relationships, our system works in two phases: learn and
reason on RGBD data (learning phase) followed by utilizing the
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Figure 2: System overview: Input to the learning phase is a small amount of labeled RGBD images with properly refined 3D structures (high-
lighted cuboids) from which the priors are learned. In the annotating phase, system takes an input RGBD image, constructs its 3D structure
which is encoded as a structure graph, and predicts object labels using the learned priors. User supervises the process by progressively
accepting suggestions from the system while system then automatically refines the structure graph and re-predicts object labels. The process
iterates until user approving all labels and append new image to database to enrich the priors.

learned priors to assist user in annotation (annotating phase), as il-
lustrated in Figure 2.

In the learning phase, the system takes a handful of labeled RGBD
indoor images (10 scenes) as input. Each RGBD indoor image is
parsed into a 3D structure of scene comprising of a room layout
(e.g., floor and walls), and a collection of 3D cuboids to represent
objects (Section 4). In order to generate a baseline training data, we
expect minimal user intervention to assist the construction of 3D
structures in images where the quality of data is poor or missing due
to occlusion. Such properly refined 3D structure is then represented
as a structure graph which is the core processing unit in our system
as well as the target data of annotation (Section 4.1). The learning
algorithm bootstraps by reasoning on structure graphs and learning
geometric and structural priors (Section 5).

In the object annotating phase, system takes an input of RGBD im-
age, parses the image into a 3D structure of the scene and constructs
a structure graph accordingly. We formulate the problem of label
prediction as evaluating a joint probability function, which is mod-
eled based on the structure graph. We employ a greedy approach to
incrementally infer a list of suggestions for each object via travers-
ing the structure graph and evaluating the probabilistic function us-
ing the learned priors. (Section 6.1). The control is then taken by
user who is responsible for supervising the system. User interacts
with system through an interface that allows he/she to guide the
system just by confirming, reordering or overriding (e.g., typing)
the suggestions proposed by system (Section 6.2). While system, in
background, automatically updates its understanding to the scene in
accordance with user’s actions and refines the 3D structure of scene
(e.g., resolving ambiguity and occlusion), object segments, and re-
predicting labels for the remaining objects (Section 6.3). The pro-
cess iterates until user approves all the predicted labels. Then, we
progressively get richer priors by augmenting the existing labeled
dataset with the newly annotated images and retraining the priors,
as demonstrated in Section 7.

4 Modeling Scene Structure

The core of system builds on learning and annotating the geometry
and structural relationships by reasoning a 3D interpretation of the
underlying indoor scene. Reconstructing a detailed 3D model from
a single image, however, is still an ill-posed problem even in pres-
ence of depth cues. Despite the difficulty, the recent research efforts
in scene understanding [Gupta et al. 2010; Hedau et al. 2010] and
image manipulation [Karsch et al. 2011; Zheng et al. 2012] have
shown that rich geometric, structural and contextual information
are encoded in a simplified 3D representation using approximate
cuboids. We design a lightweight algorithm to parse a RGBD im-
age into a 3D representation comprised of a simple room layout
with floor and walls, and a collection of cuboids for objects. We
adopt an over-segmentation of the RGBD image followed by fitting
planes and cuboids to image segments to infer the 3D structure of
scene. Figure 3 shows the pipeline of algorithm.

First, we compute the surface normals at each pixel by fitting a
least-square plane using the neighboring pixels, and render the re-
sult to a color-coded normal map (see Figure 3(a)). Then a graph-
based image segmentation [Felzenszwalb and Huttenlocher 2004]
is applied to over-segment both the RGB image and normal map.
The initial segmentation is generated by superimposing two over-
segmented images and taking the union of their segment boundaries
(see Figure 3(b)). For each segment, a 3D plane is estimated by ap-
plying a RANSAC method on the corresponding 3D points. We
next describe a semi-automatic algorithm to model the room layout
and fit cuboids based on these image segments and corresponding
3D points and planes.

Notations. We denote the initial segmentation as S
{s1, ..., SN, }, where each segment s; = {I;,X;,p,,n;} encodes
the image pixels, 3D points, 3D plane and normal to the 3D plane,
respectively. Segments s; and s; are parallel (orthogonal) if the
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Figure 3: 3D structure parsing pipeline. Given an input RGBD image, our algorithm parses its 3D structure by (a) computing the surface
normals, (b) computing over-segmentation using colour and normal images, (c) extracting the room layout (floor and wall are highlighted in

green and red) and (d) fitting cuboids.

angle between n; and n; is within (above) a tolerance angle of
ar (90 — ar). The distance between s; and s; is defined as
Min(D (X, p;), D(X;,p;)), with D(X,p) calculates the closest
distance between 3D points X and plane p. We define s; and s;
are coplanar if s; and s; are parallel and distance between them
is within a threshold of dr. Unless otherwise mentioned, we use
ar = 30 degrees and dr = 15 cm across the paper.

Extracting Room Layout. We extract the floor by using the grav-
ity information from the accelerometer data of RGBD sensor to in-
fer the floor segments. First, we search for a seed segment which is
orthogonal to gravity direction and is at the lowest boundary of the
scene in that direction. Then we iteratively merge this seed segment
with other coplanar segments and fit a new 3D plane to the joint 3D
points using RANSAC method, until no more candidate segments
could be found. All the segments in the final collection are labeled
”floor” and is denoted as Sy.

Similar to finding the floor, we draw the problem of extracting the
walls on determining a seed segment for each wall and progres-
sively growing from this seed segment. Assume a room has two
dominant and orthogonal walls, we adapt the approach from Silber-
man et al. [2012] by collecting segments which are orthogonal to
floor and forming a set of candidate wall pair (n;, n;), where n; and
n; are normals of two orthogonal segments. We evaluate the score
of each candidate pair as follows:

Eu(ni,ns) :=» "> exp(—(n? - n;)*) M

i=1 j=1

where, (n1,n2) is a candidate pair, N, denotes the number of 3D
points from the collected segments and n? is the surface normal of
a 3D point. We choose the candidate pair that has the largest score,
use the normals to find seed segments for walls and grow from the
seeds to form two labeled wall segments Sy, and Sy, . Figure 3(c)
shows an example of extracted room layout.

Fitting Cuboids. For the rest of unlabeled segments, our goal is
to fit a cuboid to each object segment. In order to specify individual
object segment, our system provides a drawing interface for user
to roughly scribble on the image using two kinds of strokes, one
indicates foreground while the other is background. Then we run
the GrabCut [Rother et al. 2004] to generate a foreground mask and
force the mask boundary to be consist with the initial segmentation
to finish an object segment.

The orientation of a 3D bounding box is determined by two per-
pendicular normals. To simplify the problem, we assume that all
the cuboids are standing up-right against the floor or stacked on top
of other cuboids. Thus, fitting only needs to determine one domi-
nant normal while fixing the other to the normal of floor. Given a set
of 3D points from the object segment, we project them to the floor

as 2D points, excluding 3D points with surface normal perpendic-
ular to floor. We gather 2D points that are close to the boundaries
of convex hull of the projection and fit a line to these 2D boundary
points using RANSAC. The vector that is perpendicular to this line
gives the second dominant normal of box. And the dimension (or
size) of the box is determined by calculating a minimum volume of
box that extends to the boundaries of input 3D points given the box
orientation. Figure 3(d) shows an example of the process.

User Intervention. If the automatic detection fails (e.g., missing
floor or walls, more than two walls, and incorrect object segments),
we expect the user to intervene. For example, in the construction
of room layout, user could initially specify the seed segments for
floor and walls by clicking on the image segments or scribble on
the image to specify and refine the floor, wall and object segments.

4.1 Structure Graph

We now introduce the structure graph to encodes geometric and
structural information from the 3D structure of scene as illustrated
in Figure 4. A structure graph (or SG hereafter) is represented as
a directed graph G := (V, E), with a root node vy € V denot-
ing the floor and each node v; € V indicating an object where
v, = {54, ¢i, i, w§, wi} encodes the information of object seg-
ment (S;), estimated cuboid (¢;), the projection of ¢; on the floor
(r:), and spatial relationships to the room layout (w; and w{'). Each
directed edge e;; € E describing a relationship of v; is supported
by v;. Therefore, given a parsed 3D structure of scene, we construct
the corresponding SG by using its object segments and cuboids, and
reason on the structural relationships as listed below:

(i) Spatial relationships: The spatial relationships of object v; with
respect to room layout which are two binary values wj and wj in-
dicating whether or not the cuboid ¢; contacts and aligns to the
nearest wall, respectively. To model such relationships, we deter-
mine the "back” face of every cuboid which is the face closest to
any wall in the room, excluding top and bottom faces. A cuboid c;
is defined as contacting the wall (w§ = 1) if the distance between
its back face and the nearest wall is within a threshold (dr). And a
cuboid ¢; is defined as aligning to the wall (w;j' = 1) if its back face
is parallel to the nearest wall within a tolerance angle (ar).

(ii) Support relationships: Based on the assumption that all the
cuboids are standing up-right against the floor or stacking on top
of other cuboids, we infer the support hierarchy among objects as
follows. For each object v;, we add a directed edge ey; to E, in-
dicating v; is supported by floor, if the bottom face of c; is close
to floor (< dr). We define the relationships of v; is supporting v;
as follows: (i) The distance between the top face of ¢; and the bot-
tom face of ¢; is within a threshold (dr), and given two projected
bounding rectangles r; and r;, the center point of r; falls inside 7;
or the intersecting area of r; and r; is greater than 30% area of r;.
(ii) To account for the situation where an object v; is supported by



Figure 4: Examples of structure graphs illustrated in 3D and 2D. The ground objects are represented by green cuboids (nodes) while the
floating objects are in red. The arrows indicate support relationships between objects (in light blue) and relative to floor (in yellow).

another non-convex object v;, we define another support criteria as
c; is completely contained in c;. We add a directed edge e;; to
if one of the above criteria is true. For simplicity, we assume each
object is supported at most by one object (or floor), and if there
are more than one supporting objects, we choose the most proba-
ble one with largest intersecting area. Lastly, we define two sets, V
and V, to represent objects that are supported by floor and have no
supporting parent, respectively.

5 Learning Phase

Learning informative feature priors plays the key role to a ro-
bust scene labeling. We found traditional appearance-based features
(e.g., SIFT or HOG) to be insufficient to effectively distinguish im-
age patches apart due to the factor that objects in indoor scenes
come in a variety of categories with large variation in appearance
In contrast, despite the appearance, human can immediately recog-
nize each object in a room merely by its geometry (e.g., bed has
larger base than bookshelf but is shorter in height), its spatial distri-
bution in the room (e.g., bed and bookshelf are placed on the ground
and against to wall) and its support relationships (e.g., pillow is fre-
quently on top of bed while lamp is on top of desk). We propose
a scene labeling algorithm to learn geometric and structural priors
via reasoning on 3D structures inferred from underlying scene, and
exploit the learned models to assist user in smart annotation.

5.1 Learning Priors

Dataset. We bootstrap the learning process with 10 labeled
RGBD indoor images which contained detailed object labels and
segments manually annotated by user (e.g., via LabelMe). Based
on the given annotations, each image is parsed into a 3D structure
using the algorithm described in Section 4. However, the raw depth
data acquired from a single view often suffers from artifacts like
noisy data with outliers and occlusion among objects, hence result-
ing incorrect 3D structures (see Figure 5(left)). We manually re-
fine, if necessary, the dimension and orientation of each cuboid to
improve overall spatial relationships and resolve the structural am-
biguity (see Figure 5(right)). Besides providing baseline training
data for learning reliable priors, such local refinement also plays a
key role in our system to automatically and progressively update
the target SG during the run time annotation (see Section 6.3).

Given properly refined 3D structures, we construct the correspond-
ing SGs which are then served as initial training data. In the follow-
ing, we elaborate how to learn the geometric and structural priors
from SGs regarding to a list of indoor object categories, denoted as
O = {017 Ok}

Geometric model. The design of indoor objects is close related
to their functionality for supporting human activities. Therefore,

the 3D size of object can be an effective cue to distinguish differ-
ent object categories. For example, the bed for sleeping is large in
base and low in height comparing to bookshelf for storing which is
smaller in base and longer in height. Thus, we model distribution
of 3D size of object category using 2D distribution of the bottom
face area and height of cuboids from SGs, and then learn the geo-
metric prior using a multi-class probability SVM [Chang and Lin
2011]. The final geometric model is denoted as Pg4 (0, v) which re-
turn a value in the range [0, 1.0], indicating how likely an object v
is classified to category o given the 3D size of object’s cuboid.

Data enrichment. The set SGs being small, we might suffer from
the insufficient (or zero) samples for each object category, resulting
in an ineffective (or invalid) probabilistic model. Hence, we intro-
duce a separate text-based dataset from IKEA® to enrich the sam-
ples of objects. Specifically, for each object category, in addition to
samples from SGs, we add extra 20 samples by fetching the size
specification from the IKEA® website and then apply random jit-
ter to obtain a total amount of 50 samples. We jitter object area by
N(0,100em?) and height by A/(0, 10cm) with A/(.) indicates a
normal distribution.

Spatial model. In interior design, the arrangement of most ob-
jects (e.g., furniture) is mainly dominated by the geometry of room
layout. To model the spatial relationships of object with respect to
the room layout, the commonly used metrics are measuring objects’
relative distance and orientation to the walls of the room [Merrell
et al. 2011; Yu et al. 2011]. While the existing approaches aim to
learn such priors to guide the object rearrangements, we encode
the relationships to the walls as spatial constraints which are used
to guide the local refinement in Section 6.3. We define two spatial
constraints for each object category as follows. An object category
0; 1s tagged as contacting (aligning to) wall if the ratio of object
vj; = 0; and wj =1 (w? = 1) to all the occurrence of v; = o;

Figure 5: (Left) An incorrect 3D structure. The size of both lamp
and nightstand are bad due to occlusion. (Right) We apply local re-
finement (see Section 6.3) to fix the size and orientation of cuboids.



in SGs exceeds a threshold (0.7). We further classify each object
category into two sets, O. and O, according to the tagged spatial
constraints of contacting wall and aligning to wall, respectively.

Support model. In the context of indoor scene modeling, the
support relationships are proven to be a strong cue describing a lo-
cal structure between two objects [Yu et al. 2011; Jia et al. 2013;
Fisher et al. 2012]. For example, both pillow and lamp tend to be
supported by bed and desk while bed and desk are supported only
by the floor. In this paper, we model the support relationship of
two object categories, 0; and o;, by simply counting the frequency
of eqy € SGs, where v, = 0; and v, = o0;, among all the co-
occurrence (vq, vp) in SGs. We denote the frequency as Ps(0;, 05)
which indicates the likelihood of o; is supporting o;. As for the sup-
port relationship between floor and object, we model it as a support
constraint. Specifically, we create a set O, which includes object
category o; that satisfies the criteria, P ( floor, 0;) > 0.7.

6 Annotating Phase

Our goal in this section is to annotate a given RGBD image with
both image and scene level segmentation; segment labels; and ge-
ometric and structural relationships among segments. The learned
models of geometric and structural priors (P4 and Ps), and spatial
and support constraints (O., O, and O;) are used to facilitate smart
annotation, as described next.

The input to the annotating system is a RGBD image that is seg-
mented, parsed and encoded as a SG. Our system starts by predict-
ing the object labels using the learned priors on a joint probability
function inferred from the input SG. Unfortunately, as mentioned
earlier, the data quality issues often lead to incorrect structure of
SG, thus resulting in inaccurate labeling results. We correct this
by inferring a list of ordered suggestions for each object, instead
of predicting only one, by greedily evaluating the joint probability
function based on the structure of SG. User then takes control and
provides supervision simply by confirming, reordering or overrid-
ing (e.g., typing) the suggestions proposed by system. The system
then updates its understanding to the scene in terms of refining the
structure of SG, object segments, and re-predicting labels for the
remaining objects. User can ‘approve all’ to finish the process at
any point of time.

6.1 Label Prediction

Given a SG G, we formulate the problem of predicting labels for
objects V' = {v1,...vn} as a maximum a posteriori (MAP) infer-
ence problem that aims at finding the most probable assignment of
object categories L™ = {I1, ..., 1 },1; € O and is defined as:

{L"} = argmLaXP(L|G) ?2)
where, P(L|@) is a joint probability function defined on SG,
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By taking E,(L|G) = —log P(L|G) and factorizing Equation 3
using the prior models (P, and P;), finding the MAP is equal to
minimize the energy function,

Ep(LIG) = — Z log(Py(li,vi)) —
Vv, €Vy,Vy
> (log(Py(ly,v5)) + log(Ps(ls, 15))).- “
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While the optimal assignment to Equation 4 could be found using a
variety of well-known numeric methods such as Belief Propagation,
we target a different scenario of inferring a list of suggestions for
each object. The advantage of proposing multiple probable labels
for each object is two-fold: (i) it compensates the issue of prediction
accuracy caused by insufficient training data and incorrect structure
of SG to some extent; and (ii) a properly ordered list would sig-
nificantly reduce the manual efforts in labeling such that user only
selects among the ordered suggestions. Assume the target number
of suggestions is m, while a naive approach to infer such list based
on enumerating all possible combinations of labels is prohibitively
expensive, we develop an approach to greedily evaluate Equation 4
based on the support hierarchy of GG in a top-down fashion, start-
ing from ground objects (v; € V) and ending at floating objects
(vi € Vy).

Inferring ground objects. The modeled support constraint O
presents an effective prior in inferring the suggestions for ground
objects. For each object v; € V;, we evaluate the cost function f,
with respect to labels [; € O, where

folwi, 1) =log(Py(ly,00)) + Y

Vi, €0—Os

log(Ps(ly,1x)) - 0(vi)

(%)
with §(v;) = 1 if v; is a supporting object and 0 otherwise. We sort
the labels in decreasing cost and suggest the top m labels.

Inferring supported objects. To infer the suggestions for sup-
ported object in hierarchy, we exploit the prior knowledge from
suggestions of its supporter in hierarchy. For each object v; €
V — (Vg U V) and each label I, among the suggestions of its par-
ent object in the support hierarchy, we evaluate the cost function f
with respect to labels [; € O — O, and Ps (1, 1;) # 0, where

Is(vi, Lillp) := log(Py (15, vi)) + log(Ps(lp,15)).  (6)

Then, we add the label with highest cost to the suggestions. In the
case of none of [; exists, we simply evaluate the geometric prior
log(Py (15, vi)) with respect to labels [; € O — O and select the
one with highest cost. The suggestions are built until all the labels
in parent suggestions are visited in order. We traverse the support
hierarchy in a level-order to ensure the suggestions of object is built
before visiting its child.

Inferring floating objects. Attributing to the missing depth data
or occlusion by other frontal objects, the cuboid of floating object
is neither supported by the floor nor by any other cuboids. In both
cases, the size of cuboid is wrong and thus using the geometric
prior P, to infer the suggestions is infeasible. We use two rules to
predict how likely a floating object would be a ground or supported
object by reasoning on the relationships with respect to non-floating
objects and generate the suggestions accordingly.

For each object v; € V and its cuboid c;, we build the suggestions
by evaluating the following rules in turn: (i) If ¢; is unlikely to be
supported by other nearby non-floating cuboids (see Section 6.3),
we virtually extrude the bottom face of ¢; to the floor and infer the
suggestions as it is a ground object. (ii) Otherwise, c; could be ei-
ther supported or occluded by nearby cuboids. In the former one, we
search for the most probable supporting parent v, virtually extrude
the bottom face of ¢; to top face of ¢, and infer the suggestions S
based on this predicted support relationship. In the later, we con-
sider v; an occluded ground object and infer suggestions S>. Then
we take top | %5 | and m — | 7 | labels from 1 and S2, respectively,
and merge them into the final suggestions.
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Figure 6: Progressive structure refinements. (a) The initial structure and predicted labels. (b) User re-orders from nightstand to bed and
system performs local refinements to improve the dimension and orientation of bed’s cuboid. (c) User further assists in resolving the ambiguity
arise from nearby object and approves all the labels. (d) While system globally infers the relationships among objects, and thus expanding

bed to support two floating pillows.

6.2 User Session

After predicting object labels, the system thread enters the user ses-
sion and waits for feedbacks from user. To facilitate the annota-
tion process, the interface allows user to interact with system in a
quick and intuitive manner. In display, our system draws cuboid and
shows the first label in the ordered suggestions on top of each ob-
ject. In annotating, user first clicks on an object and proceeds with
one of the following actions:

e Confirm. User clicks the “Lock” label in the popup menu to
confirm the suggestion.

e Re-order. User rectifies the predicted label by selecting an
alternative label among the suggestions in the popup menu.

e Type. None of the suggestions is correct, indicating that the
prediction has failed, and user could override the label by typ-
ing a new one through a dialog.

e Approve all. User clicks the “Approve all” button to confirm
all the labels and finish the annotation process.

Each time user performs an action, the system will automatically
update its understanding to the scene to respect user’s confirmation.

6.3 Structure Graph Refinement

The bottleneck in obtaining an accurate labeling is in the quality
of the input SG G, which in itself represents the target data for
annotation. The key challenge is to improve the quality of G and
thus boosting the labeling performance for robust annotation. How-
ever, been limited by the quality of data, automatic algorithm at best
produces mediocre results and leaving many ambiguities that only
human can resolve. In our cases, the ambiguity comes from floating
objects in V; which might be a supported object or a ground object
occluded by some frontal cuboids. We make use of user annota-
tions and the learned models to progressively refine the structure of
G and resolve ambiguity. Specifically, given the user confirmation,
our system performs a joint refinement based on the learned mod-
els to locally adjust the dimension and orientation of cuboids, and
then globally resolve the ambiguity by examining the inter-object
relationships between floating and non-floating objects.

Definition. First, given a cuboid ¢; and its expansion cj, we
say c; is over-expanded if |vol(c;) — vol(c;)| < 0.3 x wvol(c;)
where, vol(c) is the volume of cuboid ¢, or if there exists any
cuboid in the scene that intersects cg but not ¢;. Second, an ob-
ject v; is likely to support v; if the following criteria are sat-
isfied: (i) The distance between the top face of ¢; and the bot-
tom face of ¢; is within a threshold (dr). (ii) The closest dis-
tance between two projected bounding rectangles r; and r; is
smaller than a threshold of 50% diagonal length of r;. (iii) If c;
is an expansion of ¢; that physically supports c;, then ¢ must be
not over-expanded. To calculate ¢}, as shown in inset, we expand
¢; in the direction parallel to floor and determine the extent of
expansion by finding a minimum

bounding rectangle on the projective @

plane of floor that aligns to r; and en- = & c
closes both 7; and r;. Lastly, we say ‘

an object v; is likely to occlude v; if =

at least one of rays from viewpoint to ,
vertices of frontal face of ¢/ intersects ?Ci @Ci

ci, where ¢} is the extrusion of ¢; to 3D cuboid 2D projection
the floor.

Local refinement. Most indoor objects retain consistent spatial
relationships with respect to the room layout across various scenes
(e.g., large furniture like bed and bookshelf are usually placed on
the ground and against the walls). We use the learned spatial con-
straints (O., O, and O;) to guide the local refinement. Given the
latest object v; with label I; confirmed by user, we check the fol-
lowing conditions in turn and refine ¢; accordingly: (i) If I; € O,
we rotate ¢; such that its back face aligns to the nearest wall and
re-estimate c; by fitting 3D points given the new orientation. (ii)
If l; € O, we extrude the back face of ¢; toward and touching
the nearest wall, and it is not over-expanded. (iii) If I; € O, we
extrude the bottom face of ¢; to the floor. (iv) If v; has a support-
ing parent v,, we extrude/shrink the bottom face of c; to the top
face of cp. Such local refinement, although simple, performs sur-
prisingly well in improving the spatial relationships to the room
and aligning the cuboid with underlying object image. For example
in Figure 6((a)-(b)) once the user confirmed the bed, system refined
its orientation and dimension according to its learned spatial con-
straints to the room layout.



=&=Confirm =@=Re-order Type =**Top-3-Hit

N
w
3]

0.9

NN W
o o o

o o

0 o
#1 #2 #3 #4 #5 #6 #7 #1 #2 #3
Trial

=&=Qur system =@=Manual

H/H—/\H—H_H 02

Average timing (sec)
> @
5/
Error rate
o

Initial = Result

o
o

g
o
5}

Sl E BB E"EEmS
#4 #5 #6 #7 #1 #2 #3 #4 #5 #6 #7
Trial Trial

Figure 7: Performance and quality evaluation. Each chart represents (a) the ratio of used manual actions and the accuracy of prediction and
suggestions (‘Top-3-Hit’) during the annotation process, (b) the average annotating time with and without our system, and (c) the quality of
support relationships compared to groundtruth in terms of the edge error rate (see Section 7).

Global refinement. After the local refinement, we improve
global inter-object relationships by examining the relationships of
v; with respect to v; € V. The local refinement of c;, e.g., ex-
truding and aligning to wall, might potentially improve its support
relationships with v; € V. Therefore, we reconstruct G' according
to the new geometry of ¢; (if it is changed). In addition, if v; is a
ground object, i.e., I; € O, then it is likely to support or occlude
nearby v; € V. Note that object that is likely to be supported by
v; could probably be occluded by v; as well, and we leave and re-
solve such ambiguity to later stage (e.g., pillow and dresser in Fig-
ure 6(b)). Thus, we only search objects in V that are likely to be
occluded and not supported by v;, and simply extrude these objects
to the floor and reconstruct G. Since it is not always 100% correct
to extrude potentially occluded objects, we allow user to "undo’ this
operation if necessary.

Upon each local and global refinement, we update G and use it as
new input to label prediction followed by another user session. The
process iterates until user performs the ‘approve all’ action at which
moment all the labels are confirmed and our system performs a fi-
nal refinement. First, we traverse the support hierarchy of GG in a
top-down, level-order and apply the local refinement to every vis-
ited object and reconstruct GG accordingly. Second, for each object
v; € Vy we search V; for likely supporting parents V,, and find
the object v; € V,; with highest Ps(l;, ;). Given the strong priors
by user, i.e., groundtruth labels, we resolve the ambiguity between
support and occlusion as follows: (i) If /; € Os and there is no or
weak support evidence for v; (V, = {0} or Ps(l;,1;) < 0.7), we
consider v; is a potential occluded ground object and thus extrude
v; to the floor. (i) Otherwise, if Ps(l;,1;) > 0.7, we physically
expand c; to support ¢;. In Figure 6((c)-(d)), two floating pillows
indicate a strong support relationships and thus affect the nearby
bed which is expanded to support pillows. Finally we reconstruct G
to obtain the final annotation for 3D structure and labels.

Segment refinement. While the initial cuboids are inferred from
object segments, in reverse we exploit the refined cuboids to im-
prove the quality of object segments. Available depth simplifies this
step. We traverse G in a bottom-up, level-order and for each object
v; € V along with initial segments S;, we search in S for each
image segment, s;, that is enclosed by or intersects with the convex
hull of the image-space projection of ¢;. Then, if 80% of 3D points
of s; are inside the volume of ¢; we absorb s; into S; and label
it with [;. Otherwise, if s; was originally in S;, we unlabeled and
remove it from S;.

7 Evaluation

We tested our system on the benchmark NYU-Depth dataset [Sil-
berman et al. 2012] which consists of 1449 RGBD images that cov-
ers 26 scene classes and 894 object categories, where each image
contains detailed object segments and labels annotated by users. We
conducted an experiment to quantantively and qualitatively evalu-
ate the performance of SmartAnnotator, demonstrating that it effec-
tively learns richer priors as user processes more scenes and pro-
gressively simplifies the annotation process.

Experimental setting. We randomly picked 10 images from the
‘bedroom’ scene class to bootstrap the learning process and used
9 commonly seen object categories in the bedroom scene as our
target labels. Specifically, we choose ‘bed’, ‘sofa’, ‘dresser’, ‘night
stand’, ‘desk’, ‘chair’, ‘bookshelf’, ‘lamp’, and ‘pillow.” While in
the label prediction session, the system displays 6 suggestions for
each object. The objective of the experiment was to annotate an-
other 126 bedroom scenes, chosen at random, from the NYU-Depth
dataset, using the learned priors. As preprocessing, we parsed and
constructed SGs for the target images based on the annotated ob-
ject segments. To avoid distractions during the annotation process,
objects that are not belong to target categories are filtered out in ad-
vance. We designed an incremental learning scheme by uniformly
dividing the experiment into 7 trials with each trial contains 18
scenes. We arranged the images such that the complexity of scenes,
in terms of number of objects and occurrence of support relation-
ships, are similar across trials to prevent measurement bias. Before
starting the experiment, users were given a tutorial (~5 mins) to be
familiar with the interface and the flow of annotation process. Fig-
ure 8 shows 5 annotated scenes from the experiment. Please refer
to supplementary material for a complete set of tested scenes.

Performance evaluation. We first evaluated the performance of
our system in terms of manual efforts and timing in annotating
phase. The major labors are from manual actions performed in
user session to refine suggestions from system (i.e., ‘Confirm’, ‘Re-
order’ and ‘Type’ actions in Section 6.2). Therefore, we quantized
the measurement by counting the frequency of user performing
each action among all objects in a trial. We further evaluated the
performance of label prediction and suggestion algorithm by com-
puting a ‘Top-3-Hit’ ratio that indicates the groundtruth label is
among the top 3 suggestions. For timing, we compared the aver-
aged elapsed time of annotating process with and without the assis-
tance of our system. For a naive low-level annotating, we prepared
another trial and measured the timing of user one-by-one typing in
the label for each object.

As shown in Figure 7(a), although our system bootstraps from a
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Figure 8: Five sample annotated scenes from our experimental studying. The top row shows input RGBD images, the middle row presents the
annotated data with object labels and 3D structure of the scene, and the inferred supporting hierarchy is shown in bottom row. The yellow
and light blue arrows indicate support relationships with floor and other objects, respectively.

weak model, overall performance improves as user processes more
scenes in the subsequent trials. This shows the effectiveness of our
system as it incrementally gets richer priors which in turn benefits
label prediction and suggestion as shown in the ‘Top-3-Hit’ curve.
As a result, the annotation process is progressively simplified re-
quiring lesser average annotation time, which, not surprisingly, is
much better than the naive manual labeling as shown in Figure 7(b).
Also note that performance degrades slightly in the last two trials as
can be expected from an incremental learning scheme where errors
accumulate overtrials and can damage later priors learning.

Quality of support relationships. We compared the quality
of our inferred support relationships, both before and after the
structure graph refinement, with groundtruth data. To generate
groundtruth SGs for 126 scenes, we first constructed initial SG for
each image and then manually refined its edge structure. Given a
target SG G and its groundtruth SG Gy, we measure error be-
tween G and G 4; by counting the number of required edge insertion
and deletion to transform from graph G to G 4. Note that since ev-
ery object is at least supported by one another object, including the
floor, we counted support error rate in a trial with respect to total
number of objects among 126 groundtruth SGs. Figure 7(c) shows
the error rate of each trial both from the initial and refined SG, indi-
cating that our structure graph refinement could effectively improve
the quality of support relationships.

Limitations of our system includes: (i) It is unable to handle im-
ages where the floor is completely invisible and hence fails to in-
fer proper floor segments (see Figure 9(left)). In such case, all the
ground objects are floating and partially occluded, and the local
refinement to fix ground cuboids is disabled due to the lack of ref-
erence floor. (ii) The simplified 3D abstraction using cuboids could
not capture complex interaction between non-convex objects (e.g.,
a chair is tucked inside a desk), and therefore introducing erroneous
measurement in cuboid dimension (see Figure 9(right)). A detailed
3D representation is required to obtain more accurate information.
(i1) Without employing an introspection, our model can suffer from
learning erroneous 3D structures from earlier trials and thus dam-

age the later ones.

8 Conclusion

We presented an interactive tool for smart annotation of RGBD in-
door scene images with both image and scene level contents includ-
ing image segments, segment labels, and structure of the scene. In
the learning phase, we design a novel scene labeling to train ge-
ometric and structural priors by reasoning on 3D structure of the
scene inferred from the depth data. In the annotating phase, system
assists user in performing laboring tasks of computing segmenta-
tions, predicting the object labels using the learned priors, and infer-
ring the 3D structure of scene, while user play. User simply super-
vises the process by progressively accepting suggestionf from the
system which in turn updates the labels and structure in response to
user. Such pattern iterates until user approves all labels. In the near
future, we plan to both release source codes of our tool and deploy
the system as a web-based application.

Several interesting challenges lies ahead: (i) Incorporating an in-
trospection scheme to alleviate the error accumulation issue which
involve re-annotating scenes in earlier trials using the latest models
would be an interesting future direction. (ii) While we only tested
the system on a particular set of images and objects (e.g., bedroom
and 9 object labels), our system is flexible to be extended to sup-

Figure 9: Limitations. (Left) Scene with missing floor. (Right) Com-
plex interaction between two non-convex objects (chair and desk).



port multi-scene classes and arbitrary object categories. We plan an
extension of learning separated models for different scene classes
while in annotation process, we exploit a scene classifier [Quattoni
and Torralba 2009] to choose target model and dynamically extend
the categories when user typing a novel label. However, naively
extending categories might potentially pollute the learning process
and thus requires more thoughts. (iii) In the learning phase, we have
focused on geometry/texture and support relationships. Other po-
tential contextual relationships, such as relative position and orien-
tation between two objects (e.g., nightstand is often beside the bed)
could potentially be used. (iv) Finally, to account for more com-
plicated structural relationships, one needs a detailed 3D model of
object, especially for objects of non-convex shape, in order to esti-
mate accurate contact information. However, how to automate the
process remains to be investigated.
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