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Abstract
Introduction The prognostic value of the dynamic contrast-
enhanced (DCE) MRI perfusion and its histogram analysis-
derived metrics is not well established for high-grade glioma
(HGG) patients. The aim of this prospective study was to
investigate DCE perfusion transfer coefficient (Ktrans), vascu-
lar plasma volume fraction (vp), extracellular volume fraction
(ve), reverse transfer constant (kep), and initial area under gad-
olinium concentration time curve (IAUGC) as predictors of
progression-free (PFS) and overall survival (OS) in HGG
patients.
Methods Sixty-nine patients with suspected anaplastic astro-
cytoma or glioblastoma underwent preoperative DCE-MRI
scans. DCE perfusion whole tumor region histogram para-
meters, clinical details, and PFS and OS data were obtained.

Univariate, multivariate, and Kaplan–Meier survival analyses
were conducted. Receiver operating characteristic (ROC)
curve analysis was employed to identify perfusion parameters
with the best differentiation performance.
Results On univariate analysis, ve and skewness of vp had
significant negative impacts, while kep had significant positive
impact on OS (P < 0.05). ve was also a negative predictor of
PFS (P < 0.05). Patients with lower ve and IAUGC had longer
median PFS and OS on Kaplan–Meier analysis (P < 0.05).
Ktrans and ve could also differentiate grade III from IV gliomas
(area under the curve 0.819 and 0.791, respectively).
Conclusions High ve is a consistent predictor of worse PFS
and OS in HGG glioma patients. vp skewness and kep are also
predictive for OS. Ktrans and ve demonstrated the best
diagnostic performance for differentiating grade III from IV
gliomas.

Keywords Dynamic contrast-enhancedMRI . Gliomas .

Perfusion transfer coefficient . Vascular plasma volume
fraction

Introduction

High-grade gliomas (HGGs) comprise a group of aggressive
primary brain tumors with a heterogeneous prognosis: median
survival time is around 1 year for glioblastoma [1], but 8 % of
patients survive up to 2.5 years or longer [2]. Until recently,
WHO glioma grade has been considered the most robust prog-
nostic factor, but this view is challenged by HGG genetic and
imaging research [3–6]. Perfusion parameters, such as relative
cerebral blood volume (rCBV), are among the most consis-
tently recognized independent predictors of survival [4, 7]. In
line with the working hypothesis, perfusion parameters corre-
late with tumor vascularity and properties of vessels, which, in
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turn, are strongly associated with glioma grade progression
and poorer survival [8, 9]. Therefore, perfusion is viewed as
a powerful prognostic tool to stratify gliomas according to
their aggressiveness, predict patient survival, and eventually
assist in treatment choice.

The most widely used MRI techniques to measure per-
fusion include dynamic susceptibility contrast-enhanced
(DSC) and dynamic contrast-enhanced (DCE) perfusion.
These two techniques have considerable differences.
Firstly, DSC perfusion is based on T2* (susceptibility-
weighted) signal change in the presence of contrast mate-
rial, while DCE perfusion is calculated from T1 signal
change due to contrast enhancement. Secondly, they yield
different perfusion parameters. DSC primarily measures
cerebral blood volume (CBV) and is therefore concerned
with quantity of vascularization. In contrast, DCE
perfusion describes the quality of vessels and quantifies
parameters related to contrast extravasation—vascular
permeabil i ty (leakiness) . Increased blood vessel
permeability is a cardinal feature of neoangiogenesis and
is reflected in increased contrast transfer rate, Ktrans. DCE
perfusion also enables calculation of other parameters such
as extracellular volume fraction (ve), reverse transfer rate
(kep), vascular plasma volume fraction (vp), and initial area
under the gadolinium concentration time curve (IAUGC).
These parameters provide additional information about
physiological tumor properties and could afford indepen-
dent insight about clinical tumor behavior, especially as
DCE perfusion parameters were shown not to correlate
with DSC [10] or diffusion parameters [11] closely. DCE
perfusion parameters have already been demonstrated to be
diagnostic for glioma grade [12–17] and correlate with
several proxies of hypoxia like microvascular density [18,
19] and HIF-1α and vascular endothelial growth factor
(VEGF) expression [20]. DCE perfusion also has predic-
tive value for treatment with neoangiogenesis inhibitors
[21, 22] and chemoradiotherapy [23].

Thus far, research on the prognostic value of DCE perfu-
sion for HGG patient survival has been scarce—only a few
studies have been conducted [10, 20, 24–26], some of them
presenting contradicting results [27], focusingmostly onKtrans

and vp, and some of them employing the hot-spot method,
where only tumor regions with subjectively highest parameter
values are analyzed. We set out to partially fill this knowledge
gap with a larger study sample and a comprehensive whole
tumor volume histogram analysis of more DCE-MRI pharma-
cokinetic modeling parameters. The aim of this study was to
investigate DCE perfusion parameters (Ktrans, vp, ve, kep, and
IAUGC) as independent predictors of progression-free surviv-
al (PFS) and overall survival (OS) in HGG patients.
Secondary objectives were to examine DCE performance to
differentiate glioma grade III from IV and other histological
characteristics of gliomas.

Materials and methods

Patient population

This prospective study was approved by the Institutional
Review Board, and permission was granted for the use of
images and medical records. The study was compliant with
the declaration of Helsinki. All relevant information about the
examination and the study was thoroughly explained for the
patients, and informed consent was obtained.

From October 2009 to March 2015, 69 patients (41 men,
28 women; median age 55 years; range 21–77 years) with
conventional or spectroscopic MRI findings suggestive for a
primary high-grade glioma (either anaplastic astrocytoma or
glioblastoma (GBM)) were enrolled in the study. Exclusion
criteria were any prior brain tumors, tumor histology other
than GBM or anaplastic astrocytoma, and lack of informed
consent. All patients received DCE-MRI prior to maximal
surgical resection to confirm tumor histology. O6-
methylguanine-DNA methyltransferase (MGMT) promoter
methylation status, isocitrate dehydrogenase (IDH) 1 and 2
mutation, and Ki67 immunostaining index (MIB-1) were also
investigated. Clinical variables, such as age, sex, Karnofsky
performance score, and ensuing treatment, were recorded. All
patients were operated, and the majority also received adju-
vant treatment—radiotherapy, chemotherapy, or combined
therapy. Patients were treated according to the current
ESMO Clinical Practice Guidelines [28–30] and were regu-
larly followed up, including MR imaging post-operatively,
3 weeks, 2, 3, 6, and 12 months after chemotherapy initiation,
and biannually afterward, until there was evidence of clinical
deterioration as defined by radiologic tumor progression, neu-
rological deterioration, or death. Radiologic progression was
defined according to the updated response assessment
(RANO) criteria for high-grade gliomas encountering also
the time from initial chemotherapy as described by Wen
et al. [31].

MR imaging

AllMR imaging examinations were performed using the same
1.5T scanner (MAGNETOM Avanto, Siemens Healthcare,
Erlangen, Germany) with a 12-channel-array head coil. The
imaging protocol included axial FLAIR images (repetition
time/echo time (TR/TE) 9000/94 ms, inversion time (TI)
2500 ms, slice thickness 4 mm, intersection gap 10 %, field-
of-view 220 × 220 mm) and distortion-corrected T1-weighted
images before and after contrast agent administration (TR/TE
275/2.5 ms, slice thickness 4 mm, intersection gap 10%, field-
of-view 230 × 230 mm). All DCE-MRI studies were per-
formed using a 3D fast low angle shot (FLASH) sequence
optimized in temporal and spatial resolution in order to pro-
vide adequate anatomical coverage, with the following
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parameters: TR/TE 4/1.4 ms, flip angle 15°, temporal resolu-
tion 6 s, base resolution 128, phase resolution 100 %, slice
resolution 100 %, 23 slices, slice thickness 4 mm, field-of-
view 220 × 220 mm, GRAPPA factor 2, and total acquisition
time 5 min. T1 mapping was used to convert signal intensity
into gadolinium concentration. The T1 map was calculated
from precontrast multiple flip angle images (6°, 12°, and
15°, each acquisition 1min) with otherwise similar acquisition
parameters. Tumors were always situated in the center of the
imaging volume; therefore, the difference between nominal
and effective flip angles was assumed to be negligible. The
gadobutrol administration (0.1 mmol/kg/body weight) was
done with a flow rate of 4 ml/s using a power injector,
followed by saline flush.

Image processing and analysis

The conventional and DCE-MR images were consensually
reviewed by the same two board-certified neuroradiologists
(V.K., S.B.) with experience in central nervous system tumor
imaging. The whole tumor volumes were off-line manually
delineated in T1 contrast-enhanced images. The DCE-MR
images were transferred for post-processing to an off-line
workstation running commercially available Olea Sphere™
software, version 2.3 (Olea Medical™, La Ciotat, France).
Post-processing included motion correction and rigid-body
model registration of precontrast dynamic MR images for
conversion of signal intensities into gadolinium concentration.
Visual verification and adjustment were used to check and
correct any misalignment in the auto-registered images.
Briefly, the software analyses transport processes by an open
two-compartment model to describe the tissue concentration
of the administered contrast agent: a central compartment
representing the central blood pool and a peripheral compart-
ment describing the tissue distribution volume (ve). The soft-
ware provides the distribution volume of contrast agent in the
tissue: ve (extracellular volume fraction), the tracer exchange
between the compartments: Ktrans based on a modified Tofts–
Kermode model, vascular plasma volume fraction: vp, and
also calculates IAUGC in 60 s [32]. Reverse transfer rate
constant kep is calculated as the ratio of Ktrans over ve.
Deconvolution was computed by the standard singular value
decomposition method. The arterial input function (AIF) re-
gion was selected manually on the right or left internal carotid
artery C4 segment to yield the best fitting AIF curve. Internal
carotid artery was chosen as basilar or middle cerebral arteries
were not equally well visualized for all patients. AIF estima-
tion was model-based and dose-scaled using a bi-exponential
function [33, 34]. The calculated DCE-MRI parameters have
the following measurement units: Ktrans in per minute;
IAUGC inmillimoles per second; kep in per minute; vp dimen-
sionless; and ve dimensionless [35].

A free, hand-drawn region of interest (ROI) was plotted
around the contrast-enhancing tumor in the contrast-
enhanced T1-weighted images (paying attention to exclude
any large vessels) or around the hyperintense tumor region
on FLAIR images, if no contrast enhancement was observed.
Tumor delineation and post-processing were performed by a
board certified neuroradiologist (S.B.). Other tasks, not requir-
ing qualitative evaluation, were performed by a student with
2 months of software experience (A.U.). The reviewers were
blinded to follow up data. The post-processing was repeated in
each slice containing tumor tissue, and the parameter values of
all ROIs were exported into a spreadsheet. Only the success-
fully fitted voxels were included in the further analysis. The
successful fitting was defined by the following criteria: all
perfusion parameters non-negative, 0 < Ktrans < 4, and 0 < ve
< 1. These arbitrary ranges were defined in order to automat-
ically exclude any poorly fitted voxels with unrealistically
high or negative values.

Statistical analysis

The primary outcomes of the study were OS, defined as the
number of days from the date of the DCE-MRI examination
until death or the last available follow-up date, and PFS, de-
fined as the number of days until progression, verified clini-
cally and byMR imaging, or until the last follow-up date, if no
progression or death occurred. One-year PFS and OS were
used as cutoffs to stratify patients and evaluate perfusion pa-
rameters as prognostic markers.

Data normality was examined by Kolmogorov–Smirnov
test. Kurtosis and skewness were calculated for perfusion pa-
rameters. Two-sided independent samples Student t test was
performed for statistical testing of the differences between
patient groups. Relations between different perfusion metrics
were investigated using Pearson’s product-moment correla-
tions. Survival was analyzed using univariate and multivariate
Cox regression analysis models. Receiver operating character-
istic (ROC) curve analysis was used to investigate the prog-
nostic value of different parameters for OS and PFS, as well as
their diagnostic value for glioma grading and histopathologi-
cal parameters (e.g., MGMT, IDH). Area under the curve
(AUC) was computed, and the optimal cutoffs were calculated
by selecting the highest Youden’s J statistic on the ROC curve,
thereby maximizing sensitivity and specificity. Kaplan–Meier
curve analysis and log rank test were used to detect a differ-
ence of survival between patient groups, stratified according
to perfusion and clinical parameters. Continuous variables are
presented as means with standard deviation, discrete variables
as medians with range. Maximum value, 90th percentile,
skewness, and kurtosis of perfusion parameters were calculat-
ed and are denoted in the text by indices _max, _90, _skew, and
_kurt, respectively. Results were declared statistically signifi-
cant at the two-sided 5 % comparison-wise significance level
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(P < 0.05). Statistical analysis was performed with SPSS ver-
sion 22 (SPSS Inc., Chicago, IL, USA).

Results

Patient data

A total of 69 patients with high-grade gliomas were enrolled
in the study. Within this group, 49 (71 %) of the tumors were
grade IV (glioblastomas) and 20 (29 %) grade III (anaplastic
astrocytomas). Median follow-up of the patients was 424 days
(range 23–1686). During the follow-up period, 50 (72 %) pa-
tients experienced tumor progression; in 41 (59 %) cases, the
progression occurred in less than 1 year after the DCE-MRI
scan. Thirty-two (46 %) patients had died by the end of the
study. Furthermore, 26% of the patients were positive for IDH
mutation, 39 % had methylated MGMT, and median MIB-1
was 20 % (range 0–80 %). Twelve patients (17 %) received
radiation therapy only, 3 (4 %) chemotherapy only, and 54
(78 %) combined chemotherapy and radiation therapy. The
22 (32 %) non-enhancing gliomas included 16 anaplastic as-
trocytomas (80 % of all grade III gliomas) and 6 GBMs (12 %
of all GBMs). Examples of grade III and IV glioma DCE
perfusion maps are shown in Fig. 1.

Perfusion parameter descriptive statistics

After excluding poorly fitted voxels from the histogram data,
2092 (median, range 88–17,590) voxels were analyzed per
patient. The mean, median, standard deviation, and range of
the maximum, 90th percentile, skewness, and kurtosis values
of perfusion parameters of individual patients’ histograms are
summarized in Tables 1 and 2.

The average values of perfusion parameters were compared
between patients stratified according to 1-year PFS and OS.
For patients with less than 1-year PFS, ve_max (0.94 ± 0.19 vs.
0.77 ± 0.42, P = 0.044) and ve_90 (0.41 ± 0.37 vs. 0.19 ± 0.28,
P = 0.010) were significantly higher. There was no difference
in the means of perfusion parameters for patients with less and
more than 1-year OS (P > 0.05 for all perfusion parameters).

We also investigated whether perfusion parameters were
different according to glioma histology. Ktrans

skew, IAUGC90,
IAUGCmax, kep_90, kep_max, and ve_90 were significantly dif-
ferent between grade III and IV gliomas (Tables 1 and 2).
However, when only contrast-enhancing tumors were ana-
lyzed, no significant differences in Ktrans and ve kurtosis and
skewness could be identified between the grades. No perfu-
sion parameters were significantly different for IDH-positive
or methylated MGMT patient groups.

Non-enhancing tumors had significantly higher Ktrans

skewness (P = 0.004) and kurtosis (P = 0.047), as well as ve
skewness (P < 0.001) and kurtosis (P = 0.001), compared to

enhancing tumors. Non-enhancing tumors were also signifi-
cantly more likely to be grade III than grade IVon chi-square
test (P < 0.001).

Univariate and multivariate survival analysis

DCE perfusion, histology, and clinical parameters were ana-
lyzed as prognostic markers of PFS and OS with Cox propor-
tional hazards model. Parameters that were significant in the
univariate analysis and their associated hazard ratios are pre-
sented in Table 3.

OS analysis

In the univariate analysis of OS, ve_90 and kep_90 were the most
important significant prognostic factors (higher ve and lower

Fig. 1 DCE perfusion axial maps of grade III (above) and IV (below)
gliomas. a T1 contrast-enhanced; b Ktrans; c vp; d IAUGC; e ve; f kep
parameter maps
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kep were associated with poorer survival) (Table 3). vp_skew and
vp_kurt were also prognostic, however, without significant haz-
ard ratio (HR) values. Higher ve_skew had a small negative non-
significant impact on OS (HR 0.93, 95 % CI 0.86–1.01;
P = 0.070). Among the clinical and histological parameters,
age (>55 years), WHO tumor grade (GBM), Karnofsky perfor-
mance score (KPS) (below 90 %), and absence of IDH1 or
IDH1 mutation status were significant negative predictors of
OS. On the contrary, MIB-1 and MGMTwere not significant.
Multivariate analyses were run for perfusion and histological–
clinical parameters. Glioma grade and patient age were not
included in the models, as they rendered all other parameters
insignificant. In the multivariate model including histological
and clinical metrics, only KPS (<90 %) had a small negative
impact on OS (HR 0.96, 95 % CI 0.94–0.99; P = 0.012). IDH,
MIB-1, and MGMT status as well as the perfusion parameters
did not reach statistical significance.

PFS analysis

One-year PFS univariate analysis yielded HRs comparable to
those of OS. However, vp_skew, vp_kurt, and kep_90 did not reach
significant level, while ve_skew became significant. Therefore,
ve_90 and ve_skew were the only significant DCE perfusion
predictors for 1-year PFS (Table 3). In a multivariate model
including the significant predictors of univariate analysis—

KPS, IDH, ve_90, and ve_skew—positive IDH (HR 0.27, 95 %
CI 0.10–0.73; P = 0.010) and ve_90 (HR 3.85, 95 % CL 1.35–
10.95; P = 0.012) remained significant predictors of PFS.

Kaplan–Meier survival analysis

For the Kaplan–Meier curve analysis, patients were stratified
into groups below and above the median of the parameter
analyzed (median values are presented in Tables 1 and 2).
Perfusion parameters predicting significantly shorter PFS
were high ve_90, IAUGCmax, and IAUGC90. K

trans
max did not

reach statistical significance for PFS prediction (P = 0.085), as
well as Ktrans

90 (P = 0.108). Significant prognostic factors for
OS were ve_90 and IAUGC90. Significantly different PFS and
OS rates are presented in Tables 4 and 5. Kaplan–Meier sur-
vival curves for selected parameters are shown in Fig. 2.

ROC curve analysis

Perfusion parameters achieved weak to moderate prognostic
performance for 1-year PFS. The highest AUC was demon-
strated by ve_90 (AUC = 0.70) and IAUGC90 (AUC = 0.66)
(Fig. 3a).

ROC curve analysis was also performed to assess DCE
perfusion as a tool to differentiate anaplastic astrocytoma
and GBM. Ktrans

90 (AUC = 0.82; optimal cutoff 0.02 min−1,

Table 3 Univariate analysis of significant prognostic perfusion and clinical parameters

OS PFS

Parameter Hazard ratio (HR) 95 % confidence interval P value Hazard ratio (HR) 95 % confidence interval P value

Age 1.06 1.02–1.09 0.001 1.05 1.03–1.08 0.000

Glioma grade 7.15 1.71–29.97 0.007 3.45 1.59–7.46 0.002

KPS 0.98 0.96–0.99 0.007 0.98 0.97–1.00 0.010

IDH 0.16 0.04–0.69 0.014 0.28 0.12–0.68 0.005

vp_skew 1.18 1.03–1.35 0.020 0.83 0.47–1.45 0.512

vp_kurt 1.01 1.00–1.02 0.006 0.86 0.49–1.50 0.599

ve_90 3.05 1.18–7.89 0.021 2.69 1.22–5.94 0.014

ve_skew 0.93 0.86–1.01 0.070 0.94 0.88–1.00 0.035

kep_90 0.46 0.21–0.98 0.044 0.79 0.51–1.21 0.277

Table 4 Kaplan–Meier analysis for PFS

Above median Below median

Parameter Median value Median survival, days 95 % confidence interval Median survival, days 95 % confidence interval P value

ve_90 0.18 293 226–360 541 398–684 0.021

IAUGCmax 31,176.98 293 282–304 541 297–790 0.028

IAUGC90 11,570.06 293 282–304 554 389–710 0.016
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sensitivity 0.94, specificity 0.70) and ve_90 (AUC = 0.79; op-
timal cutoff 0.66, sensitivity 0.76, specificity 0.80) showed the
best diagnostic value for histological staging (Fig. 3b).

Discussion

In this study, we found that ve was prognostic for PFS and OS
in univariate analysis, in contrast to Ktrans, which had an inde-
pendent role only in differentiating grade III from IV gliomas.

kep was another predictor of OS, and it was also significantly
different between grade III and IV gliomas. Histogram de-
scriptors—vp skewness and kurtosis, and ve skewness—were
significant predictors of OS, although the associated hazard
ratios were modest.

Few studies have investigated DCE perfusion correlation
with high-grade glioma patients’ survival. Nguyen et al. [26]
found both higher Ktrans and vp to be associated with worse OS
in a population of mixed grade II–IV astrocytomas,
oligoastrocytomas, and oligodendrogliomas, using the hot-

Table 5 Kaplan–Meier analysis for OS

Above median Below median

Parameter Median value Median survival, days 95 % confidence interval Median survival, days 95 % confidence interval P value

ve_90 0.18 436 315–557 1058 537–1579 0.024

IAUGC90 11,570.06 490 369–610 868 612–1124 0.040

Fig. 2 a, b Kaplan–Meier curves of ve_90 for PFS and OS; c, d Kaplan–Meier curves of IAUGC90 for PFS and OS
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spot ROI method. Bonekamp et al. [10] found Ktrans to be
independently associated with worse survival in a sample of
37 GBMs. Compared to DSC-calculated rCBV, Ktrans was
associated with a remarkably higher hazard ratio. Moreover,
Ktrans did not correlate with rCBV closely. In a sample of 18
mixed d i agnos i s g l i oma pa t i en t s w i t h GBMs ,
oligodendrogliomas, a meningioma, and brain tumors of other
histology, Jensen et al. [20] found that ve of peritumoral edema
correlates with OS, while blood volume vb correlates with
PFS in active tumor regions, and, similar to our study, did
not find Ktrans to be a significant predictor of survival.
Analyzing numerous histogram parameters of 61 glioblasto-
mas, Choi et al. [24] found that Ktrans and ve were associated
with worse OS and PFS. Finally, Burth et al. [25] recently
found the 90th percentile of Ktrans both at contrast-enhancing
and edema parts of glioblastoma not to have significant prog-
nostic value (interestingly, only the 90th percentile of rCBVof
the contrast-enhancing part was a significant predictor of PFS
from all imaging biomarkers investigated, leaving apparent
diffusion coefficient (ADC) as insignificant as well).

Our study differed from the aforementioned ones in a num-
ber of aspects. We have included only astrocytomas (anaplas-
tic and GBM) to have a more homogeneous sample, as
oligodendrogliomas are known to have different perfusion
characteristics, which could bias DCE perfusion analysis
[36, 37]. We used histogram analysis instead of the hot-spot
ROI maximum value method. Histogram analysis has been
shown to be more reproducible [38] and also enables to cal-
culate tumor voxel statistical distribution parameters: skew-
ness and kurtosis. Until now, correlation of these DCE perfu-
sion parameters and survival has been investigated minimally.

Lack of research on the other than Ktrans parameters could
be because only Ktrans and IAUGC were originally

recommended as the primary end points for perfusion studies
[39]. However, even the correlation between Ktrans and sur-
vival has not been firmly established as well. In an early study
on the topic, Mills et al. [27] surprisingly found higher Ktrans

to result in longer survival. This trend is indeed observed in
some non-brain tumors: metastatic renal cell carcinoma and
possibly hepatocellular carcinoma treated with VEGF inhibi-
tors [40], as well as head and neck squamous cell carcinoma
treated with chemoradiation [41]. Higher Ktrans is associated
with prolonged OS presumably by enhanced drug delivery
through more permeable capillaries in the tumor. However,
subsequent glioma studies have shown the opposite trend.
Gliomas with lower vascular permeability (Ktrans) and a pro-
nounced decrease of it on the course of treatment are associ-
ated with longer OS after chemotherapy [21] and radiation
therapy [23, 42], although contradicting results have been
published as well [43]. Vascular permeability, measured as
Ktrans, could indirectly reflect oxygenation status and thereby
predict the response to radiotherapy. It is also possible that
lower permeability profile is prognostic rather than predictive
and could be associated with better survival regardless of the
treatment.

In our study, the most consistent predictor of survival, sig-
nificantly higher in patients with less than 1-year PFS, and
also a significant prognostic factor for PFS and OS in univar-
iate analysis as well as in Kaplan–Meier analysis, was ve. On
multivariate analysis, only ve remained an independent prog-
nostic factor for PFS. ve represents the extracellular volume
fraction or the leakage space, where the contrast agent accu-
mulates after escaping from the intravascular compartment
[44], and is thought to reflect the extravascular architecture
of the tumor [39]. In preclinical studies, ve has been found to
correspond well to the histological extracellular volume [45],

Fig. 3 ROC curve analysis. a ve_90 and IAUGC90 for 1-year PFS prognosis; b ve_90 and K
trans

90 for differentiation between anaplastic astrocytomas and
GBM
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coincide with histological necrosis and apoptosis [46], and
correlate negatively with cellularity in glioma models [47].
Although extracellular volume could be expected to correlate
with ADC, as both parameters reflect cellular density, direct
correlation between ve and ADC was not found [11]. This
suggests that current understanding of the exact physiologic
meaning of ve might be incomplete. ve should not be seen
strictly as space between cells and microvasculature/
macrovasculature but rather as a parameter in the applied
model of the tracer kinetics, therefore subject to some con-
strains. The accurate estimation of ve is dependent on the flow
and permeability of the tumor vasculature [48]. As the tracer
traverses the vasculature, a large interstitial space ve would
require a substantial amount of tracer to be extracted from
the vascular space for the interstitial space to reach a steady-
state concentration. For instance, if the flow is very high or vp
is large relative to ve, steady state could be approached rela-
tively quickly in about 5–6 min, as the tracer traverses through
the tissue largely within the vascular space. In this case, ve
estimation is reliable. However, tracer extraction (influx) into
the interstitial space depends on the capillary permeability. If
PS (permeability surface-area product) is low, tracer influx is
slow and the corresponding contrast agent concentration curve
in tissue approaches its steady-state concentration slowly. In
that case, 5–6-min acquisition underestimates the real ve. If PS
is high, the tracer influx is high and in the given acquisition
time (5 min in our study) ve estimation reflects partly this
pathophysiology. Thus, the higher ve reflects fast tracer kinet-
ics and is probably due to high permeability, a known bio-
marker of malignancy itself.

The mechanism on how ve is associated with tumor aggres-
siveness is still investigated. A recent study by Mills et al. [49]
provided some clues: although no relation was found between ve
and cell density, ve was positively correlatedwithmitotic activity.
The results are counterintuitive: high mitotic activity is expected
in tissue areas with higher cellular density, and not higher extra-
cellular volume fraction. According to Mills et al., this suggests
that ve does not reflect extracellular volume directly, possibly due
to model flaws. Alternatively, high mitotic activity might not be
associated with high cellular volume when malignant cells are
very small or exhibit aberrant response to tumoral growth factors
and contact inhibition. ve might also reflect microscopic necrotic
regions or chaotic tissue architecture, which are also dominant
features of higher-grade gliomas. In any case, ve has been found
to be higher in HGG than in low-grade gliomas in other studies
[12, 14, 15, 50] and was higher in enhancing tumors undergoing
progression during concurrent radiation and chemotherapy [51].
Conversely, high ve of peritumoral edema was correlated with
better OS [20]. This effect was hypothesized to be predictive:
early blood–brain barrier disruption at the outskirt of tumor may
facilitate immune response and delivery of chemotherapy agents.

Skewness of ve was also a significant predictor of PFS, but
its clinical importance in the model was negligible (the

associated HR was 0.94). Although this suggests that higher
ve skewness might have a positive effect for PFS, the trend
could easily change in a larger cohort. High positive skewness
means that there are asymmetric outliers to the far right of the
histogram, whereas high kurtosis indicates a sharper histo-
gram peak around the mean values (such distribution could
also be called leptokurtic) [52]. Higher skewness—resulting
primarily from the contrasting vascular properties of the
hypoxic/necrotic core and highly vascularized rim—reflects
greater tumor heterogeneity and aggressiveness, thus possibly
relating to worse prognosis. Persistent high skewness with a
long tail to the right has been linked to worse treatment re-
sponse in various non-brain tumors [52].

Higher IAUGC in our study was associated with worse
PFS and OS on Kaplan–Meier analysis and was significantly
higher in grade IV than in grade III gliomas. IAUGC is a
simple and robust metric of perfusion, as it does not require
a model or curve fitting. It is more resistant to poor fitting at
extremely well or poorly vascularized regions, as well as dur-
ing minute physiological fluctuations. IAUGC is calculated
from the area under the contrast agent early uptake curve until
a specified time (usually 60 s) [39]. Similar to Ktrans, IAUGC
could identify the highly vascularized and permeable tumor
volume [39]. Indeed, IAUGC significantly correlated with
Ktrans in our study. On the downside, compared with Ktrans,
physiological interpretation of IAUGC is limited.

In our study, vpwas not a prognostic factor of OS or PFS. vp is
the proportion of blood plasma volume per unit volume of tissue
[53]. To this end, it reflects vascularization of tumor and could
relate to more aggressive course, similar to rCBVof DSC perfu-
sion. Nguyen et al. [26] have previously found vp to have a
prognostic OS value for glioma patients in univariate, but not
multivariate analysis, but it was not a significant prognostic factor
in other studies [24]. We have found that only skewness and
kurtosis of vp were significant negative predictors of OS in uni-
variate analysis, even though the associated HRs were minimal
(1.12 for vp_skew and especially 1.01 for vp_kurt). As discussed
before, high skewness signals higher heterogeneity and outliers
with unusually high values, which are attributes of a more ag-
gressive glioma. High kurtosis reflects a more peaked distribu-
tion of values, but is argued to be a less precise and a more
difficult to interpret parameter.

kep in our study was also a significant positive prognostic
factor for OS in univariate analysis. kep represents the reverse
transfer of contrast material from the extravascular into the
intravascular compartment. When the extravascular compart-
ment (ve) is large, the transferred contrast agent tends to accu-
mulate there, which results in delayed reverse transfer and
decreased rate. Accordingly, higher kep could be expected to
have an opposite prognostic value than ve. It was indeed ob-
served in our study.

A number of perfusion parameters were significantly different
for grade III vs. IV gliomas (Tables 1 and 2), with the best
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discrimination achieved by Ktrans
90 and ve_90. These two param-

eters have already been shown to be different between grade III
and IV [12, 16], between HGGs and LGGs [12, 14–16, 50], and
between grade II and III oligodendrogliomas [54]. In our study,
kep_90 was also significantly lower in grade IV gliomas. We have
also investigated kurtosis and skewness of Ktrans, vp, ve, kep, and
IAUGC as predictors of glioma grade. In a study of grade II and
III astrocytomas and oligodendrogliomas, Falk et al. [55] found
that Ktrans skewness was higher for grade III gliomas. The differ-
ence was in fact below the accepted statistical significance
(P = 0.07), but it was more significant than any other DCE
parameter. In our study, grade III and IV gliomas were compared
instead of grade II and III, and Ktrans

skew for grade IV was unex-
pectedly lower than that for grade III. We have not found any
study comparing Ktrans skewness between grade III and IV glio-
mas, but we believe that our results may be biased due to the
uneven distribution of non-enhancing tumors in grades III and
IV. Significantly, more non-enhancing tumors were grade III
(P < 0.001) and had higher Ktrans skewness and kurtosis than
grade IV (P < 0.05), possibly due to ROI including tumor and
edema together, thus increasing heterogeneity. When blood–
brain barrier-disrupted (contrast-enhancing) gliomas of grade III
and IV were side-by-side compared, no significant differences of
skewness and kurtosis could be found (P > 0.05). This stresses
the importance of precise tumor segmentation and separate anal-
ysis of contrast-enhancing fraction, necrosis, and edema for het-
erogeneity analysis.

IDH mutation status was a significant prognostic factor of
PFS and OS on univariate analysis, while KPSwas prognostic
for OS. IDH mutation is a well-known positive prognostic
factor for the malignant transformation and OS of low-grade
gliomas [56, 57]. Previously, someDSC perfusion metrics in a
study of 52 HGG patients has been shown to be predictive of
IDH mutation—IDH mutation-positive tumors had a more
heterogeneous microenvironment [58]. We did not find any
correlates of DCE perfusion and IDH mutation or MGMT
methylation status, but this does not preclude discoveries in
larger cohorts.

Our study is subject to a few limitations. Our sample size
was relatively small (N = 69), which could explain why other
than ve perfusion parameters were not significant prognostic
factors in multivariate analysis. We have tried to make the
post-processing as standard as possible, but variation could
arise when tumor area was delineated by hand. We could not
evaluate interobserver variability formally as tumor delinea-
tion was performed only once. Another limitation was that we
did not compare the prognostic value of DCE perfusion pa-
rameters with more established imaging biomarkers, such as
rCBVor ADC. However, the primary goal of this study was to
perform DCE perfusion parameter histogram analysis and in-
vestigate their direct relationwith PFS and OS. To this end, we
have succeeded in finding the most promising of them.
Calibration of DCE perfusion prognostic value to other MRI

biomarkers and subsequent optimal integration into standard
imaging and evaluation protocol is left for future studies.

Conclusion

ve was themost consistent predictor of PFS andOS in high-grade
glioma patients. ve_90 and vp_skewwere negative, and kep_90 was a
positive prognostic factor for OS in univariate analysis, while
ve_90 was also a negative prognostic factor for PFS. K

trans
90 and

ve_90 showed the best performance differentiating grade III and
IV gliomas on ROC curve analysis.
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