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Abstract 

In this article four methods to calculate charge transfer integrals in the context of bridge mediated electron 

transfer are tested. These methods are based on Density Functional Theory (DFT). We consider two 

perturbative Green's function effective Hamiltonian methods (first at the DFT level of theory using 

localized molecular orbitals, second applying a tight-binding DFT approach using fragment orbitals) and 

two constrained DFT implementations with either plane-wave or local basis sets. To assess the 

performance of the methods for through-bond or through-space dominated transfer, different sets of 

molecules are considered. For through-bond ET, several molecules that were originally synthesized by 
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Paddon-Row and co-workers for the deduction of electronic coupling values from photo-emission and 

electron transmission spectroscopies, are analysed. The tested methodologies prove to be successful in 

reproducing experimental data, the exponential distance decay constant and the super-bridge effects 

arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with 

heterocyclopentadienes molecules were created and analysed on the basis of electronic coupling 

dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The cheap 

FODFTB method gives similar results to CDFT and both reproduce the expected exponential decay of the 

coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to 

give reliable results for both through-bonds and trough-space ET and present a good alternative to 

expensive ab initio methodologies for large systems involving long-range charge transfers. 

Introduction 

 Long-range biological electron transfer (ET) reactions have been widely studied for decades due to their 

importance in biological processes such as respiration, photosynthesis and enzymatic reactions. Transfers 

between redox centres separated by a few to about 15 Å are facilitated by a bridge, i.e. the intervening 

medium composed of protein, solvent or other molecules. Several theoretical mechanisms have been 

proposed to describe ET such as bridge-mediated superexchange, charge hopping or the more recently 

proposed flickering resonance model.1 The super-exchange model, involving tunnelling of the 

electron/hole between the donor (D) and the acceptor (A) along the bridge may be employed for the 

analysis of charge transfer through systems characterized by a large energy gap between the D/A and 

bridge (B) levels, and sufficiently short distances to permit tunnelling transport. No redox states of the 

bridge are directly involved in the transfer and the rate constant of the reaction is given by the following 

non-adiabatic Marcus’s semi-classical theory equation:   

𝑘!" =
2𝜋
ℏ

1
4𝜋𝜆𝑘!𝑇

|𝑇!"|!𝑒𝑥𝑝 −
𝜆 + Δ𝐺° !

4𝜆𝑘!𝑇
 

 (Eq 1) 
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where ΔG° is the driving force of the ET, λ the reorganization energy, and TDA the electronic coupling 

between initial and final ET states. Important efforts have been made by computational chemists to 

develop methods to determine these three parameters at the molecular level. Since the beginning of the 

‘80s many developments have focused on ab initio or semi-empirical methodologies to calculate the 

electronic coupling in bridge mediated ET reactions. Considering two (quasi)-diabatic states system, the 

electronic coupling represents the off-diagonal element of the electronic Hamiltonian matrix. Even in the 

presence of the bridge, the system could be diabatized in initial and final state in a two-state 

approximation. The problem is therefore to generate two reasonable diabatic states allowing electronic 

coupling calculations. One can use different methods such as block diagonalisation of the adiabatic 

electronic Hamiltonian,2–4 generalized Mulliken-Hush method (GMH),4–9 fragment charge difference,10 

fragment energy difference,11 fragment orbital (FO),12–19 projection methods,20,21 constrained density 

functional theory (CDFT),22–26 frozen density embedding27, tunnelling current19,28, etc. In addition, some 

multi-state diabatization techniques —i.e. three or more states including the donor, bridge and acceptor—

have also been described in the literature.29–32 Alternative less expensive approaches to determine 

electronic couplings are the indirect (semi-)empirical methods such as the pathway model,33 and packing 

density model.1,34  

 

The electronic coupling depends intrinsically upon the structure of the intervening medium. It is also 

known to exponentially decrease with D-A distance d, even in bridge mediated ET: 

𝑇!" = 𝐴𝑒𝑥𝑝 −
𝛽𝑑
2

 
(Eq 2) 

 

Since the 1980's a great deal of efforts has been devoted to the understanding of the relationships between 

molecular structure and electronic coupling strength, see for example References 35–40. Two types of 

interactions mediate electron tunnelling along the intervening bridge: through-bond (TB) and through-

space (TS) interactions. Bridges can consist of stacks of several molecules separated by vacuum, 
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covalently-linked molecular chains, or a mixture of both. Recent computational advancements enable 

high-level ab initio electronic coupling calculations on small systems with simple and/or symmetric 

bridges.41,42 However, more complex, inhomogeneous bridge-mediated ET events, such as those occurring 

in diverse biological media, require computationally less expensive approaches in order to address the 

complexity of the medium and thermal fluctuations through many conformations. Less computationally 

demanding methods have thus been recently developed, based on density functional theory (DFT) or semi-

empirical density functional tight-binding DFTB. To assess the necessary approximations associated with 

cheaper TDA calculations, benchmarking analyses provide a base from which to investigate and compare 

the accuracy of the different methods and their respective sources of error. However, most of the existing 

articles focused on only one method for a given molecular system. Instead, in the present work we aim to 

integrate the testing and analysis of several different semi-classical methods, on a consistent set of organic 

D-B-A systems and compare their applicability and predictivity of TDA in the various presented molecular 

contexts. 

  

We have previously used several schemes, based on CDFT implemented in deMon2k or CPMD, fragment 

orbital density functional theory (FODFT) and density functional tight-binding (FODFTB), or an effective 

Hamiltonian methodology in the framework of materials science or biological systems. Recently, we 

published electronic coupling calculations on benchmarked D-A systems, involving hole or electron 

transfer,43,44 and a study of bridge-mediated transfer through hydrocarbon molecules applying an effective 

Hamiltonian strategy with DFT-based Green’s function pathway.45 Electronic coupling contributions to 

ET through diverse biomolecules, including DNA strands,46–49 polypeptide50–53, heme-to-heme ET54 or 

cryptochrome/photolyases,55,56 and to organic semi-conductors57 have been successfully calculated with 

these approaches. In addition to our recent works, Ando and co-workers demonstrate the utility of the 

fragment molecular orbital-linear combination of MOs (FMO-LCMO) for TDA predictions within various 

organic and biological molecules.42,58 
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In this article we first review our different approaches to determine electronic couplings in D-B-A 

systems. We then present applications on two types of systems: (1) diene D-A systems with various 

covalently-bound saturated hydrocarbon bridges from Paddon-Row et al59–61 to characterize coupling 

dominated by TB interactions, and (2) D-B-A systems involving TS interactions between unsaturated or 

aromatic molecules. For each D-B-A set, D and A are identical (i.e. the same molecule or moiety), 

whereas the bridge is varied by the chemical nature of its components, or by its length via the number of 

bridging units (whether the number of molecules or intervening covalent bonds). We compare the 

resulting TDA predictions at different levels: within a method (for instance by the choice of a functional or 

a basis set), between methods or with respect to estimations from experimental data where available. 

Methods 

Effective Hamiltonian Methodology 
 

In an orthogonal basis we can write the Schrödinger equation for the full D-B-A system as 

𝐇𝐂 = 𝐸𝐂 (Eq 3) 

We then apply a partitioning scheme62–68 where we divide the matrix equation into the D/A (a) and bridge 

(b) subspace: 

𝐇!! − 𝐸𝟏!! 𝐇!"
𝐇!" 𝐇!! − 𝐸𝟏!!

𝐂!
𝐂!

= 0 (Eq 4) 

where Haa (Hbb) is the submatrix consisting only of D/A (B) components. 

There are different approaches to construct the D, A and B localized states. As implemented in 

GAMESS,69 the Pipek-Mezey localization70 routine is used in this work for orbital localizations in DFT 

calculations. The optimal accuracy of this localization scheme within this approach was demonstrated in 

previous works.71 In FODFTB calculations, we apply fragment orbitals as localized states, which are 

straightforward to use when D, A and B are separated molecules.51  

 By solving one linear equation for 𝐂! and substituting the result in the second equation we can reduce Eq 

4 to an equivalent equation of the D/A subspace  
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𝐇!"
!""𝐂! = 𝐸𝐂! (Eq 5) 

where 𝐇!"
!"" is an effective (contracted) 2x2 Hamiltonian 

𝐇!"
!"" = 𝐇!! + 𝐇!" 𝐸𝟏!! − 𝐇!! !𝟏𝐇!" (Eq 6) 

 

The Hamiltonian entering Eq 5 is therefore dependent on E, which makes a self-consistent solution 

necessary. The tunnelling energy E=εtun  is initially set to an average of the D and A state energies, and 

then iteratively converged as the average of the resulting eigenvalues of the 2x2 Hamiltonian, until 

reaching self-consistency within a defined tolerance. 

From the converged Hamiltonian, 𝑇!" can be obtained as the off-diagonal element, which can be written 

as 

𝑇!" 𝐸 = 𝛽!" +    𝛽!"𝐺!"(𝜀!"#)𝛽!"

!

!,!

 
(Eq 7) 

where 𝛽!" is the direct electronic interaction between D and A, the terms βDi and βjA represent the 

interactions between the bridge and the D, and A, respectively, and Gij is an element of the Green’s 

function matrix for the bridge 

  

𝐆 = (𝜀!"#𝟏!! − 𝐇!!)!! (Eq 8) 

 

The converged eigenvalues represent the energies of the poles of the non-adiabatic intersection, at which 

point, the elements Gij, represent the probabilities of the electron to tunnel through the specified orbital 

space of the bridge.33,72–74 

Fragment-Orbital Density Functional Theory Tight-Binding 
 

DFTB is derived from DFT using a Taylor series expansion of the total energy around a reference density, 

which is written as a superposition of neutral atomic densities. DFTB1,75,76 DFTB277 and DFTB378 denote 
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a first, second and third-order expansion, respectively. DFTB is highly efficient both due to the 

application of a minimal basis and a two-centre approximation, which allows the tabulation of 

Hamiltonian and overlap matrix elements. In the conventional parameterization, however, the atomic basis 

functions are confined to achieve an optimal description of bonded situations, which in turn leads to 

underestimation of the electronic interactions of atoms in Van der Waals distance and beyond.48 

 

In order to compensate this drawback we use a special FO description in our FODFTB calculations, which 

showed in previous studies inter-molecular couplings in  excellent agreement with FODFT calculations in 

a triple-ζ basis.43,44 As in conventional FO calculations we can obtain the FO Hamiltonian through the 

transformation of the Hamiltonian matrix HAO constructed in an atomic orbital basis 

𝐇!"   =   𝐂!𝐇!"𝐂 (Eq 9) 

 

where C is a block-diagonal matrix of the fragment orbital coefficients. However, as HAO we use in 

FODFTB calculations a block matrix, where the (standard) mio-1-1 parameters77 are employed for 

calculation of the matrix elements in the diagonal blocks (intra-molecular interactions), and for the off-

diagonal blocks (inter-molecular interactions) the same less-confined set is used as in Ref. 43 and 44. The 

FO overlap matrix is obtained analogously and subsequently the submatrix of HFO consisting of HOMO 

orbitals of the fragments is orthogonalized. 

TDA from Orbital Splitting 
 

TDA can also be predicted from adiabatic states. It corresponds to half of the energy gap between the 

ground and first excited state at the transition state geometry. In symmetrical systems, we can approximate 

the transition state with the optimized geometry of the neutral molecules, because the two sites are 

equivalent. For a non-symmetrical D-A pair, this approximation fails.79 In a single-electron picture, one 

can apply Koopmans' theorem to estimate TDA as half the splitting of the HOMO levels of the neutral 

system72:  
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𝑇!" =
!
!
(𝜀!"#" − 𝜀!"#!!!) (Eq 10) 

where 𝜀!"#"!! and 𝜀!"#"  correspond respectively to the energy of the ground state and of the excited 

state of the positively charged system.  

Constrained Density Functional Theory 
 

Constrained DFT allows one to define diabatic states at the DFT level in an ad hoc way.80,81 In CDFT the 

energy functional minimization is performed under one or several constraints that the electron density 

must fulfil at SCF convergence.82 The constraint is incorporated in the minimization process via a 

Lagrange multiplier technique. In Eq 10, valid for a single constraint case, 𝐸 𝜌  is the conventional DFT 

energy functional including core, Coulomb and exchange-correlation contributions (XC). 𝜆! is a Lagrange 

multiplier that needs to be determined in the SCF. Wu and Van Voorhis showed that 𝜆! can be obtained 

by maximizing the energy functional.83 𝑤 is a real space function that determines which atoms are 

subjected to charge constraint and 𝑁! is the targeted charge. Both of these terms are defined by the user. 

Regarding 𝑤, since there is no strict definition of an atomic charge in a molecule, one is compelled to rely 

on a population scheme such as those of Mulliken,84 Löwdin85 or Hirshfeld86 to specify the charge 

constraint in practice. Past experience in our groups led us to choose the Hirshfeld scheme for the present 

study.  

ℰ[𝜌, 𝜆!]   =   min! max
!!

𝐸 𝜌 + 𝜆! 𝜌 𝒓 𝑤 𝒓 𝑑𝒓 −   𝑁!  (Eq 11) 

 

Two implementations of constrained DFT using plane waves or localized Gaussian type atomic orbitals 

are tested. These two methods are implemented in CPMD26,87 and deMon2k,88 respectively.  

 

Computational details 

Molecular Geometries 
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The geometries for all ethylene, heterocyclopentadiene D-B-A structures and hydrocarbon-linked dienes 

were optimised in their highest symmetry conformation, C2V or C2, within the GAMESS computational 

chemistry software. The DFT functional B97-D89 was employed for structural optimizations, using a very 

fine grid, tight convergence, and the triple-ζ basis KTZVPP.90 Hessian vibrational analyses confirmed the 

positive definite structures, used in subsequent analysis across all methodologies. Cartesian coordinates of 

all molecules are given in Supporting Information.  

 

DFT Effective Hamiltonian Calculations in GAMESS 
 

The software GAMESS was used for all DFT calculations, using a very fine grid of 96 radial and 1202 

angular Lebedev points. The B97-D functional89 together with the 6-311G(2df,2pd) basis set91 were 

applied for all TDA calculations, given the agreeable accuracy of this level of theory found in previous 

work. Coupled to the Pipek-Mezey localization routine as implemented in GAMESS-US, an in-house 

implementation of the effective Hamiltonian calculation was utilized for electronic coupling predictions, 

in which the εtun convergence tolerance was set to 10-6 Ha. 

DFTB Calculations 
 

The FODFTB effective Hamiltonian calculations were performed with an in-house implementation of 

DFTB. The fragments were calculated in vacuo at the DFTB2 level of theory with an SCF energy 

convergence criterion of 10-7 Ha. The same criterion was also used for the convergence of εtun. As 

described in the method section, the mio-1-1 parameters were used in combination with a less confined 

electronic parameter set, where the density and wave function confinement radius was set to infinity and 8 

bohr, respectively.48 

Orbital splittings were obtained from standard calculations (only confined basis set) on the neutral 

molecule with the DFTB+ program92  using the mio-1-1 parameters.77 Calculations were performed at the 
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DFTB2 level of theory in accordance with our FODFTB implementation. The atomic charges were 

converged with a tolerance of 10-5 e between two cycles. 

CDFT Calculations with deMon2k  
 

deMon2k is based on the resolution of the Kohn-Sham equations using density fitting techniques.93,94 

When using LDA (Local Density Approximation), GGA (Generalized Gradient Approximation) 

functionals or hybrid GGA, the auxiliary density is further employed to calculate the XC potential and 

energies.95 A variational fitting procedure of the Fock exchange potential has been used for hybrid 

functionals as described in Ref. 96.  

For electronic coupling calculations we have tested the GGA functional PBE,97 the meta-GGA functional 

TPSS98,99 and the following hybrid GGA or meta-GGA functional PBE0100 (25%), PBE50 (50%), B3LYP 

(20%),101 BHHLYP (50%) M06-2X (54%),102 M06HF (100%)103 with different exchange energy replaced 

by Hartree-Fock exchange (HFX) as indicated in the brackets. Several Dunning “correlation-consistent” 

basis sets were used: the cc-pVDZ,104 cc-pVTZ,105 and cc-pVQZ106 basis sets, which include polarization 

functions by definition, and two further augmented with diffuse functions, aug-cc-pVDZ and aug-cc-

pVTZ. We also tested the influence of the basis set used to expand the auxiliary electron density including 

GEN-A2, GEN-A2*, GEN-A3, GEN-A3*.107 We found little influence of the auxiliary basis set on 

electronic coupling values and we will only present here data obtained with GEN-A2*. SCF energy 

convergence criterion of 10-8 Ha were requested for all calculations. Convergence criterions of 10-4 e 

were requested for the CDFT constraints. An adaptive grid108 was used to calculate the XC potential with 

a tolerance of 10-6 Ha on its diagonal matrix elements. A fixed grid of fine accuracy is specified for 

calculating the elements of the matrix representing the operator w (Eq. 10) with the Hirshfeld scheme. 

 

When modelling an electron transfer reaction in a D-B-A system, two CDFT calculations must be carried 

out. Following Ref. 109 we found it convenient to constrain the net charge difference between D and A to 

equal ±1.0. Therefore in our calculation, the function 𝑤 is identical for both diabatic states but the target 
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charge 𝑁! is varied. There is some arbitrariness in the definition of the donor and acceptor groups in a 

bridge mediated ET, particularly for through bond interactions. We have consequently tested the 

possibility to include part of the bridge atoms in the constrained regions. Three definitions were tested for 

the saturated hydrocarbon bridges containing 4, 11 or 22 atoms in each donor or acceptor groups (Figure 

S1).  

CDFT Calculations with CPMD 
 

The CDFT calculations were also performed using the CPMD program package with a plane wave basis 

set. The Lagrange multiplier λc was optimised with the constraint set to a Hirshfeld charge difference of 1 

between the donor and the acceptor group with a tolerance of 5x10-5 e. Similarly to the deMon2k 

calculations, the applied exchange correlation functional was PBE, where the GGA exchange was 

replaced with 0%, 25% and 50% exact exchange (HFX). A reciprocal space plane wave cutoff of 80 Ry 

was used for the orbitals and half of the cutoff for the calculation of the exact exchange energy 

contribution. The DBA molecules were centred in a rectangular box. The box dimensions were chosen 

large enough so that the distance between any nucleus and the closest box edge was at least 4.0 Å. Any 

further increases in box size resulted in a change of less than 0.2 meV. All calculations were done in 

vacuo by removing all interactions with periodic images. Core electrons were replaced with Troullier-

Martins pseudopotentials.110 The convergence criterion for the wavefunction optimisation was a maximum 

electronic gradient component of less than 10-7 a.u.  

 

Results and Discussion 

 

I. Through-bond hole transfer 
 

Experimental and theoretical studies were performed by Paddon-Row and co-authors on a large set of 

nonconjugated hydrocarbon dienes, as those presented in Figure 1, to explore the orbital interactions 
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through several σ-bonds.59–61 This comprehensive work emphasized the importance of TB interactions 

relative to TS interactions for electron transfer or hole transfer in such systems. The authors also showed 

the exponential decrease of electronic coupling as one increases the number of σ C-C bonds between the 

two diene moieties, and provided explanations for the behaviour of different bridge structures with orbital 

representations. Given the precedence of this experimental and theoretical data for these particular D-B-A 

systems, we selected the set as enumerated in Figure 1, for comparing our TDA calculation approaches.  

 

 

Figure 1: Molecules considered for investigating through-bond interactions.59,61 Set 1: molecules 1-5 
for variable bridge lengths; set 2: molecules 4-11, for variable bridge structures; set 3: molecules 12-
15 for comparison between normal and super-bridges.  m varies between 4 and 7 or 2 and 3 for 
molecules 12 and 14 or 13 and 15 respectively (corresponding to D-A distance of  11 to 17 σ-C-C 
bridging bonds). 
 

We split our molecule sample into three sets. The first set comprises molecules 1 to 5 to evaluate the TDA 

decrease with D-A distance.60 The second set combines molecule from 4 to 11, enables investigation of 

TDA behaviour with variation of bridge construction. Corresponding experimental electronic couplings for 

this set are available from photo-emission spectroscopy (PES).59 The third set covers molecules 12(m) to 
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15(m) (between 11 and 17 σ-C-C bridging bonds) to compare TDA results for polynorbornane bridges and 

hybrid bicyclo[2.2.0]hexane group/norbornane bridges. According to previous Hartree-Fock electronic 

coupling calculations, the latter bridges accelerate charge transfers by increasing the coupling and 

decreasing the exponential β constant.61 

 

Paddon-Row and co-workers carried out photo-emission spectroscopy (PES) and electron transmission 

spectroscopy (ETS) experiments to respectively find the ionization potentials (IP) and electron affinities 

(EA) for most molecules.59 The electronic coupling for the hole transfer case corresponds approximately 

to half of the π orbital splitting energy in the cationic state, as given by the IP measurement. Their studies 

led them to make several deductions regarding the relationship between molecular structure, and the 

interplay of TB vs. TS interactions in mediating the charge transfer. For an all-trans arrangement 

(molecules 4, 5, 9) the maximal contribution to the ∆IP measurements comes from TB interactions. 

Electronic coupling for molecule 4 and 5 follows an exponential decay of 0.92 Å-1. This TB contribution 

is smaller in cis-trans structures (like in molecule 7) and minimal for all-cis bridges. However, the ΔIP is 

larger in molecule 8 than in molecule 7 or 5, certainly due to a strong TS contribution between the diene 

stack. Even though the number of bridging bonds in molecule 6 is smaller than in molecule 5, their 

experimental electronic couplings are equivalent. Indeed, the TS interactions in the norbornadiene 6 are 

quite strong and their contributions could oppose the TB interactions effect. The larger electronic coupling 

observed for molecule 10 compared to molecule 11 is attributed to laticyclic hyperconjugation, i.e. 

hyperconjugative interactions between the diene π-MO and the orbitals of the central methylene group in 

molecule 10. We report these values with our electronic coupling calculations for set 1 and  set 2 in Table 

1. No experimental measurement has been found for molecule 1 to 3 and 12 to 15. 

 

Molecule 
Bridging 

Bonds 
Exp(ref) Heff DFTB2  

CDFT 

(deMon2k) 

CDFT 

(CPMD) 
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1 12 - 0.0213 0.0123 0.0177 0.023 

2 10 - 0.0389 0.0215 0.0362 0.0408 

3 8 - 0.0682 0.0399 0.0734 0.1128 

4 6 0.16 0.1531 0.0996 0.1795 0.1913 

5 4 0.44 0.4799 0.2623 0.6378 0.6230 

 β(1-5) 0.92a 0.76 (0.99) 0.76 (0.99) 0.88 (0.99) 0.82 (0.99) 

6 2 0.43 0.46 0.0884 1.0458 1.0731 

7 4 0.22 0.1799 - 0.2621 0.1906 

8 4 0.63 0.7509 0.3647 1.2754 1.0934 

9 6 0.22 0.2459 0.1119 0.3245 0.3053 

10 6 0.26 0.3322 0.1740 0.3573 0.3808 

11 6 0.09 0.0964 0.0614 0.0870 0.0929 

MUE (eV)   0.0319 0.0922 0.0774 0.0755 

MRSE (%)   5.5 -38.4 26.3 22.7 

MRUE (%)   9.8 27.4 20.6 20.4 

Table 1: TDA values (eV) for nonconjugated hydrocarbon dienes of set 1 (molecules 1-5) and 2 
(molecules 4-11) from PES experiments59 and calculations with DFT effective Hamiltonian (B97D/6-
311g(2df, 2dp)) approach, orbital splitting at DFTB2 level and CDFT approach using deMon2k 
(PBE50/cc-PVTZ/GEN-A2*) or CPMD (PBE50/80 Ry) implementations. Exponential decay β  
(bond-1) is obtained by fitting calculated electronic coupling for molecules 1 to 5; correlation 
coefficients are given in parenthesis. (a) Exponential decay constant obtained experimentally for all-
trans arrangement molecules for a number of σ  C-C bridging bonds from 3 to 6. Statistical 
evaluations of calculated TDA couplings compared to the experimental data (except molecules 6 and 
8) are given by mean of Mean Unsigned error (𝑴𝑼𝑬 = 𝟏

𝒏
𝑻𝑫𝑨  𝒄𝒂𝒍𝒄 − 𝑻𝑫𝑨  𝒆𝒙𝒑𝒏 ), mean relative 

signed error (𝑴𝑹𝑺𝑬 = 𝟏
𝒏

𝑻𝑫𝑨  𝒄𝒂𝒍𝒄!𝑻𝑫𝑨  𝒆𝒙𝒑
𝑻𝑫𝑨  𝒆𝒙𝒑𝒏  ) and mean relative unsigned error 

(𝑴𝑹𝑼𝑬 = 𝟏
𝒏

𝑻𝑫𝑨  𝒄𝒂𝒍𝒄!𝑻𝑫𝑨  𝒆𝒙𝒑
𝑻𝑫𝑨  𝒆𝒙𝒑𝒏  ). 

 

A. Test Set 1: β-decay analysis 

A well-established characteristic of D-B-A electronic coupling is the mono-exponential decay with respect 

to the distance between D and A. The ability of our approaches to reproduce this behaviour presents an 
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important test of electronic coupling predictivity in D-B-A systems. Set 1, consisting of molecules 1 to 5, 

provides a consistent series of D-B-A systems in which TB interactions predominate. The ethylene D/A 

moieties in 1-5 are separated by a decreasing number of C-C σ-bonds. The shortest molecule 6 is excluded 

from the series because the experimental electronic coupling value does not follow the expected 

exponential decay behaviour. 

 

Optimal parameters for the DFT effective Hamiltonian approach have been previously published and 

discussed.25 Meta and hybrid (with 25% HFX) functionals were found to perform well, and notable 

improvements were seen with the inclusion of dispersion corrections. The method was found highly 

sensitive to the localization ansatz, necessitating the Pipek-Mezey localization routine for accurate 

predictions, whereas sensitivity to basis set was determined to be relatively low. We present here tests of 

the different parameters (functionals, basis sets and constraint definitions) for the CDFT approach. The 

presence of covalent bonding between D/A and B poses a challenge for the fragmentation necessary 

within the FODFTB approach, nevertheless, in systems where D and A are equivalent, TDA can be 

obtained from the HOMO splitting of standard DFTB2 calculations. 

 

For D-A distances ranging from 3 to 6 σ bonds, experimental measurements of the electronic coupling vs. 

number of σ bonds present a β value of 0.92. Our results, presented in Figure 2, also follow an 

approximate exponential behaviour vs. D-A distances in σ bonds for which the β decays are given in 

Table 1. The decay values are in quite good agreement with experimental data: 0.76, 0.76, 0.82 and 0.88, 

for DFTB2 orbital splitting, DFT effective Hamiltonian approach, CDFT with CPMD, and CDFT with 

deMon2k, respectively. Correlation coefficients of around 0.99 for each approach indicate a strong 

correspondence of the TDA values to the calculated mono-exponential curves. Orbital splitting obtained at 

DFTB2 level gives a qualitatively correct mono-exponential behaviour, yet with underestimated TDA 

values. The two implementations of CDFT provide similar results. These CDFT results were obtained 

using hybrid PBE functional with a percentage of HFX of 50%.  
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Figure 2: TDA experimental values (magenta) and calculations for set 1 with different methods: 
black: DFT effective Hamiltonian (B97D/6-311g(2df, 2dp)); red: orbital splitting DFTB2; green: 
CDFT in deMon2k (PBE50/cc-PVTZ/GEN-A2*); blue: CDFT in CPMD (PBE50/80 Ry).    
   

 

Figure 3: CDFT TDA calculation for set 1 with CPMD program and different functionals: PBE (80 
Ry) black solid line; PBE0 (80 Ry) red solid line; PBE50 (80 Ry) red dotted and dashed line.  
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Figure 4: CDFT TDA calculation for set 1 with deMon2k program and different functionals: PBE 
black solid line; PBE0 red solid line; PBE30 red dashed line; PBE40 red dotted line; PBE50 red 
dotted and dashed line; B3LYP green solid line; BHHLYP green dashed line; TPSS blue solid line; 
M062X cyan solid line; M06HF magenta solid line. Calculations used cc-PVTZ basis set and 
GENA2* auxiliary basis set. 
 

The importance of the amount of HFX within the CDFT approaches is further evaluated by comparing the 

decay curves as the percentage of HFX is adjusted. The electronic coupling correlations calculated with 

different functionals using the CDFT implementation in CPMD, or in the deMon2k program are 

represented in Figure 3 and Figure 4, respectively. Three functionals have been tested for CDFT in 

CPMD: PBE, PBE0 and PBE with 50% HFX. The best results are obtained with a HFX of 50%. Below 

this percentage, the electronic coupling is overestimated and the exponential decay is poorly reproduced. 

In fact, calculations with PBE yields constant TDA values across the distances of 6 to 8 C-C bonds, 

followed by a large decrease between 8 and 10 bonds, and very small decay between 10 and 12 C-C 

bonds. Adding 25% HF in the exchange formulation leads to constant TDA values for increasing distances 

from 6 to 10 C-C bonds, and then an increase of the electronic coupling at a distance of 12 C-C bonds. 

The importance of the percentage HFX for charge transfer has also been highlighted in a previous study.43 

Using the CDFT implementation in deMon2k, several meta-GGA and hybrid functionals were also tested. 

As observed in Figure 4, the quality of the β decay with D-A distance with this approach also strongly 

depends on the percentage of HFX. Indeed, calculations with both the PBE and TPSS functionals (which 
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contain no HFX) give high coupling values roughly constant for D-A distance of 6 to 12 C-C bonds. As 

one increases the percentage of HFX from 20% for B3LYP to 100% for M06HF, the electronic coupling 

value correspondingly decreases at each distance. At the same time electronic coupling dependence on D-

A distance becomes closer to an exponential form. For a percentage of HFX below 40%, the electronic 

couplings remain high at large D-A distances, such that the curve reaches a horizontal limit. The PBE 

functional including 50% HFX gives similar results to experimental data, with a β value of 0.88 vs 0.92 

experimentally. CDFT calculations using functionals with a similar amount of HFX such as M062X (54% 

HF) and BHHLYP (50% HF) also provide consistent electronic coupling values and decreases. Higher 

percentages of HFX, like for the M06HF functional, lead to stronger decay (1.18) and underestimated 

electronic coupling values. This dependence of the electronic coupling to the percentage of HFX can be 

correlated to the electronic delocalization on the molecule calculated at CDFT level. When the HFX is 

null or low, the electronic delocalization over the bridge is quite strong, allowing orbital overlap between 

the two electronic states (Figure 5). Increasing HFX fraction leads to a depopulated bridge and a less 

diffuse excess charge. Consequently, D/A  and bridge states are less mixed and less favourable to electron 

tunnelling.  
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Figure 5: Single occupied Molecular Orbitals (SOMO) calculated for molecule 1 with CDFT 
approach in deMon2k with PBE, PBE0 and PBE50 functionals (0%, 25% and 50% HFX 
respectively). SOMO are obtained by a biorthogonalization procedure of the two sets of Kohn-Sham 
MOs.111  
 

One notices that other parameters or characteristics of the functionals within the CDFT approach have 

nearly no influence on the electronic coupling evaluation. To fully explore these sensitivities, the 

electronic couplings were also calculated for different basis set (Table S4 in SI) with the deMon2k 

implementation. Results are highly consistent in every case, which indicates the robustness of this 

approach. Moreover, the results obtained with the PBE50 functional are rather insensitive to the choice of 

the charge constraint (see Table S5 in SI). 

B. Test Set 2: Bridge conformation dependence 
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Experimental values deduce from ionization potential measurements are available for all the molecules of 

this set. All electronic coupling predictions were evaluated relative to the experimental data by calculation 

of mean unsigned error (MUE), mean relative signed error (MRSE) and mean relative unsigned error 

(MRUE). 

Applying the respective optimized parameter for each approach (see previous section and ref 71), the DFT 

effective Hamiltonian approach yields the lowest MUE as calculated with respect to the experimental ∆IP 

measurements, for this second test set. Altogether, this approach presents a MUE of 32 meV while the 

MUEs for others methods are around 75 to 92 meV. It is also associated to the smallest MRSE (5.5%) and 

MRUE (9.8%) while other methods have comparable MRUE around 20-30%.  The MRUE of 9.8% within 

the DFT effective Hamiltonian approach was only found with the Pipek-Mezey localization, whereas all 

other localization routines resulted in severe overestimation of TDA yielding MRUEs of approximately 

50%.71 This methodology therefore was demonstrated to be highly sensitive to the localization method in 

order to achieve predictions comparable to experiment. 
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Figure 6: TDA experimental values (magenta) and calculations for set 2 with different methods: 
black: DFT effective Hamiltonian (B97D/6-311g(2df, 2dp)); red: orbital splitting DFTB2; green: 
CDFT in deMon2k (PBE50/cc-PVTZ/GEN-A2*); blue: CDFT in CPMD (PBE50/80 Ry).   
 

For all molecules, calculations at DFBT2 level give the lowest electronic coupling and TDA for molecule 7 

is not calculable with an orbital splitting approach due to symmetry reasons. Nevertheless, we observe a 

factor close to 1.5 (corresponding to the scaling factor determined for HAB11 benchmark set with the 

FODFTB approach)43,44 between DFTB2 and experimental TDA, except for molecule 6 for which the factor 

is about 5. In contrast, all CDFT calculations give electronic coupling that are higher than experimental 

estimates. This difference is quite small for molecule 4, 5, 7, 9, 10 and 11 and more than twice the 

experimental values for the high electronic coupling of molecules 6 and 8. In the following we would like 

to analyze the discrepancy between CDFT and experiment for 6 and 8 in more details. 

 

Paddon-Row et al interpret that the TS interactions between the two diene groups are more important than 

in the other molecules, where TB interactions primarily mediate the electronic coupling. From an ET/hole 

perspective, molecule 8 is essentially a stacked ethylene dimer and the hole transfer occurs mainly via TS 

interactions. As previously reported, the CDFT (CPMD/PBE50 methodology could reproduce very well 

ab-initio electronic couplings at the MRCI level for hole transfer in stacked ethylene dimers.43 The 

coupling obtained from CDFT (CPMD/PBE50) at 3.5 Å was 0.5569 eV vs 0.5192 eV from MRCI. 

Similarly the exponential decay constant was well reproduced, 2.8 Å-1 from CDFT vs 2.7 Å-1 from MRCI. 

Using this CDFT β value, the electronic coupling for an ethylene dimer in a stacked configuration with a 

separation of about 3.0 Å as in molecule 8 should be 1.108 eV. This compares extremely well with our 

CDFT electronic coupling values for molecule 8. Likewise, TS interaction in molecule 6 will be well 

described. In fact, the CDFT coupling value obtained (1.05 eV) is close to the one obtained by 

extrapolation of the exponential distance decay relation for molecules 1-5 (1.2 eV). Besides, it is very 

surprising that the coupling of molecule 6 should be the same as the one for molecule 5, as the 

experimental values suggest, given that the number of covalent bonds between donor and acceptor is 
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smaller in 6 than in 5 and the additional TS contribution in 6. Hence, while computed values need to be 

considered with care due to the  non-uniqueness of diabatic states, choice of constraint and sensitivity on 

functional, there is some strong theoretical support for the CDFT electronic coupling values obtained for 6 

and 8. Besides, experimental procedures for determination of electronic couplings could be called into 

question, too. The experimental data are not from direct measurements of the electronic coupling, but 

rather deduced from IP measurements, which come with their respective sources of error. Therefore in our 

error analysis reported in Table 1, molecules 6 and 8 were not included. 

 

All of the compared methods are able to reproduce relative behaviour of the experimental electronic 

coupling such as the decrease between all-trans molecule and cis-trans (between molecule 5 and 7) or the 

laticyclic hyperconjugative interaction effects in molecule 10 compared to molecule 11.    

 

C. Test Set 3: normal versus superbridge 

The bridge structure has also been shown to dramatically modify electronic coupling. By inserting a 

bicyclo[2.2.0]hexane group between the norbornane moieties, Paddon-Row et al modelled superbridge 

molecules. This modification results in a markedly increased coupling, with concomitant decrease of the β 

value in comparison to the polynorbornane bridge. We selected two of these “superbridge” systems and 

their normal bridge equivalents, which differ with respect to their terminal diene moiety arrangements 

(Figure 1).  

We previously showed that both implementations of CDFT give similar results for electronic coupling. 

Consequently, we focus on this part only on CDFT approach with deMon2k. No experimental data exists 

to validate our calculations on these superbridge systems; however, we can compare them to the results 

obtained and discussed by Paddon-Row and co-workers.59 They theoretically determined orbital splitting 

energies at the HF/3-21G level of theory, and applied the Natural Bond Orbital (NBO) technique to 

analyse the TB coupling.  
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Molecule 
Bridging 

Bonds 
HF CDFT 

12 11 0.0630 0.0301 

 13 0.0459 0.0181 

 15 0.0332 0.0110 

 17  0.0251 0.0067 

 β 0.30 0.50 

13 11 0.1295 0.0617 

 15 0.1055  0.0277 

 β 0.10 0.40 

14 11 0.0557 0.0273 

 13 0.0411 0.0162 

 15 0.0297 0.0097 

 17 0.0215 0.0059 

 β 0.32 0.52 

15 11 0.1200 0.0534 

 15 0.0945 0.0273 

 β 0.12 0.34 

Table 2: TDA values (eV) for nonconjugated hydrocarbon dienes of set 3 calculated at HF/3-21G 
(HF)61 or CDFT/PBE50/cc-PVTZ level (CDFT). 
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Figure 7: Electronic coupling for polynorbornane (solid line) and superbridge molecules (dashed 
line) from set 3 from ref 61 (black) and CDFT calculations at PBE50/cc-PVTZ/GEN-A2* level with 
deMon2k (red). Cross symbols refer to 12 and 13 molecules and triangles to 14 and 15. 
 

CDFT calculations give smaller electronic coupling values and stronger β values than the NBO approach 

in every case. Nevertheless, the “superbridge” effect is reproduced quite well, yielding nearly doubled TDA 

predictions for molecules 13 and 15, compared to their standard bridge counterparts 12 and 14, 

respectively. The “superbridge” effect on the β value is less important with the CDFT approach than for 

HF calculation, but a substantial modification of the decay constant of 0.10 and 0.18 per bond is observed 

for the 12/13 and 14/15 pairs respectively (found to be 0.20 per bond with the HF method). As the two 

approaches are based on different methodologies, the “superbridge” character of molecules 13 and 15 is 

further supported by our CDFT calculations. Our tests also underline that CDFT methods are able to 

reproduce the constructive inter-relay interference mentioned in ref 61. Another interesting point is the 

strongly correlated mono-exponential decay observed even at large distances. As such, the electronic 

couplings are found predictive even at the meV scale.    

 

II. Through space hole transfer 
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We now focus on hole transfer through non-covalent bridges. Straightforward models for such transfer 

consist of stacked small unsaturated molecules. The distance between donor and acceptor can vary as well 

as the number of bridging molecules. In order to achieve optimal coupling for effective TDA modelling, we 

chose parallel stacks of bridge molecules to mediate the electronic coupling. The donor and acceptor are 

the same species, with bridging molecules of different character, (e.g., substitution of hydrogen atoms, or 

modification of heteroatoms.) The angle between the π-system has obviously a great influence on the 

electronic coupling, but here we focus only on the impact of the distance parameter by leaving the stacks 

parallel.  

 

In order to be only a mediator, the bridge must be a worse electron donor than the D-A molecules. When 

this is not the case, electronic coupling calculations could fail, not converge, or lead to irrelevant values. 

Our models were therefore first evaluated for the consistency of their ionization potentials (IP), to 

construct effective D-B-A pairings. Initially, stacks of fluorinated ethylene (D-A) and ethylene (B) 

molecules were investigated. Substitution of two or four hydrogen atoms by fluorine atoms should very 

slightly decrease the vertical IP. Nevertheless, depending on the method, and in particular on the 

percentage of HFX in the calculation of the electronic density, different trends were observed. 

Experimental data show similar IP for ethylene and fluoroethylene;112 ethylene HOMO is energetically 

higher than fluoroethylene one for PBE and DFTB2 while Hartree-Fock calculation give the opposite 

order (Table S6 in SI). Consequently, given this disagreement in IP, fluoroethylene/ethylene stacked 

systems were inadequate candidates for evaluating predictions at different theoretical levels.  

 

We then considered another group of D-B-A system involving now heterocyclopentadiene such as 

pyrrole, imidazole or furane. To avoid a barrierless electron transfer to the bridge, we first performed 

calculations of the ionization potential (IP) and of the HOMO energy for each selected molecule at DFT 

level with various functionals. We thus also test the stability of the IP differences towards the functional 

used and the percentage of HFX and choose candidates for D-B-A systems. Electronic couplings for ET 
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transfers in heterocyclopentadiene dimers are previously evaluated in the framework of benchmarks 

studies on the HAB11 database.43     

 

We thus created parallel π-stacked systems to measure how the electronic coupling is affected by (1) the 

barrier height given as IP or HOMO energy difference, (2) increasing the distance between D-B-A 

molecules, and (3) extending the bridge with additional bridging molecules (Figure 8). These systems are 

specifically designed to test our different methods for coupling calculations. The distance between each 

heterocyclopentadiene is of 3.5 Å (for 1, 2, 3, 6, 7) or 3.5 + n Å (for 4 and 5, with n=1 and 2 respectively, 

n=3 leading to very small electronic couplings). In the previous section, we observed that the two 

implementations of CDFT in CPMD or deMon2k give very similar results. The Pipek-Mezey localization 

of the DFT effective Hamiltonian method is not suitable for the description of delocalized D/A orbitals in 

these π-conjugated stacks. Therefore, we will discuss here only CDFT results from deMon2k 

implementation and compare it with FODFTB effective Hamiltonian calculations. At CDFT level, we will 

use only PBE50 functional and cc-PVTZ basis set. 
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Figure 8: Heterocyclopentadiene stacks. First set (molecular systems 1, 2 and 3) for influence of the 
nature of D-A and B. Second set (molecular systems 3, 4 and 5) for D-A distance influence. Third set 
(molecular systems 3, 6, 7) for influence of the number of bridging molecules. 
 

    
system  CDFT 

(DFT)  
FODFTB 
(DFTB2) 

1 7 Å 0.0961 
(0.666)  

0.1580 
(0.416) 

2 7 Å 0.0849 
(0.678) 

0.1700 
(0.330) 

3 7 Å 0.0777 
(0.553) 

0.0804 
(0.652) 

4 9 Å 0.0040 0.0031 
5 11 Å 0.0001 0.00006 
 β(3,4,5) 3.28 2.60 
6 10.5 Å 0.0251 0.0412 
7 14 Å 0.0085 0.0221 
 β(3,6,7) 0.62 0.36 

Table 3: TDA values (eV) for cyclopentadiene stacks and the exponential decay constant β  (Å-1) 
calculated with the CDFT (PBE50/cc-PVTZ/GEN-A2*) and FODFTB approaches.  For system 1, 2 
and 3 the barrier height (Eq 11), respectively calculated at DFT(PBE50/cc-PVTZ/GEN-A2*) and 
DFTB2 level, is given in eV in parenthesis.  
 

A. Test Set 1: influence of the chemical nature 

The first set contains systems that differ with respect to the molecular bridge. The molecules are selected 

in a way that the individual stacks in this set constitute different barrier heights. We can define the barrier 

height as  

∆𝐸 = 𝐼𝑃! − 𝐼𝑃!/! (Eq 12) 

where IPB and IPD/A are the vertical ionization potential of B and D-A molecules respectively. In Table 3, 

DFT level, we can observe that the barrier follows a 2 > 1 > 3 order while the electronic coupling slightly 

decreases from system 1 to system 3. This unexpected behaviour is independent of the functional and may 

partly result from our definition of ΔE, which is calculated from the IP of isolated molecules in vacuo, 

whereas in the complex interactions with neighbouring molecules would affect the IP of the individual 

molecules. Effective Hamiltonian calculations with the FODFTB approach give more consistent results 
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with a decreasing TDA for an increasing barrier. Nevertheless, both methodologies give similar barrier 

heights and TDA values for system 3. For further distance-dependence analysis, system 3 has been then 

modified by increasing D/A distance (molecular systems 4 and 5) and including more bridging molecules 

(systems 6 and 7). 

B. Test Set 2: β decay analysis 

 

Figure 9: TDA values for set 2 (solid lines) and 3 (dashed lines) calculated with CDFT (PBE50/cc-
PVTZ/GEN-A2*; deMon2k implementation) (black) and FODFTB approaches (red).  
  

The second set allows us to describe the electronic coupling dependence with the D-A distance, while 

keeping the same bridging molecule. Calculated electronic couplings are presented in Figure 9 (solid 

lines). Despite a slight difference increasing with D-A distance, which can be attributed to polarization 

effects at large distances, both methods give the same tendency for modulations of the electronic 

couplings. An exponential decay with a β value of 3.28 Å-1 and 2.60 Å-1 is observed for the CDFT and 

FODFTB approaches, respectively. As expected, these decays are stronger for these TS interactions than 

for the TB interactions studied in the first part of this work and similar to decays for D-A 

heterocyclopentadiene dimers (about 2.8-3 Å-1).  

C. Test Set 3: increasing bridge units  

The last set includes systems with an increasing number of bridging molecules, the nature of these 

molecules, and the distance between them remaining the same. An exponential decrease of the electronic 
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coupling is also expected but the presence of several bridging molecule must decrease β values and ensure 

a better coupling at large distance. Indeed, we observe a decay value of 0.62 Å-1 and 0.36 Å-1 for CDFT 

and FODFTB respectively.  

Conclusion 

Characterization of TB-mediated coupling predictions with all methodologies revealed correct qualitative 

decay and relative trends in electronic coupling with respect to the bridge construction and D-A distance, 

when applying optimal conditions for each approach. As previously demonstrated, using a hybrid 

functional with 50% HFX gives the best results for the CDFT approach in both of our implementations. 

Lower HFX percentage could lead to an overestimation of the electronic delocalization, and a non-

exponential decay of the electronic coupling with the distance. Basis set and definition of the constraint do 

not affect the accuracy of the electronic coupling significantly. Basis set insensitivity here is due to the 

bridge providing sufficient basis set functions between donor and acceptor. On the contrary, tunnelling 

through vacuum is quite basis set dependent for Gaussian basis sets, because a small Gaussian basis set  

does not reproduce the tails very well. While the DFT effective Hamiltonian method has been shown to 

have strong dependence upon the localization routine, lesser sensitivities are observed with respect to 

basis set. Questions regarding the accuracy of the experimental measurements were substantiated by high-

accuracy calculations of bridged ethylene moieties. As such, comparisons of quantitative accuracy with 

respect to the experimental predictions are less relevant than the demonstrated ability of each approach to 

reproduce the qualitative trends in TDA predictions. This points to the need for improved experimental 

measurements of simple hydrocarbon systems for future theoretical-experimental benchmarking purposes. 

The significant increases in electronic coupling for the superbridge variations of these TB-coupled 

ethylenes were correctly reproduced.   

The set of heterocyclopentadiene D-B-A systems, designed to evaluate TS-mediated coupling, 

demonstrated the ability of the FODFTB effective Hamiltonian and CDFT approaches to model the 

correct barrier heights, and TDA behaviour consistent with D-A distance and number of bridging 
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molecules. The two studied effective Hamiltonian methods show their strength in the TB and TS set of 

molecules, respectively. The FODFTB method uses HOMOs of the individual fragments, which is a 

natural basis for the TS transfer in non-covalent systems, but fragmentation gets problematic for 

covalently bound systems. The Pipek-Mezey localization of the DFT effective Hamiltonian method, on 

the other hand, allows the construction of bond-localized D/A orbitals in the covalent TB systems, but 

cannot describe the delocalized D/A orbitals of π-conjugated systems. 

Associated Content 

Optimized geometries of the different molecules used for TDA calculation. Detailed results of functionals, 

basis and constraint comparisons.  
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