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Abstract

The classical compressed sensing (CS) paradigm can be modified so as to leverage a signal
correlated to the signal of interest, called side information, which is assumed to be provided
a priori at the decoder in order to aid reconstruction. In this work, we propose a novel
CS reconstruction method based on belief propagation principles, which manages to exploit
side information generated from a diverse (or heterogeneous) data source by using the sta-
tistical model of copula functions. Through simulations, we demonstrate that the proposed
method yields significant reduction in the mean-squared error of the reconstructed signal
as compared to state-of-the-art methods in classical compressed sensing and compressed
sensing with side information.

Introduction

Compressed sensing (CS) is a data acquisition paradigm that emerged as a new
research area in signal processing during the last decade. The main contribution
of the CS theory is that a plethora of signals, namely sparse, approximately sparse or
compressible signals, can be recovered using fewer measurements than dictated by the
Shannon-Nyquist theorem. As many signals are compressible, CS finds applications in
several domains, such as magnetic resonance imaging (MRI) [1], tomographic imaging
[2], as well as storage system architectures and wireless sensor networks [3].

In the classical CS framework, the signal of interest x ∈ RN can be written in
the form x = Ψs, where s is its K-sparse representation (i.e., ‖s‖0 = K) and Ψ ∈
RN×N0 is an orthonormal or overcomplete basis, called dictionary. Let Φ ∈ RM×N

be another matrix, called sensing (or encoding) matrix, such that the measurement
matrix A = ΦΨ satisfies either the mutual coherence property [4], the Restricted
Isometry Property [5] or the Null Space Property [6]. Then, the CS theory states
that x can be recovered using the measurement matrix A and M � N linear random
measurements y = Φx = As. If the number of measurements is sufficiently large,
then s is the unique minimizer of the following optimization problem, known as Basis
Pursuit [7]:

ŝ = arg min
s

‖s‖1 s.t. y = As.
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Instead of assuming that s is strictly sparse (i.e., ‖s‖0 = K), several works [8] (in-
cluding this) focus on approximately K-sparse signals, i.e., signals that have only K
large coefficients while the rest are small but not necessarily zero.

Motivated by many real-life applications such as medical imaging [9], hyperspec-
tral imaging [10] and compressive video sensing [11], the classical CS framework can
be modified so as to leverage a signal correlated to the signal of interest, called side
information (SI), which is assumed to be provided a priori at the decoder in order to
aid reconstruction. In the theory of CS with SI, the decoder aims at recovering the
signal x based on the measurements y, the measurement matrix A and a SI vector,
say w, which is correlated with s. There have been a few approaches that attempt to
exploit SI in CS. The CS problem where the support of the signal of interest is partly
known was studied in [12]. Although sufficient conditions for exact reconstruction
and error bounds were derived, the performance of the algorithm was not fully char-
acterized. A different scheme that lacks theoretical analysis was proposed in [13,14],
where the authors made the assumption that the prediction error between the SI and
the signal is sparser than the signal itself. Hence, the estimation error was recovered
instead of the sparse signal. The problem of CS with prior information was studied
in [15–17], where, through bounds and geometrical interpretations, it was shown that
`1-`1 minimization improves the performance of CS if the SI is of good enough quality.

When a joint statistical characterization between the signal of interest and the
SI signal is available, Bayesian inference can provide another CS recovery approach.
A Bayesian CS framework that was not considering SI was proposed in [18], where
relevance vector machines were used for signal estimation. Furthermore, the au-
thors in [8] performed asymptotically optimal Bayesian inference using LDPC-like
codes for signal reconstruction. Regarding schemes that incorporate SI, in [19] the
authors developed an SI-aided approximate message passing (SI-AMP) algorithm,
where the asymptotic prediction performance and noise-sensitivity analysis of the
scheme were derived. Furthermore, the work in [8] has been extended to distributed
compressed video sensing setups [20] and multi-view image acquisition [21], where
Gaussian models were used to describe the correlation between the sparse signal and
the SI in a belief-propagation context. All these works assume that both the signal
of interest and the SI are jointly sparse and they describe their underlying statistical
dependence using (i) models with common sparse supports [22] or sparse common
components [22, 23], (ii) simple additive models [20, 21], or (iii) joint Gaussian Mix-
ture Models (GMM) [24]. These models assume that the signal of interest and the
SI are produced from homogeneous sources, namely, sources that produce signals of
the same type and similar statistical descriptions are used to model them. However,
the SI available in many applications [25] is heterogeneous and comes from different
modalities. For instance, an MRI image can be reconstructed using as an aid a CT
or a PET scan [26].

Contributions

This work answers to the following questions:

• How can one port SI from a heterogeneous correlated source into a CS recon-



struction framework?

• How can we leverage the potential correlation among the sparse (or approxi-
mately sparse) signal of interest and a non-sparse correlated SI signal in a CS
framework?

We propose a novel CS reconstruction method that exploits a SI signal generated
from diverse (or heterogeneous) sources. Our method uses copula functions [27,28] to
capture the correlation between the different sources, which can have different statis-
tical characterizations. For example, the entries of x can be modelled as Laplacian
and the entries of w as Poisson, Gaussian, or also Laplacian. This implies that SI
can aid the reconstruction even if it is not sparse. Through experimentation, we
show that the proposed method outperforms the `1 − `1 algorithm in [15] offering
mean-squared-error (MSE) reductions of up to 32.73% compared to the case where
x and w are both Laplace distributed. Also, we show that the proposed method can
efficiently exploit diverse SI, modelled using Poisson or Gaussian prior statistics, and
provide gains of up to 45.93% and 49.69%, respectively, compared to the classical CS
scenario [8].

Statistical Modelling

We assume that the signal-of-interest vector s = [s(1), . . . , s(i), . . . , s(N)]T is an ap-
proximately K-sparse signal. Also, the vector w = [w(1), . . . , w(i), . . . , w(N)]T is
assumed to be the SI that is correlated with s. To provide a joint statistical descrip-
tion, we assume that the vectors s and w are samples (or, realizations) of the random
vectors S = [S1, . . . , Si, . . . SN ]T and W = [W1, . . . ,Wi, . . .WN ]T , respectively. More-
over, we consider that s and w are drawn i.i.d. from their joint probability density
function (pdf) fS,W (s, w) =

∏N
i=1 fSi

(si)fWi|Si
(wi|si), where fSi

(si) and fWi|Si
(wi|si)

denote the marginal pdf of Si and the conditional pdf of Wi given Si, respectively.
The most common distributions used in the literature describing approximately

sparse signals are: (a) the zero-mean Laplace distribution L(0, bsi
), where bsi

is
the scaling parameter, and (b) the zero-mean Gaussian Mixture Model (GMM)
GM(βsi

, σ0,i, σ1,i) [8], with βsi
, σ0,i, σ1,i, being the mixture weight, the low and the

high standard deviation, respectively, and (c) the zero-mean generalized Pareto dis-
tribution (GPD) GP (qsi

, σsi
) [29], with order qsi

and shape parameter σsi
.

Proposed Joint Statistical Distribution Using Copula Functions

Prior art [20–24] focuses on statistical models that exploit the homogeneous nature
of the correlated data, meaning that the signal of interest and the SI are produced
by sources of the same type. However, when we deal with heterogeneous SI, these
assumptions may be inaccurate, due to, for example, variations in signal dimension-
ality across diverse modalities. Copula functions [27,28] allow signals produced from
diverse data sources to have arbitrary marginal distributions, while merging them
into a joint multivariate pdf.

Let FSi
(si) and FWi

(wi) be the marginal cumulative distribution functions (cdfs)
that describe the signal coefficients and the SI symbols, respectively. By applying



the probability integral transform on Si and Wi, they are both transformed into the
uniformly-distributed random variables USi

= FSi
(si) and UWi

= FWi
(wi), respec-

tively. Therefore, regardless of the marginal distribution of Si and Wi, the trans-
formed variables USi

and UWi
always follow the uniform distribution. According to

Sklar’s theorem [27, 28], if FSi,Wi
(si, wi) is the 2-dimensional joint distribution of Si

and Wi, there exists a unique 2-dimensional copula function C : [0, 1]2 → [0, 1] such
that

FSi,Wi
(si, wi) = C[FSi

(si), FWi
(wi)]. (1)

To derive the corresponding pdf, we differentiate the expression in (1) with respect
to usi

= FSi
(xi) and uwi

= FWi
(wi). Then, the joint pdf is given by

fSi,Wi
(si, wi) = c [FSi

(si), FWi
(wi)] fSi

(si)fWi
(wi), (2)

where c [FSi
(si), FWi

(wi)] is the bivariate copula density. Given the marginal pdfs of
the random variables, an appropriate copula function that best captures the depen-
dencies among the prediction errors should be selected.

Several copula families exist [28], such as the elliptical (e.g., Gaussian and student
t- copulas) and the Archimedean (e.g., Clayton, Frank and Gumbel families). In
this work, we aim at demonstrating the capability of copula functions to couple
heterogeneous SI in CS. For that reason, we use the simplest copula that belongs
to the elliptical family, namely the Gaussian copula. However, depending on the
application, a particular copula function that fits the data should be selected.

The multivariate normal copula function [28] is defined as

Cg(ui) = ΦRg(Φ
−1(usi

), Φ−1(uwi
)), (3)

where ΦRg denotes the standard bivariate normal distribution with correlation matrix
Rg, Φ−1 is the inverse function of the standard univariate normal distribution, and
the vector ui = [usi

, uwi
] contains the cdf values. The normal copula density [30] is

given by

cg(ξi) = |Rg|
− 1

2 exp

[

−
1

2
ξi

(
R−1

g − I
)
ξT

i

]

, (4)

where ξi = [Φ−1(usi
), Φ−1(uwi

)] and I is the 2 × 2 identity matrix.
During reconstruction, we use the conditional distribution fSi|Wi

(si|wi) that, based
on the Bayesian rule, can be written as

fSi|Wi
(si|wi) =

fSi,Wi
(si, wi)

fWi
(wi)

= cg [FSi
(si), FWi

(wi)] fSi
(si). (5)

Signal Encoding

To accelerate both the encoding and decoding procedures, we use a sparse sensing
matrix Φ to measure the signal. We build the matrix Φ based on regular low-
density parity-check (LDPC) codes [31] since, as their name dictates, they provide
sparse sensing matrices that reduce the sensing complexity and storage requirements.
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Figure 1: Tanner graph that visualises the message passing algorithm between the variable
and the factor nodes.

Slightly deviating from the classical LDPC matrix construction, we consider that
the non-zero entries of the matrix can be {−1, +1}1 (Rademacher matrices) because
negative values improve the system performance. Furthermore, we consider that the
row weight of Φ is constant to ensure that each row has the same number of non-zero
entries, say L. Also, the column weight is assumed to be constant and equal to R.
The parameters L and R define the sparsity of the sensing matrix, and can be chosen
based on signal properties such as measurement noise or sparsity. Since the signal of
interest2 x is not sparse but has an approximately sparse representation s on the basis
Ψ, for example, a wavelet basis or a Discrete Cosine Transform (DCT) matrix, the
sensing matrix Φ is right-multiplied by the dictionary Ψ, resulting in the measurement
matrix A. Due to the sparsity of Φ, a measurement symbol y(a), a = 1, 2, ...,M is
simply a mixture of sums and differences of a small subset of signal coefficients,
enabling a fast encoding procedure via matrix-vector multiplication y = Φx.

Proposed Signal Recovery via Copula-based Belief Propagation

Optimal reconstruction using SI can be performed, for example, via the maximum a
posteriori (MAP) or the minimum mean-squared-error (MMSE) criteria. The poste-
rior pdf takes the following form:

fS|Y ,W (s|y,w) ∝
M∏

a=1

fYa|S(ya|s)
N∏

i=1

fSi|Wi
(si|wi), (6)

since the Markov chain W → S → Y holds. Given that the calculation of the
pdf in (6) is not always feasible, loopy belief propagation provides an alternative

1The entries of classical LDPC parity-check matrices are 0 or 1.
2We refer to both x and s as “signal of interest” since knowledge of one implies knowledge of the

other: they are related by a simple matrix-vector multiplication: x = Ψs.



estimation technique, where the estimate of each symbol, say ŝi, is calculated based
on its conditional pdf fSi|Y ,Wi

(si|y = y, wi = w(i)).
In the proposed system design, the decoding of the signal coefficients in s is done

by employing loopy belief propagation [31], i.e., a soft-decision decoding method
that is based on the sum-product algorithm. We assume that the decoder observes a
M×1 measurement vector y = [y(1), . . . , y(a), . . . , y(M)]T , which is generated during
the encoding procedure. Also, we assume w to be a SI vector, which is produced
from a heterogeneous data source, correlated with the signal of interest s. The SI
vector is provided a priori to the decoder. A graphical representation of the belief-
propagation decoding procedure can be given from a Tanner graph, a factor graph that
captures the statistical dependencies between the variables (see Fig. 1). The Tanner
graph is a bipartite graph, meaning that the nodes are separated into two distinctive
sets: (a) the factor nodes y(a), a = 1, . . . ,M , which represent the symbols of the
measurement vector (dark-grey squares), and (b) the variable nodes s(i), i = 1, . . . , N ,
which represent the signal coefficients (white circles). Also, there exists another type
of nodes, namely the assistant nodes (light-gray squares), which store the soft-decision
information (i.e., beliefs) of each variable node. The edges of the Tanner graph only
connect nodes of different types. An edge occurs when there is a non-zero element in
the sparse matrix Φ and it is associated with a negative or a positive sign.

At the `-th iteration, a variable node s(i) sends a message q
(`)
i→a[s(i)] to each neigh-

boring factor node y(a), and a factor node y(a) sends a message r
(`)
a→i[s(i)] to each

neighbor s(i) (see Fig. 1). The messages convey encoded beliefs about the most
probable value of a node [8]. In our design, the encoded beliefs are the sampled con-
ditional pdfs fSi|Y ,Wi

(si|y = y, wi = w(i)) that correspond to the signal coefficients.
The update rules of the messages are given by

r
(`)
a→i[s(i)] =

1

C
(`)
a→i

∑

sa\i



fa(ya|sa)
∏

i′∈N(a)\i

q
(`)
i→a[s(i

′)]



 , (7)

q
(`+1)
i→a [s(i)] =

1

C
(`+1)
i→a

q
(0)
i→a[s(i)]

∏

a′∈M(i)\a

r
(`)
a′−i[s(i)], (8)

where q
(0)
i→a[s(i)] = fSi|Wi

(si|wi = w(i)) is the initial message sent from the variable
node s(i) to the neighboring measurement node y(a). In (7), N (a) denotes the
set of the neighbors of the measurement node y(a), sa the variables in s that are
neighbors to the factor node y(a), and sa \ i the set of variables in vector sa with
the variable si excluded. The function fa(∙) is the factor function3 that applies the
constraints imposed by the neighbors of the factor node y(a) via the measurement
matrix A. Moreover, M(i) is the set of the neighbors of the variable node s(i), while

the normalization factors C
(`)
a→i and C

(`+1)
i→a guarantee that

∑
s(i) r

(`)
a→i[s(i)] = 1 and

∑
s(i) q

(`+1)
i→a [s(i)] = 1, respectively.

The message passing takes place for a maximum number of iterations, say Λ.
At that point, we calculate the final MAP estimate ŝMAP(i), based on the stored

3In this model fa(ya|sa) = δ(ya −
∑

i∈N (a) Aa,isi), where δ(∙) denotes a Dirac delta function.



soft-decision information at the assistant node of s(i), as

ŝMAP(i) = arg max
si

q
(0)
i→a[s(i)]

∏

i∈N (i)

r
(Λ)
a→i[s(i)]. (9)

The messages sent between neighboring nodes are vectors containing p pdf samples.
At the coefficient nodes, the multiplication of messages, as it is described by (8),
corresponds to element-wise multiplication between vectors. At the measurement
nodes, the message update is performed by (7), which is done in the frequency domain
via the Fast Fourier Transform (FFT).

Numerical results

In this section, we compare the performance of the proposed method with the state-
of-the-art algorithms in CS with SI [15] and classical CS [8]. In our simulations,
we consider Ψ = IN×N and, hence, A = Φ. The vector length of the signals is
N = 1000 and the length of each message vector (which contains the pdf samples)
is set to p = 243 in order to provide fast FFT calculations and satisfactory pdf
descriptions. Moreover, the column weight of the sensing matrix Φ has a value of
L = 20, which offers a good balance between the reconstruction gain and the number
of measurements.

The signal of interest is assumed to take continuous values drawn i.i.d. from the
zero-mean Laplace distribution L(0, bsi

) with scaling parameter bsi
= 2. To demon-

strate the efficiency of the proposed algorithm when dealing both with homogeneous
and heterogeneous SI, we assume that the SI signal has one of the following dis-
tributions: (a) Laplace distribution with bwi

= 2.5, (b) Poisson distribution P(λsi
)

with shape parameter λwi
= 8, and (c) Gaussian distribution N (μwi

, σwi
) with mean

μwi
= 10 and standard deviation σwi

= 5. The first model implies an approximately
sparse SI signal, whereas the second and the third imply that the SI signal is discrete
and continuous non-sparse, respectively. In order to have a fair comparison with the
state of the art, we perform experiments using synthetic data generated from bivariate
copulas other than the Gaussian. Specifically, we generate data from the Clayton and
Frank copula families [28], which are parameterized by αc and αf , respectively. For
the proposed model, the joint statistical description of the sources is modeled using
a bivariate Gaussian copula function, where the correlation parameter ρ is fitted on
the generated data via maximum likelihood estimation.

Firstly, we compare the performance of the proposed algorithm against that of the
ADMM-based `1−`1 algorithm presented in [15]. The SI signal is assumed to follow a
Laplace distribution in order to fairly compare the two schemes. In Fig. 2 we plot the
results for different values of αc and αf , namely, αc = 1, 5, 15 for the Clayton copula,
and αf = 4, 8, 20 for the Frank copula. The choice of the values of αc and αf was
done so as to provide results in the weak, moderate and strong correlation regime,
respectively. We observe that both the proposed algorithm and the `1 − `1 method
manage to efficiently exploit the SI and systematically improve the reconstruction
compared to the classical CS method [8]. As expected, the performance improve-
ments are increasing with the amount of correlation between the source and the SI.
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Figure 2: Decoding error expressed in MSE for a varying number of measurements M and
different parameters. Note that αc = 1 (and αf = 4) imply weak correlation, αc = 5 (and
αf = 8) moderate correlation, and αc = 15 (and αf = 20) strong correlation. The SI signal
is assumed to follow a Laplace distribution and the data are generated by (a) Clayton, and
(b) Frank copula.

Furthermore, it is clear that the proposed algorithm systematically outperforms the
`1 − `1 algorithm, providing MSE reductions of up to 27.41% (Frank, αf = 20) and
32.73% (Clayton, αc = 15).

Subsequently, we compare the performance of the proposed algorithm and the
`1−`1 method under the availability of a Poisson-distributed SI signal. Fig. 3(a) shows
that our algorithm achieves MSE reductions of up to 20 .29% (Frank, αf = 4) and
45.93% (Clayton, αc = 5) compared to classical CS. In the same scenario, the `1 − `1

method constantly underperforms classical CS due to the fact that the algorithm has
been designed to perform well mainly under Laplace statistics.

Finally, as shown in Fig. 3(b), the same holds when the SI is a normally distributed
non-sparse signal, where the MSE reduction of proposed algorithm reaches up to
19.80% (Frank, αf = 4) and 49.69% (Clayton, αc = 5) compared to classical CS.

Conclusion

We proposed a copula-based CS reconstruction method that builds on belief propa-
gation and message passing principles. As shown by experimentation, the proposed
scheme manages to leverage the underlying correlation between the signal of interest
and the SI even when they are produced from diverse sources. Irrespective of whether
the SI signal is approximately sparse, discrete or continuous non-sparse, the proposed
method yields significant MSE reductions compared to the state-of-the-art works in
classical CS and CS with SI. Our framework can therefore offer a new perspective to
several CS scenarios where heterogenous SI can be exploited during reconstruction.
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