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ABSTRACT
Many physical parameters in astrophysics are derived using the ratios of two observed quan-
tities. If the relative uncertainties on measurements are small enough, uncertainties can be
propagated analytically using simplifying assumptions, but for large normally distributed un-
certainties, the probability distribution of the ratio become skewed, with a modal value offset
from that expected in Gaussian uncertainty propagation. Furthermore, the most likely value
of a ratio A/B is not equal to the reciprocal of the most likely value of B/A. The effect is most
pronounced when the uncertainty on the denominator is larger than that on the numerator. We
show that this effect is seen in an analysis of 12 126 spectra from the Sloan Digital Sky Survey
(SDSS). The intrinsically fixed ratio of the [O III] lines at 4959 and 5007 Å is conventionally
expressed as the ratio of the stronger line to the weaker line. Thus, the uncertainty on the
denominator is larger, and non-Gaussian probability distributions result. By taking this effect
into account, we derive an improved estimate of the intrinsic 5007/4959 ratio. We obtain a
value of 3.012 ± 0.008, which is slightly but statistically significantly higher than the theoret-
ical value of 2.98. We further investigate the suggestion that fluxes measured from emission
lines in noisy spectra are strongly biased upwards. We were unable to detect this effect in the
SDSS line flux measurements, and we could not reproduce the results of Rola and Pelat who
first described this bias. We suggest that the magnitude of this effect may depend strongly on
the specific fitting algorithm used.

Key words: atomic data – methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

A great deal of information in the physical sciences is derived from
the ratios of observed quantities. The measurements of quantities are
always associated with an uncertainty, and the uncertainty should
of course be propagated into the resulting ratio. When doing so,
if the fractional uncertainty is small, one can use truncated Taylor
expansions to derive approximate expressions for the uncertainties
on derived quantities. However, when dealing with real data, the
fractional uncertainty is often not small, and biases may result from
any invalid approximations made in propagating the uncertainties.

We outline in this paper some properties of the probability dis-
tributions of ratios which can significantly affect the interpretation
of results when the signal-to-noise ratio (SNR) of measurements
is relatively low. We first describe a number of mathematical ax-
ioms, and the biases which result from them, and then we show that
these biases can be detected in observational data. We derive an
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improved value of the intrinsic [O III] 4959/5007 ratio by ensuring
that the biases described are minimized. We then consider whether
line flux measurements at low signal-to-noise ratios are strongly
biased upwards, as has previously been suggested. Finally, we dis-
cuss the circumstances in which these biases may lead to erroneous
conclusions.

2 T H E P RO BA B I L I T Y D I S T R I BU T I O N
O F T H E R AT I O O F G AU S S I A N S

If two quantities X and Y have independent Gaussian probability
density functions, both with mean zero and variance of unity, then
the probability distribution of their ratio X/Y, f(X/Y), has a Lorentz
distribution (Marsaglia 1964; Hinkley 1969; Marsaglia 2006):

f (X/Y ) ∝ 1

1 + x2
. (1)

The ratio of two non-zero quantities with Gaussian probability
distributions has a probability density function which is Lorentz-
like, but cannot be expressed in closed form (Hinkley 1969). It can
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Figure 1. The distribution of the ratios of two normally distributed variables
is a Lorentz distribution.

Figure 2. Scaled probability density functions for the ratios of non-zero
normally distributed variables.

be approximated by a Gaussian distribution when the fractional
uncertainty is small, but becomes increasingly skewed as the frac-
tional uncertainties increase. The mean of this ratio distribution is
mathematically undefined and the mode of the distribution is not
equal to the ratio of the modes of the two quantities. Also, for two
quantities X and Y, the mode of the probability distribution of X/Y
is not the same as the reciprocal of the mode of the distribution of
Y/X.

We have carried out Monte Carlo analyses to illustrate these
axioms. First, we drew pairs of independent random numbers from
a Gaussian distribution with mean of zero and variance of unity
and took their ratio. Fig. 1 shows the distribution of 1000 000 such
ratios, together with a Lorentz distribution having γ = 1.0 and x0

= 0.
Fig. 2 shows the results of three further Monte Carlo simula-

tions, this time for the ratios of variables with normal distributions
and non-zero means. We drew random numbers from Gaussian dis-
tributions with means of 30 and 10; 12 and 4; and 9 and 3. The
standard deviations of the distributions were 1.7 and 1.0 in each
case to simulate the common case of Poissonian noise. Thus, the
ratio of the quantities is 3.0 but the fractional uncertainty varies.
The figure shows the probability distributions scaled such that the

peak is at unity in each case; it can be seen that when the fractional
uncertainty is small, the mode of the probability distribution of the
line ratio is very close to 3.0, and the distribution is very close to
Gaussian. But as the fractional uncertainty increases, the skew of
the distribution increases and the mode is offset to lower values. For
the case where the signal-to-noise ratios of the two values are 6 and
2, the mode of the resulting probability distribution is 2.3.

Fig. 3 shows two sets of probability distributions, both derived
from the same set of 1000 000 pairs of randomly chosen numbers
with Gaussian uncertainties. As before, the distributions are scaled
such that the peak is at unity for ease of comparison. The first shows
the probability distribution of the ratio of the larger quantity to the
smaller quantity, for large and for small uncertainties. When the
uncertainties are small (5 per cent on the smaller quantity in this
example), the ratio distribution is approximately Gaussian, though
a divergence from Gaussian can already be seen when a Gaussian
function derived by non-linear least-squares fitting to the observed
distribution is overplotted. When the uncertainties are large, the
ratio distribution is highly non-Gaussian. The second panel of the
figure shows the probability distributions of the ratio of the smaller
quantity to the larger quantity, and in this case it is apparent that
even when the uncertainties are large, the ratio distribution is still
fairly well approximated by a Gaussian distribution.

We thus summarize by making the following general points about
the probability distributions of ratios:

(i) the probability distribution of the ratio of two Gaussian vari-
ables is not Gaussian, but can in certain circumstances be approxi-
mated as such;

(ii) when the uncertainty on the denominator is smaller than that
on the numerator, a Gaussian approximation is reasonable even
when the uncertainty is relatively large;

(iii) when the uncertainty in the denominator is larger than that
on the numerator, a Gaussian approximation is not reasonable even
when the uncertainty is relatively small;

(iv) when the ratio distribution is non-Gaussian, the mode of its
probability distribution is not equal to the ratio of the modes of the
input Gaussian distributions.

These points result from the probability of numbers close to zero
becoming more probable as the uncertainties increase. When the
denominator has large uncertainties and thus a significant probabil-
ity of being close to or less than zero, the probability distribution
of the ratio becomes highly non-Gaussian with a heavy tail and a
significant probability of very large values. As the uncertainty of
the denominator tends to zero, the probability distribution of the
ratio tends towards a simple scaling of that of the numerator.

For the skewed distributions resulting from large uncertainties on
the denominator, the skew is always to the right. Taking the mode
of a sample of ratios in which the uncertainty of the denomina-
tor is large will lead to an underestimate of the true value of the
ratio. Considering the mean, at intermediate signal-to-noise ratios
it will give an overestimate of the true value of the ratio due to
the right-hand skew of the distribution, but as the signal-to-noise
of the denominator tends towards zero, the distribution tends to-
wards a Cauchy distribution, in which the mean is undefined and
the probability distribution of a sample mean is the same as that of
an individual sample. The median is almost unbiased except when
the signal-to-noise ratio of the denominator is very low and the
distribution becomes significantly bimodal.

We now consider the extent to which the effects described are
observationally relevant.
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PDFs of line fluxes and ratios 3477

Figure 3. Scaled probability density functions for ratios where the denominator has the larger uncertainty (left) and where the numerator has the larger
uncertainty (right).

3 E V I D E N C E O F B I A S E S I N O B S E RVAT I O NA L
DATA SETS

One way to detect observational biases is to examine emission lines
which have a fixed intrinsic ratio, are closely spaced in wavelength
to avoid undue influence of systematic effects such as uncertainties
in the flux calibration and correction for interstellar reddening, and
which are detected in a large number of astronomical spectra. Sev-
eral such sets of lines exist: the nebular lines of [O III] at 4959 and
5007 Å, [N II] at 6548 and 6584 Å, and [O I] at 6300 and 6363 Å all
arise from a common upper level, and thus their ratio is intrinsically
fixed. These line pairs are widely observed, with theoretical ratios
of 2.98 ([O III]), 3.01 ([N II]), and 2.97 ([O I]) (Storey & Zeippen
2000). The [O III] and [N II] line pairs are among the brightest lines
emitted at optical wavelengths by the gas ionized by hot stars and
so are widely detected; the [O I] lines are typically much weaker
and are thus measured with much lower signal-to-noise ratios.

Our work on biases affecting line ratios was originally intended
to identify observational evidence of the effect described by Rola
& Pelat (1994), in which line intensities are much more likely to
be overestimated than underestimated at low signal-to-noise, and
the probability distribution describing the measurement becomes
better described by a lognormal distribution than a normal distri-
bution. In our code NEAT, described in Wesson, Stock & Scicluna
(2012), we use a Monte Carlo technique to propagate uncertainties,
which allows non-Gaussian uncertainties to be straightforwardly
propagated, and we use equations derived in Rola & Pelat (1994)
to determine the appropriate lognormal distribution to adopt when
the signal-to-noise ratio of a given line measurement is low. We
found that assuming lognormal probability distributions resulted in
a smaller estimated uncertainty on quantities derived from weak
lines.

However, the existence of this bias affecting weak lines has been
questioned; Stasińska et al. (2013), for example, discussed the ef-
fect of non-Gaussian probability distributions, and said that ‘the
strong biases (Wesson et al. 2012) claim for line intensities with
signal-to-noise ratios ≤4 are not supported by observations of line
ratios such as [O III]λ4959/5007 or [N II]λ6548/6484 which, on av-
erage, are consistent with the values predicted by atomic physics
(see e.g. fig. 10 of Bresolin et al. 2005)’. We therefore sought to
investigate whether biases at low signal-to-noise ratios do indeed
exist in observational data sets.

We first looked at the data in Bresolin et al. (2005), which presents
emission line fluxes for 70 extragalactic H II regions. Of these 70,

Figure 4. Ratio against signal-to-noise for the data set of Stasińska et al.
(2013).

the [O III] and [N II] lines are detected in 68 objects. Averaged over
the sample, the ratios are 2.91 ± 0.57 for [O III] (2.85 ± 0.29 if
one point where the ratio is 7.0 is excluded), and 2.97 ± 0.14 for
[N II]. These averages are thus consistent with the values predicted
by atomic physics, as stated by Stasińska et al. (2013). However,
when we consider the behaviour of the estimated line ratio with
signal-to-noise ratio, we find that the ratios at low signal-to-noise
systematically differ from the predicted value.

In Fig. 4, we plot the observed ratio of these lines against the SNR
for the weaker line, together with an estimate of the 1σ uncertainty
bounds using standard analytical uncertainty propagation equations.
In the case of the [O III] lines, the reported signal-to-noise ratio of
the weaker line is lower than 6.0 in 26 objects, while for the [N II]
lines, the lowest SNR in the sample is 7.0. The [O III] lines show
a clear tendency for the line ratio to be lower than its theoretical
value, a tendency which is not seen in the case of the [N II] lines.
Table 1 shows the mean line ratio from the values in various ranges
of SNR, for both species.

If the variance in the Bresolin et al. (2005) data set could be
well described by Gaussian statistics, approximately 16 per cent of
values should lie outside the upper 1σ limit, and 16 per cent below
the lower 1σ limit. For 68 data points, this would imply 11 either
side. In fact, 16 lie below the lower limit and only 4 above the upper
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Table 1. The mean value of line ratios in SNR bins in the data of Stasińska
et al. (2013).

SNR range [O III] ratio [N II] ratio

0–3 2.71 –
3–6 2.74 –
6–10 2.85 2.96
10–20 2.96 2.96
>20 3.06 –

limit. We estimated the probability of this occurring by chance
if the data were described by a Gaussian probability distribution
by carrying out a Monte Carlo simulation, and found that for 68
samples drawn from a Gaussian distribution, finding 16 or more
samples more than 1σ below the mean and 4 or less samples more
than 1σ above the mean occurs about 0.2 per cent of the time.

We next sought evidence of the effect in a much larger data set. We
used emission line flux measurements from the Sloan Digital Sky
Survey (SDSS) 9th Data Release (Ahn et al. 2012), which contains
emission line fluxes for 2674 203 objects. Of the three line pairs
mentioned earlier, only the [O III] 5007/4959 ratio is available; of the
[O I] lines, only 6300 Å fluxes are given, and for the [N II] lines, the
line fluxes are not measured independently, the ratio instead being
fixed to its expected theoretical value of 3.01. We thus consider the
[O III] 5007/4959 ratio only.

Interstellar reddening will increase this ratio above its theoretical
value, but the small separation in wavelength of these two lines
means that the effect is slight. Using the extinction curve of Howarth
(1983), the difference in the value of f(λ) is 0.012, so that for a c(H β)
of 1.0, the ratio would be increased by 3 per cent. Meanwhile,
the statistical effect described above will reduce the modal value
of the observed ratio. To minimize the confounding influence of
reddening, we extracted from the DR9 table of emission line fluxes
those objects for which c(H β) calculated from the observed H α/H β

ratio was less than 0.05. In this case, the ratio would be within
0.1 per cent of its predicted value if affected only by reddening.

Restricting our data set to those objects where c(H β) < 0.05,
and where the value of c(H β) has an uncertainty of less than 10 per
cent, we are left with 12 126 measurements of the [O III] line ratio.
Fig. 5 shows a plot of the line ratio against the reciprocal of the
uncertainty of the ratio, calculated from the quoted uncertainties on
each line flux measurement.

Fig. 5 shows on the left-hand panel the relation between observed
ratios and the reciprocal of the estimated uncertainty for SDSS
line flux ratios. The centre panel shows the relation between the
calculated ratio and the reciprocal of its uncertainty for a Monte

Carlo simulation in which 12 126 pairs of numbers were created
as follows: first, a value S representing the signal-to-noise ratio
was taken from a lognormal distribution with μ = 1.0 and σ =
1.3; these values were chosen to approximate the distribution of
observed signal-to-noise ratios in the SDSS data set. Then, two
random numbers representing line fluxes were chosen, one from a
normal distribution with μ = 1.0 and σ = (

√
3/2S), and the second

from a normal distribution with μ = 3.0 and σ = 1/2S, such that
standard analytical uncertainty propagation results in an estimated
uncertainty on the line ratio of 3.0/S.

There is a strong resemblance between the two plots, with both
clearly showing modal values of the ratio being biased at low signal-
to-noise. However, some differences are clear, with a far larger num-
ber of outlying points in the observed data, and a greater excess of
values below the theoretical ratio at low signal-to-noise. A possi-
ble cause of at least part of the difference is that the line fluxes of
forbidden lines at low signal-to-noise ratios cannot be represented
by a Gaussian probability distribution, since physically, these lines
cannot exist in absorption. At low SNR, a Gaussian probability dis-
tribution would imply an unphysical non-zero probability of nega-
tive line flux. We therefore consider how non-Gaussian probability
distributions would affect these results.

3.1 The probability distribution of the ratio of truncated
Gaussian distributions

We first consider the probability density function of the ratio of
Gaussian distributions truncated at zero. We find that the probability
of the ratio being negative is then, of course, zero, but that the
behaviour of the mode of the probability distribution of the ratio
is not significantly affected by the truncation, as it arises from the
effect of the reciprocals of very small numbers, which are still
present in the probability distributions.

3.2 The probability distribution of the ratio of lognormal
distributions

As mentioned, the probability distribution of the 4959 and 5007 Å
line fluxes at low SNR cannot be Gaussian. In addition, the number
of outliers at large multiples of the standard deviation in the observed
line ratio must indicate either than the probability distributions are
not Gaussian, or that the uncertainties are underestimated, or both.
Rola & Pelat (1994) identified an effect which would give rise to
non-Gaussian probability distributions for measured line fluxes and
skew line ratios at low signal-to-noise. They found that for narrow
lines in noisy spectra, flux measurements become much more likely

Figure 5. The ratio of the [O III] lines at 4959 and 5007 Å as a function of signal-to-noise ratio. The left-hand panel shows the relation derived from 12 126
SDSS spectra. The centre panel shows the relation in a Monte Carlo simulation using normally distributed variables described in the text, while the right-hand
panel shows the results for lognormally distributed variables. In all panels, the modal value of the ratio in uncertainty bins of unit width is overplotted.
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to be overestimated than underestimated, and that their probability
distribution can be best described by a lognormal distribution, be-
coming increasingly skewed as the signal-to-noise ratio decreases.
Log normal distributions maintain the criterion that negative fluxes
should have a probability of zero, and also have the useful prop-
erty that the probability distribution function of the ratio of two
lognormally distributed variables is itself lognormal.

To investigate the ratios of lognormal distributions, we carried
another Monte Carlo simulation similar to that described above for
normal ratios, but in which the fluxes were drawn from lognormal
distributions, with μ = log(1.0) and σ = (

√
3/2S), and μ = 3.0 and

σ = 1/2S. The results are plotted in the right-hand panel of Fig. 5.
We find that for the ratios of lognormally distributed variables, the
mode and mean are biased in a similar way to that of normally
distributed variables, while the median remains an unbiased esti-
mator regardless of signal-to-noise. Visually, the scatter plot of ratio
against SNR appears to be more similar to the observed distribution,
having a ‘bulge’ of low ratios at low signal-to-noise.

These lognormal distributions only imply asymmetric uncertain-
ties, and not a systematic overestimate of weak line fluxes as en-
visaged by Rola & Pelat (1994). We thus note that the observed
distribution of ratios with signal-to-noise in the SDSS data can be
broadly reproduced whether the synthesized line fluxes are nor-
mally or lognormally distributed, without the need to invoke any
systematic overestimate of line fluxes at low signal-to-noise ratios.

3.3 Are line flux measurement uncertainties Gaussian
at low signal-to-noise ratios?

Having found that it is not necessary to invoke an upward bias in line
flux measurements to account for the skewedness of the probability
distributions of ratios such as observed in the SDSS data, we then
sought to replicate the results of Rola & Pelat (1994). We carried
out a Monte Carlo simulation in which we created several thousand
synthetic spectra, consisting of a Gaussian profile with σ = 1.0 and
peak = 1.0, superimposed on a continuum created using random
numbers symmetrically distributed about zero such that the expected
value of the sum of the continuum points was zero. We then used a
non-linear least-squares fitting routine to attempt to determine the
parameters of the line by fitting a Gaussian profile to the synthetic
spectrum. The initial guesses for the Gaussian parameters were set
to be similar but not equal to their true values.

We investigated a number of different approaches. First, we fol-
lowed the methodology described in Rola & Pelat (1994), in which
four ‘spectra’ are created, one of which contains a line and the
other three are pure noise. We then first attempt to detect which
sample contains the line, and then try to fit a Gaussian function
to that sample. We also investigated the case in which a line was
always present, such that only false negatives were possible, and
not false positives. In both of these cases, we also investigated con-
tinua created from normally distributed and uniformly distributed
random numbers. In the case of creating four spectra, our code cal-
culated the variance of each spectrum and assumed that the spec-
trum with the largest variance was the one containing the line. In
all cases, fits were rejected either when the non-linear least-squares
routine failed to converge, or when it reported negative peaks or
sigmas.

In the ‘four samples’ case, we found that with decreasing SNR
there was in fact a downward trend in the median-estimated flux
of the line; the false positives that the routine successfully fitted a
Gaussian profile to were typically noise features one or two pixels
wide, while for σ = 1.0, the full width at half-maximum of a

Gaussian profile is 2.35 pixels. Thus, the reported σ of spurious
features was generally less than 1.0 and the reported flux lower
than the actual value. In real spectral fitting, one would be able to
identify such false positives, as long as the intrinsic line profile was
not significantly undersampled by the detector. The noise in our
synthetic continua was uncorrelated, and noise with non-negligible
auto-correlation could give rise to a larger bias as noise peaks several
pixels wide would then be more probable.

In the ‘one sample’ case, we found that with decreasing SNR,
there was no trend in the estimated line centre, a downward trend
in the estimated line peak, and an upward trend in the estimated
line width. The trends in the width and peak almost cancelled, such
that there was only a very small upward trend in the estimated
flux. In both cases, we found that the probability distribution of
the measured flux could be approximated by a truncated Gaussian
distribution at low signal-to-noise ratios.

We suspect therefore that the considerable effect found by Rola
& Pelat (1994) must be strongly dependent on the approach used to
determine whether a line is present or not, and also on the optimiza-
tion algorithm used to fit the Gaussian. The widely used Marquardt–
Levenburg algorithm, which we used in this experiment, seems to
be robust against the overestimation of line fluxes at low signal-to-
noise ratios. Our results which show the bias to be small or even
opposite to that found by Rola & Pelat (1994) are displayed in
Figs 6 and 7.

We conclude, therefore, that while the SDSS line flux measure-
ments and their quoted uncertainties provide clear evidence of a
skewed probability distribution, there is no clear evidence of any
inherent upward bias in the measurement of weak lines. The scatter
seen in Fig. 5 is likely to be due to misestimation of uncertainties
rather than effects of non-Gaussian line fluxes.

4 D I SCUSSI ON

We have described the probability distributions of ratios when un-
certainties are large, which can be strongly non-Gaussian when
the uncertainty on the denominator is larger than that on the
numerator, but are markedly less so when the opposite is true.
Thus, Gaussian statistics can be assumed by ensuring that, when
taking ratios of quantities, the uncertainty of the denominator is
small.

4.1 The intrinsic ratio of the [O III] nebular lines

The fact that the [O III] nebular lines have a fixed intrinsic ratio
allowed us to investigate the probability distributions of the ra-
tios of noisy measurements. We can now reinvestigate the value of
that fixed intrinsic ratio. Its value has been estimated on a number
of occasions and surprising variation has been found, which has
sometimes been taken to suggest a sizable discrepancy between the
observed value and available theoretical values. Previous reported
values include 3.02 ± 0.03 (Rosa 1985); 3.17 ± 0.04 (Iye, Ulrich
& Peimbert 1987); 3.00 ± 0.08 (Leisy & Dennefeld 1996); 3.00 ±
0.013 (Mathis & Liu 1999); and 2.993 ± 0.014 (Dimitrijević et al.
2007). These values were derived from observations of a sample
of H II regions, spatially resolved spectra of a starburst galaxy, a
sample of planetary nebulae, and a sample of active galactic nuclei,
respectively. The authors who derived values from samples of ob-
jects all took the mean of their values as the final observed value; in
the presence of non-Gaussian probability distributions this can be a
biased estimator of the true value.
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Figure 6. Gaussian parameters estimated by non-linear least-squares fitting for synthetic spectra containing a Gaussian line profile with width and peak of 1.0,
and thus a flux of

√
2π, superimposed on a white noise continuum. This figure shows the results for a fitting procedure which generated both false positives

and false negatives. At low signal-to-noise ratios, a downward bias in line flux measurements is present.

From the 12 126 SDSS spectra in which we found the reddening
to be well determined and low, such that the effect of reddening on
the observed ratio would amount to less than 0.1 per cent, we calcu-
lated both the 5007/4959 and 4959/5007 ratios. As discussed above,
the 5007/4959 ratio demonstrates clear non-Gaussian effects, and
the mode, mean and median of the values diverge significantly at
low signal-to-noise. From 3316 values where the uncertainty on
the ratio is less than 10 per cent, we find a median ratio of 3.012.
The mean and standard deviation of the 3316 values is 3.10 ±
0.50, while the mode is 2.97, the divergence of these three parame-
ters indicating that the probability distribution is not Gaussian. For
the 4959/5007 ratio, though, the mean, mode, and median are all
very similar even at low signal-to-noise ratios, indicating that the
probability distribution of this ratio can be well approximated as
Gaussian. For the ratios where the estimated uncertainty is less than
10 per cent, we derive a median value of 0.332, corresponding to
a 5007/4959 ratio of 3.012. We estimated the uncertainty of these
medians using a bootstrapping technique in which we randomly
selected 10 per cent of the data points and determined the median
of the subsample, repeating the process 100 times. The resulting
mean and standard deviations of the medians were 3.012 ± 0.008
and 0.332 ± 0.001. We thus conclude that the observed ratio is
slightly higher than the theoretical ratio, and that though the dis-
crepancy is small at just one per cent, it is statistically significant,
amounting to a 4σ deviation, assuming that no other observational

biases are present and neglecting any uncertainty on the theoretical
value.

5 C O N C L U S I O N S

The uncertainty of the ratio of normally distributed variables is
not itself normally distributed. We have shown that it can be well
approximated as such only when the uncertainty on the denominator
is smaller than that of the numerator. In the contrary case, the
distribution becomes skewed, with the most likely value of the ratio
being lower than the true ratio. We have shown that this effect is
detected in SDSS spectra, using the intrinsically fixed ratio of the
[O III] 4959 and 5007 lines. The 5007/4959 ratio is biased by the
generally larger uncertainty on the 4959 line, but the 4959/5007
ratio is not significantly biased. We have used that fact to determine
an estimate of the intrinsic line ratio with a statistical uncertainty
of 0.25 per cent, sufficient to determine that the theoretical value
differs by about 1 per cent from the observed value.

Many ratios are conventionally expressed such that the uncer-
tainty on the denominator is typically larger, and these ratios will
have non-Gaussian probability distributions even at quite high
signal-to-noise ratios. Using the mean or mode of a sample of ratios
as an estimator of the true value, such as has been done in the past
with the 4959/5007 ratio, will lead to incorrect results. Ensuring
that the numerator of a ratio has the larger uncertainty results in
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Figure 7. Same as Fig. 6 but for a fitting procedure in which a line was always present and thus only false negatives were possible. In this case, an upward
bias is seen in flux measurements but to a far lesser degree than that found by Rola & Pelat (1994).

probability distributions which can be much better approximated as
Gaussian.
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A&A, 441, 981
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