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Abstract 

Background: Although previous studies have reported a J-shaped association between the 

volume of alcohol consumption and incidence of type 2 diabetes (T2DM), a number of 

limitations weaken the validity of such findings. This thesis aims to systematically explore the 

effect of key methodological shortcomings. 

Methods: Analyses were undertaken using Whitehall II data from 1985-2013. To examine the 

degree to which conventional survival analyses might be subject to misclassification error due 

to the use of a single baseline measure of drinking status, mixed effects models were used to 

plot the trajectory of alcohol intake according to baseline categories of consumption. Mixed 

effects models were also stratified by diagnosis status to shed light upon whether increases or 

decreases in risk are likely to accrue gradually over the life course or occur as a consequence of 

differences in intake specific to periods of heightened biological sensitivity. Finally, given 

changes in alcohol consumption across the life course, increasingly complex survival models 

were used to explore the relationship between different dimensions of the longitudinal 

trajectory and T2DM risk. 

Results: Alcohol consumption within categories of baseline drinking converged over the adult 

life course toward moderate volumes, with moderate drinkers increasingly contaminated by 

participants defined at baseline as heavy or infrequent drinkers. Men who developed T2DM 

were found to increase their consumption up to their date of diagnosis, while drinking among 

women remained relatively stable up to diagnosis. Marked decreases in consumption were 

evident among both sexes following diagnosis. Reductions in the risk of T2DM were specific to 

or most pronounced among female current drinkers in middle age, with drinking in later life 

associated with an increased risk regardless of sex, after adjustment for prior consumption.  

Conclusions: Variations in alcohol consumption across the adult life course highlight the 

importance of considering drinking histories when defining alcohol consumption categories, 

with the risk of misclassification error appearing to increase with age. Although reductions in 

the risk of T2DM were most pronounced among middle-aged women, evidence concerning the 

determinants of such a sex-specific disparity is lacking. That risks are heightened in older age 

suggest that any benefits from drinking earlier in the life course may be countered by age-

related deteriorations to the alcohol metabolism.  
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1 Introduction 

Diabetes mellitus (DM) is a condition implicated in the development of vascular dysfunction and 

thereby a heightened risk of numerous vascular conditions, including coronary heart disease 

(CHD) and ischaemic stoke,1,2 as well as blindness, kidney failure and limb loss.3 Beyond its 

human costs, the financial burden of the condition is sizeable, at up to £13.8bn of National 

Health Service (NHS) expenditure in 2010/11 and an estimated annual loss to the United 

Kingdom (UK) economy of £15.4bn through absenteeism and early mortality.4 

Such factors are made all the more alarming by trend data indicating a rise in the prevalence of 

DM over recent decades, particularly within older age groups.5 By 2014, DM was estimated to 

affect 6.4% of adults living in the United Kingdom, or around 2,913,538 people – an increase of 

67% relative to 1994.6 Thus, although the rate of newly diagnosed cases appears to have 

plateaued in recent years,7 DM continues to pose considerable human and economic costs that 

represent a substantial public health challenge.  

Fortunately, around 85% of known cases are of a type caused largely by exposure to deleterious 

yet modifiable lifestyle factors,8 indicating that many future cases may be preventable. With this 

in mind, Public Health England published in 2015 a systematic review into the effectiveness of 

preventative lifestyle intervention programmes, of which the majority appeared to target 

improvements to physical activity and diet, including the regulation of fat and fibre 

consumption.9 

In contrast to these programmes, a growing body of evidence has suggested that alcohol 

consumption may play a role in reducing the risk of type 2 diabetes mellitus (T2DM), with one 

meta-analysis from 2009 reporting that men and women who consumed ~22-24 g/day (154-168 

g/week) of ethanol may be subject to a one-third reduction in the risk of T2DM, relative to never 

drinkers,10 or a volume of intake equivalent to around 1.2 pints of 4% alcohol by volume (ABV) 

lager per day.11  

With alcohol consumption appearing to represent a modifiable risk factor to which the majority 

of UK adults are exposed, Chapter 2 provides a more detailed overview of the evidence 

concerning alcohol consumption and T2DM, as well as a number of biological mechanisms by 

which alcohol consumption has been hypothesised to modify a person’s risk of T2DM. The 

chapter also includes a summary of recent trends in alcohol consumption behaviour, and 

outlines a number of methodological limitations that may have led to an overestimation of 

reductions in T2DM risk at moderate volumes of alcohol intake. Acknowledging these 
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shortcomings, Chapter 3 reports results from an updated and revised meta-analysis that set out 

to explore the effect of such factors upon the observed dose-response relationship, with 

Chapter 4 providing a summary of the current literature, including gaps in the evidence base, 

such as a failure within conventional literature to consider the effect of longitudinal changes to 

drinking behaviour. Chapter 5 sets out a number of aims by which the longitudinal relationship 

between alcohol consumption and T2DM risk can be better understood, with Chapter 6 

describing the selection and structure of a dataset for such an exploration and Chapter 7 

establishing the suitability of the chosen cohort for quantifying the association between alcohol 

consumption and T2DM. Chapter 8 reports changes in alcohol consumption over the adult life 

course and investigates whether these trajectories differ according to T2DM diagnosis, while 

Chapter 9 utilises increasingly complex survival analyses to formally explore the relationship 

between different dimensions of the longitudinal trajectory and T2DM risk. Chapter 10 

summarises findings from the analyses undertaken and documents a series of policy implications 

and areas for future research. 
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2 Background 

2.1 Diabetes mellitus 

DM is a chronic metabolic disorder characterised by the body’s inability to effectively regulate 

the metabolism of carbohydrates and fats, leading to chronically elevated levels in the 

bloodstream. Such a homeostatic impairment is currently understood to take two primary 

forms:  

 Type I diabetes (T1DM): an auto-immune disease in which an abnormal immune 

response leads to the destruction of insulin-producing pancreatic β-cells. Given the joint 

role of insulin in promoting the absorption of glucose from the blood into muscle and 

fat tissues, and the inhibition of glucose release from the liver, absolute insulin 

deficiency as associated with T1DM results in a build-up of carbohydrates and fats in the 

bloodstream.12 T1DM has been identified as most common among younger individuals 

and estimated to represent around 5-10% of known cases worldwide, or around 15% of 

known cases in England.8 

 Type 2 diabetes (T2DM): T2DM is characterised by relative insulin deficiency (reduced 

production) and/or the presence of insulin resistance (impaired response), which 

develop progressively over time and commonly following prolonged exposure to 

detrimental lifestyle factors, such as obesity.8 Accounting for around 85-90% of known 

cases, T2DM represents both the most common and preventable component of DM.  

Regardless of type, these metabolic abnormalities have been linked to an increased risk of 

numerous vascular complications and corollary costs to health services and the economy.  

2.1.1 Costs 

2.1.1.1 Morbidity and mortality 

Although the precise nature of the relationship between DM and vascular pathogenesis appears 

complex and multifactorial, with biological mechanisms currently posited rather than 

conclusively established,13,14,15 DM has been associated with the onset of numerous deleterious 

vascular conditions.3 

Chief among these, macrovascular conditions appear to represent the leading cause of 

morbidity and mortality among diabetic patients worldwide, with cardiovascular disease (CVD) 

accounting for around half of all documented deaths.16 This elevated cardiovascular risk profile 
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among people with DM was first identified in 1979, when data from the Framingham study 

indicated that participants with the condition were twice as likely to develop CVD as those 

without, even after adjustment for age, sex and common cardiovascular risk factors such as 

smoking.17 Subsequent studies have consistently identified an elevated risk of macrovascular 

health complications among people with DM.1 The latest macrovascular risk estimates are 

provided by an analysis of data obtained via the CALIBER programme, which links data from four 

English electronic health databases.2 Based on a cohort of over 1.9 million participants, T2DM 

was positively associated with more than a 50% increase in the risk of heart failure (HR 1.56, 

95% CI 1.45-1.69) and myocardial infarction (HR 1.54, 95% CI 1.42-1.67), as well as a 72% 

increase in the risk of ischaemic stroke (HR 1.72, 95% CI 1.52-1.95). Elsewhere, studies indicate 

that recovery from such conditions may also be impaired among persons with T2DM, with such 

individuals having exhibiting a heightened risk of stroke recurrence and post-stroke 

mortality,18,19,20,21 physical disability22 and dementia.23,24  

Aside from macrovascular conditions and their negative consequences for health, diabetes-

induced damage to the microvasculature represents a further serious concern, increasing the 

risk of conditions ranging from kidney failure and incontinence to limb loss and blindness.3  

2.1.1.2 Primary care expenditure 

Through its direct impact upon population health, DM necessitates investment in a wide range 

of health services. Applying estimates of disease prevalence and population size to inpatient and 

outpatient data available from Hospital Episode Statistics and other sources, two recent studies 

have attempted to calculate expenditures for healthcare resources including diagnostic tests, 

primary care consultations, prescription drugs and treatment for diabetes-attributable vascular 

conditions. Depending on the methods and data utilised, these direct costs have been estimated 

at between £9.8bn25 and £13.8bn4 in 2010/11, or around one-tenth of total NHS expenditure 

over the period.26 These figures represent the latest published estimates of DM-related primary 

care expenditure. 

2.1.1.3 Indirect costs 

Costs associated with DM are not limited to health services. As a chronic and sometimes 

debilitating condition, DM can also introduce indirect costs to the economy through premature 

mortality, early retirement, absenteeism and an increased dependence on social welfare and 

care services. 
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Few sources of UK-specific data are available for determining indirect costs attributable to 

diabetes.4,25 One approximation was undertaken by The Economist Intelligence Unit in 2007 

using data from the United States (US),27 which estimated foregone earnings attributable to 

absenteeism and mortality at £1.7bn/annum in the UK. Elsewhere, attempting to include 

indirect costs due to presenteeism, informal care and welfare, estimates of between £13.9bn25 

and £15.4bn4 were estimated for 2010/11.  

Whatever the precise figures, direct and indirect costs look to be sizeable – an observation 

notable given stagnated or reduced NHS, public health and social care budgets,28,29,30 plus 

ongoing increases in the number of cases requiring treatment. 

2.1.2 Prevalence and incidence 

According to data published at the end of 2015,5 the prevalence of self-reported DM cases 

among non-institutionalised adults in the England rose from 2.4% to 6.2% between 1994 and 

2014 (Figures 2.1 and 2.2), reaching 2,707,850 cases by the end of the period.31 Taking a more 

inclusive measurement, capturing both institutionalised and non-institutionalised residents 

from across the UK as a whole, objective data collected as part of the Quality and Outcomes 

Framework (QOF) indicated a prevalence of 6.4%, or 2,913,538 cases in 2014/15.6 Temporal 

increases in the prevalence of T2DM appear most pronounced among older age groups, with 

prevalence consistently greatest among men.  

 

Figure 2.1 Age-specific prevalence of male self-reported doctor-diagnosed DM. Health Survey for 

England 1994-2014. 
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Figure 2.2 Age-specific prevalence of female self-reported doctor-diagnosed DM. Health Survey for 
England 1994-2014. 

However, a marked rise in the prevalence of T2DM does not necessarily translate to a DM 

epidemic; an increase in prevalence may occur instead as a result of successful public health 

initiatives, such as improved disease management and consequent decreases in premature 

mortality.32 Looking instead to the number of new cases diagnosed each year, trend data from 

The Health Improvement Network (THIN)33,34 indicate that, while the incidence of T1DM has 

been low and constant over time, the age and sex standardised rate of T2DM rose by 63% 

between 1996 and 2005, to 4.31 cases per 1,000 person-years at risk.35 Although alarming, more 

recent figures indicate that these earlier increases may now have stabilised, falling to 3.99 and 

3.73 cases per 1,000 person-years at risk among men and women in 2013 (Figure 2.3).7  

These figures indicate that increases in the prevalence of DM are most likely a consequence of 

improvements to the treatment and management of the condition, and resultant reductions in 

premature mortality. However, although an average 15,665 new T2DM cases were diagnosed 

annually between 2000 and 2013,7 the human and economic costs of DM are not inexorable. 
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Figure 2.3 Crude annual incidence of T2DM per 1,000 person-years at risk. THIN 2000-2013. 

2.1.3 Risk factors 

A number of risk factors have been identified for the development of T2DM, ranging from 

adiposity and smoking, to alcohol consumption and physical activity.36,37 While not all factors 

are modifiable, current epidemiologic evidence indicates that the risk of T2DM may be 

attenuated in large part through simple lifestyle changes. Several risk factors are discussed 

below, beginning with adiposity and ending with alcohol consumption. 

2.1.3.1 Adiposity 

Some of the rise in the incidence of T2DM observed between 1996 and 2005 was posited by 

researchers as attributable to rising obesity over the period, with the proportion of newly 

diagnosed patients presenting as obese having risen by 22% over the period, reaching 56% by 

2005.35 This was better substantiated by results from the British Regional Heart Study, which 

indicated that 25.9% (95% CI 16.5-38.3%) of the rise in T2DM incidence among men between 

1984-1992 and 1999-2007 was attributable to an age-adjusted increase in average body mass 

index (BMI) of 1.42kg/m2 (95% CI 1.10-1.74kg/m2).38  

An aetiological association between obesity and T2DM has been supported by multiple 

longitudinal studies, including a meta-analysis of 15 cohorts, which identified a standard 

deviation increase in BMI raised the relative risk (RR) of T2DM of by 55% (RR 1.55, 95% CI 1.43-

1.69), with similar increases identified across alternative measures of adiposity, including waist 

circumference (RR 1.63, 95% CI 1.49-1.79) and waist-hip ratio (RR 1.52, 95% CI 1.40-1.66).39 

Although waist circumference was found to be a stronger predictor of T2DM risk than BMI and 

waist-hip ratio in primarily white study populations, this relationship differed according to a 
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diverse range of participant characteristics. Regardless of the measure adopted, the importance 

of adiposity as a predictor of T2DM risk is supported by studies that indicate decreased insulin-

mediated glucose transport and metabolism within adipose tissues relative to skeletal muscle, 

contributing to the development of insulin resistance and hyperinsulinaemia.40 

2.1.3.2 Diet 

Given links between adiposity and T2DM risk, a number of dietary exposures are likely to be 

important modifiable risk factors for T2DM risk, including fat, carbohydrate and fibre 

consumption.  

Fibre has been hypothesised to reduce T2DM risk by hastening intestinal transit, decreasing the 

amount of carbohydrates and fats digested and dispersed into the bloodstream.41,42 Data pooled 

from 17 studies indicated a 9% reduction in risk per 10 g/day increase in total fibre consumption 

(RR 0.91, 95% CI 0.87-0.96). 

Through their effect on blood sugar and obesity, carbohydrate-rich foods have been found to be 

linearly associated with the risk of T2DM. With foods ranked according to their glycaemic load 

(GL), with one unit equal to the effect on blood sugar of consuming 1 g of glucose, figures 

collated from 18 cohort studies indicated a 3% increase in T2DM risk for every 20 unit increase 

in GL per day (RR 1.03, 95% CI 1.00-1.05).43 

By contrast, results reported by a recent meta-analysis of eight longitudinal studies indicated no 

dose-response association between saturated fat consumption and the risk of T2DM, with 

elevated risks observed only among crudely adjusted models.44 Similarly, despite 

polyunsaturated fats commonly found in fish having properties thought advantageous toward a 

lowering of T2DM risk, including reductions in serum lipids, platelet aggregation and blood 

pressure,45 data pooled from 18 cohorts identified no association between T2DM and fish 

consumption (RR per 100 g/day 1.12, 95% CI 0.94-1.34) or polyunsaturated fatty acids (RR per 

250 mg/day 1.04, 95% CI 0.97-1.10).46  

Reporting an array of positive, inverse and null associations, studies sampled as part of the 

saturated and polyunsaturated fat meta-analyses were notable in their considerable degree of 

heterogeneity, drawing into question the validity of reporting single summary measures. It was 

possible that real dose-response effects were lost due to noise resulting from marked 

differences in methods, populations and quality. While the proportion of variation in risk 

explained by between-study variance was low to moderate among fibre (I2=29%) and GL studies 

(I2=54%),43 heterogeneity was considerable among those that investigated saturated fats 
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(I2=91%)44 and polyunsaturated fats (fish consumption, I2=81%; polyunsaturated fat 

consumption, I2=78%).45 Additionally, the majority of sampled studies had adjusted for some 

measure of adiposity. With obesity likely positioned on the causal pathway between fat 

consumption and T2DM risk, it was possible that risks associated with dietary exposures had 

been biased toward the null by having controlled for an important intermediate factor.47,48  

Taken collectively, fibre and carbohydrate appear to have an important influence upon T2DM 

risk beyond any effects they might have upon adiposity, while the effects of saturated and 

polyunsaturated fats remain inconclusive owing to substantial heterogeneity between studies. 

2.1.3.3 Heritability 

Although not modifiable, a predisposition to T2DM appears to be transferred vertically between 

generations via genetic inheritance. Compared with age-specific rates of T2DM as found in the 

US general population, individuals with a parental history of T2DM were found to have 2.3 times 

the risk of T2DM, while those with both a parent and a grandparent exhibited 3.5 times the risk 

of having developed the condition.49 

Looking to the incidence of T2DM as documented by the largest twin study to have explored the 

heritability of T2DM, the degree of concordance was reported to be 34% (95% CI 27-41%) among 

monozygotic and 16% (95% CI 12-20%) among dizygotic twin pairs, with levels of concordance 

higher among female twins pairs50 Indeed, the proportion of total variance calculated as 

attributable to genetic factors was highest among women, at 69% of male and 79% of female 

variance, suggesting that women may be more likely to inherit a genetic predisposition to the 

disease.50 Other studies have reported higher levels of concordance, though sample sizes were 

substantially smaller and therefore subject to greater variance.51,52 

Beyond twin studies, new data are becoming available from genome-wide association studies 

(GWASs), which sequence or impute the entire human genome and quantify the degree of 

association between SNPs and disease. To date, the number of SNPs associated with T2DM risk 

has risen in just a few years from 3853 and 3954 to more than 70,55,56 with almost two dozen 

variants implicated in dysfunctional metabolic processes, including abnormalities in insulin 

secretion and insulin response.53  

Despite such findings, SNPs that reach genome-wide statistical significance currently account for 

only around 6%57 to 10%53 of total variance in T2DM risk attributed to heritability, suggesting 

that more genes have yet to be discovered, have too small an effect on their own to be selected 

at the GWAS significance threshold,58 or that heritability estimates derived from twin studies 
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may have been overestimated or unreliable, such as through their small sample sizes.59 Until 

these issues are overcome, adjustment for family history of T2DM may present a pragmatic 

approach by which heritability may be accounted for in observational studies. 

2.1.3.4 Physical activity 

Physical activity is also a significant risk factor for T2DM, with longitudinal studies from a range 

of populations indicating an inverse relationship.60,61 Specifically, results from the latest available 

meta-analysis indicates a 35% reduction in T2DM risk among study participants in the highest 

exposure category relative to those in the lowest category (RR 0.65, 0.59-0.71), with 

heterogeneity low across the 14 applicable studies (I2=18%).61 Reductions in risk were also 

evident among individuals who switched from low to moderate or higher categories (RR 0.64, 

95% CI 0.50-0.70, n=7, I2=0%), suggesting that any negative effects conferred by low physical 

activity may be reversible. 

Although reductions in T2DM risk associated with physical activity may be mediated via an effect 

upon adiposity,62 both factors has been identified as independent. This is supported by the 

results from physical activity meta-analyses, which identified large measures of effect despite 

adjustment for BMI across the majority of constituent studies. However, obesity appears to be 

the stronger determinant of risk.63  

Accordingly, various additional mechanisms have been proposed beyond the direct effect of 

physical activity upon adiposity. These include exercise-induced increases to (a) the 

capillarisation of muscle tissue,64,65 (b) the production of glucose transporter proteins,66,67,68,69 

and (c) muscle glycogen synthase activity, an enzyme involved in the conversion of glucose into 

glycogen for energy storage.70,71 Together, these three processes have been posited to increase 

the rate at which glucose can be metabolised and transferred out of the bloodstream and into 

skeletal muscle tissue, resulting in improved insulin sensitivity as evident in the form of lower 

post-load blood glucose measurements among individuals who exercise for longer durations and 

with greater intensity.72 

2.1.3.5 Smoking 

The latest available meta-analysis of 84 longitudinal cohort studies and indicated that current 

smokers exhibit a 37% greater risk of T2DM relative to non-smokers (RR 1.37, 95% CI 1.33-

1.42).73 This relationship was also found to be dose-dependent, with risks largest among those 

classified as heavy smokers (RR 1.57, 95% CI 1.47-1.66). A stratification of non-smokers revealed 

an elevated risk among former smokers relative to those that reported never smoking (RR 1.14, 
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95% CI 1.10-1.18), suggesting that complete life-ling abstention may be optimal for reducing 

T2DM risk, but that elevated risks conferred by current smoking may still be attenuated by 

cessation. This latter inference is supported by the inverse relationship between the duration of 

cessation and T2DM risk.74 Were a causal relationship present between smoking and the 

development of T2DM, the authors estimated that around 12% of male and 24% of female T2DM 

cases worldwide were attributable to active smoking.  

Paradoxically, however, smoking has repeatedly been associated with advantageous changes in 

adiposity,75 with BMI lowest among current smokers and smoking cessation linked to increases 

in BMI even after adjustment for baseline adiposity.76 Putative mechanisms for such an inverse 

relationship range from smoking being a behavioural alternative to eating75 to a direct genetic 

link between the two factors.77 Whatever the underlying process, smoking appears associated 

with marked reductions in one of the leading risk factors for T2DM. Additionally, although 

smokers tend to exhibit a clustering of obesogenic health behaviours,78 the dose-response 

nature of the association between smoking and T2DM risk and the magnitude of observed effect 

sizes were such that the relationship appeared unlikely to be attributable to residual 

confounding alone.  

Any causal mechanism between smoke exposure and T2DM remains unclear, though there is 

some suggestion from experimental studies that smoking may increase insulin resistance,79,80,81 

with improvements to insulin sensitivity observed following cessation.82 Such a relationship may 

be mediated by nicotine through its apparent effect upon insulin signalling proteins.83 

2.1.3.6 Alcohol consumption 

2.1.3.6.1 Average volume of alcohol consumed 

An increasing body of evidence has highlighted the role that the average volume of alcohol 

consumed may play in modifying the risk of T2DM. According to a recent meta-analysis, which 

comprised 20 longitudinal studies, a J-shaped dose-response relationship exists between the 

volume of alcohol consumption and T2DM risk.10 Relative to never drinkers, reductions in risk 

were reported to be greatest at 22 g/day (RR 0.87, 0.76-1.00) among men and 24 g/day (RR 0.60, 

0.52-0.69) among women, with risks rising incrementally thereafter. A newer meta-analysis 

published after the analyses undertaken in Chapter 3 also reported a non-linear dose-response 

relationship, with risks lowest among adults that consumed 91-168 g/week (men: RR 0.80, 95% 

CI 0.72-0.89; women: RR 0.57, 95% CI 0.48-0.67), relative to the lowest consumption category 
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reported among constituent studies. Peak reductions in risk were evident at around 22 g/day 

(RR 0.57, 95% CI 0.51-0.62) among men and 30 g/day (RR 0.70, 0.64-0.76) among women.84 

These findings have been countered by a Mendelian randomisation meta-analysis of 48 

international cohorts.85 Rather using a self-reported measure of alcohol intake, adults were 

instead categorised according to a genetic proxy for alcohol consumption. Because genotypes 

tend to be assigned at random during meiosis (assuming that the choice of partner was not 

associated with the genotype (panmixia)), groups of drinkers defined according to a genetic 

variant should benefit from a more even distribution of confounding factors akin to a 

randomised controlled trial, strengthening any inferences drawn.86 However, despite being less 

prone to reverse causality and confounding, it should be noted that results derived using genetic 

data are subject to a unique set of assumptions. Aside from the requirement that a genetic 

polymorphism be associated with the exposure of interest, explaining a substantial proportion 

of variance in the volume of alcohol consumption consumed, it is assumed that a selected 

marker be associated with the outcome of interest solely through its effect on alcohol 

consumption, e.g. is unrelated to other genetic traits that may influence the outcome 

differentially (antagonistic pleiotropy).86  

In this particular analysis, rs1229984 was selected as a single-nucleotide polymorphism (SNP) in 

the alcohol dehydrogenase 1B gene (ADH1B), responsible for encoding an enzyme implicated in 

the metabolism of alcohol.87 Compared to the more common G-allele variant of the SNP 

(rs1229984(G)), carriers of an A-allele (rs1229984(A)) exhibit an impaired clearance rate of 

alcohol metabolites, leading to increased flushing, palpitations and drowsiness through a 

resultant accumulation of acetaldehyde, a metabolic by-product of alcohol.88 Due to the adverse 

biological response it elicits following alcohol consumption, rs1229984(A) has been associated 

with lower volumes of daily alcohol consumption and a higher prevalence of non-drinking,88 as 

well as a lower odds of alcohol dependence.89 

Results from this Mendelian randomisation meta-analysis were in concordance with these 

negative effects. Although mean intake was not reported, carriers of the rs1229984(A) 

polymorphism had a 17% (95% CI 15.6-18.9%, I2=64%) lower weekly volume of alcohol 

consumption and a 27% higher odds of being a non-drinker (OR 1.27, 95% 1.21-1.34, I2=73%), 

relative to non-carriers (rs1229984(G)).85 Notably, an analysis of all available individual 

participant data showed no difference in the odds of T2DM by genetic variant (p=0.627, 

n=145,063). Similarly, when data were restricted solely to those who defined themselves as 

current drinkers, no decrease in odds was detected among rs1229984(A) carriers (OR 0.97, 95% 
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CI 0.86-1.09, n=111,140) despite a lower volume of alcohol consumption. Such findings suggest 

that poor adjustment for confounding factors may have explained at least some of the apparent 

reduction in risk observed at moderate volumes of alcohol consumption present in 

observational studies, with around one-third of such studies having provided crude or age-

adjusted estimates only.10 Weak confounder adjustment among current observations studies is 

an issue discussed in more detail in Section 2.3. 

A number of alternative explanations for a null result were possible. With consideration to the 

biological effect of the A-allele polymorphism, the absence of any reduction in risk among lighter 

drinkers with a genetically impaired alcohol metabolism might be attributable to higher 

concentrations of inflammatory alcohol metabolites, which may have offset any reduction in risk 

otherwise conferred by a more moderate volume of alcohol consumption. This was argued by 

authors of a paper which analysed participants from the Nurses’ Health Study and Health 

Professionals Follow-Up Study.90 While reductions in risk were observed among self-reported 

moderate drinkers in accordance with the 2009 meta-analysis, the presence of an alcohol 

dehydrogenase polymorphism was found to significantly attenuate the reductions in risk 

reported among moderate drinkers (p=0.02). Such a finding led the authors to conclude that, 

were there a causal relationship between the volume of alcohol intake and T2DM, the risk of 

T2DM may be mediated by an impaired clearance of inflammatory metabolites such as 

acetaldehyde91,92,93 (see also Section 2.2.2.3).  

Aside from this, a null result may also be a consequence of numerous statistical limitations.94 

Firstly, the Mendelian randomisation meta-analysis does not rule out a relationship between 

some other dimension of alcohol consumption and the risk of T2DM, such as the effect of 

drinking pattern. As highlighted in the following section, there are indications from some 

observational studies that the frequency of drinking or propensity for binge drinking may 

represent important determinants of T2DM risk beyond a simple measure of average volume 

consumed. Secondly, only a relatively small proportion of the variation in alcohol consumption 

was explained by the ADH1B genotypes. Were the mean volume of alcohol intake equal to a 

value of 50 g/week, for example, then the average difference in consumption between carriers 

and non-carriers would equate to just 8.5 g/week, or barely one unit. In this sense it was possible 

that the disparity in consumption between the two groups was too small to detect any effect. 

Thirdly, the prevalence of rs1229984(A) carriers within the pooled dataset was low, at just 7% 

of the sample, meaning that statistical power may have been insufficient to detect any effect, if 

present. Accordingly, though Mendelian randomisation studies can offer advantages over 
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observational studies, evidence from cohort and case-control studies still have an important role 

to play in developing a better understanding of the relationship between alcohol consumption 

and T2DM risk. 

2.1.3.6.2 Drinking pattern 

Beyond the volume of alcohol consumed on an average day or week, there is some suggestion 

that the pattern of alcohol consumption may represent a second and important component of 

T2DM risk. Of the 20 studies selected as part of the 2009 meta-analysis, just three were 

documented as having investigated some measure of consumption patterning.10 The first, which 

utilised data from a US occupational cohort, found that the frequency of consumption over an 

average week was significantly associated with T2DM risk, even after adjustment for the average 

volume of alcohol consumption (p=<0.001).95 Specifically, each additional drinking day per week 

was associated with an independent and multivariable adjusted reduction in risk of 7% (RR 0.93, 

95% CI 0.90-0.97).  

The second publication, a prospective cohort of monozygotic twins, looked instead at episodic 

heavy drinking. Although they provided no detailed dose-response analysis of the interaction 

between volume and pattern, they did document that female participants who reported 

consuming >179 g on any one occasion at least one a month during the preceding year had 

double the risk of T2DM relative to those that did not report binge drinking (RR 2.1, 95% CI 1.0-

4.4).96 No such association was observed among men, though the average volume of alcohol 

consumption among binge drinkers was not reported.  

Finally, the third publication, based on a male multi-ethnic prospective cohort study, stratified 

volumes of weekly alcohol intake by the number of drinking days during the week.97 Although 

sub-group sample sizes were small and confidence intervals consequently wide, point estimates 

revealed a notable interaction between weekly volume and frequency. At the lowest volume of 

alcohol consumption (<70 g/week), little difference in risk was evident when stratified by 

frequency of drinking over the week, suggesting that such a volume of intake may have been 

too low to detect an interaction effect in such a small sample. However, at higher volumes of 

consumption, risks were lower among those who distributed their consumption over a greater 

number of days. For instance, relative to non-drinkers, those who consumed >210 g/day over 1-

3 days/week were five times more likely to have developed T2DM (RR 5.21, 95% CI 1.79-15.2), 

while those that distributed the same volume over a full seven days exhibited the lowest risk of 

T2DM (RR 0.68, 95% CI 0.39-1.20). Consumption within this group was equivalent to around 30 
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g/day, or a level almost equal to that associated with the peak reduction in risk reported by the 

2009 meta-analysis.10  

Although studies that investigated joint associations between the two dimensions of drinking 

and T2DM risk were few in number and explored the relationship in different ways, both the 

volume and frequency of consumption appeared to represent important risk factors, with T2DM 

risk appearing lowest among regular moderate drinkers, and any benefits potentially offset by 

concentrated periods of episodic heavy consumption.  

2.2 Alcohol consumption 

Representing a potentially modifiable risk factor for T2DM and appearing from observational 

studies to reduce risks at regular moderate volumes of alcohol consumption, trends in the 

volume and pattern of UK alcohol consumption are described below. With a peak reduction in 

risk appearing to be conferred at an volume of around 22-24 g/day, according to estimates from 

longitudinal observational studies,10 trend data gave an indication as to the likely risk profile of 

the UK general population and thereby the degree to which the burden of T2DM could 

potentially be attenuated through population-level changes in alcohol consumption behaviour. 

2.2.1 Trends 

2.2.1.1 Volume of alcohol consumption 

Current national alcohol guidelines advise that the total volume of consumption exceed no more 

than 21 units/week among men and 14 units/week among women.98 A recent review of the 

available evidence recommended that these thresholds be revised to 14 units/week for both 

sexes.99 This newly proposed threshold equates to 16 g/day, or a volume close to the 24 g/day 

nadir in T2DM risk reported by observational studies.10 

In aggregate, data from the Health Survey for England 20145 and the Scottish Health Survey 

2014100 both indicate that consumption among men and women is close to or within current 

national guidelines, measuring an average 19.0 g/day among English men and 9.9 g/day among 

English women,5 with values slightly lower in Scotland. Even within age groups where 

consumption is highest, volumes are not of a level associated with an increased risk of T2DM. 

For instance, among English men aged 65-74 years, consumption measured 23.0 g/day on 

average (Figure 2.4), with 11.9 g/day consumed by English women aged 16-24 years (Figure 2.5). 

However, it was unlikely that the volume of drinking is distributed uniformly across all seven 

days. As discussed in the next section, alcohol intake is marked by instances of episodic heavy 

consumption potentially associated with an increased risk of T2DM.96,97 
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Figure 2.4 Mean volume of alcohol consumption among male current drinkers, stratified by age group 
and country. Health Survey for England and Scottish Health Survey, 2014. 

 

Figure 2.5 Mean volume of alcohol consumption among female current drinkers, stratified by age group 
and country. Health Survey for England and Scottish Health Survey, 2014. 

2.2.1.2 Pattern of alcohol consumption 

To get some idea as to the prevalence of episodic heavy consumption in the general population, 

data were obtained from the annual Opinions and Lifestyle Survey, which reported alcohol 

consumption from a random probability sample of UK residents.101 Based on the data available, 

episodic heavy consumption was defined as any current drinker who reported consuming more 

than twice the recommended daily limit on their heaviest drinking day in the week prior to 
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interview, equating to >63 g among men and >47 g among women. The degree of episodic heavy 

consumption was lowest among women in all age groups (Figures 2.6 and 2.7). Although 

gradually declining over time, episodic heavy consumption is most common within younger age 

groups regardless of sex. By 2013, 20.9% of male and 15.8% of female current drinkers aged 16-

24 years reported consuming more than twice the recommended limit on at least one day in the 

week.  

 

Figure 2.6 Proportion of male current drinkers who reported episodic heavy consumption. Opinions and 
Lifestyle Survey, 2005-2013. 

 

Figure 2.7 Proportion of female current drinkers who reported episodic heavy consumption. Opinions 
and Lifestyle Survey, 2005-2013. 
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If regular moderate alcohol consumption is causally associated with marked reductions in T2DM 

risk, relative to never drinkers, then the presence of episodic heavy drinking among around one-

fifth of younger drinkers suggests that UK drinking behaviours may not be optimal for the 

attenuation of T2DM risk. Such trend data also suggest that an increase in the burden of T2DM 

may become apparent over coming decades as younger episodic heavy drinkers grow older. 

2.2.2 Putative biological mechanisms 

There are multiple proposed mechanisms by which alcohol consumption might influence the 

risk of T2DM. Three of the most commonly discussed hypothesised pathways are discussed 

below. 

2.2.2.1 Insulin sensitivity 

One pathway concerns the effect of alcohol upon insulin sensitivity, which refers to the rate of 

metabolic response following insulin exposure, including the metabolism, transport and storage 

of carbohydrates and fats.102,103 High insulin sensitivity is marked by the prompt metabolism of 

carbohydrates and fats in the presence of nominal insulin concentrations. Here, elevations in 

blood sugar, such as those following meals, are acute and easily regulated without the need for 

dietary or medicinal control. Conversely, low insulin sensitivity is indicated by an impaired insulin 

response, resulting in chronically elevated levels of blood glucose. Often referred to as insulin 

resistance, these chronic elevations in blood glucose trigger a compensatory feedback loop that 

can result in a state of hyperinsulinaemia. 

To date, analyses exploring the relationship between alcohol and insulin sensitivity have been 

predominantly cross-sectional,104 with just three out of 16 non-interventional studies identified 

as part of a recent review having been longitudinal in design. Of all the observational data 

identified, both U-shaped and inverse linear associations with insulin sensitivity were found, as 

measured variously via fasting insulin, fasting glucose or homeostasis model assessment 

(HOMA). 

Among studies that identified a U-shaped relationship, insulin sensitivity was greatest at 

volumes of alcohol consumption at which reductions in risk were reported by Baliunas et al,10 

ranging from 9 g/day105 and 20 g/day106 to anything below 40 g/day.107 By contrast, upper limits 

in studies that identified a linear relationship ranged from >23 g/day108 to >100 g/day.109 

Interestingly, although a cross-sectional analysis of data obtained from the French DESIR cohort 

identified a strong and sizeable linear relationship with average volume of alcohol consumption 
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among both sexes (p=<0.001),110 no such association was identified in a three-year longitudinal 

analysis later undertaken on the same cohort bar a linear increase in glucose among men.111 

A separate review and meta-analysis looked specifically at results from interventional studies 

that spanned at least a two-week period.112 A total 14 studies were selected, with participant 

samples ranging in size from 17 to 51. Although no difference in fasting glucose concentration 

was identified among either male (p=0.48, study n=5) or female (p=0.94, n=6) drinkers, relative 

to controls, a significant sex interaction was reported between alcohol consumption and insulin 

sensitivity (p=0.018), which tended to be higher among female (SMD 0.16, 95% CI -0.04-0.37, 

p=0.12, study n=5) but not male drinkers (SMD −0.30, 95% CI −1.23-0.64, p=0.54, study n=5). 

However, heterogeneity among the studies was particularly high (I2=95%). When a study largely 

responsible for such heterogeneity was removed, no significant difference in insulin sensitivity 

between men and women remained (p=0.180). With regard to the effect of alcohol upon fasting 

insulin, significant reductions in concentration were observed among women (p=0.02, study 

n=6). While no such effect was reported among men, analyses were based on estimates 

extracted from just two small interventional studies of low precision (men: p=0.59, study n=2). 

Data from the two studies indicated a similarly advantageous direction of effect. 

Although a meta-analysis of alcohol consumption and T2DM risk found greater reductions in risk 

among moderate female drinkers than their male equivalents,10 observational and 

interventional research were insufficient to conclude that this difference in dose-response may 

have occurred due to a sex-specific disparity in alcohol-induced insulin response. In addition to 

the majority of observational research thus far being cross-sectional, negating any conclusions 

concerning the direction of effect, results from interventional studies should also be viewed with 

caution. Such studies were small in size, few in number and reported heterogeneous levels of 

alcohol intake. Collectively, such limitations constrain any attempt to generalise interventional 

results to the general population. 

2.2.2.2 High-density lipoprotein 

Besides its putative effect upon markers of insulin sensitivity, alcohol may confer some 

reduction in the risk of T2DM through a causal relationship with the production of high-density 

lipoprotein (HDL). HDL has been linked to a number of positive metabolic processes, including 

the reverse cholesterol transport process, which transports lipids out of the bloodstream for 

storage in the liver.113,114 Elsewhere, HDL has appeared to play a role in the transfer of glucose 

away from the bloodstream and into adipose tissue for storage, as well as the promotion of 
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glucose metabolism by skeletal muscle tissue.115,116 Finally, there has been some suggestion that 

HDL may help promote insulin secretion by β-cells and protect them against apoptosis.116  

Investigating alcohol-related changes to HDL concentration, data were abstracted from 25 

interventional studies.117 The researchers identified a linear dose-response relationship, 

whereby HDL concentrations increased by 0.133mg/dl per gram of daily alcohol consumption, 

relative to controls. At the average volume of alcohol consumption (30 g/day), which was close 

to the nadir in risk reported by the 2009 T2DM meta-analysis,10 HDL concentration increased by 

8.3% over a period of four weeks compared with controls (3.99 mg/dl, 95% CI 3.25-4.73).117 This 

linear relationship was supported by a more recent meta-analysis of 33 studies (p=0.013),118 

with similarly positive findings reported by a recent trial of 224 participants followed over two 

years (2.0 mg/dL, 95% CI 1.6-2.2 mg/dL).119 The earlier of the two meta-analyses reported the 

dose-response relationship by sex, and found a stronger association among men than women 

(men: β=0.134 mg/dl per 1 g/day alcohol; women β=0.095 mg/dl per 1 g/day alcohol), though 

differences between sexes were not significant (p=0.930).117 However, the absence of a 

statistically significant interaction may have been due to low statistical power as opposed to the 

absence of a sex-specific dose-response, with only three small studies reporting female data.  

Taking a different approach, a recent Mendelian randomisation meta-analysis found no overall 

difference in the concentration HDL (p=0.259) when data from 46 studies were stratified 

according to a genetic polymorphism predictive of variance in alcohol consumption,85 though 

this null finding may have been a result of limitations outlined elsewhere (see Section 2.1.3.6.1). 

That observed relationships in prospective cohort studies were linear as opposed to J-shaped 

suggested that any beneficial increase in HDL concentration following increased alcohol 

consumption may be offset by metabolic harms at higher intakes, such as a triggering of 

pancreatic β-cell apoptosis and signalling dysfunction.120 Moreover, even if alcohol consumption 

is causally associated with increases in HDL concentration, there is an indication that HDL may 

not itself be associated with the onset of T2DM despite its apparent role in effective glucose 

transport and storage. For instance, in a recent Mendelian randomisation study based on 47,627 

participants sampled by the Copenhagen City Heart Study and the Copenhagen General 

Population Study, no association was found between SNPs linked to HDL concentration and 

T2DM risk (p=0.550); significant dose-response relationships were specific to models that 

utilised observational data as opposed to a genetic indicator of HDL variance.121 
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2.2.2.3 Inflammation 

A further hypothesis concerns the effect that alcohol may have upon inflammatory 

response,122,123 a mechanism triggered following damage to human tissue or cellular function. 

Specifically, inflammation and a consequent production of pro-inflammatory proteins has been 

associated with the disruption of endothelial and pancreatic β-cell functioning, impairing the 

breakdown and transport of glucose, increasing blood glucose concentrations and thereby 

implicated in the pathogenesis of T2DM.93,124,125 

As with studies investigating alcohol-related changes in HDL concentration, observational data 

concerning inflammatory markers is scarce and almost exclusively cross-sectional.122,126 

Focussing on results from interventional studies, a recent meta-analysis identified publications 

that reported dose-response relationships between alcohol consumption and a range of 

inflammatory biomarkers.118 These included C-reactive protein (CRP), understood to increase in 

concentration during periods of inflammatory response but with an unknown function beyond 

its prognostic value,127 and tumour necrosis factor alpha (TNF-α), a pro-inflammatory protein 

hypothesised to play a role in the development of insulin resistance through its suppression of 

insulin signalling.128,129,130 The concentrations of such markers were not found to be influenced 

by the volume of alcohol consumption, though the number of constituent studies was small (e.g. 

CRP, n=5; TNF-α, n=3).118 By contrast, a Mendelian randomisation meta-analysis of 42 

longitudinal studies found CRP concentrations to be 3.4% (95% CI 1.1-5.7%) lower among A-

allele carriers whose average volume of alcohol consumption was 17% lower than among non-

carriers (p=<0.001).85 Moreover, when a non-linear dose-response relationship was estimated 

based on data reported by 22 Mendelian randomisation studies, CRP concentrations were 

predicted to be elevated only at volumes of alcohol intake greater than around 166 g/week, 

relative to zero alcohol consumption.131  

Data from these Mendelian randomisation studies therefore indicate an advantageous 

reduction in the concentration of CRP at relatively moderate volumes of weekly consumption, 

consistent with the J-shaped association observed between alcohol intake and T2DM risk.10 

However, in the absence of supporting evidence from interventional or longitudinal studies, the 

plausibility of such a pathway remains in question. This was especially so given a lack of robust 

evidence linking inflammatory intermediates to T2DM. For instance, while a study of the 

Whitehall II and Northwick Park Heart Study II datasets reported significant associations 

between baseline concentrations of CRP and the risk of insulin resistance (HOMA), 

hyperglycaemia and T2DM, null associations were present when data were stratified according 
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to SNPs significantly associated with variance in CRP concentration but independent of 

confounding factors such as obesity, blood pressure and socioeconomic position.132 Elsewhere, 

consideration alternative inflammatory markers, a recent Mendelian randomisation meta-

analysis reported null associations between genetic variants linked to concentrations of 

interleukin 1 receptor antagonist, a regulator of inflammatory response mechanisms, and T2DM 

risk (OR 0.99, 95% CI 0.97-1.01).133 Although meta-analyses of Mendelian randomisation studies 

have linked SNPs associated with variance in the concentration of interleukin 6 (a cell signalling 

molecule implicated in the suppression of inflammatory response) to a slightly lower but 

statistically significant risk of CHD of between three134 and five per cent,135 no studies appear to 

have thus far explored associations between SNPs of interleukin 6 and T2DM risk.  

2.2.2.4 Summary 

Longitudinal observational studies that investigated putative mechanisms by which alcohol 

consumption might attenuate the risk of T2DM have tended to be lacking, with the majority of 

studies being cross-sectional in design and thus inappropriate for developing an understanding 

of cause and effect. Interventional studies have provided a better source of data, but their 

generalisability has been limited by heterogeneous designs, short durations and singular 

volumes of consumption, obfuscating any understanding of dose-response effects following 

chronic alcohol intake at the population level. Finally, with large-scale Mendelian randomisation 

studies having identified no association between either HDL or inflammatory markers and 

T2DM, the likelihood of such pathways being the route by which alcohol may confer differences 

in T2DM risk is low.  

2.3 Reference groups and confounding 

Although observational and experimental data have hinted at potential biological mechanisms 

by which alcohol may induce a reduction in T2DM risk, the validity of such studies was 

questionable. As an alternative to a direct biological effect, it is possible that observed 

reductions in T2DM risk among moderate drinkers may instead have been a statistical artefact 

attributable factors such as the selection of a reference group potentially predisposed to the 

condition under study, and a failure to account for any such predisposition. 

For instance, of the 20 studies selected as part of the 2009 alcohol-diabetes meta-analysis, 18 

calculated risks associated with current drinking relative to pooled non-drinkers.10 Criticism has 

been levelled at this choice of abstention group on the grounds that is may capture former 

drinkers whose lifestyle behaviours and health status may place them at increased risk of 

negative health events, including T2DM.136,137,138 Such criticism is supported by studies that 
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report a higher prevalence of T2DM risk factors among non-drinkers than moderate consumers 

of alcohol following adjustment for differences in age and sex,139,140 including being of Asian 

ethnicity, having a high BMI and low physical activity. Elsewhere, studies also report a higher 

prevalence of poor self-reported health and limiting longstanding illness among non-drinkers 

than any other drinking category,141,142,143 with the onset of ill-health associated with a 

subsequent cessation of alcohol consumption.144,145,146 In at least one instance, the prevalence 

of limiting longstanding illness has been found to exhibit a J-shaped relationship, with the 

proportion of illness highest among non-drinkers and lowest among moderate consumers of 

alcohol.141 Such data suggest that pooled non-drinking categories may indeed comprise a group 

of former drinking ‘sick quitters’ who cease alcohol consumption due to ill-health. Such 

individuals were likely to have health profiles that placed them at greater risk of T2DM than 

moderate drinkers, potentially confounding the dose-response relationship between drinking 

and T2DM risk in poorly adjusted studies.  

Of the studies selected as part of the 2009 meta-analysis, risk estimates abstracted from 13 of 

the 20 selected studies had been adjusted for just three or fewer confounding factors, with one-

third of studies providing only crude or age-adjusted estimates. There was therefore a possibility 

that estimated reductions in the risk of T2DM among healthier moderate drinkers may be 

overestimated. Unfortunately, the meta-analysis provides no sensitivity analysis examining the 

effect of confounder adjustment or abstention reference category upon the shape and 

magnitude of the dose-response relationship. Similarly, a new meta-analysis published after the 

analyses undertaken for Chapter 3 provided no adjustment or stratification according to the 

choice of reference category by consistent studies, opting only to use the lowest category of 

consumption in each case, however so defined.84 As such, the impact of former drinkers and 

poor confounder adjustment upon reported dose-response relationships is currently unknown. 

In the absence of such an analysis, the possibility that reductions in T2DM risk may have been 

overestimated is instead supported by a recent analysis of studies that explored the relationship 

between average volume of alcohol consumption and all-cause mortality.136 Of the 21 all-cause 

mortality studies to have included former drinkers within a pooled non-drinking reference 

group, all reported a J-shaped association consistent with the 2009 T2DM meta-analysis. 

However, of a further seven studies that had explicitly excluded former drinkers, no difference 

in risk was reported between non-drinkers and moderate drinkers. Similarly, in a meta-analysis 

of 34 longitudinal studies,147 reductions in the risk of all-cause mortality were lower and present 

across a narrower range of alcohol intake among studies that utilised a robust never drinking 
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reference category (n=27) rather than a group of pooled non-drinkers (n=21). These analyses 

and others148 all support the assertion that former drinkers represent a less healthy drinking 

category predisposed to or already suffering from chronic health conditions. 

Although these findings suggest that former drinkers should be excluded from among pooled 

non-drinkers so as to leave a category of never drinkers, it should be noted that even the use of 

a never drinking reference category has drawn criticism. This has included the impact of such a 

reference group upon statistical power given their relatively small sample size in populations 

where alcohol consumption is otherwise normative,149,150 and evidence suggesting that 

morbidities in early adulthood may predict never drinking, potentially subjecting never drinkers 

to the same limitations as former drinkers.151 These limitations have led some to recommend 

the use of an occasional drinking category as a reference group.138,152 However, without knowing 

their average volume of consumption at each drinking occasion, such a category could capture 

either episodic heavy drinkers who appear to be at the greatest risk of T2DM, or episodic 

moderate drinkers that may drink infrequently due to the same morbidities as former drinkers. 

It is unclear why such a heterogeneous group would prove a better choice of reference category 

than robustly defined never drinkers, especially in a well-adjusted study of sufficient size. 

Looking back to the 2009 meta-analysis, the authors attempted to work around the bias that 

may have arisen from selected studies having utilised a pooled non-drinking reference category 

confounded by less healthy former drinkers. Specifically, Baliunas et al10 weighted risk estimates 

reported by such studies according to the sex-specific proportion of former drinkers 

documented by studies where non-drinkers had been explicitly bifurcated into groups of never 

and former drinkers.  

The validity of such an approach is questionable. In addition to having calculated weights from 

just five studies, closer inspection revealed that two of the five studies had not utilised a robust 

never drinking category. One defined never drinkers as those that had never consumed more 

than 11 alcoholic drinks in any year,97 while the second defined never drinkers as those that 

reported no alcohol consumption during the five years preceding baseline and consumption no 

greater than four drinks per day prior to those five years.153 In the latter instance, never drinkers 

may actually have been former drinkers who had once routinely consumed 72.7 g/day, assuming 

that each drink was equal to one average (1750 ml) glass of 13% ABV wine.11  

As well as estimating sex-specific proportions of former drinkers based on studies that had not 

defined abstention categories in a robust manner, it was unclear how reliably the baseline 
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prevalence of former drinkers averaged from five studies could be applied to 15 studies of 

disparate populations and demographics, with alcohol consumption differing according to 

factors beyond sex alone, including age, economic wealth, smoking and education,154,155 plus 

both per capita consumption and the prevalence of non-drinking differing markedly between 

countries.154  

In summary, an updated and revised meta-analysis was required to explore the impact of 

confounder adjustment and reference category selection upon the dose-response relationship 

between the volume of alcohol consumption and T2DM risk. Such analyses would help highlight 

the degree to which previous research may have overestimated any reductions in risk through 

a failure to properly account for a potential predisposition of former drinkers toward the 

development of T2DM.  
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3 An updated and revised meta-analysis 

3.1 Introduction 

Observational studies that utilised a self-reported measure of alcohol consumption appear to 

indicate a peak reduction in the risk of T2DM at levels of consumption below the equivalent of 

8.5 pints of 4% ABV lager per week (22 g/day).10 However, such studies predominantly calculated 

risks relative to pooled non-drinkers, a group likely to comprise former drinkers whose poor 

health and clustered negative lifestyle behaviours potentially predispose them to the 

development of T2DM.136 In addition, two-thirds of selected studies adjusted for three or fewer 

confounding factors, with one-third providing only crude or age-adjusted estimates. As a 

consequence, an unequal distribution of risk factors for T2DM may have been largely 

unaccounted for, leaving observed reductions in risk less a consequence of a direct biological 

effect and more a statistical artefact. This possibility is hinted at by studies of all-cause mortality, 

which report an attenuation or nullification of reductions in risk following the removal of less 

healthy former drinkers from the abstention reference category,136,147 as well as a Mendelian 

randomisation meta-analysis which found no relationship between drinking intensity and 

T2DM.85 

To gauge the degree to which observed reductions in risk may have been overestimated, this 

chapter details an updated and revised meta-analysis of longitudinal observational studies, 

including sensitivity analyses chosen explicitly to explore the effect of confounder adjustment 

and choice of abstention reference category upon the dose-response relationship. The revised 

analyses also discuss new studies that report joint associations between the volume of alcohol 

consumption and drinking pattern. It was hypothesised that any reductions in risk would be 

shallower among studies that used a more robust abstention category or adjusted for a broader 

range of confounding factors. Results from the meta-analysis were later published.156 A copy of 

the publication is included in Appendix 3.1.  

3.2 Methods 

3.2.1 Selection criteria 

3.2.1.1 Types of study 

Studies were limited to those of cohort and case-control design, and both community and 

occupational datasets were considered. Although occupational datasets may have captured a 

narrower spectrum of drinking and lifestyle behaviours,157,158 data would still have captured 
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moderate levels of consumption – a range of particular interest given apparent reductions in 

T2DM risk at lower levels of intake.10 

3.2.1.2 Types of participant 

All adults aged ≥16 years were considered eligible regardless of sex, ethnicity or setting.  

3.2.1.3 Types of exposure 

Given apparent differences in dose-response between men and women,10 sex-specific self-

reported alcohol consumption was selected as the exposure of interest. With a non-linear dose-

response relationship having previously been identified between alcohol consumption and 

T2DM risk,10 studies were only considered if risks were reported across ≥3 categories denoting 

the average volume of alcohol consumption, inclusive of reference category. Studies were also 

excluded if the volume of alcohol consumption could not be converted into g/day, and if any 

abstention category was contaminated with participants other than non-drinkers (i.e. included 

light or occasional drinkers of some definition). 

3.2.1.4 Types of outcome 

T2DM was selected as the outcome of interest. Diagnostic tests and their respective thresholds 

have varied over time, with initial World Health Organisation (WHO) recommendations from 

1965159 having been revised in 1980,160 1985161 and 1998,162 with glycated haemoglobin A1C 

(HbA1c) added as a new diagnostic indicator in 2011.163  

Restricting selection to publications that defined T2DM according to current recommendations 

would have unnecessarily excluded publications prior to 2011, which were likely to have 

adopted the gold standard diagnostic criteria at the time they were published. Such an approach 

would also have excluded publications that utilised self-reported measures of T2DM. An 

inclusive range of diagnostic measures were thus considered in order to maximise the number 

of studies selected, including: all objective diagnoses, all self- or physician-reported diagnoses, 

any reported hypoglycaemic drug treatment, or linkage to clinical registry data. Where not 

explicitly defined, cases of DM among adults were assumed to be T2DM given the tendency for 

T1DM to occur early in life.8 

3.2.2 Search methods  

PubMed (MEDLINE), Embase, The Cumulative Index to Nursing and Allied Health Literature 

(CINAHL) and the Alcohol and Alcohol Problems Science (ETOH) databases were each searched 

for relevant studies. 
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Where possible, searches of each database identified publications with titles or abstracts 

containing the terms ‘alcohol’, ‘ethanol’ or ‘drink*’, plus ‘diabet*’, ‘NIDDM’ or ‘T2D*’, plus 

‘cohort’, ‘inciden*’, ‘prospective’, ‘longitudinal’, ‘case’ or ‘retrospective’. During each electronic 

search, no limits were placed upon the language or date of publication. Searches were 

undertaken on 18/02/2014. 

Of publications selected for inclusion in the final meta-analysis, referenced and referencing 

publications were searched for additional literature not captured by initial electronic searches. 

Grey literature was excluded owing to its lack of peer review. Although technical reports and 

conference papers may reflect the latest research in a given field, results can be preliminary and 

not subject to peer review.164 

3.2.3 Data extraction and analysis 

3.2.3.1 Study selection 

3.2.3.1.1 Screening 

Duplicate publications were omitted by Craig Knott (CK), who then screened the titles, abstracts 

and full texts of remaining publications to exclude any that failed to report a longitudinal 

association between volume of alcohol consumption and T2DM among persons aged ≥16 years. 

3.2.3.1.2 Shortlisting 

Screened publications were then shortlisted by CK, Annie Britton (AB) and Steven Bell (SB) 

according to a priori selection criteria. These criteria were as follows:  

 The full text was available, allowing the identification of population characteristics and 

methods used; 

 Data were reported separately for men and women, enabling the analysis of differences 

in dose-response according to sex; 

 The volume of alcohol consumption was defined across ≥3 categories so as to permit a 

dose-response analysis; 

 The abstention category free of contamination by current drinkers, i.e. the inclusion of 

light current drinkers; 

 Reported data were sufficient for determining both the average volume of alcohol 

intake and the degree of T2DM risk for each consumption category. 

During shortlisting, CK reviewed all screened entries while AB and SB each acted as second 

reviewer for two-thirds of the screened entries. This ensured all studies were reviewed 
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independently by at least two individuals, with one-third reviewed by all three reviewers. In the 

presence of any differences of opinion, a publication was reviewed by all three reviewers and 

the majority decision upheld.  

Agreement between pairs of reviewers was quantified via Cohen’s kappa statistic (κ), while 

agreement between all three reviewers was determined via the calculation of a Fleiss’ kappa 

coefficient. The Fleiss kappa coefficient served as an extension of κ and permitted the calculation 

of agreement across more than two reviewers.165 Inter-rater agreement could take any value 

from −1 to +1, standardised such that a value of +1 was indicative of perfect agreement between 

reviewers and -1 a complete absence of agreement across all shortlisted publications.166 

3.2.3.2 Data requests 

If a publication was agreed not to meet shortlisting criteria, contact was made with authors in 

an effort to obtain revised data, such as risks calculated relative to an uncontaminated reference 

category. Similarly, authors of publications that met shortlisting criteria were contacted if 

published data were found to be insufficient for the extraction or calculation of risk estimates, 

or sex-specific data were not reported. 

In each instance, authors were given one month in which to respond. If no additional data were 

received, the publication was excluded (Figure 3.1). Where revised data were provided, this was 

noted in tables describing the characteristics of selected studies (Tables 3.1 and 3.2). 

3.2.3.3 Duplicate studies 

Publications that analysed the same dataset were identified and duplicates omitted with 

consideration to their respective degree of confounder adjustment, sample size and length of 

follow-up. Decisions were reached qualitatively by consensus, as detailed in Section 3.3.1. 

3.2.3.4 Exposure data 

A variety of methods were used for deriving volumes of alcohol consumption from categories of 

intake. Where the central tendency of each category was explicitly reported, the median or 

mean value was used, with preference given to the former measure owing to the skewness of 

continuous alcohol consumption.  

If studies reported no central tendency for a category of alcohol consumption, intake was 

estimated according to the median of the lower and upper limit. However, in some 

circumstances the upper limit of the heaviest drinking category was not reported. Looking to 

meta-analyses undertaken elsewhere, methods applied for estimating an unknown upper limit 

were found to be arbitrary and inconsistent. While some authors operated on the assumption 
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that the range of a category with an undefined upper limit was equal to that which preceded 

it,167,168 or three-quarters the width of the preceding category,10 others multiplied the category’s 

lower limit by a value of 1.2.169 With no reason to conclude that any method was better than the 

other, unspecified upper limits were defined as 1.2 times the value of the lower limit. Where no 

lower bound was defined for the bottom category of volume of alcohol consumption, a value of 

0.1 g was assumed. 

In circumstances where alcohol consumption was reported only as the total number of drinks 

consumed over a given period of time, intake in g/day was estimated assuming country-specific 

standard drinks170 unless otherwise defined by the study authors.  

Finally, the volume of alcohol consumption as categorised according to periods longer than a 

day were converted into daily estimates assuming an even distribution of consumption over the 

period. For instance, a weekly volume of alcohol consumption was divided by seven. 

3.2.3.5 Risk estimates 

Extracted risk estimates took a number of forms. The pooling of ORs alongside other effect 

estimates risked being inappropriate given indications from simulated cohorts that ORs tend to 

overestimate equivalent RRs the greater the incidence of an event.171 In an effort to bring ORs 

and RRs into greater concordance, ORs and their respective CIs were adjusted according to the 

Zhang and Yu method shown in Formula 3.1.  

RR=OR/(1-p)+(p*OR) 

Formula 3.1 Approximation of relative risks according to reported odds ratios 

Here, p is a value equal to the proportion of T2DM among unexposed participants. Although not 

perfect, such an approach improves the suitability of pooling extracted ORs alongside other risk 

estimates for a high-incidence event such as T2DM. 

Of shortlisted studies, some reported risk estimates according to a reference category other 

than abstention. These risk estimates were recalculated such that all risk estimates were relative 

to an equivalent category of non-drinking. This was undertaken iteratively using the Hamling 

method.172 In short, the method uses the total number of exposed and unexposed participants 

in conjunction with the original risk estimates reported for each consumption category (k) to 

derive an approximated kx2 table of either cases and controls (for case-control studies) or cases 

and at-risk participants (for cohort studies) at each level of alcohol consumption. This table can 

then be used to calculate adjusted risk estimates for any consumption category relative to a 

reference category of choice. The calculation of corresponding CIs incorporated the covariance 
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between the original risk estimates from which the kx2 table was constructed, ensuring that the 

degree of variance for each new estimate was not underestimated.172 

In all cases, estimates were extracted from models that incorporated the maximum number of 

confounding variables without adjustment for putative mediators – i.e. markers of insulin 

sensitivity, HDL concentration or inflammation. Such models would likely have been subject to 

an overadjustment bias, effectively controlling for the very mechanisms under investigation and 

thereby biasing risk estimates toward the null to a degree proportionate to the magnitude of 

dose-response effect explained by the mediating factor.47 

3.2.4 Data synthesis 

3.2.4.1 Model selection 

Although meta-analyses have explored dose-response relationships according to a series of pre-

defined alcohol consumption categories,173 step functions provide a crude operationalisation of 

the relationship under study. Although easily interpretable by lay audiences, categories simplify 

the dose-response association, modelling risk as constant across a category’s entire range and 

changing only at the exact threshold of each category.174 In so doing, dose-response 

relationships become conditional upon both the number and width of exposure categories 

chosen, with the potential to inadvertently conceal nuanced changes in risk when categories are 

broad and few in number. 

Fractional polynomial (FP) regression models provided a more flexible means of analysing non-

linear dose-response relationships, utilising alcohol consumption data in its continuous form.175 

An extension of standard linear regression, FP regression models use transformations of alcohol 

consumption according to a restricted range of fractional powers (x-2, x-1, x-0.5, ln(x), x0.5, x1, x2 

and x3).176 Added as a single term, these transformations are capable of modelling monotonic 

dose-response relationships, while as a pair can also form non-monotonic functions with a single 

turning point, such as the J-shaped dose-response association previously observed between 

volume of alcohol consumption and T2DM risk. For example, a FP regression that comprises two 

polynomial terms is expressed as per Formula 3.2, with xp1 and xp2 equal to any pre-defined 

transformation of alcohol consumption from the restricted range of fractional powers, β1,…,n 

equal to the change in risk for every unit change in xp1,..,n, and β0 equal to the constant. 

 

RR=β0+β1xp1+β2xp2+ε 
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Formula 3.2 Derivation of regression coefficients according to a polynomial exposure 

To identify the best-fitting transformation, all possible FP combinations were compared against 

a null model containing only a constant parameter. Fit was determined according to the 

deviance statistic (D), equivalent to the sum of squared residuals under OLS regression, or the 

degree to which observed data differed from the fitted function. Accordingly, the best-fitting 

model was that which reported a D value closest to zero.  

FP regression models were constructed using the -fp- command in Stata 13.177 As the -fp- 

command calculates dose-response relationships using weighted least squares regression, any 

resulting coefficients are under the assumption that data are independent. Such an assumption 

is invalid in this instance given that groups of risk estimates are nested within selected studies 

and calculated relative to a common reference category. When applied to non-independent 

data, least squares regression produces estimates with too great a degree of precision.178 

Accordingly, using an approach similar to the Hamling method,172 covariance present between 

groups of extracted risk estimates was used to inflate standard errors reported by the best-

fitting FP regression models. This was undertaken using the -glst- command.179  

3.2.4.2 Heterogeneity 

An assumption commonly underlying the pooling of data for meta-analysis is that, for a given 

level of volume alcohol consumption, corresponding effect estimates extracted from each study 

(yi) were approximations of the same underlying effect (θ), with the extracted estimates each 

distributed around θ according to random sampling error.180 Under this assumption, an inverse 

variance weight is typically applied (Formula 3.3), providing less prominence to smaller studies 

on the grounds that more precise information about the same underlying effect would be 

provided by larger selected studies. 

w=1/SEi
2 

Formula 3.3 Inverse variance weight 

However, given that no two selected studies were likely to have been methodologically identical, 

some degree of between-study heterogeneity was expected beyond simple random error,181 

with each yi thereby estimating an underlying effect specific to the characteristics of its design 

and population (θi). In such a circumstance, the use of an inverse variance weight would be 

inappropriate, giving prominence to a sub-sample of selected studies that may have estimated 

an underlying effect different to those given lower prominence. Accordingly, random effects 

models were used throughout. These assumed that each effect estimate (yi) for a given level of 
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exposure approximated its own specific underlying effect (θi), and that each underlying effect 

(θi) was itself distributed around a ‘grand’ value for all possible effects (μ) at the given level of 

exposure. The introduction of random effects thereby added an additional variance component 

(τ) equal to the estimated deviation between each θi and μ, thereby attenuating the inverse 

variance weight proportionate to the estimated deviation of each effect estimate’s underlying 

effect from the grand effect of interest (Formula 3.4). Results from the random effects models 

were more conservative, with wider confidence intervals in the presence of between-study 

heterogeneity. Where no between-study heterogeneity was present (τ=0), however, and the 

random effects models would naturally report figures analogous to a fixed effect model.180  

w=1/SEi
2+τ 

Formula 3.4 Inverse variance weight plus a random effects variance component 

The degree of between-study heterogeneity was quantified using the I2 index.181 This estimated 

the proportion of total variance in risk as attributable to factors other than random error, and 

was calculated for each fitted polynomial term according to Formula 3.1: 

I2=((Q-df)/Q)*100% 

Formula 3.5 Calculation of the I2 statistic 

Here, df was equal to the number of constituent studies minus one, and the Cochran Q statistic 

equal to the sum of squared differences between each abstracted data point and the fitted 

polynomial function, with the contribution of each data point equal to its weight in the dose-

response meta-analysis. An I2 of 0% would thus indicate complete homogeneity between 

studies, with no variability between risk estimates other than that which would be expected 

through random error. Beyond this, the following guidelines were used for interpreting the I2 

index: 0-40%, low heterogeneity; 30-60%, moderate heterogeneity; 50-90%, substantial 

heterogeneity; 75% to 100%: considerable heterogeneity.182  

3.2.4.3 Publication bias 

There was a possibility that studies that investigated the relationship between volume of alcohol 

consumption and T2DM risk were more likely to have been published if they reported a 

significant and beneficial dose-response association. For instance, in an analysis of publication 

rates among 29,729 biomedical abstracts presented at scientific conferences, half were 

eventually published in full and the probability of publication associated with positive directions 

of effect (RR 1.30, 95% CI 1.14-1.47) and statistically significant results (RR 1.17, 95% CI 1.02-

1.35).183 Similar findings have been identified elsewhere.184 If such publication bias were present 
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in the field of alcohol research, published studies selected for meta-analysis would have 

underrepresented smaller studies or those that reported contrary results and thereby 

overestimated the apparently advantageous relationship between moderate alcohol 

consumption and T2DM risk. 

Funnel plots have commonly been used as a means of visualising the degree of publication bias 

present across sampled studies, plotting effect estimates along the x-axis and an indicator of 

their precision rising along the y-axis. In the absence of bias, less precise studies would be 

distributed evenly around the base of the plot with more precise studies clustered near the top, 

collectively resembling an inverted and symmetrical funnel. Accordingly, an asymmetrical 

distribution of risk estimates would indicate that studies of a particular statistical significance or 

direction of effect may have been less likely to reach publication.  

Funnel plots are conventionally constructed by including a single risk estimate from each 

selected study, with all risk estimates relating to a consistently defined binary exposure (i.e. the 

risk of exposure versus non-exposure) such that they are assumed to be distributed around the 

same overall effect in a manner akin to a fixed effect meta-analysis.185,186 Given that dose-

response meta-analyses required the abstraction of multiple risk estimates from each selected 

study, with estimates pertaining to differing volumes of alcohol intake, such an assumption 

would have been invalidated were all extracted data included in a single plot. 

Accordingly, new risk estimates were recalculated using the Hamling method so as to represent 

the risk of current drinking relative to non-drinking in each study.172 These new estimates were 

then plotted against their respective standard errors. The contribution of each risk estimate to 

the calculation of an overall risk of current drinking was then estimated according to an inverse 

variance weighted linear regression equivalent to a fixed effects meta-analysis.188 Random 

effects were not used when calculating the summary estimate and doing so risked shifting the 

summary estimate such that the small study effects being investigated may become masked.188 

Risk estimates were plot on a logarithmic scale to ensure that effects in opposite directions but 

of the same magnitude were all equidistant from a risk of 1.0.182 A formal test of funnel plot 

asymmetry was also undertaken using the Egger’s test, which tested the null hypothesis of no 

difference in effect according to sample size by way of an inverse variance weighted linear 

regression of standardised risk estimates against their SEs.187  

Although a customary to view funnel plots as indicators of publication bias, such an 

interpretation should be made with consideration to factors other than publication bias that 
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may have produced an asymmetrical distribution. Alternative explanations include selection bias 

(selection criteria may have inadvertently excluded studies distributed around specific areas of 

the funnel plot, such as if negative associations between an exposure and event were most 

common among occupational cohorts but such populations had been excluded) and 

heterogeneity among selected studies (that, free of selection bias, selected studies still differed 

by characteristics associated with the relationship of interest, such as primarily representing a 

population sub-group in whom a particular direction of effect was more common). Accordingly, 

any funnel plots should only be used as a rough guide and best interpreted as a graphical 

representation of small-study effects – i.e. the tendency for studies of lower power to show 

lower levels of precision.188 

3.2.4.4 Quality assessment 

The quality of selected studies was assessed using the Newcastle-Ottawa quality assessment 

scale (Appendix 3.2).189 It comprised eight questions ranging from the representativeness of the 

sample, the method of case ascertainment and the length of follow-up. A single point could be 

awarded for each question apart from one concerning confounder adjustment for which up to 

two points could be awarded. One point was awarded for adjustment for any confounding 

factors, with an additional point awarded if a study adjusted for ‘the most important factor’. 

This was defined as adiposity, based on a study by Hu et al, which identified excess body fat as 

the strongest predictor of T2DM in a cohort of female nurses.190 Study quality was thus ranked 

on a scale from 0-9 points, with larger scores indicative of higher quality. 

Besides confounder adjustment, a number of other questions had to be subjectively defined. 

For instance, an ‘adequate’ period of aggregate follow-up was defined as at least six years in 

total. This threshold was decided upon with consideration to research by Tabak et al,191 which 

examined 13-year trajectories of fasting and post-load glucose prior to the development of 

T2DM. They identified a gradual increase in glucose concentration over time, followed by a rapid 

elevation in concentration around three (fasting glucose) and six (post-load glucose) years prior 

to T2DM diagnosis. Assuming that study participants were free of T2DM at baseline with 

normative blood glucose readings, it was thus expected that a period of at least six years would 

have been required for blood glucose levels to reach a concentration sufficient for the formal 

diagnosis of T2DM.  
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3.2.4.5 Sub-group analyses 

In addition to a summary dose-response analysis of all extracted data combined, a series of 

secondary analyses were undertaken to explore whether the relationship differed according to 

pre-specified factors. 

3.2.4.5.1 Sex interaction 

Given a higher incidence of T2DM35 and a slower metabolism of alcohol among men,192,193,194 it 

was possible that the relationship between the volume of alcohol consumption and T2DM risk 

may have differed according to sex. Such a hypothesis was supported by data from the last 

available meta-analysis,10 which indicated that female drinkers experienced greater reductions 

in T2DM risk across a wider range of alcohol consumption than men, relative to quasi-never 

drinkers. Accordingly, in addition to the primary analysis of all data combined, consideration was 

given to a possible sex interaction. In addition to formally testing a sex interaction, the dose-

response relationship was reported separately for men and women.  

3.2.4.5.2 Reference group 

To explore the effect of reference group selection upon the dose-response relationship, 

abstracted data were adjusted for any differences in dose-response according to sex and then 

an interaction term tested according to whether risk estimates had been calculated relative to 

never or pooled non-drinkers. Data were then stratified and dose-response relationships 

reported separately according to reference category. It was hypothesised that the magnitude of 

any reductions in T2DM risk at moderate volumes of alcohol consumption would be smaller 

among studies that excluded former drinkers from their reference category.  

3.2.4.5.3 Confounder adjustment 

As noted previously, it was hypothesised that confounder adjustment was likely to have a 

marked impact upon whether reductions in T2DM risk were observed at moderate levels of 

alcohol intake, with the magnitude of any reduction posited to be smaller among studies with 

more comprehensive adjustment for confounding factors.  

To test this, dose-response data were adjusted for sex and reference group, with an interaction 

term then tested according to each study’s degree of confounder adjustment. Confounder 

adjustment was defined according to a binary variable denoting whether extracted risk 

estimates were either crude or age-adjusted only, or multivariable-adjusted. In addition to 

formally testing whether the dose-response relationship differed according to the degree of 
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confounder adjustment, results were reported separately for each category of the binary 

variable. 

3.2.4.5.4 Other sub-group analyses 

Aside from sex, reference category and confounder adjustment, a number of other factors were 

posited to be likely modifiers of the observed dose-response relationship and thereby sources 

of heterogeneity between studies. These included the baseline age of participants, method of 

case ascertainment, population type, population region195 and overall study quality assessment 

score. The reasoning behind the selection of such factors was as follows:  

 Baseline age: It was hypothesised that any reduction in risk would be lower among older 

participants owing to age-related decreases in liver function and body water, increasing 

and prolonging the concentration of blood alcohol and alcohol metabolite beyond those 

seen in younger individuals at equivalent volumes of alcohol consumption.196,197,198,199 

Accordingly, any reductions in risk at moderate intakes might therefore be smaller 

within older populations as a consequence of prolonged accumulations of alcohol 

metabolites and their impact upon oxidative stress and a triggering of inflammatory 

response.200,201  

 Case ascertainment: Subjective diagnoses of T2DM may have been subject to recall or 

self-reporting biases, leading to cases of T2DM being underreported. Depending on how 

any underreporting was distributed according to the volume of alcohol consumption, 

studies that utilised a subjective measure of T2DM diagnosis may have either 

overestimated or underestimated the magnitude of any dose-response relationship. 

Although an analysis investigating the validity of self-reported T2DM in epidemiologic 

studies found subjective measures to be reliable.202  

 Follow-up duration: It was possible that studies with shorter periods of follow-up may 

have captured few new cases of T2DM and thereby have both insufficient power for the 

detection of dose-response effects.  

 Population region: Given a genetic susceptibility among Asian populations to impaired 

alcohol metabolism203 and increased T2DM risk,204 it was hypothesised that any 

reductions in risk among moderate drinkers would be less pronounced among Asian 

studies in much the same way as older drinkers. 

 Population type: Termed the ‘healthy worker effect’, studies have found participants in 

occupational cohorts to be healthier than those sampled in general population 

studies.205 Accordingly, were a reduction in risk observed among moderate drinkers, any 
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such reduction in risk may have been shallower in studies of general populations whose 

participants were less healthy and potentially at greater risk of T2DM beyond any 

adjusted confounding factors.  

 Quality assessment: With studies scoring low on the Newcastle-Ottawa assessment 

scale189 potentially being less well adjusted for confounding factors, utilising self-

reported outcome data, short follow-up periods and unrepresentative samples, it was 

posited that dose-response relationships reported by publications of lower quality 

would differ markedly in some fashion from those of higher quality.  

Unfortunately, in the absence of individual participant data, the effect of differences in baseline 

age and follow-up duration were not explored due to the risk of aggregation bias, which would 

have inappropriately treated all study participants as having shared the same average age or 

length of observation.206 For all remaining factors, interaction terms were formally tested in a 

mutually exclusive manner following adjustment for sex, reference category and confounder 

adjustment, if found to be significant modifiers of the dose-response relationship. Data were 

then stratified according to the value of each factor.  

To explore the role of case ascertainment as a modifier of the dose-response relationship, a 

categorical variable was created denoting whether case ascertainment was subjective, objective 

or some combination of the two. A binary variable was created to investigate population type, 

indicating whether studies sampled occupational groups or the general population. Asian and 

non-Asian studies were identified and coded into a binary variable, studies also coded according 

to whether they fell below the median quality assessment score.  

3.2.4.6 Sensitivity analyses 

Having identified a study that contributed a substantial proportion of sampled data, an a 

posteriori sensitivity analysis was undertaken to explore the effect of including such a study upon 

the pooled analyses. An additional sensitivity analysis was also carried out to compare the dose-

response relationship according to whether selected studies had been sampled by the preceding 

meta-analysis. Such an analysis would highlight whether the results of any newly analysed 

studies differed markedly to those previously examined. 

3.3 Results 

3.3.1 Excluded studies 

As shown in the study flow diagram (Figure 3.1), 2,357 unique publications were identified by 

the initial search procedure, with preliminary screening by CK leading to the exclusion of 2,255 
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publications that reported no temporal association between volume of alcohol consumption 

and T2DM risk. The remaining 102 publications were then shortlisted by three reviewers against 

a priori selection criteria.  

CK assessed all 102 publications, while AB shortlisted the first two-thirds (n=68) and SB 

shortlisted the last two-thirds (n=72), providing an overlap of one-third (n=38) for which 

shortlisting was undertaken by all three reviewers. Agreement between reviewers was high, 

with a κ of 0.86 between CK and SB, 0.91 between CK and AB, and 0.82 between all three 

reviewers. 

Of the 102 publications that reported a temporal association between volume of alcohol 

consumption and T2DM risk, reviewers agreed that the full text of one was unobtainable, 45 

reported <3 levels of alcohol intake, and seven provided data insufficient for estimating drinking 

in g/day. A further seven publications provided no sex-specific risk estimates, one reported 

information insufficient for calculating risk estimates for each consumption category (i.e. a 

figure without numbered axes or estimates), and one reported an abstention category 

contaminated by current drinkers.  

With 40 shortlisted publications agreed to have met all selection criteria, a further six suitable 

publications were identified following an examination of their referenced and referencing 

material. The resulting 46 publications were then checked to ensure that cohorts were each 

sampled only once. Where the same dataset was analysed by multiple publications, risk 

estimates were included from only the most robust analysis. Agreed upon by all three reviewers, 

the qualitative rationale in each instance was as follows: 

 Four of the 46 shortlisted publications analysed the US Nurses' Health Study. Two of 

these were excluded for providing substantially shorter periods of follow-up and smaller 

sample sizes than the chosen publication.207,208 Although the third publication provided 

almost twice the follow-up duration of any other paper, it was excluded due to its much 

smaller sample size and stratification of risk estimates for each consumption category 

according to a genetic polymorphism as opposed to the volume of alcohol 

consumption.90  

 Three studies analysed the US Health Professionals' Follow-up Study. The first was 

excluded for providing data on 46,000 fewer participants than the chosen publication.90 

Although the second paper included adjustment for two additional confounding factors 
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than the chosen publication,209 it sampled over 5,000 fewer participants and utilised half 

the period of follow-up than the third publication.  

 Three studies also analysed the multi-centre European Prospective Investigation into 

Cancer and Nutrition (EPIC) study, each with roughly equivalent levels of confounder 

adjustment. The first sampled over 10,000 fewer participants than the chosen 

publication and was thus excluded.210 While the second publication sampled 8,800 more 

participants than the chosen study,211 it was excluded in preference of a paper that 

sampled a much wider range of European countries (Netherlands versus Denmark, 

France, Germany, Italy, Netherlands, Spain, Sweden and the United Kingdom).  

 Two papers were published in 2010 by the same primary author, each sampling the 

same Japanese Gifu Prefectural Center for Health Check and Health Promotion cohort. 

Reporting similar levels of confounder adjustment and follow-up duration, the 

publication with the smaller sample size was excluded.212 

 Two other shortlisted publications were also published by an identical primary author, 

with each sampling employees from the same Japanese gas company with equivalent 

levels of confounder adjustment and follow-up. Here, the study with the smaller sample 

size was excluded.213  

The removal of these eight duplicate studies left a final sample of 38 unique studies. 
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Figure 3.1 Study flow diagram 
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3.3.2 Included studies 

As per the study flow diagram in Figure 3.1, 38 unique studies met a priori selection criteria out 

of an initial 2,704 search results. Of these, nine had provided additional, updated or recalculated 

risk estimates via personal correspondence.  

Data extracted from the 38 studies represented 1,082,639 male and 819,966 female 

participants, among whom 79,633 and 46,293 cases of T2DM were reported. Crude or age-

adjusted estimates were provided by 15 (39.5%) studies. Of the 23 remaining studies, measures 

of adiposity were universally accounted for, with smoking controlled by 16 (69.6%) studies, 

physical activity by 15 studies (65.2%), and familial heritability by 10 studies (43.4%). Other 

confounding factors included education (n=9, 39.1%), dietary variables (n=6, 26.1%), blood 

pressure (n=5, 21.7%), ethnicity (n=3, 13.0%) and some marker of social status such as 

occupational grade (n=3, 13.0%). More detailed information concerning the characteristics of 

the selected studies are reported in Table 3.1, while Table 3.2 lists the risk estimates for each 

level of alcohol consumption.  

Despite capturing an additional 18 studies relative to the preceding alcohol-T2DM meta-

analysis, only five studies were identified as having used a never drinking category strictly 

defined as complete abstention across the life course.96,219,225,230,244 These included Kao et al,219 

who defined never drinkers as those who answered in the negative to the two following 

questions: “Do you presently drink alcoholic beverages?” and “Have you ever consumed 

alcoholic beverages?” Similarly, Carlsson et al,96 defined never drinkers as baseline non-drinkers 

who also reported no change in alcohol consumption at any time prior, while Wannamethee et 

al225 defined never drinkers as those who reported no consumption at all periods of follow-up 

(ages 15-17, 18-22, 23-30, and 31-40 years of age). Where a study’s definition of never drinking 

was deemed inadequate, such as through an inclusion of infrequent97 or former drinkers,153,234 

such studies were classified as having use a pooled non-drinking reference category. 
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Table 3.1 Characteristics of selected studies 

First author Year Country Dataset Design Population Age 

(years) 

Duration 

(years) 

Exposure ascertainment Case ascertainment 

Holbrook214 1990 US Rancho 

Bernardo 

Cohort Community 40-79 14 Self-reported average weekly 

consumption of any alcoholic drinks. 

A positive FPG or OGTT result, or a 

self-reported doctor-diagnosed 

diabetes. 

Kawakami215 1997 Japan Large electrical 

company 

Cohort Occupational 18-53 7.9 Self-reported mean consumption of 

alcoholic drinks usually consumed per 

week during the past year. 

A positive FPG result among 

participants identified following a 

urine sample as having glycosuria. 

Tsumura216 1999 Japan Osaka Health 

Survey 

Cohort Occupational 35-61 9.7 Self-reported usual daily volume 

consumption. 

A positive FPG or OGTT result. 

Ajani217 2000 US Physicians' 

Health Study 

Cohort Occupational 40-85 12.1 Self-reported frequency of consumption. 

Responses interpreted as number of 

standard drinks consumed. 

Self-reported doctor diagnosis. 

Wei218 2000 US Cooper Clinic 

Study 

Cohort Community 30-79 6.1 Self-reported average weekly volume 

consumption of beer, wine or hard 

liquor. Alcohol content estimated as 1.1 

g/1 oz beer, 2.7 g/1 oz wine, and 15.1 g 

/1 oz liquor. 

A positive FPG result. Of those 

without a positive result, a self-

reported history of diabetes or use 

of hypoglycaemic medication. 

Conigrave95 2001 US Health 

Professionals' 

Follow-up 

Study 

Cohort Occupational 40-75 10.9 Self-reported average frequency of 

consumption, with average daily volume 

estimated assuming 12.8g/beer, 

11.0g/glass of wine, 14.0g/glass of 

liquor. 

A positive FPG, non-FPG or OGTT 

result, or an elevated plasma glucose 

reading on two different occasions, 

or self-reported hypoglycaemic 

treatment. 
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Hu190 2001 US Nurses' 

Health Study 

Cohort Occupational 30-55 15.3 Self-reported average frequency 

of beer, wine and liquor 

consumption. Daily volume 

estimated according to assumed 

nutrient content by drink type. 

Self-reported cases confirmed 

following a positive FPG result, or 

an elevated randomly measured 

plasma glucose concentration. 

Kao219 2001 US ARIC Cohort Community 45-64 Men: 5.3 

Women: 5.4 

Self-reported average number of 

drinks consumed per week. 

Assumed 12.0 g/drink. 

A positive FPG, or the self-reported 

use of hypoglycaemic medication, 

or a self-report of doctor diagnosis. 

Meisinger220 2002 Germany MONICA Cohort Community 35-74 Men: 7.5 

Women: 7.6 

Self-reported volume of beer, 

wine and spirit consumption on 

the previous workday and the 

previous weekend. 

Self-reported doctor diagnosis or 

self-reported use of hypoglycaemic 

medication. 

Wannamethee221 2002 UK British 

Regional 

Heart Study 

Cohort Community 40-59 16.8 Self-reported frequency, quantity, 

and type of alcohol consumption. 

Self-reported T2DM, confirmed via 

primary care records. 

Carlsson96 2003 Finland Finnish Twin 

Cohort 

Cohort Community ≥18 28 Self-reported volume of alcohol 

consumed during an average 

week (beer, wine) or month 

(spirits). 

Death certificates, the National 

Hospital Discharge Register and the 

Medication Register of the Social 

Insurance Institution. 

Lee222 2003 Korea 
Steel 

company 
Cohort Occupational 25-55 4 

Self-reported data. No further 

detail published. 
A positive FPG result. 
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Nakanishi223 2003 Japan 
Building 

contractor 
Cohort Occupational 35-59 6.1 

Self-reported frequency of alcohol 

consumption per week, and usual 

amount consumed per day in 

units of “go” (23 g ethanol). 

A positive FPG result, or self-

reported use of hypoglycaemic 

medication. 

Sawada224 2003 Japan Gas company  Cohort Occupational 20-40 13.6 
Self-administered questionnaire. 

No further detail published. 

A positive FPG or OGTT result, or 

the self-reported prescription of 

hypoglycaemic medication. 

Wannamethee225 2003 US 

Nurses' 

Health Study 

II 

Cohort Occupational 25-42 8.1 

Self-reported beverage-specific 

frequency of consumption during 

the past year. Volume 

consumption estimated according 

to assumed drink-specific ABVs. 

A positive FPG or OGTT result, or 

elevated plasma glucose levels on 

two different occasions, or self-

reported hypoglycaemic treatment.  

Lee226 2004 US 

Iowa 

Women’s 

Health Study 

Cohort Community 55-69 9.3 
Self-administered questionnaire. 

No further detail published. 
Self-reported doctor diagnosis. 

Waki227 2005 Japan JPHC Study Cohort Community 40-59 10 

Self-reported type and frequency 

of alcohol consumption per week, 

and the usual amount of alcohol 

consumed per day. 

Self-reported doctor diagnosis. 

Hodge97 2006 Australia 

Melbourne 

Collaborative 

Cohort Study 

Cohort Community 40-69 4 

Self-reported beverage-specific 

average frequency and quantity of 

consumption, plus volume via a 

seven-day diary. 

Self-reported doctor diagnosis. 
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Hu228 2006 Finland FINMONICA Cohort Community 35-74 
Men: 13.0 

Women: 13.8 

Self-administered questionnaire. No 

further detail published. 

National Hospital Discharge Register 

or National Social Insurance Drug 

Register, confirmed via a positive FPG 

or OGTT result, or self-reported 

hypoglycaemic drug treatment. 

Strodl229 2006 Australia 

Australian 

Women’s 

Health Survey 

Cohort Community 70-74 3 
Self-administered questionnaire. No 

further detail published. 
Self-reported doctor-diagnosis.  

Burke230 2007 Australia 
Kimberley 

Aborigines 
Cohort Community 15-88 12.9 

A contextualised diary of the last 

two 48-hour drinking periods. 

Linkage to hospital admission and 

mortality records. 

Djoussé153 2007 US 
Cardiovascular 

Health Study 
Cohort Community ≥65 6.3 

Self-reported usual frequency of 

beer, wine and liquor consumption, 

and quantity consumed on an 

average occasion. 

A positive FPG result or self-reported 

hypoglycaemic drug treatment. 

Maty231 2008 US 
Alameda 

County Study 
Cohort Community 17-94 34 

Self-reported frequency of 

consumption, and quantity 

consumed on an average occasion. 

Self-reported doctor-diagnosed 

diabetes. 

Onat232 2009 Turkey 

Turkish Adult 

Risk Factor 

Study 

Cohort Community ≥18 7.4 
Self-administered questionnaire. No 

further detail published. 

A positive FPG result or self-reported 

hypoglycaemic drug treatment. 

Roh233 2009 Korea 
Annual health 

evaluation 
Cohort Community 

Not 

reported 
4 

Self-reported frequency of 

consumption, and quantity 

consumed on an average occasion. 

A positive FPG result. 
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Boggs234 2010 US 

Black 

Women’s 

Health Study 

Cohort Community 21-69 9.4 

Self-reported average frequency of 

beer, wine, and liquor consumption 

during the previous year. Volume 

consumption estimated assuming 12.0 

g/drink.  

Self-reported doctor diagnosis, 

excluding cases among participants 

aged <30 years. 

Jee235 2010 Korea 

Korean Cancer 

Prevention 

Study 

Cohort Community 30-95 14 
Self-administered questionnaire. No 

further detail published. 

Outpatient treatment for diabetes 

(at least three visits for diabetes 

care per 365 days). 

Nagaya236 2010 Japan 

Gifu Center 

for Health 

Promotion 

Cohort Community 30-59 
Men:8.2 

Women: 7.7 

Self-administered questionnaire 

reconfirmed by a personal interview 

with a public health nurse. No further 

detail published. 

A positive FPG result or self-

reported hypoglycaemic drug 

treatment. 

Balkau237 2011 France DESIR Cohort Community 30-65 9 

Self-reported usual daily consumption 

of wine, beer, cider and spirits. The 

following volumes were assumed: 10.0 

g/125 ml wine or 250 ml of beer/cider, 

and 7.0 g/20 ml of spirits. 

A positive FPG or HbA1c result, or 

self-reported treatment for 

diabetes. 

Beulens238 2012 

Denmark, 

France, 

Germany, 

Italy, 

Netherlands, 

Spain, 

Sweden, UK 

EPIC–InterAct 

Nested 

case–

cohort 

Community 35-70 9.9 

Self-reported number and frequency of 

glasses of beer, cider, wine, sweet 

liquor, distilled spirits or fortified wines 

consumed during the previous 12 

months. Volume estimated according 

to assumed glass volume and ethanol 

content for each drink type. 

Self-reported doctor-diagnosed 

diabetes or self-reported 

treatment for diabetes, or linkage 

to primary or secondary care 

registers or diabetes and 

pharmaceutical registers. 
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Cullmann239 2012 Sweden 

Stockholm 

Diabetes 

Prevention 

Program 

Cohort Community 35-56 8-10 

Self-reported frequency and quantity of 

medium and strong beer, wine, dessert 

wine and spirits.  

A positive FPG or OGTT reading. 

Sato240 2012 Japan 

Kansai 

Healthcare 

Study 

Cohort Occupational 40-55 3.5 

Self-reported weekly frequency of alcohol 

consumption and quantity consumed per 

average drinking day. Volume estimated 

according to a Japanese standard drink 

equivalent to 23.0 g/180 ml sake. 

A positive FPG result or self-

reported hypoglycaemic drug 

treatment. 

Stringhini241 2012 UK Whitehall II Cohort Occupational 35-55 14.2 

Self-reported quantity of drinks 

consumed in the previous week, 

converted to UK units. No further detail 

published. 

A positive FPG or OGTT result, or 

self-reported doctor-diagnosed 

diabetes, or self-reported 

hypoglycaemic drug treatment. 

Teratani242 2012 Japan 
Steel 

company 
Cohort Occupational 

Not 

reported 
4.4 

Self-reported quantity of daily alcohol 

consumption. Volume estimated 

assuming 22.0 g/180 ml sake, 500 ml 

beer, 60 ml whiskey, 180 ml wine, or 110 

ml shochu. 

Self-reported doctor diagnosis, 

or a positive HbAlc result, or 

≥6.1% or self-reported 

hypoglycaemic drug treatment.  

Abbasi243 2013 Netherlands PREVEND Cohort Community 28-75 8 
Self-administered questionnaire. No 

further detail published. 

A positive FPG or random 

plasma glucose result, or a self-

reported doctor diagnosis, or 

objective hypoglycaemic drug 

treatment. 
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Heianza244 2013 Japan TOPICS 11 Cohort Community 26-80 10.2 

Self-reported frequency of consumption 

and average quantity of alcohol consumed 

per occasion.  

Positive FPG or HbA1c result, or self-

reported doctor-diagnosed diabetes. 

Rasouli245 2013 Norway 
Nord-Trøndelag 

Health Survey 
Cohort Community ≥20 11 

Self-reported, beverage-specific average 

quantity of beer, wine or spirits consumed 

over a two-week period. Assumed 

16g/beer, 12g/glass of wine or spirits. 

Of those with self-reported diabetes, 

T1DM was tested using a marker of 

pancreatic autoimmune damage. Those 

with a negative result were classified as 

having T2DM. 

Shi246 2013 China 
Shanghai Men’s 

Health Study 
Cohort Community 40-74 5.4 

Self-reported type, frequency, and usual 

quantity of alcohol consumed (wine, beer, 

and liquor). 

Self-reported cases confirmed via a 

positive FPG or OGTT result or use of 

hypoglycaemic medication. 

FPG: Fasting plasma glucose test; OGTT: oral glucose tolerance test; UK: United Kingdom; US: United States. 
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Table 3.2 Measures of alcohol consumption, confounder adjustment and effect estimates reported by selected studies  

     Alcohol consumption   Risk of T2DM     

First author Sex  Exposure categoriesa Estimated g/dayb   
Cases 

(n) 
Non-cases 

(n) 
  Measure Effect estimates Confounder adjustment Quality 

Holbrook214 

Men 

 Non-drinkers Non-drinkers   6 31   

Relative 
risk 

1.00 (reference) 

Age 7 

 0.1-84.3 g/week 6.0   7 53   0.72 (95% CI 0.26-1.98) 

 84.4-176.0 g/week 18.6   6 55   0.61 (95% CI 0.21-1.74) 

 176.1-750 g/week 66.2   16 47   1.57 (95% CI 0.67-3.65) 

                 

Women 

 Non-drinkers Non-drinkers   16 68   1.00 (reference) 

 0.1-41.3 g/week 6.0   7 67   0.50 (95% CI 0.22-1.14) 

 41.4-117.4 g/week 18.6   12 60   0.88 (95% CI 0.44-1.73) 

 117.5-750 g/week 66.2   12 61   0.86 (95% CI 0.44-1.70) 

Kawakami215 Men 

 0 ml/week 0.0   11c 590c   
Hazard 
ratio 

1.00 (reference) Age; BMI; education; family history 
of T2DM; occupation; physical 
activity; smoking; shift pattern 

7  <300 ml/week 16.9   23c 1,595c   1.04 (95% CI 0.47-2.32) 

 ≥300 ml/week 40.6   12c 533c   1.09 (95% CI 0.44-2.67) 

Tsumura216 Men 

 Non-drinkers Non-drinkers   76 1,058   

Relative 
risk 

1.00 (reference) 

Age 6 

 0.1-19.0 ml/day 7.5   95 1,226   0.98 (95% CI 0.73-1.33) 

 19.1-29.0 ml/day 19.0   120 1,386   1.08 (95% CI 0.81-1.44) 

 29.1-50.0 ml/day 31.2   60 1,057   0.80 (95% CI 0.57-1.12) 

 ≥50.1 ml/day 47.4   105 1,179   1.40 (95% CI 1.04-1.88) 

Ajani217 Men 

 Rarely/Never drinkers Rarely/Never drinkers 145 2,900   

Relative 
risk 

1.00 (reference) 

Age; BMI; physical activity; 
smoking; treatment group 

6 

 1-3 drinks/month 0.9   111 2,189   1.03 (95% CI 0.80-1.33) 

 1 drinks/week 2.0   122 2,806   0.89 (95% CI 0.70-1.14) 

 2-4 drinks/week 6.0   157 4,614   0.74 (95% CI 0.59-0.93) 

 5-6 drinks/week 11.0   80 2,613   0.67 (95% CI 0.51-0.88) 

 ≥1 drink/day 16.8   151 5,063   0.57 (95% CI 0.45-0.73) 
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Wei218 
Men 

Non-drinkers Non-drinkers   36 1,811   

Relative riskd,e 

1.00 (reference) 

Age; family history of T2DM; 
years of follow-up 

6 

1-61.8 g/week 4.8   21 1,675   0.78 (95% CI 0.44-1.37) 

61.9-122.7 g/week 13.1   16 1,682   0.56 (95% CI 0.31-1.00) 

122.8-276.6 g/week 26.6   35 1,655   1.22 (95% CI 0.75-1.98) 

≥276.6 g/week 83.5   41 1,661   1.32 (95% CI 0.83-2.11) 

Conigrave95 Men 

0 g/day 0.0   416 10,656   

Relative risk 

1.00 (reference) 

Age; BMI 5 

0.1-4.9 g/day 2.3   450 11,356   1.09 (95% CI 0.95–1.24) 

5.0-9.9 g/day 7.3   214 6,941   0.88 (95% CI 0.74–1.04) 

10.0-14.9 g/day 12.3   163 6,050   0.77 (95% CI 0.64–0.92) 

15.0-29.9 g/day 19.7   174 6,321   0.80 (95% CI 0.67–0.96) 

30.0-49.9 g/day 38.1   116 4,419   0.72 (95% CI 0.58–0.88) 

≥50.0 g/day 70.1   38 1,419   0.64 (95% CI 0.46–0.89) 

Hu190 Women 

0 g/day 0.0   1,715 27,165   

Relative risk 

1.00 (reference) Age; family history of T2DM; 
menopausal status; time; 
use of postmenopausal 
hormone therapy 

6 
0.1-5 g/day 2.6   1,034 26,997   0.78 (95% CI 0.72–0.84) 

5.1-10.0 g/day 7.6   189 9,155   0.56 (95% CI 0.48–0.65) 

>10 g/day 12.0   358 17,480   0.59 (95% CI 0.52–0.66) 

Kao219 

Men 

Lifetime abstainers Lifetime abstainers   69 600   

Relative riskd,e 

1.00 (reference) 

Age; BMI; education; 
ethnicity; family history of 
T2DM; history of 
hypertension; physical 
activity; smoking; total 
energy intake; waist-hip 
ratio 

7 

Former drinkers Former drinkers   118  978    0.93 (95% CI 0.70-1.24) 

≤1 drink/week 0.1   74 741   0.88 (95% CI 0.64-1.23) 

1.1-7 drinks/week 6.1   139 1,227   0.98 (95% CI 0.74-1.30) 

7.1-14 drinks/week 17.7   55 670   0.72 (95% CI 0.50-1.02) 

14.1-21 drinks/week 29.3   32 281   0.94 (95% CI 0.62-1.41) 

>21 drinks/week 57.4   60 379   1.75 (95% CI 1.26-2.44) 

                

Women 

Lifetime abstainers Lifetime abstainers   236 1,987   1.00 (reference) 

Former drinkers Former drinkers   108  872    1.00 (95% CI 0.75-1.34) 

≤1 drink/week 0.1   110 1,626   0.92 (95% CI 0.72-1.17) 

1.1-7 drinks/week 5.7   90 1,226   0.99 (95% CI 0.74-1.33) 

7.1-14 drinks/week 16.7   18 378   0.75 (95% CI 0.45-1.25) 

14.1-21 drinks/week 28.9   5 125   0.60 (95% CI 0.24-1.47) 

>21 drinks/week 49.6   2 56   0.39 (95% CI 0.10-1.55) 
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Meisinger220 

Men 

0 g/day 0.0   23 439   

Relative risk 

1.00 (reference) 

None 6 

0.1-39.9 g/day 20.0   46 1,518   0.59 (95% CI 0.36-0.96) 

≥40 g/day 48.0   58 968   1.14 (95% CI 0.71-1.82) 

                

Women 

0 g/day 0.0   48 1,212   1.00 (reference) 

0.1-19.9 g/day 10.0   26 1,199   0.56 (95% CI 0.35-0.89) 

≥20 g/day 24.0   12 618   0.50 (95% CI 0.27-0.93) 

Wannamethee221 Men 

Non-drinkers Non-drinkers   4 285   

Relative riske 

1.00 (reference) 

Age; BMI; history of CHD; 
physical activity; smoking; 
social class 

9 

<1 unit/week 0.6   62 1,150   0.91 (95% CI 0.50-1.65) 

1-15 units/week 7.9   99 1,612   0.74 (95% CI 0.45-1.20) 

15-42 units/week 32.7   64 1,361   0.60 (95% CI 0.36-0.99) 

>42 units/week 63.2   18 566   0.87 (95% CI 0.50-1.51) 

Carlssonf,96 

Men 

Lifetime abstainers Lifetime abstainers   64 1,045   

Hazard ratio 

1.00 (reference) 

Age; BMI; smoking 8 

Former drinkers Former drinkers   11 151   0.91 (95% CI 0.46-1.80) 

<5 g/day 3.1   181 2,525   1.06 (95% CI 0.78-1.42) 

5–30 g/day 10.7   261 4,480   0.86 (95% CI 0.63-1.16) 

>30 g/day 42.8   75 1,023   0.90 (95% CI 0.61-1.32) 

                

Women 

Lifetime abstainers Lifetime abstainers   280 2,977   1.00 (reference) 

Former drinkers Former drinkers   2 75   0.93 (95% CI 0.23-3.73) 

<5 g/day 2.3   273 5,655   0.79 (95% CI 0.66-0.95) 

5–20 g/day 6.9   55 2,173   0.66 (95% CI 0.47-0.91) 

>20 g/day 25.9   10 303   0.79 (95% CI 0.40-1.55) 

Lee222 Men 

Non-drinkers Non-drinkers   23 816   

Relative risk 

1.00 (reference) 

None 3 

≤90 g/week 6.5   33 1,793   0.66 (95% CI 0.39-1.12) 

91-180 g/week 19.4   11 733   0.54 (95% CI 0.26-1.10) 

181-360 g/week 38.6   11 497   0.79 (95% CI 0.39-1.61) 

>360 g/week 61.7   5 133   1.32 (95% CI 0.51-3.42) 

Nakanishi223 Men 

0 g/day 0.0   63 358   

Relative riske 

1.00 (reference) 

Age; BMI; family history of 
T2DM; physical activity; 
smoking 

7 

0.1-22.9 g/day 11.5   67 467   0.87 (95% CI 0.60-1.26) 

23.0-45.9 g/day 34.5   66 632   0.66 (95% CI 0.47-0.93) 

46.0-68.9 g/day 57.5   107 774   0.78 (95% CI 0.56-1.10) 

≥69 g/day 82.8   67 352   0.95 (95% CI 0.65-1.38) 
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Sawada224 Men 

Non-drinkers Non-drinkers   50 1,412   

Relative risk 

1.00 (reference) Age; BMI; family history 
of T2DM; fitness; high 
blood pressure; smoking 

7 1-45 g/day 23.5   206 2,814   1.59 (95% CI 1.16-2.17) 

≥46 g/day 55.2   24 239   1.68 (95% CI 1.03-2.76) 

Wannamethee225 Women 

Lifelong abstainers Lifelong abstainers   181 14,736   

Relative risk 

1.00 (reference) 

Age 4 

Former drinkers Former drinkers   334 23,791   1.18 (95% CI 0.98-1.41) 

0.1-4.9 g/day 2.5   336 44,048   0.67 (95% CI 0.56-0.80) 

5.0-14.9 g/day 10.0   70 18,309   0.34 (95% CI 0.25-0.44) 

15.0-29.9 g/day 22.5   8 2,308   0.29 (95% CI 0.15-0.60) 

≥30 g/day 36.0   6 758   0.63 (95% CI 0.28-1.42) 

Lee226 Women 

Non-drinkers Non-drinkers   1,168 15,829   

Rate ratio 

1.00 (reference) 

None 4 1-14 g/day 8.0   675 15,592   0.60 (95% CI 0.55-0.66) 

≥15 g/day 18.0   78 2,356   0.47 (95% CI 0.37-0.59) 

Waki227 

Men 

Non/infrequent drinkers Non/infrequent drinkers 196 3,834   

Relative riskd 

1.00 (reference) 

Age; BMI; family history 
of T2DM; hypertension; 
physical activity; smoking 

6 

≤23.0 g/day 11.55   169 3,162   1.08 (95% CI 0.88-1.32) 

23.1-46.0 g/day 34.55   174 2,735   1.24 (95% CI 1.02-1.52) 

>46.0 g/day 55.32   164 2,479   1.23 (95% CI 1.00-1.52) 

                

Women 

Non/infrequent drinkers Non/infrequent drinkers 436 13,919   1.00 (reference) 

≤4.9 g/day 2.5   15 465   1.14 (95% CI 0.69-1.90) 

5.0-11.5 g/day 8.25   16 636   0.81 (95% CI 0.49-1.34) 

>11.5 g/day 13.92   13 481   0.79 (95% CI 0.45-1.38) 
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Hodge97 

Men 

Lifetime abstainer Lifetime abstainer   25 1,795   

Relative riskd 

1.00 (reference) 

Age; BMI; country of birth; 
dietary glycaemic index; 
dietary energy intake; waist-
hip ratio 

8 

Former drinkers Former drinkers   17 500   2.44 (95% CI 1.29-4.52) 

<10 g/day 4.3   56 3,031   1.55 (95% CI 0.95-2.50) 

10-19.9 g/day 15.0   30 2,247   1.21 (95% CI 0.69-2.07) 

20-29.9 g/day 24.2   13 1,333   0.80 (95% CI 0.40-1.59) 

≥30 g/day 45.0   38 3,129   0.86 (95% CI 0.50-1.57) 

                

Women 

Lifetime abstainers Lifetime abstainers   114 7,729   1.00 (reference) 

Ex-drinkers Ex-drinkers   9 589   1.12 (95% CI 0.55-2.24) 

<10 g/day 3.5   32 5,659   0.66 (95% CI 0.44-1.00) 

10-19.9 g/day 15.0   18 2,838   0.82 (95% CI 0.49-1.37) 

≥20 g/day 30.2   10 2,210   0.60 (95% CI 0.30-1.17) 

Hu228 

Men 

Non-drinkers Non-drinkers   223 3,608   

Hazard ratio 

1.00 (reference) 
Age; BMI; food consumption 
(bread; coffee, fruit, tea, 
sausage, vegetable); 
education; physical activity; 
smoking; study year; systolic 
blood pressure 

8 

1-100 g/week 7.2   190 3,661   0.91 (95% CI 0.75-1.11) 

>100 g/week 17.1   104 2,402   0.74 (95% CI 0.58-0.95) 

                

Women 

Non-drinkers Non-drinkers   357 6,350   1.00 (reference) 

1-100 g/week 7.2   87 3,877   0.74 (95% CI 0.57-0.94) 

>100 g/week 17.1   3 523   0.23 (95% CI 0.07-0.73) 

Strodl229 Women 

Non-drinkers Non-drinkers   87 2,698   

Relative riskd 

1.00 (reference) 

None 3 
Rarely drinkers Rarely drinkers         1.00 (95% CI 0.74-1.35) 

1-2 drinks/day 15.0   54 2,922   0.58 (95% CI 0.42-0.82) 

≥3 drinks/day 36.0   12 306   1.21 (95% CI 0.67-2.17) 

Burke230 

Men 

Life-long abstainers Life-long abstainers   7 14   

Relative risk 

1.00 (reference) 

None 6 

Ex-drinkers Ex-drinkers   14 40   0.78 (95% CI 0.37-1.65) 

 <150 g/day 88.0   12 86   0.37 (95% CI 0.16-0.82) 

≥150 g/day 209.0   8 48   0.43 (95% CI 0.18-1.04) 

                

Women 

Life-long abstainers Life-long abstainers   25 66   1.00 (reference) 

Ex-drinkers Ex-drinkers   11 38   0.82 (95% CI 0.44-1.52) 

<100 g/day 57.0   10 48   0.63 (95% CI 0.33-1.21) 

≥100 g/day 136.0   9 18   1.21 (95% CI 0.65-2.28) 
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Djoussé153 

Men 

Never drinkers Never drinkers   37 476   

Relative risk 

1.00 (reference) 

Age; BMI; 
education; 
smoking 

8 

Former drinkers Former drinkers   10 183   0.7 (95% CI 0.3-1.4) 

<1 drink/week 0.4   13 326   0.5 (95% CI 0.3-0.9) 

1-6 drinks/week 4.0   24 421   0.6 (95% CI 0.4-1.1) 

≥7drinks/week 30.0   25 384   0.8 (95% CI 0.4-1.3) 

                

Women 

Never drinkers Never drinkers   74 1,221   1.00 (reference) 

Former drinkers Former drinkers   10 143   1.2 (95% CI 0.6-2.3) 

<1 drink/week 0.4   23 582   0.7 (95% CI 0.4-1.1) 

1-6 drinks/week 4.0   13 400   0.6 (95% CI 0.3- 1.1) 

≥7 drinks/week 30.0   5 285   0.4 (95% CI 0.2-1.0) 

Maty231 

Men 

0 drinks/month 0.0   21 373   

Relative risk 

1.00 (reference) 

None 4 

1-45 drinks/month 10.6   85 1,652   0.92 (95% CI 0.58-1.46) 

≥46 drinks/month 25.4   34 591   1.02 (95% CI 0.60-1.73) 

                

Women 

0 drinks/month 0.0   42 771   1.00 (reference) 

1-45 drinks/month 10.6   116 1,969   1.08 (95% CI 0.76-1.52) 

≥46 drinks/month 25.4   9 250   0.67 (95% CI 0.33-1.36) 

Onatf,232 

Men 

Non-drinkers Non-drinkers   102 936   

Relative risk 

1.00 (reference) 

Age; physical 
activity; smoking 

6 

<3 drinks/day 16.0   46 434   1.23 (95% CI 0.88-1.73)  

>3 drinks/day 38.4   14 71   1.91 (95% CI 1.06-3.45) 

                

Women 

Non-drinkers Non-drinkers   157 1,384   1.00 (reference) 

<3 drinks/day 16.0   2 63   0.38 (95% CI 0.11-1.23) 

>3 drinks/day 38.4   0 4   Too few data 

Roh233 Men 

Non-drinkers Non-drinkers   150 276   

Relative risk 

1.00 (reference) 

None 5 
1-14 g/day 8.0   251 412   1.08 (95% CI 0.91-1.26) 

15-29 g/day 22.5   166 200   1.29 (95% CI 1.09-1.53) 

≥30 g/day 36.0   123 139   1.33 (95% CI 1.11-1.60) 
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Boggs234 Women 

Never drinkers Never drinkers   1,669 20,457   

Relative risk 

1.00 (reference) 

Age; questionnaire 
cycle; energy intake 

5 

Former drinkers Former drinkers   1,159 9,966   1.22 (95% CI 1.13-1.31) 

1-3 drinks/week 4.0   552 7,658   0.84 (95% CI 0.76-0.93) 

4-6 drinks/week 10.0   132 2,530   0.60 (95% CI 0.51-0.72) 

7-13 drinks/week 20.0   97 1,484   0.70 (95% CI 0.57-0.86) 

≥14 drinks/week 33.6   43 654   0.71 (95% CI 0.52-0.96) 

Jeef,235 

Men 

0 g/day 0.0   14,407 172,786   

Hazard ratio 

1.00 (reference) 

Age; age2; BMI; physical 
activity 

8 

1-24 g/day 13.0   33,332 418,536   0.95 (95% CI 0.93–0.97) 

25-4 g/day 37.5   7,588 80,680   0.99 (95% CI 0.96–1.02) 

50-99 g/day 75.0   4,188 41,104   1.05 (95% CI 1.01–1.08) 

≥100 g/day 120.0   1,440 13,703   1.04 (95% CI 0.99–1.10) 

                

Women 

0 g/day 0.0   24,860 359,916   1.00 (reference) 

1-24 g/day 13.0   3,596 60,024   0.90 (95% CI 0.87–0.93) 

25-49 g/day 37.5   6 210   1.85 (95% CI 0.77–4.43) 

≥50 g/day 60.0   2 46   1.03 (95% CI 1.00–1.06) 

Nagaya236 

Men 

0 g/day 0.0   212 3,940   

Relative risk 

1.00 (reference) 

None 6 

<25 g/day 12.5   198 4,035   0.92 (95% CI 0.76-1.11) 

25-40 g/day 32.5   223 4,071   1.02 (95% CI 0.85-1.22) 

≥40 g/day 48.0   236 3,913   1.11 (95% CI 0.93-1.33) 

                

Women 

0 g/day 0.0   188 6,434   1.00 (reference) 

<25 g/day 12.5   30 1,413   0.73 (95% CI 0.50-1.07) 

≥25 g/day 30.0   6 297   0.70 (95% CI 0.31-1.56) 

Balkauf,237 

Men 

0 g/day 0.0   18 206   

Relative riskd 

1.00 (reference) 

Education; physical 
activity; smoking 

5 

<20 g/day 2.0   27 411   0.77 (95% CI 0.42-1.40) 

20-39 g/day 23.0   79 844   0.84 (95% CI 0.49-1.40) 

≥40 g/day 67.0   47 244   1.27 (95% CI 0.73-2.16) 

                

Women 

0 g/day 0.0   35 206   1.00 (reference) 

<20 g/day 1.0   35 411   0.95 (95% CI 0.59-1.48) 

≥20 g/day 21.0   22 1088   0.87 (95% CI 0.51-1.43) 
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Beulens238 

Men 

0 g/day 0.0   485 452   

Hazard ratioe 

1.00 (reference) 

Age; BMI; education; food 
consumption (coffee, fruit, 
meat, total energy, 
vegetable); physical 
activity; smoking;  

8 

0.1-6.0 g/day 3.1   1,303 1,262   1.03 (95% CI 0.86-1.24) 

6.1-12.0 g/day 9.1   890 891   0.93 (95% CI 0.79-1.09) 

12.1-24.0 g/day 18.1   1,116 1,166   0.97 (95% CI 0.83-1.13) 

24.1-60.0 g/day 42.1   1,448 1,555   0.89 (95% CI 0.77-1.02) 

60.1-96.0 g/day 78.1   393 363   0.80 (95% CI 0.65-0.99) 

>96.0 g/day 115.2   126 85   1.10 (95% CI 0.79-1.54) 

                

Women 

0 g/day 0.0   1,601 2,013   1.00 (reference) 

0.1-6.0 g/day 3.1   2,429 3,828   0.91 (95% CI 0.86-0.96) 

6.1-12.0 g/day 9.1   743 1,483   0.75 (95% CI 0.66-0.84) 

12.1-24.0 g/day 18.1   623 1,322   0.79 (95% CI 0.70-0.90) 

>24 g/day 28.8   402 838   0.81 (95% CI 0.69-0.95) 

Cullmann239 

Men 

Non-drinkers Non-drinkers   10 62   

Relative riskd,e 

1.00 (reference) 

Age; BMI; education; 
family history of T2DM; 
physical activity; smoking 

8 

0.01-6.79 g/day 3.4   46 501   0.62 (95% CI 0.32-1.19) 

6.80-13.01 g/day 9.9   28 488   0.41 (95% CI 0.23-0.73) 

13.02-22.13 g/day 17.6   41 505   0.56 (95% CI 0.33-0.96) 

≥22.14 g/day 26.6   50 486   0.56 (95% CI 0.33-0.96) 

                

Women 

Non-drinkers Non-drinkers   6 94   1.00 (reference) 

0.01-1.49 g/day 0.8   34 724   0.92 (95% CI 0.37-2.26) 

1.50-4.71 g/day 3.1   14 766   0.39 (95% CI 0.18-0.83) 

4.72-8.75 g/day 6.7   20 739   0.69 (95% CI 0.34-1.41) 

≥8.76 g/day 10.5   24 755   0.87 (95% CI 0.43-1.75) 

Sato240 Men 

Non-drinkers Non-drinkers   142 1,479   

Hazard ratio 

1.00 (reference) 

Age 5 
0.1-2.0 drinks/day 14.7   350 4,055   0.94 (95% CI 0.78-1.15) 

2.1-4.0 drinks/day 42.7   268 3,093   0.94 (95% CI 0.77-1.15) 

≥4.1 drinks/day 68.9   118 1,126   1.16 (95% CI 0.91-1.48) 

Teratanif,242 Men 

Non-drinkers Non-drinkers   131 2,287   

Hazard ratio 

1.00 (reference) 

None 5 

1-76 g/week 6.3   71 1,677   0.81 (95% CI 0.61, 1.08) 

77-153 g/week 15.7   73 1,243   0.94 (95% CI 0.70, 1.26) 

154-307 g/week 22.0   85 1,469   0.95 (95% CI 0.72, 1.25) 

≥308 g/week 44.0   104 1,283   1.14 (95% CI 0.88, 1.49) 
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Stringhinif,241 

Men 

0 units/week 0.0   85 623   

Hazard ratio 

1.00 (reference) 

Age; ethnicity 4 

1-21 units/week 12.4   369 3,037   0.96 (95% CI 0.75-1.22) 

≥21 units/week 25.2   102 825   1.04 (95% CI 0.77-1.39) 

                

Women 

0 units/week 0.0   111 540   1.00 (reference) 

1-14 units/week 8.5   139 1,198   0.73 (95% CI 0.56-0.94) 

≥14 units/week 16.8   13 195   0.51 (95% CI 0.28-0.92) 

Abbasif,243 

Men 

No/Almost never No/Almost never   47 496   

Relative risk 

1.00 (reference) 

None 6 

1-4 drinks/month 0.8   32 379   0.90 (95% CI 0.58-1.38) 

2-7 drinks/week 6.3   76 1,121   0.73 (95% CI 0.52-1.04) 

1-3 drinks/day 19.8   53 768   0.75 (95% CI 0.51-1.09) 

≥4 drinks/day 47.5   18 257   0.76 (95% CI 0.45-1.28) 

                

Women 

No/Almost never No/Almost never   70 1,106   1.00 (reference) 

1-4 drinks/month 0.8   39 655   0.94 (95% CI 0.65-1.38) 

2-7 drinks/week 6.3   34 1,084   0.51 (95% CI 0.34-0.76) 

1-3 drinks/day 19.8   22 491   0.72 (95% CI 0.45-1.15) 

≥4 drinks/day 47.5   3 69   0.70 (95% CI 0.23-2.17) 

Heianzaf,244 Men 

Lifetime abstainers Lifetime abstainers   15 138   

Relative risk 

1.00 (reference) 

Age 7 

Former drinkers Former drinkers   10 30    2.83 (95% CI 1.27-6.31) 

8-54 g/week 2.9   35 199   1.74 (95% CI 0.95-3.19) 

55-98 g/week 10.9   31 214   1.54 (95% CI 0.83-2.86) 

99-160 g/week 17.6   23 221   0.94 (95% CI 0.49-1.80) 

161-229 g/week 24.7   30 230   1.43 (95% CI 0.76-2.66) 

230-287 g/week 32.9   37 236   1.61 (95% CI 0.88-2.93) 

288-748 g/week 66.3   35 166   2.38 (95% CI 1.29-4.38) 
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Rasoulif,244 

Men 

Abstainers 0.0   44 1,513   

Hazard ratio 

1.00 (reference) 

Age; BMI; education; family history of 
T2DM; physical activity; smoking 

7 

0.01-4.9 g/day 1.7   324 11,343   0.94 (95% CI 0.66-1.35) 

5.0-9.9 g/day 6.9   96 3,855   0.81 (95% CI 0.54-1.22) 

10.0-14.9 g/day 11.7   18 1,387   0.46 (95% CI 0.25-0.85) 

≥15 g/day 19.7   16 807   0.79 (95% CI 0.42-1.46) 

                

Women 

Abstainers 0.0   74 3,342   1.00 (reference) 

0.01-4.9 g/day 1.1   330 15,774   1.34 (95% CI 0.99-1.83) 

5.0-9.9 g/day 6.6   33 2,220   1.37 (95% CI 0.86-2.20) 

≥10 g/day 12.0   5 504   1.12 (95% CI 0.44-2.85) 

Shif,246 Men 

Non-drinker Non drinker   894 33,415   

Hazard ratio 

1.00 (reference) Age; BMI; education; energy intake; 
family history of T2DM; hypertension; 
income; occupation; physical activity; 
smoking; wait-hip ratio 

6 
<1 drink/day 9.6   74 3,115   0.88 (95% CI 0.70-1.12) 

1-2.9 drinks/day 26.0   169 8,349   0.80 (95% CI 0.67-0.94) 

≥3 drinks/day 53.6   101 3,973   0.91 (95% CI 0.74-1.13) 
a The upper limit of the highest exposure category was conservatively defined as 1.2 times the value of the lower bound, unless explicitly defined within each publication. 

b Conversions into g/day were undertaken according to the median volume of alcohol consumption in each category. Means were used if medians were unreported. If neither indicator of central 

tendency were reported for each category, the median of the upper and lower bounds was used. 

c Figures were obtained via personal correspondence and reflected the crude number of cases and non-cases in each exposure category. These figures therefore differed slightly from those 

contained within the analytical sample of the original study. Figures reported via personal correspondence were used only for the estimation of covariance between reported coefficients. Total of 

cases and non-cases in the analytical sample were 41 and 2,271 respectively. 
d RRs were estimated based on reported ORs using the Zhang and Yu formula.171 
e The Hamling method was used to recalculate risk estimates according to a reference category other than that originally reported.172 
f Additional, updated or recalculated risk estimates were provided via personal correspondence and may thus have differed from those reported by the original publication. 
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3.3.3 All data 

Data pooled from all 38 selected studies are presented in Figure 3.2. Constituent studies each 

contributed ≥3 point estimates, inclusive of reference group. In the figure, each risk estimate is 

plotted as a bubble of size proportionate to the inverse of its standard error such that larger 

bubbles represent more precise estimates.  

Visual inspection of plotted risk estimates suggested sizable heterogeneity between data points 

at equivalent volumes of alcohol consumption. This was corroborated by the calculation of an I2 

index for each fitted polynomial, which revealed an I2 of 75% (95% CI 67-80%) along the first 

polynomial, and 50% (95% CI 31-63%) along the second.  

The greatest reduction in risk is evident at an alcohol intake of 12 g/day, equating to an 18% 

decrease in risk relative to pooled non-drinkers (RR 0.82, 95% 0.79-0.85). Risks increased 

incrementally above this volume, with significant reductions in risk evident up to 64 g/day. The 

best-fitting FP model provided a substantially better parameterisation of the dose-response 

relationship than a standard linear regression (p=<0.001). 

 

Figure 3.2 Dose-response relationship between the average volume of alcohol consumption and T2DM 

risk, utilising all data combined
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3.3.4 Sex 

A scatter diagram of risk estimates stratified by men and women revealed that the dose-

response association differed by sex, with a reduction in risk at moderate volumes of alcohol 

consumption appearing most pronounced among women (Figure 3.3). 

 

Figure 3.3 Scatter diagram of extracted risk estimates, stratified by sex 

A sex-interaction was thus introduced against each polynomial term and a likelihood ratio test 

run to compare the basic FP model to one inclusive of a sex interaction. The interaction was 

significant overall (Wald test, p=<0.001) and improved the fit of the basic model (p=<0.001).  

Sex-stratified results are reported in Figure 3.4. The dose-response relationships shown in Figure 

3.4 were restricted to levels <140 g/day due to a dearth of risk estimates concerning higher 

volumes of alcohol intake. The results shown in Figure 3.4 appear to indicate that any reduction 

in risk relative to pooled non-drinkers may have been specific to women. While men show no 

reduction in risk at any volume, statistically significant reductions in the risk of T2DM are 

observed among women who reported average volume of alcohol consumption of <71 g/day. 

Reductions in risk were greatest at 35 g/day (RR 0.66, 95% CI 0.55-0.78), or close to two pints of 

4% ABV lager.11  
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Figure 3.4 Dose-response relationship between average volume of alcohol consumption and T2DM risk, 

stratified by sex 

3.3.5 Reference group 

Only five studies were deemed to have utilised a strictly-defined never-drinking category, with 

four studies having reported risk estimates for men, and four for women. Having identified a 

significant interaction by sex, an additional interaction was included according to whether 

constituent studies had calculated risks relative to never or pooled non-drinkers. The dose-

response relationship differed significantly by both sex (p=<0.001) and reference group 

(p=<0.001), with the addition of a reference group interaction improving the fit of the dose-

response relative to one containing an interaction only for sex (p=0.009).  

To visualise differences in dose-response according to abstention category, risk estimates were 

stratified by reference group and adjusted for sex through an inclusion in each model of a sex 

interaction term. Sex-adjusted differences in dose-response are reported in Figure 3.5, with the 

level of consumption restricted to <100 g/day due to the small number of risk estimates 

available above that level of consumption among studies that utilised a never drinking reference 

category. Reductions in risk appear most pronounced among studies that calculated risks 

relative to pooled non-drinkers, evident up to 82 g/day and largest at 12 g/day (RR 0.80, 95% 

0.83-0.86). Although a U-shaped dose-response relationship is also evident among studies that 
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used a strictly-defined never drinking reference category, decreases in risk are smaller in 

magnitude and not statistically significant, peaking at 41 g/day (RR 0.94, 95% CI 0.72-1.20). 

 

Figure 3.5 Sex-adjusted dose-response relationship between average volume of alcohol consumption 

and T2DM risk, stratified by reference group 

The dose-response relationship was then calculated based solely on studies that reported a 

never-drinking abstention category. As shown in Figure 3.6, risk estimates were sparse 

particularly at higher volumes of alcohol consumption. As such, the plotted results shown in 

Figure 3.7 are restricted to values of alcohol consumption <140 g/day due to the wide 

confidence intervals reported by the model. Given the small number of constituent studies, 

Figure 3.7 should be interpreted with caution. Nevertheless, the results indicated that potential 

reductions in risk at moderate volumes of alcohol consumption remained specific to women 

when studies excluded former drinkers from the reference category. 
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Figure 3.6 Scatter diagram of extracted risk estimates calculated relative to never drinkers, stratified by 
sex and inverse weighted by SE 

 

Figure 3.7 Dose-response relationship between average volume of alcohol consumption and T2DM risk, 
relative to never drinkers, stratified by sex 
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3.3.6 Confounder adjustment 

A total 15 studies reported crude or age-adjusted estimates (n=15), with the rest providing more 

comprehensively adjusted data (n=23). Although sex (p=<0.001) and reference category 

(p=<0.001) remained statistically significant modifiers of the dose-response relationship, little 

statistical difference was evident according to whether or not risk estimates had been extracted 

from crude or age adjusted studies or those with more comprehensive confounder adjustment 

(p=0.165). The addition of a confounder adjustment interaction provided no marked 

improvement in model specification of a sex-adjusted model (p=0.168). 

When data were stratified by confounder adjustment and adjusted for differences in dose-

response attributable to sex and reference group, multivariable-adjusted estimates appear to 

show shallower reductions in risk at moderate levels of alcohol consumption (Figure 3.8). This 

relationship was little changed when using an alternative confounding variable that defined 

studies according to whether their degree of adjustment was above or below the mean of four 

confounding factors.  

 

Figure 3.8 Dose-response relationship between average volume of alcohol consumption and T2DM risk, 

adjusted for sex and reference group, stratified by confounder adjustment 
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3.3.7 Sub-group analyses 

Beyond analyses stratified according to factors of primary interest, a number of further sub-

group analyses were undertaken, investigating the effect of putative modifiers of the dose-

response relationship. 

3.3.7.1 Case ascertainment 

Cases of T2DM were defined according to a variety of methods, summarised as participant self-

reports (n=11), objective ascertainment (n=21), or a combination thereof (n=6). Given the small 

number of studies to have employed mixed methods of case ascertainment, attention was 

focussed upon the subset of studies that used either a subjective or objective methods. 

Accordingly, data were restricted to the 32 applicable studies. The addition of an interaction 

according to method of case ascertainment provided little improvement over a dose-response 

model adjusted for differences by sex and reference category. While sex (p=<0.001) and 

reference category (p=<0.001) remained statistically significant modifiers, this was not the case 

for method of case ascertainment overall (p=0.166). 

 

Figure 3.9 Dose-response relationship between average volume of alcohol consumption and T2DM risk, 

adjusted for sex and reference group, stratified by method of case ascertainment 

Looking to the stratified dose-response relationship reported in Figure 3.9, studies that utilised 

an objective measure of case ascertainment reported reductions in risk of smaller magnitude 

and across a narrower range of consumption than studies with cases defined according to 

subjective self-reports. Among the latter, a peak 35% reduction in T2DM risk was observed at 
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20 g/day (RR 0.65, 95% CI 0.55-0.76) versus a 14% reduction in risk at 4 g/day (RR 0.86, 95% CI 

0.82-0.91) among studies that defined cases using an objective measure, relative to pooled non-

drinkers after adjustment for sex and reference group. 

3.3.7.2 Population region 

A total 13 studies sampled participants from Asian regions, with the remaining 25 studies having 

sampled participants from non-Asian countries. Population region represented a statistically 

significant modifier of the dose-response relationship (p=<0.001), even after accounting for the 

effect of sex (p=<0.001) and reference category (p=0.029). Inclusion of an interaction according 

to population region improved specification over a model that comprised interactions only for 

sex and reference category (p=<0.001). 

Looking to the stratified dose-response relationship shown in Figure 3.10, risk estimates 

extracted from Asian studies reported no reduction in T2DM risk at any level of average volume 

of alcohol consumption. By comparison, estimates from non-Asian countries exhibited a J-

shaped association even after adjustment for sex and reference category, with an intake of an 

average 26.5 g/day associated with a 27% reduction in risk relative to adjusted non-drinkers (RR 

0.73, 95% CI 0.67-0.78). 

 

Figure 3.10 Dose-response relationship between average volume of alcohol consumption and T2DM 

risk, adjusted for sex and reference group, stratified by population region 
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3.3.7.3 Population type 

Another factor posited as a modifier of the relationship between volume of alcohol consumption 

and T2DM was population type. Of selected studies, 12 sampled occupational cohorts and 26 

analysed participants from the general population. Alongside the addition of sex (p=<0.001) and 

reference group (p=0.008) interaction terms, the dose-response relationship did not differ 

significantly according to population type (p=0.407). The inclusion of an interaction by 

population type did not improve a model already adjusted for differences according to sex and 

reference category (p=0.410). 

Little difference in dose-response was observed when data were stratified according to 

population type, though reductions in risk among general population studies may have been less 

pronounced than those reported by occupational samples (Figure 3.11). 

 

Figure 3.11 Dose-response relationship between average volume of alcohol consumption and T2DM 

risk, adjusted for sex and reference group, stratified by population type 

3.3.7.4 Quality assessment 

The quality of selected studies ranged from three to nine points out of nine. One study received 

the maximum score of nin e,225 while two studies received a score of just three222,229 for 

limitations including the use of a self-reported measure of T2DM, no information concerning the 

derivation of alcohol consumption volume, short periods of follow-up and no adjustment for 

confounding factors. The median score was six, indicating a moderate level of quality on 

average. 
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There was no significant difference in overall dose-response according to whether studies fell 

below a median quality assessment score of six points (p=0.837) after adjustment for differences 

according to sex (p=<0.001) and reference category (p=0.01). Although reductions in risk 

appeared greater among studies of below median quality, the difference was small and not 

significant (Figure 3.12). 

 

Figure 3.12 Dose-response relationship between average volume of alcohol consumption and T2DM 

risk, adjusted for sex and reference group, stratified by quality assessment score 

3.3.8 Sensitivity analyses 

3.3.8.1 Newly analysed studies 

Of the 20 publications analysed by the preceding meta-analysis of volume of alcohol 

consumption and T2DM, 17 had been selected for analysis as part of the revised meta-analysis. 

Of those not selected, two were superseded by newer analyses of the same studies that also 

benefitted from larger samples and periods of follow-up,207,210 whilst the remaining study did 

not report sex-specific estimates.247 This left 21 publications with analyses that were either 

updated since the last meta-analysis, or else missed by the previous authors. 

A statistically significant difference in dose-response was identified according to whether studies 

had been previously sampled by Baliunas et al10 (p=<0.001) after accounting for any differences 

attributable to sex (p=<0.001) or choice of reference category (p=0.357). Stratifying the data 

revealed that newly analysed studies appeared to report a shallower reduction in risk at 
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moderate volumes of alcohol intake after adjustment for sex and reference category (Figure 

3.13). Of studies sampled in the previous meta-analysis, a peak 29% reduction in risk was 

observed at 20.5 g/day (RR 0.71, 95% CI 0.61-0.82) versus a 13% reduction at 14 g/day (RR 0.87, 

95% CI 0.83-0.91) among newly analysed studies, relative to adjusted non-drinkers. 

Potentially explaining at least some of this discrepancy, sex-specific logistic regression analyses 

comprising putative sources of heterogeneity reported that previously analysed studies of men 

were more likely to have used subjective case ascertainment (p=<0.001) and sampled non-Asian 

populations (p=<0.001), while studies reporting female data adjusted for a greater number of 

confounders (p=0.029), less likely to have analysed occupational samples (p=0.028) and were 

more likely to have utilised subjective measures of case ascertainment (p=0.020) and a strictly-

defined never drinking category (p=0.003). 

 

Figure 3.13 Dose-response relationship between average volume of alcohol consumption and T2DM 
risk, adjusted for sex and reference group, stratified according to selection in the preceding meta-
analysis  

3.3.8.2 Sensitivity of dose-response to a high precision study  

Having extracted data from all selected studies, 63% of constituent participants were found to 

have been sampled by a single, high quality study.235 Questioning the generalisability of any 

results where more than half of participants had been drawn from a single publication, a 

sensitivity analysis was undertaken to compare the impact of the study upon the observed dose-
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response relationship. As shown in Figure 3.14, the inclusion of the large study had little overall 

effect upon the dose-response relationship beyond contributing to a reduction in variance. This 

was posited to be attributable to the calculation of dose-response relationships using random 

effects, which applies a lower weight to larger studies. On this basis, as well as its high quality 

assessment score, the study was considered appropriate for inclusion in all reported analyses. 

As per the sex-specific analyses reported in Figure 3.4, plots were restricted to volumes of 

consumption below 140 g/day due to a dearth of risk estimates at higher levels.  

 

 

Figure 3.14 Dose-response relationship between average daily alcohol consumption and T2DM risk: sex-

specific data, stratified by Jee et al235 
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3.3.9 Small-study effects 

Recalculated estimates denoting the risk of current drinking versus non-drinking were plotted 

against the standard error of their log (Figure 3.15). The resulting funnel plots indicated that, 

while male risk estimates appeared largely symmetrically dispersed around a summary estimate 

denoting the overall level of risk reported for current drinkers (p=0.181), female estimates may 

have been asymmetrical (p=0.063), with selected risk estimates appearing more likely to report 

a reduction in T2DM than might have been expected in the absence of small-study effects.  

 

Figure 3.15 Funnel plot of current drinking versus non-drinking, stratified by sex  
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Given the summary estimates were calculated using a simple inverse variance weight,188 

asymmetry was hypothesised to be a consequence of a high precision study that reported results 

contrary to the majority of other studies. A prime suspect for such an effect was a large, high 

quality Korean study, which represented 65% of sampled participants and reported a smaller 

reduction in risk than many other selected studies.235 The impact of the Korean study upon 

estimated small study effects is reported in Figure 3.16. After its exclusion, observed asymmetry 

among female risk estimates was indeed attenuated, with no significant different in risk 

estimates according to the degree of study precision among either men (p=0.610) or women 

(p=0.508). Small study effects and the risk of any potential publication bias was low. 

 

Figure 3.16 Funnel plot of current drinking versus non-drinking, stratified by sex and excluding Jee et 
al.235 
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3.3.10 Pattern of consumption 

Of the 21 newly analysed studies, only three of their associated publications included a joint 

analysis of both the volume of alcohol consumption and drinking pattern. The first publication 

reported that middle-aged male binge drinkers (>1 bottle of wine on any one occasion 

≥1/month, or around 95.6 g assuming a 750 ml bottle of 13% ABV wine11) had a 67% (OR 1.67, 

95% CI 1.11-1.20) greater odds of T2DM relative to light drinkers (0.01-6.79 g/day).239 This 

finding was in keeping with a previously discussed study, which reported double the risk of 

T2DM among women that consumed >179 g on any one occasion at least once a month during 

the preceding year (RR 2.1, 95% CI 1.0-4.4).96 In both cases, however, reporting of the joint 

association between volume and pattern was limited, providing no indication as to the average 

volume of alcohol consumption among binge drinkers. It was possible their elevated risk of 

T2DM may have been attributable to a high average intake as opposed to infrequent periods of 

episodic heavy consumption. 

A more comprehensive analysis was reported by Sato et al,240 which explicitly set out to explore 

the joint association between the frequency and volume of alcohol consumption in a cohort of 

Japanese men. While no difference in the risk of T2DM was observed among men who 

consumed low volumes of alcohol (≤28 g/day) infrequently throughout the week (1-3 days), 

relative to pooled non-drinkers (RR 0.93, 95% CI 0.72-1.20), reductions in risk were apparent 

when the same low volume was consumed on at least four days in an average week (RR 0.74, 

95% CI 0.58-0.95). Such a result indicated that moderate volumes of alcohol consumption may 

only confer a reduction in risk when drinking is regular.  

The third and final study to have investigated the two dimensions of alcohol consumption was 

authored by Heianza et al.244 Sampling 1,605 Japanese men, risks associated with the average 

volume of alcohol consumption per drinking occasion were stratified according to four weekly 

frequencies. Consistent with the preceding analysis, risks were lowest among participants who 

frequently (≥6 days/week) consumed moderate volumes of alcohol (23 g/day). Relative to this 

group, those who consumed the same moderate volume of alcohol across just 2-3 days/week 

reported a 48% greater risk of T2DM (RR 1.48, 0.65-3.37). Notably, risks were consistently 

greatest at all frequencies within a light drinking category that also included pooled non-

drinkers, providing further indications as to the unsuitability of pooled non-drinkers as a 

reference category.  
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3.4 Strengths 

In revising the 2009 meta-analysis, these most recent results benefitted from the addition of 

new studies published after the last search in 2008, plus the inclusion of two historic papers 

missed or discounted during previous meta-analyses. Thus, while Baliunas et al10 sampled 20 

studies, 477,200 participants and 12,556 cases, revised analyses were based on data obtained 

from 38 studies, 1,902,605 participants and 125,926 cases. Although the majority of these 

additional observations were extracted from a single Korean study,235 a sensitivity analysis that 

compared results calculated with and without the large study showed negligible difference in 

the dose-response relationship beyond an expected change in precision (Figure 3.14). 

Some alcohol researchers have argued that never drinkers may present a more suitable 

abstention category than pooled non-drinkers.136 Although the preceding meta-analysis 

reportedly adopted a never drinking reference category when calculating the risk of T2DM 

among current drinkers, the never drinking category was only approximated. Specifically, effect 

estimates reported by 15 studies that used a non-drinking reference category were weighted 

according to the average sex-specific proportion of former drinkers reported by five studies that 

included a never drinking abstention category. This approach assumed that the average 

prevalence of former drinkers reported by the five studies was equal to that unreported by the 

remaining 15 studies and their varying population characteristics. In addition to the possibility 

that the study-specific proportion of former drinkers was determined by factors other than sex 

alone, two of the five studies from which an average proportion of former drinkers had been 

estimated did not define never and former drinking in a robust manner. For instance, one study 

defined never drinkers as participants who described themselves as non-drinkers at baseline 

and who also reported (a) not having changed consumption during the five years prior to 

baseline, and (b) never having regularly consumed ≥5 drinks/day.153 Here, never drinkers were 

likely to comprise a number of former or infrequent moderate drinkers. Accordingly, it was 

possible that the previous meta-analysis may not have reliably estimated the proportion of 

never drinkers contained among pooled non-drinking categories. Contrary to their method, the 

updated meta-analysis opted instead to test for an interaction in dose-response according to 

type of reference category defined by selected studies. Such an approach avoided the potential 

for having weighted data under inappropriate assumptions. Beyond this, the revised meta-

analysis also tested the effect of hypothesised modifiers of the dose-response relationship, 

providing insight into their effect upon summary dose-response estimates.  
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3.5 Limitations 

3.5.1 Heterogeneity 

Heterogeneity between sampled studies was high, with the breadth of effect estimates at 

equivalent volumes of consumption complicating interpretation of the overall dose-response 

relationship. In order to better understand the effect of such heterogeneity upon the observed 

dose-response relationship, potential explanatory factors were posited a priori and, where 

appropriate, explored individually through the inclusion of a corresponding interaction term 

along each fitted polynomial, with results then reported separately at each level of the a priori 

factor. The use of meta-regression to jointly test differences in dose-response according to all 

putative sources of heterogeneity was avoided owing to the potential for low statistical power, 

even when effect sizes and the number of studies are large.248,249,250 Though suggested that 

statistical power may have been sufficient in instances where the number of factors did not 

exceed a ratio of one to every 10 studies,251 simulations have suggested that power may remain 

low in circumstances where heterogeneity is high.252 

3.5.2 Quality assessment 

Although the quality of selected studies was assessed using the Newcastle-Ottawa assessment 

scale,189 with studies found to be of moderate quality on average (a score of 6/9), quality 

assessment tools are subject to notable limitations. Although a wide range of instruments have 

thus far been devised for the assessment of quality among non-randomised studies, each 

comprised assessment criteria that were disparate in both number and nature.253 In addition to 

the use of different rating scales or summary scores that risked weighing the importance of 

component items in ways disproportionate to their impact upon the validity of a given study, 

their differing designs were such that the choice of tool was likely to have had a sizeable bearing 

upon the assessment of study quality.254,255 Alongside such general limitations, the Newcastle-

Ottawa tool used to assess the quality of studies selected as part of the revised meta-analysis 

had criticisms ranging from the tool’s focus upon the generalisability of results as opposed to a 

study’s internal validity,256 to weak inter-rater reliability on some questions.257,258 With these 

limitations in mind, results from the Newcastle-Ottawa quality assessment tool should be 

considered only as a rough guide as opposed to a definitive measure of study quality. 

3.5.3 Stability of consumption 

In defining alcohol consumption using only one baseline measure, almost all studies sampled as 

part of the meta-analysis had modelled risk under an assumption that alcohol consumption was 

stable over the course of the study. However, having investigated datasets for which repeated 
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measures of alcohol consumption were available, researchers identified numerous disparate 

trajectories of alcohol consumption behaviour as a function of time.259 As such, the cross-

sectional categorisation of alcohol consumption may have been an inappropriate approach for 

defining drinking, with baseline categories potentially subject to misclassification error.150  

Defined as latent classes, numerous discrete trajectories have been identified across the adult 

life course.260,261,262,263 For example, looking to analyses that captured alcohol consumption data 

between the ages of 16 and 42 years, five distinct classes were observed in a Finnish cohort.264 

Here, in addition to stable categories of light (22%), moderate (35%) and heavy consumption 

(23%), 9% of participants decreased and 11% increased their consumption between the ages of 

16 and 42.264 Elsewhere, in a study of Canadians aged ≥50 years, nine different classes were 

identified over an average six years.265 As well as stable light (7%), moderate (11%), heavy (2%) 

never (6%) and former drinkers (8%), plus those who increased (16%) or decreased (31%) their 

consumption, this older cohort also captured U-shaped (10%) and inverted U-shaped (9%) 

trajectories.265 

 

Figure 3.17 Common latent trajectories of volume of alcohol consumption: the ‘cat’s cradle’ 

As evident from just two examples, exact trajectories identified within cohorts will differ 

according to their baseline age, duration of observation and frequency of repeated measures. 

Despite this, four trajectories appear robust to such factors, having been consistently observed 

across cohorts: stable non-drinking and current drinking, increasing consumption and 

decreasing consumption – a so-called ‘cat’s cradle’ of latent classes (Figure 3.9).259 Of these four 

classes, increasing consumption may be most common during early adulthood, with younger 

participants typified by never drinking and therefore exhibiting little opportunity for alternative 

trajectories of consumption. Conversely, in later life, decreased consumption may become the 
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dominant trajectory following factors including age-related deteriorations to health status. This 

disparity was hinted at by the examples above,264,265 and supported by findings from an analysis 

of mean volume consumption calculated from nine UK-based cohort studies (Figure 3.10).266 

 

Figure 3.18 Predicted mean alcohol consumption trajectories (in units/week) across the life course in 
UK cohort studies. Reproduced from Britton et al266 in BMC Medicine under a Creative Commons 
Attribution License (4.0). 

Despite such evidence highlighting the variability in the volume of alcohol consumption as a 

function of time, the vast majority of alcohol-T2DM studies modelled the dose-response 

relationship according to a single baseline measurement, with just one out of the 38 selected 

publications having utilised repeated measures of alcohol consumption. The authors of the 
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paper modelled the dose-response relationship using an unconditional logistic regression model 

equivalent to an extended Cox survival model with time-varying covariates updated at six-month 

intervals over a period of 10 years.153 Relative to never drinkers, results showed attenuated and 

non-significant reductions in risk across all levels of current drinking after accounting for changes 

to alcohol consumption over time.153  

A second publication, which was excluded from the meta-analysis, reported analyses of male 

participants in the Health Professionals Follow-Up Study.267 Compared with stable none or light 

drinkers (0-4.9 g/day), those who increased their consumption to moderate levels (5.0-29.9 

g/day) in any four-year period exhibited a statistically significant 25% reduction in hazard (HR 

0.75, 95% CI 0.62-0.90), while those who became heavy drinkers (≥30.0 g/day) showed a sizeable 

but not significant 65% reduction in hazard (HR 0.35 95% CI 0.11–1.10). Of moderate drinkers 

that reduced their consumption to none or light drinking, a 9% increase in hazards was observed 

(HR 1.09, 95% CI 0.92-1.30). Such participants may have reduced their intake due to poor health, 

though no such increase in risk was evident among heavy drinkers who switched to none or light 

consumption (HR 0.78, 95% CI 0.44-1.38). Such inconsistent results may have been a 

consequence of particularly small sample size in a number of sub-groups, with estimates subject 

to sampling error.  

The variability of alcohol consumption across the life course suggests that the dose-response 

relationship may be more complex than modelled by conventional analytical methods. With the 

validity of existing research potentially limited by a failure to account for the effect of such 

variability upon T2DM risk, epidemiological research needs to explicitly adopt analytical 

approaches capable of giving consideration to changes in drinking over time. 

3.6 Discussion 

Although few additional studies were found to have reported a strictly-defined never drinking 

abstention category, sex-adjusted analyses confirmed that the choice of reference category had 

a marked and statistically significant impact upon the observed dose-response relationship, with 

reductions in risk at moderate volumes of alcohol intake appearing specific to studies that 

excluded less healthy former drinkers from their abstention category (Figure 3.5). Results from 

Figure 3.5 thus mirror findings from meta-analyses of other health conditions, which reported 

attenuations in risk reduction when former drinkers were explicitly excluded from an abstention 

reference category.136,147 Such a difference in dose-response provides support to arguments 

made by some academics against the use of a pooled non-drinking category,136,137 and suggested 
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that reductions in risk at moderate volumes of alcohol consumption may thus have been 

overestimated by close to 95% of observational studies. 

Beyond the impact of reference category, little independent difference in the overall dose-

response relationship was observed according to whether or not risk estimates were 

multivariable-adjusted. Such a finding suggests either that confounder adjustment had little 

additional impact after the exclusion of former drinkers, or that the type as opposed to number 

of confounding factors may have been a more important determinant of heterogeneity in 

observed dose-response. 

Reductions in risk were previously identified as smallest among men.10 These were rendered 

completely absent in revised analyses following the addition of new data (Figures 3.4 and 3.6). 

These new data were more likely to have been obtained from Asian countries (53% versus 21%) 

and have utilised an objective measure of ascertainment (89% versus 71%) – two factors 

associated with less pronounced reductions in risk even after accounting for differences 

attributable to sex and reference category (Figures 3.10 and 3.9 respectively). Among women, 

peak reductions in risk were broadly comparable between the two meta-analyses: a 40% peak 

reduction was reported at 24 g/day among women (RR 0.60, 95% CI 0.52-0.69) sampled in the 

earlier meta-analysis,10 and a 34% peak reduction at 35 g/day (RR 0.66, 95% CI 0.55-0.78) in the 

revised meta-analysis.  

It was unclear why the dose-response relationship between the volume of alcohol consumption 

and T2DM risk operated differently according to sex, though five conceivable hypotheses were 

proposed: systematic differences in study characteristics; sex-specific differences in drinking 

pattern; sex-specific differences in the effect of alcohol upon putative biological pathways; sex 

hormones; and drink type. These were explored separately and in detail below: 

1. It was possible that sex-specific disparities in dose response may have been in some part 

a consequence of systematic differences in study characteristics. Following a 

stratification of study characteristics by sex, female data was found more likely to have 

been extracted from studies of non-Asian regions (61% versus 87%) or that utilised a 

subjective measure of case ascertainment (35% versus 18%). Both factors were 

associated with more pronounced reductions in risk than in studies of Asian regions 

(Figure 3.10) and that used an objective measure of defining T2DM (Figure 3.9). 

Although studies of women were also more likely to have sampled the general 
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population (87% versus 70%), population type was observed to have very little 

independent effect upon dose-response (Figure 3.11).  

An a posteriori analysis was thus undertaken to explore the significance of case 

ascertainment and population region interactions solely among female data. Both case 

ascertainment (p=0.002) and population region (p=0.010) were found to be statistically 

significant modifiers of the female dose-response relationship, with plotted results 

similar to those reported in Figures 3.9 and 3.10 when both sexes were combined.  

Although no sizeable difference was found in the proportion of studies that reported 

multivariable-adjusted risk estimates (men: 64%; women: 61%), it was possible that the 

degree of confounder adjustment was less important than the type of confounders for 

which dose-response relationships were adjusted. For instance, male studies were more 

often adjusted for a number of key risk factors for T2DM, including adiposity (45% versus 

39%), family history of T2DM (24% versus 17%) and smoking (39% versus 30%).  

Given the association between these risk factors and the risk of T2DM, as well as the 

possibility that they appear most prevalent among non-drinkers than moderate 

drinkers,136,139 it is plausible that discrepancies in the type of confounder adjustment 

alongside other differences in study characteristics may have explained at least some of 

the difference in dose-response between men and women. Such a conclusion is 

supported in part by the absence of any alcohol-T2DM relationship in a recent 

Mendelian randomisation meta-analysis, in which confounding factors should have 

been more randomly distributed between drinking groups.85  

2. With the risk of T2DM modelled exclusively according to the volume of alcohol 

consumption, no account was given to drinking pattern upon T2DM. The importance of 

such a consideration is illustrated by a recent meta-analysis of seven observational 

studies that reported data on both dimensions of alcohol consumption investigating the 

risk of ischaemic heart disease (IHD).268 Here, relative to never drinkers, a 36% (RR 0.64, 

95% CI 0.53, 0.71) reduction in risk was documented among those that reported a 

moderate level of average volume of alcohol consumption (<30 g/day) and no episodic 

heavy drinking. By contrast, no reduction in risk was evident among those who reported 

the same moderate level of average volume consumption but additionally indicated 

episodic heavy drinking (RR 1.12, 95% CI 0.91, 1.37). Of studies selected as part of the 

revised meta-analysis, few had considered the effect of consumption pattern, but 
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largely mirrored findings reported by Roerecke et al when researching IHD:268 that 

regular moderate alcohol consumption was associated with the lowest incidence of 

T2DM,95,97,240,244 with risks most pronounced among infrequent heavy drinkers.96,239,244 

Such results indicate a possibility that any putative health benefit conferred by regular 

exposure to moderate volumes of alcohol may be countered by infrequent episodes of 

heavy consumption. Unfortunately, data for IHD were not stratified by sex, with the 

majority of T2DM studies having only analysed men or women separately. Accordingly, 

it was unclear whether a volume-pattern interaction operated similarly among both 

men and women. Nevertheless, assuming a comparable effect in both sexes, sex-specific 

differences in the relationship between the volume of alcohol consumption and T2DM 

risk may have been attributable to sex-specific disparities in the prevalence of episodic 

heavy drinking. 

The possibility of a difference in consumption pattern between men and women is 

supported by data collated from 7,193 attendees at European 172 general practices.269 

Among participants, the odds of episodic heavy drinking (≥6 drinks on any one occasion 

at least once every month) among non-hazardous male drinkers (an AUDIT score of <8) 

was four times that of women following adjustment for country, age, employment 

status, mental and physical health (OR 4.38, 95% CI 3.27, 5.85). Similarly, of data 

reported by the Opinions and Lifestyle Survey, episodic heavy drinking was found to be 

greatest among men.101 

Although more data are required, current evidence indicates that both the volume and 

pattern of alcohol consumption are likely to be important modifiers of T2DM risk. 

Differences in dose-response between men and women may therefore have been a 

consequence of differences in consumption pattern. Specifically, a greater prevalence 

of episodic heavy drinking among men. 

3. Observed differences in dose-response between men and women may have been 

attributable to sex-specific disparities in the effect of alcohol upon putative biological 

pathways. Evidence in support of such a hypothesis was limited, however.  

Looking to research concerning a possible effect of alcohol upon insulin sensitivity, a 

meta-analysis of 10 interventional studies identified a significant sex interaction 

between average volume of alcohol consumption and insulin sensitivity (p=0.018).112 

Specifically, insulin sensitivity was found to be higher among female but not male 
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drinkers, relative to controls. However, heterogeneity among the studies was high, and 

when a study largely responsible for such heterogeneity was removed, no significant 

difference in insulin sensitivity between men and women remained (p=0.180). Although 

women were also found to exhibit significant reductions in fasting insulin concentration, 

the absence of any detectable effect among men was due to a dearth of data; men were 

represented by just two small interventional studies that, despite low precision, each 

reported similar reductions in fasting insulin following alcohol consumption. 

A second potential pathway concerned alcohol-mediated increases in HDL 

concentration. Although a linear dose-response relationship was identified across 33 

interventional studies,118 a sex interaction was not statistically significant. Such a result 

was mirrored by analyses reported in a Mendelian randomisation meta-analysis, which 

found no alcohol-mediated change to HDL concentration and no significant difference 

in mediation between men and women.85 

Finally, regarding the effect of alcohol consumption upon inflammatory response, a 

meta-analysis of interventional studies to have researched various inflammatory 

biomarkers found no difference in concentration by alcohol consumption,118 and while 

a Mendelian randomisation meta-analysis of 42 longitudinal studies found 

concentrations of CRP to be lower among A-allele carriers whose average volume of 

alcohol consumption was 17% lower than non-carriers, the magnitude of the difference 

was small and not stratified by sex.85 

Aside from the methodological weaknesses that underpinned such studies, evidence 

indicating a difference in alcohol-mediated biological response between men and 

women was lacking. 

4. A fourth possibility was that sex hormones may have played a role in altering the effect 

of alcohol upon T2DM risk. Associated with levels of insulin resistance and glucose 

concentrations independent of adiposity,270,271,272 at least two hormonal biomarkers 

have been implicated as modifiers of T2DM risk, including estradiol, a female sex 

hormone, and sex hormone-binding globulin (SHBG), a protein responsible for the 

transport of sex hormones. Of nine case-control studies to have reported 

concentrations of estradiol according to T2DM status, levels were significantly higher 

among those who developed T2DM (SMD 12.8 nmol/L, 95% CI 3.44, 22.2 nmol/L), 

though with no apparent interaction by sex (p=0.870).273 Of 20 case-control studies to 
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have reported on SHBG, concentrations were significantly lower among female cases 

than controls (SMD -16.23 nmol/L, 95% CI -20.24, -12.22 nmol/L), with little difference 

observed among men (SMD -5.07, 95% CI -11.92, 1.77).273 Effect modification of SHBG 

concentrations by sex were statistically significant (p=<0.001). Lower levels of circulating 

SHBG were also identified in cohort studies, where the risk of T2DM was substantially 

lower in participants with higher concentrations of SHBG, particularly among women.273  

In addition a lack of understanding concerning the precise biological mechanism by 

which factors such as SHBG may modify T2DM risk,273 research investigating the effect 

of alcohol upon circulating concentrations of sex hormones is scarce, particularly how 

moderate volumes of alcohol consumption might specifically elicit advantageous 

changes in female sex hormone concentration. One cross-sectional analysis data from 

Women's Health Study stratified alcohol consumption according to whether or not 

participants consumed in excess of 25 g/day. Estradiol concentrations were elevated 

only within the higher consumption category, relative to pooled infrequent and non-

drinkers (β=0.17, 95% CI 0.05, 0.29).274 While concentrations of SHBG also appeared to 

be higher among regular current drinkers, differences in SHBG were not statistically 

significant (β=0.02, 95% CI -0.11, 0.15). Elsewhere, a cross-sectional study of 202 pre-

menopausal women reported that those who consumed ≥10 g/day had an 18% higher 

mean salivary estradiol concentrations than those who consumed <10 g/day 

(p=0.034).275 Similar findings have been reported by cross-sectional studies 

elsewhere,276 as well as linear increases in estradiol concentrations across categories of 

weekly alcohol consumption,277 and acute elevations in small placebo-controlled studies 

of female participants following dosages of 0.5 g/kg (or around 27.5 g in a 55 kg 

woman)278 and 0.7 g/kg (or around 38.5 g in a 55 kg woman).279 

Such studies were limited by only having sampled a single sex, meaning that side-by-

side comparisons of alcohol-related changes to estradiol concentration were not 

possible. Similarly, with most studies having reported concentrations according to only 

a one or two volumes of alcohol consumption, a more complete understanding of the 

dose-response relationship was unclear. However, based on the few small studies 

available, there was an indication that the association between alcohol consumption 

and estradiol concentration may sit contrary to what is expected, with concentrations 

appearing elevated at volumes of alcohol consumption otherwise associated with a peak 

reduction in T2DM risk among women.10 The validity of beneficial alcohol-induced 
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changes to endogenous sex hormone concentrations having served as a pathway by 

which women might experience the greatest reductions in T2DM risk therefore seemed 

weak. 

5. Finally, there was a possibility that sex-specific differences in dose-response may have 

been a consequence of men and women having consumed different types of alcoholic 

drink; that reductions in risk were less to do with the total volume of ethanol so much 

as some other drink-specific component. Such a possibility was plausible given a 

purported role of flavonoids and stilbenes commonly found in fruit-based drinks as anti-

oxidants capable of impairing inflammatory response, and promoting both good blood 

flow and endothelial function for the effective transport of blood glucose.280,281 

Of the studies selected as part of the revised meta-analysis, seven reported 

multivariable-adjusted risk estimates according to drink type. However, in many cases, 

the stratification of risk estimates by drink type and categories of volume consumption 

led to small sub-group samples and high imprecision, weakening inferences drawn 

concerning any effect modification by drink type. 

In one study, risks stratified by drink type were only reported for men owing to the low 

volume of consumption among women. Among the 5,423 male US participants, 

multivariable-adjusted odds of T2DM showed no independent association for any drink 

type.219 Although point estimates indicate greater reductions in risk among men who 

drank wine at higher frequencies (e.g. OR 0.63 at >25 g/day, 95% CI 0.08-4.95), relative 

to non-drinkers, the estimates were subject to substantial imprecision given the small 

number of male wine drinkers. In a male cohort that benefitted from a much larger 

sample size, reductions in risk were statistically significant among moderate wine 

drinkers (HR 0.80 at 25 g/day, 95% CI 0.65-0.97), relative to pooled non-drinkers, with 

no reduction evident among beer or spirit drinkers.246 By contrast, a final male cohort 

reported independent linear reductions in risk per 15 g/day increase in consumption for 

beer (RR 0.80, 95% 0.70-0.91), white wine (RR 0.77, 95% CI 0.65-0.90), and spirits (RR 

0.85, 95% CI 0.76-0.94), plus some indication of a reduction in risk among red wine 

drinkers (RR 0.91, 95% CI 0.78-1.08).95 However, in this instance confounder adjustment 

was much lower, accounting only for age and BMI. Nevertheless, in another model with 

greater covariate adjustment, but with additional adjustment for potential mediators of 

the alcohol-T2DM relationship, significant associations were unchanged. 
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In a US cohort study, participants were categorised according to their preferred drink 

type.245 Unfortunately, to boost sample size, data were adjusted for sex as opposed to 

stratified. All current drinkers showed reductions in risk relative to non-drinkers, but 

with no difference in risk according to whether participants consumed beer (RR 0.7, 95% 

CI 0.4-1.1), wine (RR 0.6, 95% CI 0.4-0.9) or spirits (RR 0.6, 95% CI 0.4-0.9). Conversely, 

in another cohort where sex-specific data were combined, reductions in risk were 

evident among wine drinkers only (HR 0.93 per g/day wine, 95% CI 0.87-0.99), with point 

estimates no different from the null for all other drink types.153  

Relative to never drinkers, reductions in risk among Australian female drinkers were 

specific to those who reported wine consumption.97 However, none of the relationships 

were statistically significant due to high imprecision owing to a small number of cases 

within sub-groups. Imprecision was also high among men, though with reductions in risk 

indicated across all drink types. In particular, a statistically significant linear association 

trend was observed between increased wine consumption and decreased T2DM risk 

(p=0.037). Benefiting from a much larger number of cases per sub-group, a European 

multicentre prospective case–cohort study also reported significant effect modification 

among male wine drinkers (p=0.003), with hazards lowest at 24.1-60.0 g/day (HR 0.82, 

95% CI 0.71-0.95) relative to very light drinkers (0.1-6.0 g/day).238 Little variation from 

the null was evident across categories of beer (p=0.660) or spirit (p=0.440) consumption 

in men. Among women, significant effect modification was documented for wine 

(p=0.048) and fortified wine (p=0.023) drinkers, with hazards lowest in each case among 

those who reported consuming 24.1-60.0 g/day (wine: HR 0.89, 95% CI 0.72-1.11; 

fortified wine: HR 0.64, 95% CI 0.24-1.70).  

On balance, reductions in risk appeared most consistently reported among male and 

female participants who reported consuming wine, particularly in studies of greater 

precision.238,246 Although in keeping with research indicating that chemical compounds 

in fruit-based drinks such as red wine may have anti-inflammatory effects,280,281 with sex-

specific reductions in T2DM thereby a result of compounds other than ethanol, a recent 

probabilistic study casts doubt on such a conclusion. Using dose-response data from 

animal models, researchers estimated the comparative risks and benefits of alcohol 

consumption according to the putative carcinogenicity of ethanol and the anti-

carcinogenicity of the stilbene resveratrol.282 Based on abstracted data, the authors 

estimated that a person would have to consume at least 111 glasses of wine before 
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reaching a therapeutic dose of resveratrol at which the risk of cancer would begin to 

decrease. Having an effect over 100,000 times more potent than resveratrol, the 

increased risk of cancer from ethanol consumption would far outweigh any anti-

carcinogenicity from resveratrol.  

Although equivalent analyses have yet to be published for T2DM risk, such a finding 

suggests that reductions in risk among wine drinkers may instead be confounded by 

differences in health and lifestyle according to drink preference. Although the few 

papers that did stratify T2DM risk by drink type were generally included a number of 

primary T2DM risk factors such as age, adiposity, physical activity and smoking, residual 

confounding was a possibility, with marked differences in the characteristics wine, beer 

and spirit drinkers according a wide range of socio-economic variables.283,284 In the 

absence of high precision studies able to isolate the independent effect of drink-specific 

compounds, a clear conclusion concerning the clinical effect of different drinks at 

moderate levels of alcohol consumption remains in question.  

Although sex-specific differences were observed in the dose-response relationship between 

volume of alcohol consumption and T2DM risk, it was not possible to say with certainty which 

factor or combination of factors contributed to reductions in risk at moderate levels of 

consumption being specific to women. Based upon the available literature, the most credible 

determinants included a statistical artefact arising from differences in study characteristics, or 

else the result of biological mechanisms modified by sex-specific variations in drinking 

behaviour, such as consumption frequency or drink preference. 
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4 A summary of current evidence 

DM has been linked to the development of multiple vascular morbidities,1,3 the management 

and treatment of which was estimated to have accounted for around one-tenth of the NHS 

budget in 2010/11, or £13.8bn.4 The effects of DM are not restricted to health and healthcare 

systems, however, with deteriorations in health having sizeable impacts on patients’ ability to 

maintain jobs and care for themselves independently.4 Fortunately, of all known cases, T2DM 

represents by far the largest proportion, at around 85-90% of UK diagnoses.8 As such, the burden 

of DM may be largely attributable to modifiable environmental exposures, such as obesity and 

smoking, with the potential to attenuate disease risk in the general population through modest 

lifestyle changes. 

A growing literature has indicated that alcohol consumption may represent one such change. 

Results from an updated and revised meta-analysis indicated a J-shaped dose-response 

relationship relative to pooled non-drinkers (Figure 3.2), with reductions in risk most 

pronounced among women (Figure 3.4). Although few in number, studies have also indicated 

that the frequency of consumption may represent an important modifier of T2DM risk, with 

T2DM lowest among regular moderate drinkers, and any reductions in risk potentially offset by 

concentrated periods of episodic heavy consumption. 

To date, a number of biological mechanisms have been proposed to explain apparent reductions 

in T2DM risk at moderate levels of alcohol consumption, including alcohol-related 

improvements to insulin sensitivity, increases in the concentration of the lipid transport protein 

HDL, and a reduction in the expression of inflammatory factors implicated in the disruption of 

endothelial and pancreatic β-cell functioning. Research investigating such pathways has tended 

to be limited, with most existing observational studies having been cross-sectional in nature, 

preventing causal inference. Where studies were interventional, these were commonly 

constrained by small sample sizes, acute durations and single levels of exposure, undermining a 

determination of dose-response within each sample. 

Where results from interventional studies have been reported, acute improvements in insulin 

sensitivity and fasting insulin have been observed,112 as well as linear increases in HDL 

cholesterol concentrations.117,119 However, a beneficial relationship between alcohol 

consumption and HDL concentration has not been supported by Mendelian randomisation 

studies,85 with such studies also reporting a null relationship between SNPs of HDL variance and 

T2DM risk.121 In a reversal of this apparent disparity in the findings of interventional and 
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Mendelian randomisation research, acute interventional trials currently report no association 

between alcohol consumption and inflammatory markers (though the number of such studies is 

small),118 while results from Mendelian randomisation studies indicate a J-shaped association 

between alcohol and CRP consistent with the dose-response between alcohol consumption and 

T2DM risk.131 And although a longitudinal cohort study has found associations between the 

concentration of CRP and T2DK risk, such an association was not identified when T2DM risk was 

stratified according to SNPs of variance in CRP concentration.132 Elsewhere, Mendelian 

randomisation studies have reported conflicting evidence concerning the relationship between 

inflammatory markers and vascular conditions.133,134,135 Thus, although conceivable that alcohol 

may indeed act upon T2DM risk through such pathways, results from existing studies are 

inconsistent and limited by small sample sizes. 

Studies included within the updated and revised meta-analyses were subject to their own 

shortcomings, undermining the inference that moderate volumes of alcohol consumption may 

confer a reduction in T2DM risk. In all but two of the cohorts analysed by Baliunas et al, risk 

estimates among drinkers had been calculated relative to a group of pooled non-drinkers.10 

Although conventional in epidemiological studies to measure the effect of an exposure relative 

to those who were not exposed, the use of a pooled non-drinking category has drawn criticism 

through the manner in which it captures a number of former drinkers whose health and lifestyle 

may predispose them to the development of T2DM.136,137 As such, apparent reductions in T2DM 

risk at moderate levels of consumption may have been overestimated, particularly among 

studies with poor adjustment for determinants of T2DM risk, such as physical activity and diet.  

To explore this further, the updated and revised meta-analysis included sensitivity analyses that 

explicitly documented the effect of reference group and confounder adjustment upon 

reductions in risk observed in aggregate data. These analyses supported a significant, sex-

adjusted interaction according to the choice of reference group, with reductions in risk particular 

to studies that calculated risks relative to pooled non-drinkers (Figure 3.5). Furthermore, after 

accounting for the effect of sex and reference category upon the dose-response relationship, a 

weak interaction was observed according to the degree of confounder adjustment, with 

multivariable-adjusted reductions in risk at moderate volumes of alcohol consumption 

appearing less pronounced than those derived from crude or age-adjusted estimates, though 

present across a broader range of consumption (Figure 3.8). Alongside these two factors, 

population region also appeared to have a sizeable effect upon dose-response, with smaller 

reductions in risk reported by studies that sampled participants from Asian regions (Figure 3.10). 
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Aside from the issue of reference group selection and confounder adjustment, a further 

limitation of the current literature concerned the tendency of longitudinal studies to define 

alcohol consumption according to a single baseline measure. Despite growing evidence that 

drinking may vary markedly across the life course,259 only one selected study was found to have 

explored the effect of changes in alcohol consumption upon the risk of T2DM.153 Of studies not 

captured by the revised and updated meta-analysis, only one additional publication was found 

to give any consideration to the variability of alcohol intake over time.267  

Results from the two available studies hint at a dose-response relationship more complex than 

captured by conventional analytical approaches. The first reported attenuated and non-

significant reductions in T2DM risk after accounting for longitudinal changes to the volume of 

alcohol consumption among sampled participanst,153 while the second reported significant 

differences in T2DM according to the longitudinal trajectory of alcohol consumption.267 For 

instance, of moderate drinkers (5.0-29.9 g/day) that reduced their consumption to none or light 

drinking (0-4.9 g/day), a 9% increase in hazards was observed (HR 1.09, 95% CI 0.92-1.30) on 

average over each four-year period of follow-up, indicating a possible sick quitter effect. 

Although limited, such analyses suggest that the categorisation of participants according to their 

consumption at baseline risked introducing some degree of misclassification error.150 

Accordingly, future research should apply analytical approaches capable of describing and 

modelling longitudinal changes to alcohol consumption and their association with T2DM risk. 
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5 Research aims 

Although results from the updated and revised meta-analysis suggest the presence of reductions 

in T2DM risk among women at moderate volumes of alcohol intake, with T2DM risk elevated 

even at low volumes among men, effect estimates abstracted from constituent studies were 

calculated according to a single baseline measure. Despite apparent changes in alcohol 

consumption behaviour across the adult life course,259 very few studies appear to have 

investigated the impact of such variation upon a person’s risk of T2DM. In the few instances 

where T2DM risk has been modelled as a function of longitudinal changes to alcohol 

consumption, results indicate a relationship more complex than captured by conventional 

analytical approaches,153,267 supporting recent calls for alcohol studies to give a better account 

of variations in alcohol consumption across the life course.266,285,286,287 With this in mind, a series 

of analyses will be undertaken to help better understand the longitudinal dynamics of the dose-

response relationship, beginning with a preliminary survival analysis designed to confirm the 

suitability of the chosen dataset for the analysis of dose-response relationships between alcohol 

consumption and T2DM. 

Aim 1: Establish whether baseline alcohol consumption is associated with T2DM 

risk (Chapter 7) 

 Undertake a conventional multivariable-adjusted survival analysis, reporting the dose-

response relationship between baseline categories of average weekly volume of alcohol 

consumption and T2DM risk. 

 Investigate whether the volume of alcohol consumption alone was sufficient for 

modelling T2DM risk by testing an interaction between the volume and frequency of 

alcohol consumption.  

 Compare results from the conventional survival analyses against those summarised as 

part of the revised meta-analysis in Chapter 3. 

Aim 2: Determine the degree to which baseline categories of alcohol 

consumption risked being subject to misclassification error as a result of 

longitudinal changes in alcohol consumption (Chapter 8) 

 Establish whether sex-specific trajectories of the mean weekly volume of alcohol 

consumption were constant over the captured life course. 
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 Establish the longitudinal stability of alcohol intake within categories defined by baseline 

consumption. 

Aim 3: Describe differences in the mean volume of alcohol consumption over 

the life course according to T2DM diagnosis (Chapter 8) 

 Determine whether trajectories of alcohol consumption differed according to whether 

or not participants developed T2DM. 

 Describe the nature of any differences in the mean weekly volume of alcohol 

consumption over the period leading up to the time of censoring or T2DM diagnosis. 

Aim 4: Formally explore the utility of more advanced survival models in 

developing a better understanding of the relationship between alcohol 

consumption and T2DM (Chapter 9) 

 Conduct a series of increasingly advanced survival models to estimate the sex-specific 

risk of T2DM as a function of age-varying alcohol consumption. 

 Compare dose-response relationships reported according to different 

parameterisations of the longitudinal trajectory. 

 Investigate the effect of adjustment for heterogeneous non-drinking groups upon the 

sex-specific dose-response relationship. 

 Establish whether declining trajectories represent a group of drinkers at elevated risk of 

T2DM. 

With these aims established, Chapter 6 details the selection and structure of a dataset 

considered suitable for exploring longitudinal trajectories of alcohol consumption and their 

relationship with T2DM. 
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6 Data selection and structure 

6.1 Introduction 

To investigate the sensitivity of conventional survival analyses to longitudinal changes in average 

volume of alcohol consumption and drinking patterns, it was necessary to identify a dataset with 

a number of fundamental characteristics. 

Given that alcohol consumption behaviours appeared to change across all periods of 

adulthood,264,265 it was important first of all to analyse a dataset that spanned as broad a period 

of the adult life course as possible, with repeated measures of alcohol consumption that were 

both comparable between waves and of sufficient frequency as to capture acute fluctuations in 

drinking over time. However, while many longitudinal datasets were found to include repeated 

measures of alcohol consumption, none detailed the full adult life course, each having 

documented a restricted life period, such as early adulthood288 or older age.289  

Of the numerous longitudinal cohorts available, Whitehall II provided the best compromise 

between the period of adulthood captured, frequency of repeated alcohol measures, sample 

size and availability of variables, including objectively defined measures of T2DM. For instance, 

while the English Longitudinal Study of Ageing benefits from regular repeated measures and a 

sample of similar size to Whitehall II, its coverage of the adult lifecourse is skewed toward later 

life and comprises just 14 years of follow-up relative to the three decades of data afforded by 

Whitehall II.290 Elsewhere, in terms of coverage, the MRC National Survey of Health and 

Development 1946 is perhaps one of the closest to Whitehall II, with measures of alcohol 

consumption available between the ages of 36 and 64 years. However, it is limited by self-

reported T2DM data, fewer repeated measures and a sample one third the size of that available 

in Whitehall II.291 Other cohorts, such as the Twenty-07 Study292 and the Caerphilly Prospective 

Study,293 benefit from a similar number of repeated measures to Whitehall II but with very small 

sample sizes. 

6.2 Whitehall II cohort profile 

The Whitehall II cohort was established in 1985 as a longitudinal occupational study and 

comprised 10,308 (6,895 male and 3,413 female) civil servants aged 35-55 years who worked in 

the offices of 20 Whitehall departments.294 All eligible employees were invited to participate via 

letter, of whom 73% consented.295 Baseline measurements were obtained between 1985 and 

1988 by way of a self-administered questionnaire and a clinical examination. Participants were 
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followed up at regular intervals of between a median 1.6 and 5.5 years, with self-administered 

questionnaires completed at each wave and a clinical examination undertaken once every two 

waves (Table 6.1).  

Although Whitehall II represents a geographically-concentrated and occupationally-narrow 

cohort, a recent paper confirmed that aetiological associations identified within the cohort are 

consistent with those reported from studies of general population samples, implying that 

aetiological analyses based on Whitehall II data are likely to offer sound external validity.296 

Table 6.1 Variable availability in Whitehall II by study wave 

 

Age range 34-56 37-60 40-64 42-66 45-69 48-71 50-74 54-77 55-80 60-84

Wave number 1 2 3 4 5 6 7 8 9 11

Alcohol consumption

Frequency

Volume

'Always non-drinker?'

T2DM

FPGa

HbA1cb

OGTTc

Self-reported

Covariates

Age

BMId

Diete

Education

Ethnicity

Employment status

Family history of T2DM

Government office region

Household income

Index of Multiple Deprivation

Occupational grade

Physical activity

Sex

Smoking status

aFasting plasma glucose; bGlycated hemoglobin A1c; cOral glucose tolerance test; dBody mass 

index; eDietary variables, including fibre and saturated fat. 

The main aim of wave 10 was to validate self-completed measures of psychiatric morbidity in older 

people. As only 337 participants were sampled for the validation exercise, data for wave 10 are not 

l isted.
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6.3 Defining alcohol consumption  

As shown in Table 6.1, estimates of average weekly alcohol consumption were available in waves 

one, two, three, five, seven, nine and 11. Participants were asked to report the number of 

alcoholic drinks they had consumed in the preceding week according to “measures” of spirits, 

“glasses” of wine, or “pints” of beer or cider. A standard measure of spirits and a glass of wine 

were each assumed to contain one unit of alcohol, and a pint of beer or cider two units of 

alcohol. Based on data provided by Drinkaware,11 these volumes were roughly equivalent to a 

small (125 ml) glass of 10% ABV white wine (1.2 units) and a 4% ABV pint of lager (2.3 units).  

Given recent increases to both the size of wine glasses (175 ml and 250 ml) and the average 

strength of wines (11.5-13.5% ABV),297 it was likely that alcohol consumption from wine is 

conservatively estimated in Whitehall II.298 This was supported by a number of small 

convenience studies that asked drinkers to pour self-defined usual glasses of various drink types. 

Among these, volumes of alcohol contained within a usual glass of wine were consistently 

greater than those assumed by Whitehall II, with mean alcohol content measuring 15 g of 

alcohol among 283 drinkers from six locations across South-East England,299 or around double 

the volume assumed in Whitehall II. Elsewhere, almost half of participants from a Scottish 

convenience study poured in excess of 16 g alcohol.300  

While wine consumption data could have been inflated retrospectively, any such alteration 

risked being arbitrary and simplistic given variations in underestimation between convenience 

studies according to factors such as age, sex and setting.299 In a recent study that investigated 

the impact of increasing the assumed alcohol content of wine from 8 g/glass to 16 g/glass, 

doubling the value of wine consumption had the effect of reducing the risk of all-cause, CVD and 

cancer mortality among very heavy drinkers (men: ≥408 g/week, women: ≥288 g/week), relative 

to moderate drinkers (men: 1-168 g/week; women: 1-112 g/week).300 Risks among former and 

pooled non-drinkers were attenuated, though not to a degree as to be statistically significant. 

Accordingly, any underestimation of wine consumption would not have influenced the direction 

of the dose-response association under study, but may lead to an overestimation of risk at 

higher volumes. With this in mind, the volume of alcohol consumption was left unchanged with 

the caveat that risks among very heavy, former and non-drinkers were likely to have been biased 

upward among participants who predominantly consumed wine. 

The total volume of alcohol consumption was reported within the Whitehall II dataset as average 

units/week. These data were transformed into grams/week assuming a UK unit equal to 7.9 g 

ethanol, consistent with conversions undertaken as part of the revised meta-analysis. At wave 
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one, median reported alcohol consumption was 63.2 g/week (IQR 23.7-134.3 g/week, n=6,840) 

and 23.7 g/week (IQR 0.0-55.3 g/week, n=3,374) among men and women respectively (Table 

6.2). Median weekly alcohol consumption varied over the course of the study, peaking among 

men and women at wave five (ages 45-69). 

Whitehall II also included data concerning the pattern of alcohol consumption, operationalised 

as the frequency of alcohol consumption over the last 12 months. In wave 11, frequencies were 

defined as: ‘never’, ‘≤1 occasion/month’, ‘2-4 occasions/month’, ‘2-3 occasions/week’ and ‘>3 

occasions/week’. In all other waves, frequencies were recorded as: ‘none’, ‘special occasions’, 

‘>1/month’, ‘>1/week’, ‘daily’ and ‘almost daily’. To maintain consistency across waves in the 

classification of consumption frequency, new variables were derived for each wave of data and 

categories defined as: ‘none’, ‘<1 occasion/week’, ‘1-3 occasions/week’, ‘daily or almost daily’. 

These derivations were in keeping with a prior publication that used alcohol consumption 

frequency data from Whitehall II.266  

6.4 Defining T2DM 

Self-reported T2DM was documented at all waves, defined as any self-reported doctor-diagnosis 

or self-reported prescription of anti-diabetic medication (Table 6.1). Given that close to one-

third of T2DM cases may be missed by subjective measures of T2DM,301 self-reports were 

supplemented by objective data. These were obtained using measures of blood glucose drawn 

during clinical examinations at waves three (1991-93, ages 39-64), five (1997-99, ages 45-69), 

seven (2003-04, ages 50-74), nine (2008-09, ages 55-79) and 11 (2012-2013, ages 61-85) 

following a minimum five-hour fast. At each clinical examination, cases of T2DM were defined 

according to the 1998 WHO criteria: a fasting plasma glucose (FPG) reading ≥7.0mmol/L.302 Data 

following an oral glucose tolerance test (OGTT) were also available, for which participants 

consumed 389 ml of Lucozade (75 g anhydrous glucose) over a five-minute period, with a blood 

sample taken two hours later. However, as shown in Table 6.1, this measure was unavailable in 

wave 11. Similarly, while HbA1c concentrations were also documented as an alternative 

objective diagnostic indicator, such data were only available from wave seven onwards. To 

maintain a consistent definition of T2DM over time, FPG was thus selected as the objective 

measure of choice alongside self-reported data.  

To ensure a baseline free of T2DM, known cases between waves one through three were 

excluded from any analyses involving T2DM. After wave three, a total 916 new cases were 

observed (men: 620; women: 296), with a median follow-up 20.1 years (IQR 14.8-20.6 years) 

among men and 19.8 years (IQR 12.8-20.4 years) among women (Table 6.2). 
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6.5 Confounding factors 

All confounding factors identified during the literature review were available in Whitehall II, 

including adiposity, dietary variables (fats, carbohydrates and fibre), ethnicity, physical activity, 

smoking status and family history of T2DM (Table 6.1).  

6.5.1 Adiposity  

Despite its strong association with T2DM risk,39 there was a possibility that adiposity may have 

operated as a mediator of the relationship between volume of alcohol consumption and T2DM 

risk, with evidence indicating that calories consumed via alcoholic drinks tended to be additional 

to those derived from other dietary sources such as evening meals, leading to an acute over-

consumption of calories relative to non-drinkers.303 However, research linking average volume 

of alcohol consumption to increases in adiposity itself is conflicting, with longitudinal studies 

having reported a variety of null, inverse and positive associations.303,304 Notably, where positive 

associations have been identified, absolute differences in adiposity across alcohol consumption 

categories were modest. For example, over a period of three-years, each 14 g increase in alcohol 

consumption per drinking occasion was associated with an increase in BMI of 0.03 kg/m2 (0.02, 

0.04 kg/m2) among men, or a rise of 0.03 kg/m2
 (95% CI -0.01, 0.07 kg/m2) for each additional 

day of weekly consumption.305 Coefficients among women were even smaller and non-

significant. Elsewhere, in an analysis of three large occupational cohorts, each 14 g increase in 

the volume of consumption per drinking occasion was associated with an increase in weight of 

0.19 kg (95% CI 0.10, 0.27 kg) over a period of four years, or just 0.05 kg/annum.306 Similarly 

small increases in weight have been identified elsewhere.307  

On balance, given the body of available evidence, it was decided that while calories derived from 

alcoholic drinks may have some direct effect upon adiposity, the magnitude of such an 

association appears diminutive relative to other risk factors for adiposity, such as physical 

inactivity and poor diet. Accordingly, adiposity was included as a confounding factor in all 

multivariable-adjusted models, with negligible risk of overadjustment.  

Multiple measures of adiposity are available in Whitehall II, including BMI and waist 

circumference. Each has been strongly associated with an increased risk of T2DM, with risk 

estimates of comparable magnitudes and the predictive utility of each measure differing 

according to a range of participant characteristics.39 BMI was selected as a well-known indicator 

of adiposity. Data on participants’ height and weight were captured at each clinical examination. 

Mean BMI measured 24.6 kg/m2 (95% CI 23.3, 25.8 kg/m2, n=6,883) among men and 24.8 kg/m2 
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(95% CI 23.1, 26.5 kg/m2, n=3,441) among women at wave one, with mean BMI appearing to 

increase gradually at each successive wave (Table 6.2).  

6.5.2 Diet 

A number of dietary factors were considered in accordance with the literature review, including 

carbohydrates, fibre and dietary fats (e.g. polyunsaturated and trans fats). The consumption of 

such factors was estimated based on responses to an anglicised food frequency questionnaire 

(FFQ) based on that used in the US Nurses’ Health study.308 Foods commonly eaten in the UK 

were added to the FFQ as per the UK arm of the EPIC cohort study.309 A common portion size 

was assigned to each food, and participants then asked how often, on average, they consumed 

such a portion during the previous year. Frequencies ranged from ‘never or less than once per 

month’ to ‘six or more times per day’. The reported frequency for each food item was then 

converted to an estimated daily intake, with the consumption of constituent nutrients 

computed by multiplying the daily frequency of consumption by the estimated nutrient content 

of each portion.310 

Unfortunately, dietary variables were only available in waves three, five and seven of the 

Whitehall II cohort. In order to explore the merit of truncating the number of repeated measures 

of alcohol consumption in favour of greater covariate adjustment, the contribution of dietary 

factors upon the alcohol-T2DM relationship was explored alongside other covariates of interest 

by way of multiple sex-stratified Cox survival models. The method adopted was consistent with 

studies selected as part of the revised meta-analysis, with all covariates modelled only according 

to their values at baseline. The sample was restricted to T2DM-free participants at wave three, 

with T2DM defined according to a positive FPG, self-reported doctor diagnosis or use of 

hypoglycaemic medication. Dietary variables were treated as continuous variables that denoted 

their proportion of total energy intake (g/100g). With the exception of fibre, all dietary variables 

were subjected to a logarithmic transformation owing to skewness. In keeping with conventional 

survival models, categorical average weekly volume of alcohol consumption was selected as the 

exposure of interest.  

The reference model was adjusted for all a priori covariates (age, BMI, ethnicity, family history 

of T2DM, physical activity, sex, smoking and socio-economic status), excluding any dietary 

variables. Dietary variables were then added in a mutually exclusive manner, with a final model 

adjusted for all covariates and dietary variables. Results from these analyses identified a 

statistically significant inverse association between fibre consumption and T2DM risk among 

men, independent of adiposity (p=0.018), while all other dietary variables were far from 
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significant in both sexes (Appendix 6.1). In all models, dietary variables appeared to have little 

impact upon the relationship between alcohol consumption and T2DM risk. The relationship was 

similarly unchanged when alcohol consumption was modelled as a continuous variable, or when 

dietary variables were coded as tertiles.  

Such a series of results indicated that other covariates, particularly BMI, may have captured 

much of the effect of diet upon T2DM risk. Dietary factors were thus omitted as covariates from 

any subsequent multivariable-adjusted model. 

6.5.3 Ethnicity 

The ethnic group of participants was self-reported during screening at waves one and five. The 

ethnicity of participants was coded as ‘white’, ‘South Asian’ or ‘other’, which isolated into a 

separate category any Asian participants who were likely to have a heightened genetic 

sensitivity to alcohol203 and susceptibility to the development of T2DM.204 At baseline, 92.0% 

(95% CI 91.3-92.6) of participants were of a white ethnic background (Table 6.2). 

6.5.4 Family history of T2DM 

Family history of diabetes was self-reported by participants in waves one and two. Data were 

coded as a dichotomous variable according to whether a participant reported a parent or sibling 

as having developed T2DM. The variable was thus limited by failing to capture familial cases that 

developed after the first two waves of study. Among those who participated at baseline, 10.4% 

(95% CI 9.7-11.2%, n=709) of men and 14.1% (95% CI 12.9-15.3%, n=470) of women reported a 

family history of T2DM (Table 6.2). 

6.5.5 Physical activity 

Information regarding physical activity was ascertained via a 20-item questionnaire that 

included questions on the frequency and duration of participation in activities including walking, 

cycling, housework, gardening and sports in the preceding four weeks. These responses were 

used to derive the average number of hours spent doing each activity per week. Activities were 

classified as either mildly (e.g. gardening and housework), moderately (e.g. walking), or 

vigorously (e.g. running and swimming) energetic, relative to laying at rest.311 Time spent in 

mildly energetic physical activity was discounted as it predominantly captured women, 

potentially leading to a small sub-group in any adjusted analyses stratified by sex. This was 

consistent with a previous analysis using Whitehall II physical activity data.312 

A categorical physical activity variable was created, with participants classified according to 

WHO physical activity recommendations:313 meeting guidelines (≥150 minutes of moderate-
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intensity exercise per week, or ≥75 minutes of vigorous-intensity activity); inactive (<60 minutes 

of moderate physical activity and <60 minutes of vigorous physical activity; below guidelines 

(anyone not inactive or meeting the WHO guidelines). 

The proportion of participants who reported meeting WHO physical activity guidelines was 

greatest among men and women at wave five (ages 45-69), at 91.0% (95% CI 90.1-91.8%, 

n=4,234) and 79.6% (95% CI 77.8-81.4%, n=1,576) respectively (Table 6.2). This proportion then 

fell with increasing age up to the final wave of data, at 54.3% (95% CI 52.8-55.8%, n=2,389) 

among men and 36.6% (95% CI 34.4-38.8%, n=661) among women by wave 11. 

6.5.6 Smoking status 

Smoking data were collected at each wave and participants categorised according to whether 

they reported being a current, former or never smoker. The proportion of current smokers was 

greatest at wave one, at 15.9% (95% CI 15.1-16.8%, n=1,091) of men and 23.4% (95% CI 22.0-

24.9%, n=795) of women (Table 6.2). The proportion of current smokers declined as the cohort 

grew older, falling to 3.4% (95% CI 2.9-3.9%, n=141) of men and 4.8% (95% CI 3.8-5.9%, n=80) of 

women by wave 11. 

6.5.7 Socio-economic status 

Given the long history of research highlighting a social gradient in health inequalities, socio-

economic variables were considered as a means of capturing some degree of confounding not 

captured by other a priori selected variables. Such a decision was supported by research that 

indicated a social gradient in abstention and heavy drinking,314,315 which were disproportionally 

concentrated among those of low education or in unskilled occupations. Elsewhere, heavy 

drinking has also been associated with being unemployed or materially deprived,316,317 or living 

in deprived neighbourhoods.318 Similarly, the risk of T2DM also appears greatest among study 

participants of low income,319,320 education,320 socio-economic status,321 or area deprivation.322 

Although income, education, government office region (GOR) and Index of Multiple Deprivation 

(IMD) score were all available as potential socio-economic variables, data were present on each 

for only a sub-set of the baseline sample: GOR and IMD data were only available for 33.0% 

(n=3,398) of participants at wave one, income for 69.5% (n=7,161), and education for 74.5% 

(n=7,681). In complete-case analyses, such a high proportion of missing data would have led to 

a substantial reduction in sample size. 

Two alternative surrogate indicators of socio-economic status were thus selected: last known 

hierarchical occupational grade, based on salary and work role (administrative, 
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professional/executive, clerical/support), and employment status (employed, retired, 

redundant/sacked/sick/other). Where individuals lacked an occupational grade in waves after 

baseline measurement, such as due to having left the civil service through retirement, 

redundancy or long-term sickness, the last known occupational grade was used. Over 90.7% of 

male participants at wave one were among the top two tertiles of occupational grade, compared 

with 50.3% of female participants. The proportion of retired individuals rose at each successive 

wave to 77.7% (95% CI 76.5-78%, n=5,018) of men and 84.2% (95% CI 82.4-85.8%, n=1,554) of 

women by wave 11 (Table 6.2). To assess whether the inclusion of education, income, GOR and 

IMD would have helped capture additional confounding by socio-economic status, correlations 

were calculated between these factors and both employment status and occupational grade at 

wave three. The correlation between occupational grade and employment status was low (r=-

0.02), indicating that each was likely to describe different dimensions of socio-economic status. 

Weak to moderate correlations were found between occupational grade and income, IMD and 

education, with Pearson’s r ranging from 0.29-0.53, suggesting that such factors may have had 

some moderate additional predictive value in adjusted analyses. The weakest correlation was 

present between occupational grade and GOR (r=-0.08), indicating that area of residence may 

be an important socio-economic covariate despite the geographically concentrated nature of 

the cohort. Some degree of residual confounding within adjusted analyses was thus plausible. 

6.5.8 Variables not included 

6.5.8.1 Direct mediators 

Some selected studies reported models that also adjusted for factors such as serum insulin, 

glucose or triglyceride concentration. However, these factors were likely to exist on the causal 

pathway (see Section 2.2.2). By adjusting for a factor on the causal pathway between alcohol 

consumption and T2DM risk, the primary dose-response relationship under investigation will be 

biased toward the null.47 This is illustrated in Figure 6.1, where E indicates the exposure of 

interest (weekly volume of alcohol consumed), M the mediating mechanisms (insulin sensitivity, 

cholesterol, inflammation), and D the dependent event of interest (T2DM).  

 

Figure 6.1 Directed acyclic graph illustrating direct overadjustment bias 
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6.5.8.2 Indirect mediators 

Although self-rated general health was considered as a variable that may have helped adjust for 

confounding through an uneven distribution of poor health across alcohol consumption 

categories, and thereby potential differences in susceptibility to the development of T2DM, its 

inclusion was ruled out due to the possibility that it may also have served as a surrogate for 

mediating factors through which alcohol was hypothesised to modify T2DM risk. For instance, 

were moderate drinkers more likely to report good self-rated general health relative to non-

drinkers, this may have been attributable in part to (a) advantageous differences in alcohol-

induced insulin sensitivity, HDL cholesterol concentration and inflammation, and (b) a 

correspondingly lower burden of negative health conditions as a consequence of such a 

favourable metabolic profile, such as lower rates of stroke323,324,325 and CHD.326,327,328
 The 

hypothesised role of self-rated general health as a surrogate mediator is illustrated in Figure 6.2, 

where U represents omitted mediators (inflammation, cholesterol and insulin sensitivity) and M 

the observed surrogate mediator (self-rated general health).  

 

Figure 6.2 Directed acyclic graph illustrating indirect overadjustment bias 

The exclusion of self-reported health as a covariate was supported by its absence as a 

confounding variable in models reported by selected studies, with preference given to lifestyle 

and demographic variables. Unfortunately, the degree to which a general health variable would 

have served as either a confounder or mediator could not be investigated statistically, each 

distinguishable only on a conceptual basis.329 
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Table 6.2 Descriptive summary of Whitehall II data, stratified by wave and sex 
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6.6 Missing data 

Evident in Table 6.2 were three sources of missing data: unit non-response, representing 

attrition by individuals who opted not to participate at all in a given wave; item non-response, 

characterised as individuals who participated but opted not to answer one or more questions in 

a given wave; and mortality. 

Were data missing completely at random (MCAR), no systematic differences would exist 

between participants with and without missing values.330 Under such a circumstance, missing 

data would be ignorable, with the only resultant limitation being a reduction in statistical power. 

In practice, however, data are rarely MCAR.331  

The following sections explored whether individuals with missing data differed markedly from 

those that provided valid responses. If differences were present on characteristics associated 

with T2DM, missing data would be considered informative and non-ignorable due to its potential 

to introduce attrition or survivorship biases to any complete-case analyses of the alcohol-T2DM 

relationship.332,333 For example, were individuals who opted not to answer certain questions 

found to have exhibited characteristics that placed them at greater risk of T2DM than those with 

complete covariate data, such as current smoking and physical inactivity, then complete-case 

analyses would have risked selecting a disproportionately healthy sub-sample and T2DM risk 

potentially underestimated as a consequence.  

6.6.1 Mortality 

Information concerning the mortality of study participants is available via linkage to the NHS 

Central Registry.294 By wave 11, a total 13.3% (n=915) of men and 14.6% (n=499) of women were 

documented as having died (Table 6.2).  

As with any other form of attrition, the death of participants risked producing results that were 

more optimistic than would otherwise be the case, with many of the risk factors for T2DM also 

being risk factors for mortality. If participants at high risk of T2DM had died prior to the 

development of the condition, the resulting dataset would have been biased, with the remaining 

cohort representing disproportionately healthy, low-risk participants relative to the original 

sample. To investigate the degree to participant characteristics differed according to mortality 

status, Table 6.3 summarises participant characteristics at wave one, stratified according to 

whether or not participants died during the course of the study. 

Men and women who died were found to exhibit a higher proportion of negative risk factors for 

T2DM than those that survived, including older age and higher BMI, as well as lower levels of 
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physical activity and a higher prevalence of current smoking. Men who died were also more 

likely to be lighter, occasional drinkers than those that survived, though lower volumes of 

alcohol consumption and less frequent drinking may have been attributable to their poor health 

status at baseline. That participants lost to mortality appeared of poorer health and at greater 

risk of T2DM at baseline, it was possible that mortality produced a healthier analytical sub-

sample in which T2DM risk was underestimated. In such an instance, mortality would be 

informative and represent a competing risk event, with death altering a participant’s probability 

of experiencing T2DM.334 

Unfortunately, no agreement was found concerning how best to deal with the informative effect 

of a competing risk such as mortality.332 Approaches have included deriving an outcome 

measure that included both mortality and the primary outcome of interest,335 or assigning those 

who died with the worst outcome value (e.g. coding all deceased individuals as having developed 

T2DM).336 In each case, the modification of an outcome variable in such a manner rendered 

difficult the interpretation of results within the context of the primary relationship of interest.337 

With a lack of agreement over the most appropriate method, and existing methods potentially 

complicating any inferences concerning the alcohol-T2DM relationship, no attempt was made 

to account for the effect of mortality except to note that analyses potentially underestimated 

the risk of event. 
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Table 6.3 Descriptive summary of Whitehall II data at baseline, stratified by sex and survival 
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6.6.2 Unit non-response 

Some participant data were also missing due to unit non-response. Of participants who survived 

the course of the study, only 65.5% of male and 53.4% female baseline participants were found 

to have taken part at all waves (Table 6.4). Such a loss of data was likely to have a substantial 

impact upon statistical power and thereby inflate the risk of type 2 error in any complete-case 

analyses. To elucidate whether unit non-response may have introduced some degree of attrition 

bias, baseline characteristics of surviving participants were stratified according to the number 

of waves for which unit non-response was observed (Table 6.5). 

Table 6.4 Proportion of surviving baseline participants with unit non-response  

 

Differences in baseline characteristics are evident according to participants’ degree of unit non-

response. As shown in Table 6.5, those with greater levels of unit non-response were more likely 

to be from minority ethnic backgrounds, lower occupational grades, less physically active and 

have the greatest proportion of current smokers. Those with unit non-response across ≥4 waves 

were also found to have a lower volume and frequency of alcohol consumption, potentially due 

to poor health. In addition to a worse metabolic risk profile, participants with unit non-response 

had a lower incidence of T2DM, suggesting T2DM may have been underreported due to non-

participation at clinical examinations. In summary, complete-case analyses may be subject to 

some degree of attrition bias, with any analytical sample skewed toward those with a more 

favourable risk profile.338
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Table 6.5 Descriptive summary of Whitehall II data at baseline, stratified by sex and degree of unit non-
response 
  

 

0 waves 1-3 waves ≥4 waves Differencea

Variables (wave 1)
% (95% CI)

n

% (95% CI)

n

% (95% CI)

n

Men

Age

Mean years 44.2 (44.0, 44.4)b

3,919

43.5 (43.2, 43.8)b

1,251

43.5 (43.1, 43.9)b

810

<0.001

Alcohol consumption frequency

None in past year 2.2 (1.8, 2.7)

87

4.1 (3.1, 5.3)

51

4.3 (3.1, 6.0)

35

<0.001

<1/week 18.8 (17.6, 20.1)

736

19.1 (17.0, 21.4)

239

25.6 (22.7, 28.7)

206

1-3 times/week 44.7 (43.1, 46.2)

1,747

42.5 (39.8, 45.3)

531

39.5 (36.1, 42.9)

318

Daily or almost daily 34.3 (32.8, 35.8)

1,341

34.3 (31.7, 36.9)

428

30.6 (27.6, 33.9)

247

Alcohol consumption volume

Median g/week 63.2 (31.6, 134.3)c

3,891

71.1 (31.6, 150.1)c

1,239

47.4 (15.8, 126.4)c

801

<0.001

BMI

Mean kg/m2 24.3 (24.2, 24.4)b

3,912

24.8 (24.6, 24.9)b

1,250

24.6 (24.4, 24.8)b

809

<0.001

Ethnicity

White 94.9 (94.1, 95.5)

3,716

89.1 (87.3, 90.8)

 1,108

84.3 (81.5, 86.6)

669

<0.001

South Asian 3.7 (3.1, 4.3)

143

6.8 (5.6, 8.4)

85

9.7 (7.8, 12.0)

77

Otherd 1.5 (1.1, 1.9)

58

4.0 (3.1, 5.3)

50

6.0 (4.6, 7.9)

48

Family history of T2DM

No 9.9 (9.0, 10.9)

384

10.0 (8.4, 11.8)

123

11.2 (9.2, 13.6)

89

0.536

Yes 90.1 (89.1, 91.0)

3,485

90.0 (88.2, 91.6)

 1,109 

88.8 (86.4, 90.8)

704

Occupational grade

Administrative (top) 43.1 (41.6, 44.7)

1,689

31.7 (29.1, 34.3)

396

28.3 (25.3, 31.5)

229

<0.001

Professional (middle) 52.4 (50.8, 53.9)

2,052

55.3 (52.5, 58.1)

692

52.8 (49.4, 56.3)

428

Clerical (bottom) 4.5 (3.9, 5.2)

178

13.0 (11.3, 15.0)

163

18.9 (16.3, 21.7)

153

Physical activitye

Inactive 7.6 (6.8, 8.5)

297

10.3 (8.7, 12.1)

126

14.1 (11.8, 16.7)

113

<0.001

Below guidelines 37.9 (36.4, 39.5)

 1,476

33.9 (31.3, 36.6)

417

36.5 (33.3, 39.9)

293

Met guidelines 54.4 (52.9, 56.0)

 2,119

55.8 (53.0, 58.6)

686

49.4 (45.9, 52.8)

396

Unit non-response
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Smoking

Never 51.0 (49.4, 52.5)

 1,983

45.9 (43.2, 48.7)

570

46.3 (42.9, 49.8)

371

<0.001

Former 37.0 (35.5, 38.5)

1,440 

37.0 (34.3, 39.7)

459

33.8 (30.6, 37.2)

271

Current 12.0 (11.0, 13.1)

467

17.1 (15.1, 19.3)

212

19.9 (17.2, 22.8)

159

Women

Age

Mean years 44.6 (44.3, 44.9)b

1,555

45.9 (45.4, 46.3)b

710

46.2 (45.7, 46.6)b

649

<0.001

Alcohol consumption frequency

None in past year 5.2 (4.2, 6.4)

80

7.6 (5.9, 9.8)

54

7.4 (5.6, 9.7)

48

<0.001

<1/week 35.2 (32.9, 37.7)

547

41.0 (37.4, 44.7)

290

45.4 (41.6, 49.2)

294

1-3 times/week 36.9 (34.6, 39.4)

573

33.8 (30.4, 37.4)

239

30.6 (27.1, 34.2)

198

Daily or almost daily 22.7 (20.7, 24.8)

352

17.5 (14.9, 20.5)

124

16.7 (14.0, 19.7)

108

Alcohol consumption volume

Median g/week 31.6 (7.9, 63.2)c

1,534

23.7 (0.0, 55.3)c

707

15.8 (0.0, 47.4)c

641

<0.001

BMI

Mean kg/m2 24.3 (24.1, 24.5)b

1,555

24.9 (24.6, 25.3)b

710

24.9 (24.6, 25.2)b

649

<0.001

Ethnicity

White 88.8 (87.1, 90.3)

1,379

81.6 (78.6, 84.3)

573

80.7 (77.4, 83.7)

503

<0.001

South Asian 5.4 (4.4, 6.7)

84

8.3 (6.4, 10.5)

58

9.1 (7.1, 11.7)

57

Otherd 5.8 (4.7, 7.1)

90

10.1 (8.1, 12.6)

71

10.1 (8.0, 12.7)

63

Family history of T2DM

No 13.3 (11.7, 15.1)

203

13.3 (11.0, 16.0)

93

15.0 (12.4, 18.0)

95

0.539

Yes 86.7 (84.9, 88.3)

 1,322

86.7 (84.0, 89.0)

606

85.0 (82.0, 87.6)

537

Occupational grade

Administrative (top) 16.7 (14.9, 18.6)

259

7.3 (5.6, 9.5)

52

5.4 (3.9, 7.4)

35

<0.001

Professional (middle) 46.9 (44.5, 49.4)

730

32.3 (28.9, 35.8)

229

31.7 (28.3, 35.4)

206

Clerical (bottom) 36.4 (34.0, 38.8)

566

60.4 (56.8, 64.0)

429

62.9 (59.1, 66.5)

408

Physical activitye

Inactive 20.3 (18.3, 22.4)

310

28.5 (25.2, 32.0)

194

29.9 (26.5, 33.6)

188

<0.001

Below guidelines 42.5 (40.1, 45.0)

650

36.1 (32.6, 39.8)

246

36.0 (32.3, 39.8)

226

Met guidelines 37.2 (34.8, 39.6)

568

35.4 (31.9, 39.1)

241

34.1 (30.5, 37.9)

214
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6.6.3 Item non-response 

The third source of missing data within the Whitehall II cohort was among individuals who 

participated in a given wave but provided no answer to a specific question or provided no 

anthropometric measure or blood draw at clinical examination. Most a priori selected covariates 

were subject to some degree of item non-response, as summarised below in Table 6.6. Item 

non-response was greatest for the BMI variable at wave five, with measurements absent among 

27.0% of male and 29.7% of female participants. This was understood to have been due to 

administrative problems at centres where clinical examinations were held. As a consequence, 

excess item non-response on BMI at this wave could be treated as MCAR. 

In addition to a cumulative loss of 34.5% of male and 46.5% of female baseline participants 

through unit non-response in complete-case analyses (Table 6.4), analytic samples risked being 

attenuated even further by item non-response. To isolate differences in baseline characteristics 

according to item non-response, the dataset was restricted to the 5,474 individuals who 

participated at all waves, with descriptive statistics then reported for each variable as stratified 

according to whether complete-case data were provided at all waves (Table 6.7). Close to half 

of participants free of unit non-response provided complete-case data (n=2,673). Among both 

sexes, those with item non-response had a higher BMI and proportion of minority ethnic 

participants at baseline (wave one), as well as lower occupational grade, physical activity and 

average volume and frequency of alcohol consumption. As with unit non-response, the loss of 

data through item non-response appeared to represent a further source of attrition bias, with 

complete-case analyses inevitably sampling a subset of participants with a more favourable 

T2DM risk profile. 

Smoking

Never 59.4 (57.0, 61.9)

919

50.8 (47.1, 54.5)

358

53.1 (49.2, 56.9)

343

<0.001

Former 25.4 (23.2, 27.6)

392

24.5 (21.5, 27.9)

173

20.0 (17.1, 23.2)

129

Current 15.2 (13.5, 17.1)

235

24.7 (21.6, 28.0)

174

26.9 (23.6, 30.5)

174

Figures excluded participants who died over the course of the study. Figures included participants who 

had T2DM at waves 1-3. Number of participants l isted under each variable differed according to the 

level of item non-response at baseline (wave one).

aTo explore differences between non-response groups, one-way ANOVA was used on continuous data, 

and the chi2 test on categorical data (where continuous data exhibited a non-normal distribution, data 

were log-transformed prior to testing; bMean and 95% confidence interval; cMedian and 25th and 75th 

percentiles; de.g. black Caribbean, African and Arabic; eMeeting guidelines (≥150 minutes of moderate-

intensity or ≥75 minutes of vigorous-intensity activity per week); inactive (<60 minutes of moderate 

and <60 minutes of vigorous activity; below guidelines (not inactive or meeting guidelines).



Chapter 6: Data selection and structure  

145 
 

In order to reduce the impact of attrition bias upon any analyses, values missing due to unit or 

item non-response were estimated using multiple imputation. This process and its underlying 

assumptions are outlined in the following section. 

Table 6.6 Degree of item non-response by wave, stratified by sex 

 

Wave 1 Wave 3 Wave 5 Wave 7 Wave 9 Wave 11

Variables with item non-response

%

n

%

n

%

n

%

n

%

n

%

n

Men

Alcohol consumption frequency 0.3

20

5.2

317

9.1

498

2.3

113

2.7

127

6.2

278

Alcohol consumption volume 0.8

55

5.3

323

8.9

489

2.6

123

2.9

135

1.3

58

BMI 0.2

12

7.7

466

27.0

1,477

6.6

324

7.0

335

9.4

420

Employment status - 0.0

0

0.6

34

0.4

19

0.2

7

0.0

1

Ethnicity 0.6

40

0.3

18

0.0

2

0.1

7

0.2

10

0.1

6

Family history of T2DM 1.6

108

1.4

85

1.5

80

1.5

71

1.3

63

1.2

55

Incident diabetes from wave 3a - - 2.5

134

2.4

115

3.2

148

3.1

135

Physical activity 1.0

70

5.2

318

15.0

819

2.7

131

1.7

80

1.4

60

Smoking status 0.8

54

10.6

642

7.6

416

1.1

53

5.9

279

5.9

261

Women

Alcohol consumption frequency 0.3

10

6.5

179

13.2

317

3.7

77

4.8

96

11.7

217

Alcohol consumption volume 1.1

39

6.2

168

12.3

288

4.1

83

4.8

94

1.2

21

BMI 0.1

2

10.0

275

29.7

712

9.3

1.3

11.6

233

14.8

273

Employment status - 0.0

0

0.6

14

0.4

9

0.2

4

0.2

3

Ethnicity 1.5

52

0.8

22

0.3

7

0.3

6

0.3

6

0.2

4

Family history of T2DM 2.0

69

2.0

54

1.8

43

1.8

38

1.9

37

1.9

35

Incident diabetes from wave 3a - - 3.1

73

2.8

56

3.9

77

3.8

69

Physical activity 2.6

88

6.5

178

17.4

418

4.4

91

3.5

70

2.2

41

Smoking status 0.5

18

12.9

356

10.7

256

1.7

35

7.1

143

9.0

167
aRestricted to diabetes-free participants at wave 3
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Table 6.7 Descriptive summary of Whitehall II data at baseline (wave one), stratified by sex and item 
non-response 

 

Complete Incomplete Differencea

Variables (wave 1)
% (95% CI)

n

% (95% CI)

n

Men

Age

Mean years 44.1 (43.8, 44.3)b

1,976

44.3 (44.1, 44.6)b

1,943

0.163

Alcohol consumption frequency

None in past year 0.8 (0.5, 1.3)

15

3.7 (3.0, 4.7)

72

<0.001

<1/week 19.0 (17.4, 20.8)

376

18.6 (16.9, 20.4)

360

1-3 times/week 45.7 (43.6, 48.0)

904

43.6 (41.4, 45.8)

843

Daily or almost daily 34.5 (32.4, 36.6)

681

34.1 (32.0, 36.3)

660

Alcohol consumption

Median g/week 71.1 (31.6, 142.2)c

1,976

63.2 (23.7, 126.4)c

1,915

<0.001

BMI

Mean kg/m2 24.2 (24.1,24.3)b

1,976

24.4 (24.2, 24.5)b

1,936

0.051

Ethnicity

White 96.5 (95.6, 97.2)

1,907

93.2 (92.0, 94.2)

1,809

<0.001

South Asian 2.3 (1.7, 3.1)

46

5.0 (4.1, 6.1)

97

Othere 1.2 (0.8, 1.7)

23

1.8 (1.3, 2.5)

35

Family history of T2DMd

No 91.1 (89.8, 92.3)

1,801

89.0 (87.5, 90.3)

1,684

0.023

Yes 8.9 (7.7, 10.2)

175

11.0 (9.7, 12.5)

209

Incident diabetes from wave 3

No 89.4 (87.9, 90.7)

1,766

88.2 (86.7, 89.6)

1,649

0.261

Yes 10.6 (9.3, 12.1)

210

11.8 (10.4, 13.3)

220

Occupational grade

Administrative (top) 43.3 (41.1, 45.5)

856

42.9 (40.7, 45.1)

833

0.006

Professional (middle) 53.2 (51.0, 55.4)

1,051

51.5 (49.3, 53.7)

1,001

Clerical (bottom) 3.5 (2.8, 4.4)

69

5.6 (4.7, 6.7)

109

Item response
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Physical activitye

Inactive 5.9 (4.9, 7.0)

116

9.4 (8.2, 10.8)

181

<0.001

Below guidelines 40.5 (38.4, 42.7)

801

35.2 (33.1, 37.4)

675

Met guidelines 53.6 (51.4, 55.8)

1,059

55.3 (53.1, 57.5)

1,060

Smoking

Never 50.1 (47.8, 52.3)

989

51.9 (49.7, 54.2)

994

0.085

Former 38.6 (36.5, 40.8)

763

35.4 (33.3, 37.5)

677

Current 11.3 (10.0, 12.8)

224

12.7 (11.3, 14.3)

243

Women

Age

Mean years 43.7 (43.3, 44.1)b

697

45.3 (44.9, 45.7)b

858

<0.001

Alcohol consumption frequency

None in past year 2.6 (1.6, 4.1)

18

7.3 (5.7, 9.2)

62

<0.001

<1/week 32.1 (28.8, 35.7)

224

37.8 (34.6, 41.1)

323

1-3 times/week 38.5 (34.9, 42.1)

305

35.7 (32.5, 39.0)

305

Daily or almost daily 26.8 (23.7, 30.3)

165

19.3 (16.8, 22.1)

165

Alcohol consumption

Median g/week 31.6 (7.9, 71.1)c

697

23.7 (0.0, 55.3)c

837

<0.001

BMI

Mean kg/m2 23.9 (23.6, 24.2)b

697

24.7 (24.4, 25.0)b

858

<0.001

Ethnicity

White 92.8 (90.7, 94.5)

647

85.5 (83.0, 87.7)

732

<0.001

South Asian 2.4 (1.5, 3.9)

17

7.8 (6.2, 9.8)

67

Othere 4.7 (3.4, 6.6)

33

6.7 (5.2, 8.5)

57

Family history of T2DMd

No 87.9 (85.3, 90.2)

613

85.6 (83.1, 87.9)

709

0.184

Yes 12.1 (9.8, 14.7)

84

14.4 (12.1, 16.9)

119

Incident diabetes from wave 3

No 90.4 (88.0, 92.4)

630

85.3 (82.8, 87.6)

710

0.003

Yes 9.6 (7.6, 12.0)

67

14.7 (12.4, 17.2)

122
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6.6.4 Multiple imputation 

Given the concomitant issues of reduced sample size and a potential introduction of attrition 

bias through unit and item non-response, the decision was made to try and populate any values 

deemed missing due to non-response. 

A number of different imputation methods were available for handling missing data. One of the 

most basic was mean substitution, which would have replaced missing values with the observed 

variable mean. However, such an approach would have assumed that missing data were MCAR, 

such that the mean of the observed data provided a sound approximation of the missing values 

of a given variable, as in the case of excess item non-response on the BMI at wave five due to 

an administrative error, or a blood sample having been dropped at random in a laboratory. This 

assumption was not supported by the analyses undertaken in preceding sections. Additionally, 

Occupational grade

Administrative (top) 20.5 (17.7, 23.7)

143

13.5 (11.4, 16.0)

116

<0.001

Professional (middle) 51.4 (47.6, 55.1)

358

43.4 (40.1, 46.7)

372

Clerical (bottom) 28.1 (24.9, 31.6)

196

43.1 (39.8, 46.5)

370

Physical activitye

Inactive 17.8 (15.1, 20.8)

124

22.4 (19.7, 25.3)

186

0.007

Below guidelines 46.6 (42.9, 50.4)

325

39.1 (35.8, 42.5)

325

Met guidelines 35.6 (32.1, 39.2)

248

38.5 (35.3, 41.9)

320

Smoking

Never 58.2 (54.5, 61.9)

406

60.4 (57.1, 63.7)

513

0.222

Former 27.4 (24.2, 30.8)

191

23.7 (20.9, 26.7)

201

Current 14.3 (11.9, 17.2)

100

15.9 (13.6, 18.5)

135

Data were restricted to individuals who participated at all  waves. Sample sizes differed 

according to item non-response at baseline (wave one).

aTo explore differences between non-response groups, one-way ANOVA was used on 

continuous data, and the chi 2 test on categorical data (where continuous data exhibited a 

non-normal distribution, data were log-transformed prior to testing; bMean and 95% 

confidence interval; cMedian and 25th and 75th percentiles; de.g. black Caribbean, African 

and Arabic; eMeeting guidelines (≥150 minutes of moderate-intensity or ≥75 minutes of 

vigorous-intensity activity per week); inactive (<60 minutes of moderate and <60 minutes of 

vigorous activity; below guidelines (not inactive or meeting guidelines).
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adding no new information to the dataset beyond what was already observed, mean 

substitution would have resulted in an underestimation of variance.339 Alternative simple 

imputation methods, such as hot deck imputation and its replacement of missing data with an 

observed value selected at random from participants with similar characteristics, were each 

subject to the same two limitations.339 

Among more complex methods, multiple imputation represented a popular and 

methodologically superior approach to those described above.340 Unlike simple imputation 

methods, the most likely value of each missing data point was predicted multiple times via a 

series of iterative regression models, with each series of predictions forming its own dataset 

alongside the observed data.341 Values from each prediction were then averaged, and associated 

variances calculated according to two components: the standard variance present within each 

dataset, and the variance present between datasets. As a consequence, as well as adding new 

data as opposed to merely duplicating what has already been observed, variances following 

multiple imputation are larger and better reflect the uncertainty surrounding true values of the 

missing data. Given these benefits, multiple imputation was selected as the imputation method 

of choice. 

6.6.4.1 Statistical analysis 

Given the non-monotone nature of item non-response across waves (Table 6.2), as well as the 

presence of multiple variable types (e.g. categorical and continuous data), multiple imputation 

was undertaken using chained equations (MICE), which represented a method suited to 

handling such data characteristics.342,343 

MICE offered a sequential approach to multiple imputation, whereby variables with missing data 

were imputed iteratively via a sequence of regression models that predicted missing data as 

conditional on all other observed variables.342 For each variable missing data, the most 

appropriate regression model was utilised, including logistic regression models for binary data 

and multinomial logistic regression for non-ordered categorical variables. Given the difficulty 

with which linear regression models predict missing data on skewed continuous variables,343 

skewed data were log transformed prior to imputation, then converted back to their original 

scale post-imputation. 

The imputation procedure began by populating all missing data with random values so as to 

permit the inclusion of missing data points within regression models. Then, starting with the 

variable for which the proportion of missing data was lowest (x1), observed data on that variable 
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were regressed against all other covariates in the model (x2,...,xp). Missing values on x1 were 

then replaced by data drawn from the predicted distribution of values missing on x1, given 

x2,...,xp.344 Once complete, the imputation procedure moved to the variable with the next lowest 

proportion of missing data (x2). Observed values of x2 were then regressed on all other covariates 

(x1,x3,…,xp), with x1 including all data predicted at the preceding stage.344 This process continued 

iteratively until missing values had been imputed for all variables with missing data, representing 

one complete iteration of the imputation procedure. 

At the start of a second iteration, missing data were populated with predictions from the 

previous iteration as opposed to random noise. The calculation of new iterations continued until 

the predicted values were consistent between iterations. In such a circumstance, any variation 

in predicted values between iterations appeared random and the data were said to have 

converged. At the point of convergence, predicted data were stored in a dataset as one 

complete imputation.344  

In order to reliably capture the degree of uncertainty surrounding the predicted values, 50 

imputations were run. This was in keeping with guidance which advises that the total number 

of imputed datasets should be equal to at least the total proportion of participants without 

complete-case data (see Tables 6.4 and 6.6).344 

The imputation procedure was undertaken while data were stored in their wide format. This 

modelled each wave of a given variable as a separate covariate in each regression model, 

allowing for the modelling of missing data as a function of observations at all times that 

preceded and followed the wave of unit or item non-response. Data were imputed using Stata 

13 and the -mi- package. The augment option was also applied to overcome any circumstances 

in which perfect prediction between variables may have occurred, adding random observations 

with very low weights to the included variables. 

6.6.4.2 Diagnostics 

Imputed estimates was examined to identify any incongruous values, such as negative alcohol 

consumption. Where any invalid values were identified, the imputation model was modified 

accordingly and re-run. In the case of average weekly volume of alcohol consumption, for 

example, this involved the use of a truncated regression model, which restricted the lower limit 

of predicted alcohol consumption to a value of zero. 

Trace plots were then undertaken to check that predicted values of missing data had 

converged.345 These plotted the mean predicted value of a variable at each iteration, indicating 
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visually whether any variation in values between iterations had become random such that 

additional iterations provided no further improvement to the predictions made. The optimal 

number of iterations recommended to reach convergence ranged from 10344 to 20346 depending 

upon the degree of correlation between variables. A total 20 iterations were initially run for each 

imputation, though convergence was not achieved on a minority of variables. The number of 

iterations was thus doubled to 40, which was found to be a sufficient number of iterations to 

reach convergence across all covariates. Examples of the resulting trace plots are reported in 

Appendix 6.2.  

Once predictions had successfully converged and were deemed congruous, descriptive statistics 

were reported according to whether data were observed or imputed. Due to marked differences 

in participant characteristics according to the presence of missing data (Tables 6.5 and 6.7), the 

missingness process was considered informative and results thus documented according to both 

the imputed and observed datasets where possible within the limitations of Stata. 

6.6.4.3 Variable selection 

All variables identified a priori for use in any subsequent statistical analysis were included in the 

imputation model. These substantive variables thus comprised the frequency and total weekly 

volume of alcohol consumption plus an interaction term between these two dimensions, all 

confounding factors, and T2DM. Specifically, T2DM was represented by three variables: binary 

variable that denoted the number of new cases of T2DM captured at each wave of 

measurement, a continuous variable that represented the time to event, and the cumulative 

baseline hazard function. The inclusion of these outcome variables in the imputation model 

ensured that missing values on any independent variables each reflected the covariance that 

existed between observed covariate data and the risk of T2DM. Failure to include such variables 

risked biasing toward the null any associations subsequently calculated between covariates and 

T2DM risk when using imputed data.347,348  

With missing values predicted conditional upon observed data, the multiple imputation model 

operated under the assumption that data were missing at random (MAR), i.e. that any 

systematic differences between participants with and without missing data could be entirely 

according to observed data included in the imputation model.349 Accordingly, the plausibility of 

the MAR assumption and the performance of any imputation model was strengthened by an 

inclusive covariate selection strategy, including a broad range of auxiliary variables likely to 

covary with the variables upon which missing data were to be predicted.342,350 A number of 

suitable auxiliary variables were theorised and are described in the section below.  
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Unfortunately, despite the inclusion of numerous auxiliary variables, it was possible that the 

MAR assumption may have been invalid; that some proportion of the systematic difference in 

participant characteristics evident between those with and without missing data (Tables 6.5 and 

6.7) may have been a consequence of unobserved factors not included in the imputation model. 

340,341 Nevertheless, in the case of both unit and item non-response, the MAR assumption was 

considered reasonable given the range of auxiliary variables considered.  

6.6.4.3.1 Predictors of unit non-response 

Although the reason for unit non-response was unknown, potential explanations were 

hypothesised to include instances were individuals were not solicited at all (e.g. due to 

inaccurate contact records) or participants who were solicited but unable to participate (e.g. 

due to physical or mental incapacity, or scheduling problems).  

The first group was believed to represent a very small proportion of total unit non-response, 

given efforts by cohort administrators to maintain accurate contact information and actively 

trace those lost to postal contact.294 Such individuals were assumed to be MCAR. Of those with 

unit non-response across just a couple of waves, attrition was most logically explained by 

scheduling problems such as work commitments or holidays, or the development of acute 

physical or mental incapacity sufficient to preclude participations. By contrast, of those with unit 

non-response across the majority of waves, attrition was most likely attributable to the 

development of chronic physical or mental incapacity that prevented participation over the long 

term.  

In either case, it was thought possible to capture information concerning the probability of unit 

non-response through the inclusion of variables concerning mental and physical health prior to 

unit non-response, as well as factors likely to influence time available to participate. In the first 

instance, mental incapacity was included as an auxiliary variable via two variables. The first was 

the General Health Questionnaire (GHQ), a 30-item screening instrument administered at all 

waves and designed to capture self-reported symptoms of anxiety, depression and associated 

psychosocial dysfunction, with scores that ranged from 0 to 30.351 Defined as any score greater 

than four,352 the tool has been validated on Whitehall II data for the detection of mild psychiatric 

disorder.352 Mild psychiatric disorder was thus included as a predictor of unit non-response by 

way of a binary GHQ variable. In addition to psychiatric morbidity, any unit non-response due to 

impaired mental cognition was captured via results from the Mini Mental State Examination 

(MMSE), a 30-point screening instrument for the quantitative assessment of global cognitive 

function.353 The MMSE comprised a series of 11 questions concerning seven distinct cognitive 
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domains, including orientation to time, attention and recall, and has been validated as sensitive 

to the detection of moderate-to-severe cognitive impairment.354 The MMSE was first introduced 

in wave 5 and applied only to persons aged ≥60 years. MMSE data were then available at all 

subsequent waves and delivered to all participants. In an effort to capture participants’ physical 

health, participants' self-rated general health was also included, available at all waves and coded 

according to three categories: 'very good or excellent', 'good' and 'fair or poor'. 

With regard to any unit non-response attributable to scheduling problems, the imputation 

model included data concerning the average number of hours worked in a week, as captured at 

wave three, as well as the amount of time participants reported being ‘worn out’ in the four 

weeks prior to each wave, defined as 'all of the time', 'most of the time', 'a good bit of the time', 

'some of the time', 'a little of the time' or 'none of the time'. Regression models also included a 

variable that denoted whether family obligations reduced a participant’s time available for 

relaxation. These data were documented at waves three, five and seven, with categories defined 

as 'not at all', 'to some extent', ' a great deal', or 'not applicable', e.g. no family obligations.  

6.6.4.3.2 Predictors of item non-response 

Alcohol consumption 

Although alcohol consumption appeared lower at baseline (wave one) among those with item 

non-response at later waves (Table 6.7), it was possible that participants who opted not to 

disclose their consumption at later waves had experienced an alcohol use disorder.355 Such 

individuals may not have disclosed their consumption behaviour out of shame or an inability to 

reliably recall volumes accurately due to inebriation. In case missing alcohol consumption data 

were associated with problematic levels of drinking, data from the CAGE questionnaire were 

included as a screening instrument for the detection of problem drinking,356 which was found to 

correlate well with clinical diagnoses of alcoholism.357 The CAGE questionnaire was first 

introduced in the Whitehall II study at wave 3 and comprises four questions concerning alcohol 

consumption behaviour and participants' perceptions thereof, such as whether they ever felt 

guilty about their drinking behaviour. Alcohol dependence was defined according to a score 

≥2.356 

With studies also having identified lower levels of alcohol intake among those in poor 

health,144,145,146,141,358 self-rated general health was posited to provide a useful correlate of 

alcohol consumption. Alongside this, substantive ethnicity and socio-economic variables were 

thought to help explain any religious or genetic factors that might have influenced alcohol 
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consumption or the willingness of participants to report it,359 as well as differences in alcohol 

consumption by socio-economic strata.360 

BMI 

Beyond substantive variables such as physical activity,361 socio-economic factors,362,363 and 

smoking,361 potential correlates of BMI were thought to include: mild psychiatric disorder, as 

captured via the GHQ;364 blood pressure;365 plasma triglycerides and HDL;366,367 and dietary 

factors identified during the literature review, including carbohydrate, polyunsaturated fat, 

trans fat and fibre.  

Blood pressure readings were obtained at each clinical examination, averaged across two 

readings with continuous systolic and diastolic blood pressure variables documented in 

millimetres of mercury (mmHg).368 Blood samples were also taken at each clinical examination, 

with triglyceride and HDL concentrations recorded in mmol/L.369 Data concerning dietary factors 

were obtained via the FFQ, available at waves three, five and seven only.  

It was possible that information on BMI was absent for some individuals due to hairstyles or 

clothing that would have rendered invalid any attempt to measure height or weight. Missing 

data in such cases were assumed to be MCAR, or else partially correlated with ethnicity, such as 

being unable to accurately measure height owing to religious headdresses. 

Employment status 

It was hypothesised that the probability of retirement would have been correlated with age, 

while the probability of exiting the labour market for reasons other than retirement was posited 

to be associated with indicators of mental health and self-reported general health.370 

Ethnicity 

Item non-response on the ethnicity variable was low (Table 6.6). However, given notable ethnic 

inequalities in labour participation in the UK,371,372 it was hypothesised that any missing ethnicity 

data could be predicted through a partial correlation with variables that denoted employment 

status and occupational grade. 

Family history of T2DM 

Item non-response on this variable was also low, absent for just 1.6% of male and 2.0% of female 

baseline participants (Table 6.6). It was hypothesised that these data may have been missing 

because participants simply did not know whether there was a history of T2DM in the family. 

Such data were thus assumed to be MCAR. 
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Incidence of T2DM 

Possible randomly distributed reasons for not having an objective indicator of T2DM diagnosis 

were posited to include refusal to have bloods taken, inability by the clinic nurse to obtain a 

suitable blood sample or poor adherence to the necessary protocol (e.g. had not fasted). 

Conversely, the lack of a subjective self-reported measure might have been attributable to the 

inability of a participant to recall whether or not T2DM had been reported by a doctor, or a lack 

of time with which to attend the clinic or complete all necessary measurements upon 

attendance. Missing values of T2DM were thus predicted according to indicators of availability 

and cognition, as described previously, as well as key risk factors for the disease, including age, 

BMI, ethnicity and both serum triglyceride and HDL concentration.  

Physical activity 

BMI was considered a key correlate of physical activity level, along with other clinical markers 

such as serum HDL and triglycerides.373 Aside from such factors, studies indicate that, among 

employed individuals, time spent in leisure-time physical activity may be determined by factors 

that influence the amount of free time available to undertake such activity.374 These factors were 

included as auxiliary predictors of physical activity, as described for unit non-response. Further 

correlates were thought to include socio-economic factors and self-rated general health, with 

different types and amounts of leisure-time physical activity undertaken across social 

strata.375,376,377 

Smoking 

As was likely with both BMI and physical activity, it was posited that item non-response may 

been greater among those participants who perceived their smoking behaviour to be less 

socially desirable. Given the clustering of negative health behaviours,78,378 it was postulated that 

alcohol consumption, physical activity and BMI would all correlate with smoking, as well as 

clinical measures such as blood pressure379 and serum HDL concentration.380 

6.6.4.4 Results 

6.6.4.4.1 Convergence 

Trace plots indicated good convergence across all variables of interest, with between-iteration 

variation in predicted values appearing stable at the point of draw following 40 iterations. These 

data are reported in Appendix 6.2 and indicated that further iterations would have provided no 

improvement to the predicted values, with any variation between imputations having been a 

consequence of random error. 
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6.6.4.4.2 Summary of imputed data 

Wave-specific characteristics of participants within the imputed dataset are reported below in 

Table 6.8, with observed cohort data reported in Table 6.2. After accounting for unit and item 

non-response, participants within the imputed dataset reported higher levels of average weekly 

volume consumption, particularly among women, suggesting that many may not have reported 

their consumption due to perceived social undesirability. The imputed data also predicted 

higher levels of BMI among women, relative to the observed dataset, suggesting that women 

may have systematically declined such a measurement for similar reasons. A higher proportion 

of imputed individuals were employed, relative to those that were observed, suggesting that 

many who did not participate may have done so due to scheduling problems and time 

constraints. Both sexes with missing data were also more likely to have been of minority ethnic 

origin, lower occupational grade and current smokers. Additionally, while not shown in Tables 

6.2 and 6.8, the proportion of participants who reported being of very good or good general 

health was highest among those who were observed, with any discrepancies between the two 

datasets largest in later waves. For instance, of those who participated in wave 11, 48.0% of men 

and 44.2% of women reported being in good or very good general health. By contrast, within 

the imputed dataset, equivalent figures were just 40.4% and 34.8% respectively. Systematic 

differences between the observed (Table 6.2) and imputed data (Table 6.8) confirm that missing 

data were unlikely to have been MCAR, with complete-case analyses subject to attrition bias 

and the selection of a healthier sub-sample of participants. 

6.7 Statistical power 

Of the 3,413 women who participated at baseline, just 2,094 (61.4%) were free of prevalent 

T2DM at wave three and provided complete-case data concerning alcohol consumption, the 

confounding factors outlined in Section 6.5, and incident T2DM. Among these, only 247 incident 

cases were documented. There is therefore a possibility that statistical power may be 

insufficient to detect relatively small dose-response or interaction effects among women.381  

To establish the power of any subsequent survival model to detect a difference in survivor 

functions for a one-unit change in consumption among women, the -stpower- package was 

used.381 This assumed a conventional alpha level of 0.05, a sample of 2,094 participants, and 

survival in the reference group equal to the average observed among all female participants 

(88.2%). The power to detect a 20% reduction in hazards per unit increase in consumption was 

estimated at just 0.39, indicating a 61% probability of type II error. Based upon the graph in 

Figure 6.3, a sample of ~5,900 women would be required to reach a conventional power 
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threshold of 0.80. These calculations thus indicate that low statistical power may present a 

particular limitation for dose-response analyses of female Whitehall II participants. 

 

Figure 6.3 Power versus sample size for a log-rank test of differences in survivor functions 

6.8 Summary of the dataset 

Although numerous longitudinal cohorts are available, Whitehall II offers a number of benefits 

relevant to the study of longitudinal consumption trajectories and associations with T2DM. 

Perhaps of foremost importance, the cohort includes multiple waves of follow-up data for 

alcohol consumption and a wide range of potential confounders. The regular frequency of these 

follow-up data is such that acute fluctuations in health behaviours are more likely to be 

captured, increasing the accuracy of plotted trajectories and attempts to model risk with 

consideration to changes in participant characteristics across 50 years of the adult life course. 

Finally, the availability of an objective measure of T2DM reduces the potential for under-

estimating the incidence of T2DM relative to the use of self-reported data.  

However, with a predominantly male sample, statistical power is likely to be low for analyses of 

women. Additionally, as with any cohort, a number of participants were lost to follow-up or 

failed to answer all questions included in self-completion questionnaires, with complete-case 

data available for just 65.5% of men and 53.4% of women (Table 6.4). Systematic differences in 

baseline characteristics are apparent according to the presence of unit or item non-response, 

with observed participants having reported a lower metabolic risk profile at the beginning of the 
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study than those with missing data. Complete-case analyses thus risked being subject to 

selection bias, sampling a healthier sub-set of the source population in a manner that may 

impact the validity of any dose-response relationship estimated. Although missing data have 

been imputed using chained equations and a broad range of ancillary variables, the use of 

imputed data within analytical models is currently limited. As noted in forthcoming chapters, 

these limitations included variability in the predicted values of stratification variables between 

imputations and an inability to use imputed event data within survival models. These restrictions 

were such that little difference is reported between results based on the observed and imputed 

datasets. In addition to restrictions concerning the range of statistical tests that can be applied 

to imputation models, including goodness-of-fit statistics, it was decided to report results based 

upon the observed data as the primary analyses, with results obtained from the imputed dataset 

reported in the appendices. 
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Table 6.8 Descriptive summary of imputed Whitehall II data, stratified by wave and sex 
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Chapter 7 

A preliminary conventional survival analysis 
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7 A preliminary conventional survival analysis 

7.1 Introduction 

Given changes to drinking behaviour across the life course as evidenced by multiple cohort 

studies,266 it is possible that conventional survival models that define intake according to a single 

baseline measure may have been simplistic in their approach and subject to misclassification 

error through a failure to consider the effect of variations in alcohol consumption over time. 

Prior to exploring such shortcomings in more detail, this chapter reports preliminary analyses 

undertaken to confirm the suitability of the Whitehall II dataset for such an analysis. Specifically, 

results are reported from a series of conventional survival models in order to establish whether 

observed dose-response relationships within the Whitehall II cohort were consistent with those 

identified in the revised meta-analysis. Although a conventional survival analysis of T2DM risk 

has previously been published using Whitehall II data, pooled heterogeneous non-drinking 

categories were used with adjustment only for age and ethnicity.241 

Unlike the majority of existing studies, the conventional survival model reported in this chapter 

will also jointly examine two dimensions of alcohol consumption to ascertain whether drinking 

frequency represent an additional independent determinant of T2DM risk alongside the volume 

of consumption. The chapter will also explore the dose-response relationship between different 

drink types, given evidence discussed in Chapter 3 indicating the possibility of effect 

modification.  

7.2 Objective 

The objectives of the chapter were thus to: 

 Undertake a conventional survival analysis, reporting the dose-response relationship 

between baseline categories of average weekly volume of alcohol consumption and 

T2DM risk. 

 Investigate whether any interaction existed between the average volume of alcohol 

intake and the frequency of consumption. 

 Establish whether independent dose-response relationships exist between drink type 

and T2DM risk. 

 Compare results against those summarised as part of the revised meta-analysis in 

Chapter 3. 
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7.3 Hypotheses 

Given that aetiological associations identified within Whitehall II are accordant with those found 

in general population cohorts,296 it was hypothesised that results from conventional survival 

analyses applied to Whitehall II data would be broadly similar to those reported in Chapter 3. 

Specifically, that: 

 Reductions in T2DM risk will be greatest among women who consumed alcohol 

at moderate volumes; 

 Any elevated risks will be most pronounced among former drinkers and those 

that reported a low frequency of alcohol intake. 

 After accounting for consumption of other drink types, reductions in risk will be 

most pronounced among wine drinkers. 

7.4 Methods 

7.4.1 Sample 

The sample was restricted to T2DM-free individuals who participated at baseline plus at least 

one other wave from which longitudinal time-to-event data could be determined. The baseline 

was defined as wave three, the first wave at which cases of T2DM were identified via both 

subjective and objective measures. 

7.4.2 Variables 

7.4.2.1 Alcohol consumption 

With wave three representing the first period at which data were sufficient for the demarcation 

of never and former drinkers, participants were defined according to categories of alcohol 

consumption reported at wave three. 

Using the volume and frequency variables described in Section 6.3, abstainers were categorised 

as either never drinkers or non-current drinkers. Never drinkers were defined as those who 

reported never having consumed alcohol over the year preceding participation at wave three 

and as being ‘always a non-drinker’. To provide a stricter definition of never drinkers, this 

category excluded any participant who reported ‘always being a non-drinker’ at wave three yet 

also reported non-zero consumption at wave one (n=47), leaving a total 106 men and 111 

women categorised as never drinkers. Non-current drinkers were thus defined as those who 

reported no alcohol consumption in the year preceding participation at wave three, and who 

reported not having always been a non-drinker. This category also included the 47 participants 
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who described themselves as never drinkers at wave three but reported non-zero consumption 

at wave one. The non-current drinkers were considered roughly analogous to a former drinking 

category and totalled 103 men and 78 women. 

Current drinkers were defined according to their reported total volume of alcohol intake in the 

week preceding baseline. Male current drinkers were categorised as having consumed 0.1-50.0 

g/week (n=1,692), 50.1-100.0 g/week (n=1,163), 100.0-150.0 g/week (n=725) or >150.0 g/week 

(n=1,316). For women, among whom the volume of alcohol consumption was lower, current 

drinkers were defined as having drunk 0.1-50.0 g/week (n=1,081), 50.1-100.0 g/week (n=387) 

or >100.0 g/week (n=323). Intervals of 50 g/week were chosen to strike a balance between being 

narrow enough to detect differences in T2DM risk across relatively small changes in the volume 

of alcohol consumption, and being broad enough to each capture an ample number of cases. 

Additionally, the use of regular intervals permitted a direct comparison of dose-response 

between men and women.  

Alongside current drinkers, a separate group of ‘infrequent drinkers’ was defined, which 

represented participants who reported having consumed alcohol in the year preceding 

interview, but that did not drink alcohol in the week prior to measurement. The category of 

infrequent drinkers thus excluded participants who reported consuming alcohol at some point 

in the year prior to interview, but did not provide an answer to the questions concerning 

consumption in the last week; such individuals may have consumed alcohol in the last week, but 

missing data were such that this could not be determined. In total, 628 men and 597 women 

were classified as infrequent drinkers, among whom close to 85% reported drinking alcohol less 

than once a week, monthly or only on special occasions. 

To test for an interaction between average weekly volume and the frequency with which alcohol 

was consumed over the week, a consumption pattern variable was defined according to whether 

or not participants reported ‘daily or almost daily’ alcohol consumption at wave three. This 

binary variable was chosen for consistency with previous studies that reported reductions in risk 

as greatest among participants that regularly consumed moderate volumes of alcohol 

throughout the week.95,97,240,244 

Finally, continuous variables denoting the weekly volume of consumption of different drink 

types were derived based on responses to questions concerning the number of “measures” of 

spirits, “glasses” of wine, or “pints” of beer or cider consumed. A glass of wine and a measure of 
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spirits were each assumed to contain one unit of alcohol (7.9 g), with two units of alcohol (15.8 

g) in and a pint of beer or cider. 

7.4.2.2 T2DM 

As documented in Section 6.4, cases of T2DM were defined according to any self-reported 

doctor diagnosis or use of hypoglycaemic medication, or a positive FPG result following clinical 

examination. Analyses focussed upon incident cases of T2DM and so therefore excluded any 

cases prevalent at baseline. 

As the number of participants predicted to have developed T2DM over the course of the study 

varied between imputations, analyses applied to the imputed dataset were restricted to 

participants with observed T2DM diagnosis data such that the number of participants remained 

static between imputations.342 

7.4.2.3 Covariates 

All covariates selected a priori were included in multivariable-adjusted models, operationalised 

as described in Section 6.5. Included covariates were age, BMI, ethnicity, employment status, 

family history of T2DM, occupational grade, physical activity, and smoking status. As with alcohol 

consumption, all covariates were defined at baseline, with the exception of ethnicity for which 

data were obtained from waves one and five. 

7.4.3 Statistical analyses 

7.4.3.1 Data synthesis 

7.4.3.1.1 Cumulative hazard functions 

Where cumulative hazard functions were reported, these were calculated using the Nelson-

Aalen estimator, which plotted the cumulative hazard as a function of the number of 

participants at risk and the number of events observed at each point in time. Differences in 

cumulative hazard functions were tested using the log-rank test of equality. 

7.4.3.1.2 Categorical dose-response 

In keeping with methods applied by conventional analyses, Cox proportional hazards models 

were used to investigate the relationship between categories of alcohol consumption and T2DM 

risk. At its most simple, the Cox survival model is expressed according to Formula 7.1.382 

hi(t)=h0(t)exp{βxi} 

Formula 7.1 Calculation of a Cox proportional hazard model 
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Here, the hazard of T2DM was calculated as a function of the baseline hazard of the sample at a 

given point in time (h0(t)), which represented the hazard for a participant when all covariates 

were equal to zero, plus the effect of substantive covariate values (xi) and their corresponding 

coefficients (β). 

Results were reported separately for men and women based on apparent sex-specific 

differences in dose-response reported by the revised meta-analysis (Chapter 3). For each sex, 

age-adjusted and multivariable-adjusted dose-response relationships were described. Although 

few in number, never drinkers were selected as the reference group of choice for consistency 

with analyses undertaken as part of the revised and updated meta-analysis reported in Chapter 

3, permitting a direct comparison of dose-response. 

7.4.3.1.3 Frequency interaction 

To investigate whether the effect of weekly volume of alcohol consumption differed according 

to the frequency of intake, a multiplicative interaction between the weekly volume of alcohol 

consumption and drinking frequency was included in the model. A categorical drinking variable 

denoting graduated volumes of intake was not used as part of the interaction analyses due to 

the small number of participants and cases when categories were divided according to values of 

the frequency variable. Instead, the weekly volume of alcohol consumption was modelled as a 

continuous variable, with a binary frequency variable denoting whether or not participants 

consumed alcohol on a daily or almost daily basis.  

Non-current and infrequent drinkers were excluded from the interaction analysis so that 

relationships were calculated relative to never drinkers, consistent with preceding models. 

However, a sensitivity analysis was also run to examine the effect of their inclusion in a 

multivariable-adjusted interaction model.  

Hazards were reported per 10 g/week increase in consumption and robust Huber-White 

standard errors were utilised for the calculation of confidence intervals due to the positive 

skewness of the continuous alcohol consumption variable.383,384,385 These standard errors are 

robust to the heteroscedasticity of residuals when modelling skewed variables, and thereby 

account for the underestimation of variance that can occur in its presence.  

Models that incorporated a continuous measure of alcohol intake assumed a linear dose-

response relationship with T2DM incidence in conflict with the J-shaped associations previously 

observed. Accordingly, the possibility of a non-linear relationship was explored by raising the 

continuous measure of average volume of alcohol consumption according to a range of 
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fractional powers, as per the method described in Section 3.2.4.1. The fit of the non-linear dose-

response models was then compared against the original linear model. 

7.4.3.1.4 Drink type 

To establish the association between different drink types and the risk of T2DM, the weekly 

volume of alcohol consumption from wine, spirits and beer or cider were each included 

concurrently within a multivariable-adjusted model as separate continuous variables. 

Consumption of each drink type was not categorised in an effort to avoid small sub-group 

sample size and low precision – a limitation inherent to a number of existing studies to have 

explored the effect of drink type upon T2DM risk.97,219,245 No adjustment was made for total 

consumption to avoid overadjustment in instances where participants only consumed a single 

type of drink at baseline. 

As described above, these models assumed a linear relationship between drink type and T2DM 

risk. Accordingly, the volume of each drink type was raised to a series of fractional powers as 

described in Section 3.2.4.1. Results from the best-fitting models were reported.  

7.4.3.2 Goodness of fit 

To determine which models best fit the underlying data, the Bayesian information criterion (BIC) 

was calculated in each instance. Developed as a tool to aid model selection, the BIC was 

calculated as follows:386 

BIC=(-2*ln(ℓ))+(ln(nT))(np) 

Formula 7.2 Calculation of the Bayesian information criterion 

Here, ℓ refers to the likelihood function, or the probability of having reached the calculated 

effect estimates given the included parameters. As per the deviance statistic described in 

Section 3.2.4.1, a perfectly specified model would report a value of zero. The log of the total 

number of observations (or in the case of nested data, the effective sample size) was expressed 

as nT, while np denoted the total number of included parameters. Unlike the likelihood function, 

which always improves when new parameters are introduced, the BIC includes a penalty to 

models of greater complexity due to their reduced parsimony and increased risk of overfitting, 

risking coefficients having modelled random error specific to the Whitehall II dataset and 

thereby reducing the generalisability of findings to other samples.  

Likelihood and thereby BIC statistics could not be reported for analyses of imputed data, as the 

final estimates were not drawn from a single model but from identical models applied to 
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multiple different datasets.342 At the time of writing, there was no clear solution to the 

derivation of summary fit statistics for analyses of imputed data.387 Though one group of 

researchers proposed a method by which likelihood statistics could be averaged across 

imputations,388 the package was not compatible with the latest -mi- commands and applicable 

only to a restricted range of regression models (i.e. linear, logistic and ordered logistic).389 

Simpler alternative recommendations included documenting the individual fit statistics for one, 

a sub-sample or all constituent imputation models.387 Due to the time costs involved in 

calculating and storing 50 fit statistics for each statistical model, the mean and range of log-

likelihood and BIC statistics are reported in each case according to just the first three 

imputations.  

7.4.3.3 Proportionality assumption 

Standard survival models operate under an assumption of proportional hazards: that relative 

differences in hazards between categories of volume of alcohol consumption are proportionate 

over time compared to the hazard of the reference group, such that the relative hazard of T2DM 

for a given category is approximately equal at all time points and thus suitable for reporting 

according to a single hazard ratio. This assumption was tested in each sex-specific multivariable-

adjusted model through the inclusion of an interaction between categories of weekly alcohol 

consumption and a linear expression of time. Any violations of proportionality are reported. 

7.4.3.4 Statistical package 

Analyses of observed data were undertaken using the -st- package of commands available in 

Stata 13,390 while results from analyses of imputed data were reported using the -mi- suite.342 

As Stata 13 did not permit the use of imputed diagnosis data due to differences in the predicted 

number of cases and duration of follow-up between imputations, analyses of both observed and 

imputed datasets were both restricted to participants with observed T2DM diagnosis data only. 

Similarly, due to the small number of never and non-current drinkers, it was not possible to 

derive imputed alcohol consumption categories at wave three; no imputation model would 

converge even when the number covariates against which never drinking was predicted were 

drastically reduced. Accordingly, imputed analyses reported in this chapter accounted only for 

attrition due to missing covariate data.  
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7.5 Results 

7.5.1 Descriptive statistics 

A total 5,456 men and 2,434 women provided valid alcohol consumption and T2DM data, with 

a median 20.2 and 20.0 years of follow-up respectively. Of those with valid alcohol consumption 

and T2DM diagnosis data, a total 589 incident cases of T2DM were documented among men 

and 279 cases among women, or 10.8% and 11.5% of the sample. In multivariable-adjusted 

analyses, complete-case data were available for 4,869 men and 2,094 women, among whom 

527 and 247 cases of T2DM were documented. Women appeared to develop T2DM at a slightly 

faster rate over time (p=0.078, Appendix 7.1).  

Notable differences in metabolic risk profile were evident at baseline between those that did 

and did not develop T2DM (Table 7.1). Consistent with findings from the literature review 

reported in Section 2.1.3, those who developed T2DM over the course of the study tended to 

be older, had higher values of BMI, were more likely to have been of Asian ethnicity, have a 

family history of T2DM, poorer self-reported general health, lower physical activity or be of 

lower occupational grade. The same differences were evident within the imputed dataset 

(Appendix 7.2). 

Differences in crude cumulative hazards were present across categories of weekly volume of 

alcohol consumption, particularly among women (men: p=0.090; women: p=<0.001). Male non-

current and never drinkers exhibited the greatest incidence of T2DM over the course of the 

study, with cumulative hazards roughly equivalent among current and infrequent drinkers 

(Appendix 7.3). By contrast, while female current drinkers also had a lower overall incidence of 

T2DM than non-current and never drinkers, cumulative hazards were greatest among those 

defined as infrequent drinkers (Appendix 7.3). For both men and women, the cumulative 

hazards were greatest among those who reported no consumption or a frequency of less than 

one occasion a week over the year preceding baseline interview (Appendix 7.4).  

As might be expected given their higher incidence of T2DM, non-current and never drinkers 

exhibited a worse metabolic risk profile at baseline than current drinkers, with male and female 

abstainers having poorer self-reported general health, lower physical activity, a lower 

occupational grade, a greater proportion of South Asian participants and a higher prevalence of 

family history of T2DM than current drinking categories (Table 7.2). Similarly, differences in the 

baseline characteristics of current drinkers and infrequent drinkers were most pronounced 

among women. Specifically, female infrequent drinkers tended to be older, have a higher BMI, 
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lower occupational grade, lower physical activity, poorer self-reported general health, and a 

greater proportion of South Asian participants and individuals who were out of work for reasons 

such as long-term illness. In all cases, imputed descriptive data were comparable (Appendix 7.5). 

Table 7.1 Baseline characteristics of participants free of T2DM at wave three and with valid follow-up 

data, stratified by sex. Observed data. 
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Table 7.2 Baseline characteristics of participants free of T2DM at wave three and with valid follow-up 
data, stratified by sex and categories of average weekly volume of alcohol consumption. Observed data. 
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7.5.2 Age-adjusted models 

Although sex-specific differences in dose-response were evident from the meta-analysis 

reported in Chapter 3, the presence of such a disparity within Whitehall II was formally tested 

via an interaction was between sex and categories of baseline alcohol consumption. Following 

a likelihood ratio test of age-adjusted models with and without a sex interaction, the interaction 

term was found to provide a statistically significant improvement in fit (p=<0.001). This was 

consistent with results from the earlier meta-analysis and supported the case for the 

stratification of results by sex. 

In age-adjusted analyses, male and female current drinkers showed significantly reduced risks 

of T2DM, relative to never drinkers (Table 7.3). Among men, risks were of a generally consistent 

magnitude across categories of current drinkers, at around a 41-50% reduction. Conversely, 

among women, an inverse dose-response relationship was apparent. Here, risks appeared to 

decline with each categorical increase in consumption, with a hazard ratio lowest among women 

who consumed >150.0 g/week (HR 0.28, 95% CI 0.14-0.58). 

7.5.3 Multivariable-adjusted models 

Adjustment for confounders improved the fit of both models and resulted in substantial 

attenuations to reductions in risk among current drinkers, with all estimates rendered 

statistically non-significant (Table 7.3). Among men, the largest reductions in risk were visible 

among those who reported consuming 0.1-50.0 g/week (HR 0.92, 95% CI 0.53-1.61). Above 

these volumes, risks were higher than the null except for among the heaviest drinkers (>150.0 

g/week), for whom an insubstantial and likely artefactual 1% reduction in risk was observed (HR 

0.99, 95% CI 0.56-1.79). For women, the risk of T2DM remained lowest in the highest drinking 

category, though attenuated from a 73% to a 45% reduction in risk relative to never drinkers 

(HR 0.55, 95% CI 0.24-1.24).  

While not statistically significant, non-current drinkers showed a greater risk than never drinkers 

among both sexes (men: HR 1.38, 95% CI 0.65-2.94; women: HR 1.07, 95% CI 0.48-2.40). Further, 

while the risk of T2DM was marginally lower among male infrequent drinkers (HR 0.95, 95% CI 

0.52-1.73), female infrequent drinkers showed an elevated risk (HR 1.44, 95% CI 0.79-2.62). 

Results from analyses that utilised imputed covariate data showed similar findings, though 

smaller reductions in risk were evident among female current drinkers (Appendix 7.6). 

A sizeable change in dose-response was evident according to whether risks were adjusted only 

for age or all a priori risk factors concurrently. To identify the covariates most responsible for 
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the changes observed, a post-hoc analysis was undertaken for which groups of covariates were 

added in a mutually exclusive fashion: age only; age plus ethnic and genetic factors (ethnicity 

and family history of T2DM); age plus adiposity (BMI); age plus other lifestyle factors (physical 

activity and smoking status); and age plus socio-economic factors (employment status and 

occupational grade). For consistency between models, the post-hoc analysis was restricted to 

the multivariable-adjusted sample in Table 7.3. Among both sexes, the greatest improvement in 

fit is evident following adjustment for BMI and age, relative to age only, while coefficients vary 

markedly between models (Table 7.4).
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Table 7.3 Age and multivariable-adjusted dose-response relationship between categories of average 

weekly volume of alcohol consumption and T2DM, stratified by sex. Observed data. 
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Table 7.4 Iteratively-adjusted dose-response relationship between categories of average weekly 

volume of alcohol consumption and T2DM, stratified by sex. Observed data. 
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7.5.4 Frequency interaction 

When multivariable-adjusted survival models included an interaction between the frequency 

and volume of consumption (Table 7.5), no relationship was observed among men for every 10 

g/week increase in the weekly volume of alcohol intake (HR 1.00, 95% CI 0.99-1.01), while 

women showed a statistically significant 5% reduction in risk for each increment (HR 0.95, 95% 

CI 0.92-0.99). Among both sexes, the dose-response relationship between the volume of 

consumption and T2DM risk did not differ according to drinking frequency (men: p=0.361; 

women: p=0.450), with an interaction term having provided no improvement to the fit of any 

model. Results from analyses of imputed data are reported in Appendix 7.7, and also show no 

significant interaction among men (p=0.653) or women (p=0.324).  

When non-current and infrequent drinkers were included (Appendix 6.8), the dose-response 

relationship was unchanged and interaction terms remained statistically insignificant (men: 

p=0.621; women: p=0.536). Results from analyses that utilised imputed data are reported in 

Appendix 7.9 and were comparable to those obtained from models applied to the observed 

data.  

Given that models of continuous data assumed a linear dose-response relationship between the 

volume of alcohol consumption and T2DM, a range of non-linear transformations were tested 

to explore whether a non-linear association provided a better fit of the underlying data. The 

dose-response relationship was best described by a linear association. 
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Table 7.5 Multivariable-adjusted interaction between a continuous measure of average weekly volume 
of alcohol consumption and drinking frequency, stratified by sex and excluding non-current and 
infrequent drinkers. Observed data. 

 

7.5.5 Proportionality assumption 

In multivariable-adjusted models, the association between categories of average weekly volume 

of alcohol consumption and the risk of T2DM did not vary overall as a function of time among 

men (p=0.820). However, among women, non-proportional hazards were present among very 

light and never drinkers at baseline (p=0.032). As shown in Appendix 7.10, while the risk of T2DM 

was higher among infrequent and very light drinkers than never drinkers at baseline, the 

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Men (n=4,266)

Dose-response by volume

Per 10 g/week increase 1.00 (0.99-1.01) 0.522 0.99 (0.98-1.00) 0.164

Difference in risk by frequency

Daily - - (reference)

Non-daily - - 0.80 (0.58-1.09) 0.151

Difference in dose-response 

by frequency

Daily - - (reference)

Non-daily - - 1.01 (0.99-1.04) 0.361

Log likelihood -3601 -3600

BIC a 7320 7334

Women (n=1,566)

Dose-response by volume

Per 10 g/week increase 0.95 (0.92-0.99) 0.025 0.96 (0.90-1.02) 0.160

Difference in risk by frequency

Daily - - (reference)

Non-daily - - 1.01 (0.47-2.18) 0.980

Difference in dose-response 

by frequency

Daily - - (reference)

Non-daily - - 0.96 (0.87-1.06) 0.450

Log likelihood -988 -1698

BIC a 2078 3519

Model 1 Model 2

Model 1 reported the linear dose-response relationship between volume alcohol consumption 

and T2DM. Model 2 included an interaction term between a continuous measure of volume 

alcohol consumption and whether participants reported drinking alcohol daily or less than 

daily over the year preceding interview. All models adjusted for baseline covariates: age, BMI, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity, 

smoking status. Ethnicity was derived from responses at waves one and five. All  models 

excluded non-current drinkers from the reference level of exposure (0g/week).
aBayesian information criterion.
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magnitude of this difference decreased by around 16-17% with every additional year of follow-

up.  

7.5.6 Drink type 

As shown in Table 7.6, when consumption from each drink type was included concurrently 

within a single multivariable-adjusted model, no difference in linear dose-response was evident 

among male drinkers, as supported by a Wald test of equality between coefficients (p=0.300). 

Among women, reductions in risk were close to statistical significance across all drink types, but 

with the magnitude of reduction per 10 g/week increase in consumption being greatest for beer 

drinkers (HR 0.86, 95% CI 0.74-1.01). Nevertheless, a Wald test indicated no difference in dose-

response by drink type (p=0.460). Results from the imputed dataset were comparable (Appendix 

7.11). Non-linear dose-response associations were explored, but none provided an 

improvement in fit over the linear models. 

Table 7.6 Multivariable-adjusted dose-response relationship between categories of average weekly 
volume of alcohol consumption, drink type and T2DM, stratified by sex. Observed data. 

 

7.6 Summary of results 

Differences in metabolic risk were evident at baseline according to T2DM diagnosis, with those 

that developed the condition being older and more likely to have higher values of BMI, lower 

physical activity, poorer self-reported health, be of a South Asian ethnic background have a 

family history of T2DM than those who were not diagnosed (Table 7.1). Risk factors for T2DM 

were also found to be more common among never and non-current drinkers at baseline, who 

exhibited worse self-reported health, lower physical activity and a greater proportion of South 

Asian participants and family history of T2DM than current drinking categories (Table 7.2). 

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Drink type

Beer (per 10 g/week) 0.99 (0.98-1.00) 0.206 0.86 (0.74-1.01) 0.060

Spirits (per 10 g/week) 1.01 (0.99-1.03) 0.252 0.93 (0.86-1.01) 0.080

Wine (per 10 g/week) 1.00 (0.97-1.02) 0.642 0.96 (0.91-1.01) 0.095

Log likelihood -4166 -1699

BIC a 8468 3521

Men (n=4,869) Women (n=2,094)

Models reported results adjusted for all  a priori covariates: age, BMI, employment status, ethnicity, 

family history of T2DM, occupational grade, physical activity, smoking status. Ethnicity was derived 

from responses at waves one and five. Models also included variables representing the volume of 

each drink type consumed during the week prior to interview. aBayesian information criterion.
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In age-adjusted survival analyses, both male and female current drinkers showed statistically 

significant reductions in the risk of T2DM, relative to never drinkers (Table 7.3). Reductions were 

of greatest magnitude among women, for whom a positive dose-response relationship was 

apparent. Following adjustment for confounding factors, reductions in risk were substantially 

attenuated, with all estimates rendered statistically non-significant (Table 7.3). While point 

estimates among men were all very close to the null, sizeable if non-significant reductions in risk 

were still reported among women at volumes in excess of 50 g/week. Among men, sizeable but 

statistically non-significant elevations in risk were present among non-current drinkers, while 

female infrequent drinkers exhibited the highest risk relative to never drinkers. 

The dose-response relationship between the volume of alcohol consumption and T2DM risk did 

not appear to differ according to the frequency of consumption, with an interaction term 

according to daily or non-daily consumption providing no improvement to the fit of any survival 

model (Table 7.5). Additionally, no evidence was found in support of differences in dose-

response according to the type of alcoholic drink consumed, with no drink type exhibiting a 

statistically significant association with T2DM risk after accounting for the consumption of other 

types of drink (Table 7.11). 

7.7 Limitations 

Analyses based on both the observed and imputed datasets were restricted to T2DM-free 

participants at wave three who had valid T2DM diagnosis data. This necessarily omitted 

individuals who participated at wave three but were absent at all subsequent waves of follow-

up such that their T2DM status could not be ascertained. As indicated in Table 6.5, those who 

did not participate for ≥4 waves had a worse metabolic risk profile than those that participated 

across all waves, indicating that the incidence of T2DM was likely to have been underestimated, 

with analyses applied to a healthier sub-sample of the original cohort.  

Additionally, given that participants with unit non-response across ≥4 waves also reported 

significantly lower volumes of alcohol consumption at wave one than those with complete-case 

data (men: p=<0.001; women: p=<0.001), models were likely to have under-sampled lighter and 

potentially less healthy drinkers. Although attempts were made to impute missing alcohol 

consumption data, the small number of observed never drinkers was such that an imputation 

model would not successfully converge. Analyses of both the observed and imputed datasets 

therefore excluded participants with missing alcohol consumption data. Taken together, there 

was a possibility that the risk of T2DM associated with lower volumes of alcohol may be 

underestimated. 
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By using a small, strictly-defined reference category, it was possible that statistical power was 

low, impairing the ability to detect differences in risk between exposed and unexposed 

categories. To explore this further, post-hoc power calculations were undertaken for the 

detection of differences in hazards between never drinkers and participants in the lowest 

current drinking category (0.1-50 g/week). Sex-specific survival probabilities and sample sizes 

across the two categories were used to calculate the power to detect a 20% reduction in hazards 

at a 0.05 level of significance if such a difference were present. Statistical power measured 0.59 

among men and 0.39 among women, or a 41% and 61% probability of failing to detect a 20% 

difference in the hazard ratio. Contrary to expectation, however, the inclusion of non-current 

drinkers within the abstention reference category was likely to have done little to remedy the 

issue. Specifically, statistical power fell to 0.56 among male participants and rose to 0.44 among 

female participants when non-current drinkers were combined with never drinkers. These 

oppositional changes in power were attributed to sex-specific differences in the survival 

probabilities of never and non-current drinkers such that, when combined, the male pooled non-

drinking survival probability was drawn closer to that of the current drinking comparison group, 

while the female abstention survival probability was drawn further away. Despite the limited 

statistical power of categorical comparisons, dose-response relationships could nonetheless be 

visually examined by referred to point estimates reported across categories of alcohol 

consumption. 

The breadth of consumption categories was limited by the positive skewness of the volume at 

which alcohol was consumed within the Whitehall II cohort, with the top categories necessarily 

defined as any consumption >150.0 g/week among men and >100.0 g/week among women. As 

such, any increased risk of T2DM as commonly seen among heavier drinkers was likely diluted 

within the top category by a large number of relatively moderate drinkers. This was especially 

likely among women, where the median consumption within the highest category was just 134.3 

g/week (IQR 110.6, 165.9), or a little over one pint of 4% ABV lager per day.11 Among men, 

median intake within the top consumption category was 221.2 g/week (IQR 173.8, 292.3). By 

capturing relatively few heavier drinkers, alcohol consumption data within Whitehall II was likely 

to have been inadequate for the detection of increases in risk at higher volumes of consumption, 

as otherwise reported by previous publications. This was further indicated by the lack of 

improvement to model specification when non-linear associations were tested (Section 7.5.3).  

Adding to this issue was the possibility that the volume of alcohol consumption may have been 

subject to some degree of inaccuracy, with self-reported data limited by various reporting and 
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recall biases as well as measurement error.391,392 The issue of recall bias was posited to have 

been small, with the reliability of recall over seven-day periods found to be better than over 

longer retrospective episodes.393 Reporting biases were expected to have been a larger problem, 

though the magnitude, direction and determinants of any such bias appeared variable and 

multifaceted,391 negating any real conclusion as to the degree to which reported results may 

have been under- or overestimated on average. Nevertheless, in one study that investigated the 

accuracy of participant self-reports, measures were increasingly reliable within older age 

categories, with no apparent difference between the sexes.394 Accordingly, the accuracy of self-

reported alcohol consumption data was posited to have improved over time as the constituent 

sample grew older.  

A further issue concerned the reliability of quantity-frequency questionnaires for the estimation 

of alcohol consumption. Adopted within Whitehall II, such questionnaires have tended to 

produce lower drinking estimates than alternative graduated frequency questionnaires, which 

ask participants to estimate the frequency with which they consumed alcohol at pre-specified 

volumes.391 In this regard, reported volumes of alcohol consumption may have been 

underestimated.  

7.8 Discussion 

Age-adjusted analyses reported in Table 7.3 indicate a statistically significant reduction in the 

risk of T2DM across nearly all categories of current drinking, relative to never drinkers. Among 

men, the magnitude of such reductions were roughly equivalent at all levels of consumption, at 

around 50%, while risks among women declined with each categorical increase in consumption. 

Consistent with results from the updated meta-analysis (Figure 3.8) and other studies,395 less 

pronounced dose-response associations were evident following adjustment for confounding 

factors (Table 7.3). Although all coefficients were rendered non-significant, it was possible that 

attenuated risk estimates were of magnitudes no longer sufficient to be detected as significant 

owing to low statistical power.  

Looking instead to the point estimates reported by the multivariable-adjusted models, male and 

female non-current drinkers showed a greater risk of T2DM than never drinkers (Table 7.3), 

potentially supporting the case for having excluded former drinkers from any categorical 

abstention category. These elevated risks were greatest among men, suggesting that male 

former drinkers may be less healthy and more likely to have previously been heavy drinkers than 

their female equivalents. Infrequent drinkers exhibited the highest risk of T2DM among women 

(Table 7.3), calling into question claims that infrequent drinkers may represent a more 
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appropriate reference group than never drinkers. In keeping with previous research,96,97,239 such 

an elevated risk might be expected were such women predominantly episodic heavy drinkers. 

By contrast, male infrequent drinkers showed little difference in risk, relative to never drinkers.  

Among male current drinkers, multivariable-adjusted estimates were close or equal to the null. 

By contrast, female point estimates indicated an inverse relationship between the volume of 

alcohol consumption and T2DM risk. That reductions in risk may have been specific to women 

was in accordance with results from the updated meta-analysis (Figures 3.4 and 3.6), with sex-

specific effects and a heightened risk among non-current drinkers both supporting hypotheses 

laid out at the beginning of the chapter. 

As reported in Table 7.5, no difference in dose-response was detected according to whether 

participants consumed alcohol on a daily or non-daily basis, with effect sizes of negligible 

magnitude. It was possible that the choice of interaction variable represented a poor 

parameterisation of consumption pattern, failing to truly reflect episodic heavy drinking 

occasions. However, even if sufficient data were available as to permit the identification of 

episodic heavy drinkers, it was possible that the number of such individuals may be insufficient 

to detect an interaction. While the prevalence and odds of excessive episodic heavy drinking 

appear greatest within younger men and adults of lower socio-economic status or 

neighbourhood deprivation,396,397 Whitehall II predominantly samples middle-aged adults of 

higher socio-economic status. With an interaction between the volume and frequency of 

consumption either not present, undetectable or incorrectly specified, analyses in subsequent 

chapters would forgo any secondary analysis of differences in dose-response according to 

reported consumption frequency. 

The body of current evidence seems to suggest that reductions in risk may be specific to or at 

least most pronounced among wine drinkers398 – an effect hypothesised to be conferred through 

the effect of anti-inflammatory compounds common to fruit-based drinks.280,281 However, when 

the average weekly volume of alcohol consumption from each drink type was modelled 

concurrently, no statistically significant difference in the dose-response relationship was found 

between drink types for either sex. Of the effect estimates reported, there was a weak indication 

that beer may be the most strongly associated with a reduction in T2DM risk among women, 

contrary to other observational studies. While recent publications suggest the beer-specific 

compound xanthohumol may have an anti-inflammatory effect, preliminary results are currently 

only available from in vitro399 or in vivo animal studies.400 It was possible that the absence of any 

significant difference in dose-response by drink type may have been a consequence of having 
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constrained the models to report linear dose-response associations with T2DM, masking 

reductions in risk at very low or moderate volumes as a consequence of increases in risk at higher 

levels of intake. However, as with total volume in Section 7.5.4, transforming consumption from 

each drink type according to a range of fractional powers provided no improvement in fit relative 

to a standard linear survival model.  

Concordance between the conventional survival analysis and findings from the updated meta-

analysis suggest that Whitehall II represents a cohort suitable for further investigating the 

relationship between alcohol consumption and T2DM. Before constructing survival models 

capable of accounting for changes to consumption over time, the following chapter first explores 

the stability of alcohol intake across the life course and whether longitudinal trajectories differ 

by T2DM diagnosis. 

  



Chapter 7: A preliminary conventional survival analysis 

192 
 

 

  



193 
 

 

Chapter 8 

Trajectories of alcohol consumption  



Chapter 8: Trajectories of alcohol consumption 

194 
 

8 Trajectories of alcohol consumption 

8.1 Introduction 

Having established the suitability of Whitehall II for exploring the relationship between the 

alcohol consumption and T2DM within a conventional survival framework, this chapter begins 

by describing whether drinking among men and women within the cohort was constant over 

time. With survival analyses having almost exclusively modelled T2DM risk according to a single 

cross-sectional measure of consumption, this chapter goes on to report the longitudinal drinking 

trajectory as stratified according to categories of baseline alcohol consumption. Such analyses 

will help to highlight the degree of any potential misclassification error that may be inherent to 

a conventional survival approach, and thereby the validity of results reported by such analyses. 

In conflict with findings from Mendelian randomisation studies,85 results from the revised meta-

analysis of current observational studies (Chapter 3) and a preliminary survival analysis of 

Whitehall II data (Chapter 7) show a significant and sex-specific dose-response relationship 

between alcohol consumption and T2DM. Despite observational research indicating reductions 

in risk among female moderate drinkers and increases in risk at high volumes of consumption 

among both sexes, little is currently known about how drinking changes over time among those 

that do and do not develop T2DM. Accordingly, this chapter also reports the longitudinal 

trajectory of alcohol consumption as stratified by sex and T2DM diagnosis. These results will 

help shed light upon whether any increases or reductions in risk as reported by current survival 

analyses were likely to have accrued gradually over the life course as a result of prolonged heavy 

or moderate consumption, or occurred as a consequence of differences in intake specific to 

periods of heightened biological sensitivity.401 For instance, given apparent deteriorations to the 

alcohol metabolism with increased age,196,197,198,199 older age may represent a period of the life 

course in which alcohol consumption may have particularly manifest effects upon T2DM risk. 

8.2 Objectives 

The objectives of this chapter are thus to: 

 Determine whether sex-specific trajectories of the mean weekly volume of alcohol 

consumption were constant over the captured adult life course. 

 Report the longitudinal stability of alcohol consumption within categories defined 

according to baseline intake. 
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 Describe the nature of any differences in the longitudinal trajectory alcohol 

consumption according to whether or not participants develop T2DM. 

8.3 Hypotheses 

Based on existing research that combined longitudinal measures of alcohol consumption from 

multiple cohorts,266 it was expected that the mean volume of alcohol consumption would peak 

around middle-age before gradually declining thereafter. When stratified according to baseline 

drinking categories, it was further hypothesised that any decreases in consumption would be 

most pronounced among heavier baseline drinkers, with non-drinkers representing the most 

stable baseline category. This supposition was based on results from the Health Professionals 

Follow-up Study, which reported changes in alcohol consumption over a four-year period.267 

Here, study participants were split into three categories according to their alcohol consumption 

at baseline, representing non-drinkers (0 g/week), moderate drinkers (<105.0 g/week) and 

heavier drinkers (>105.0 g/week). Stability was greatest among non-drinkers, among whom 

93.4% maintained their abstention over the period. By contrast, stability was lowest among 

heavier drinkers, with 55.8% having reduced their consumption over time.  

Regarding differences in the trajectory of alcohol consumption according to the diagnosis of 

T2DM, a number of plausible differences were hypothesised: 

 Firstly, if the risk of T2DM accumulates over time as a result of chronic heavy drinking, 

the trajectory of alcohol consumption among those who developed T2DM would have 

been consistently or else predominantly higher on average than among those that did 

not develop the condition, as illustrated in Figure 8.1a. Similarly, with reductions in risk 

apparent at more moderate volumes among women (Chapter 3), it was posited that 

women without T2DM would exhibit a markedly lower volume of consumption over 

time. 

 Secondly, given evidence indicating deteriorations to the alcohol metabolism with 

increased age,
196,197,198,199 older age may represent a period during which any deleterious 

effect of alcohol consumption upon T2DM risk may be particularly pronounced. Under 

this alternative assumption, and with the incidence of T2DM greatest in older age,402 

there was a possibility that any disparity in drinking between those that do and do not 

develop the condition may be greatest during a period immediately preceding diagnosis, 

such as per the example illustrated in Figure 8.1b. Specifically that, regardless of 

differences in alcohol consumption earlier in the trajectory, the average volume of 
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alcohol intake would be greatest among those who developed the condition in the few 

years prior to diagnosis. 

 Finally, with a growing number of studies linking the onset of ill-health to a subsequent 

cessation or attenuation of alcohol consumption,144,145,146,141 participants who 

developed T2DM may exhibit a marked decline in their consumption in line with a 

gradual deterioration in health status prior to diagnosis (Figure 8.1c). Such a downward 

trajectory may represent either a proactive attempt by participants to improve their 

health, or else a response to medical advice or pharmaceutical contraindication 

following a diagnosis of impaired glucose tolerance or other T2DM risk factors such as 

obesity and high blood pressure.  
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Figure 8.1 Hypothesised differences in average alcohol consumption trajectory according to T2DM 
diagnosis 
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8.4 Methods 

8.4.1 Sample 

8.4.1.1 Prospective trajectories of mean weekly volume of alcohol consumption 

To model the mean trajectory of alcohol consumption, the sample was defined as any 

participant who reported their volume of alcohol consumption in the week prior to interview at 

any point over the course of study since its inception (wave one). Concerned solely with 

describing changes to the volume of alcohol consumption with increased age, participants were 

included irrespective of T2DM diagnosis.  

8.4.1.2 Trajectories of mean weekly volume of alcohol consumption by T2DM diagnosis 

Exploring differences in the trajectory of alcohol consumption according to the development of 

T2DM, the sample was defined as any participant free of prevalent T2DM at wave three and 

who reported their volume of alcohol consumption in the week prior to interview at any point 

over the course of the study since its inception and also participated in at least one clinical 

examination after wave three such that their diagnosis status could be established.  

8.4.2 Variables 

8.4.2.1 Alcohol consumption 

Alcohol consumption was captured as described in Section 6.3 and treated as a continuous 

variable. Participants who consumed 0 g/week in the week prior to interview thus comprised an 

assortment of never, non-current (former) and infrequent drinkers. No distinction between 

these groups was made in primary analyses that plotted the mean drinking trajectory. If a sick 

quitter effect were present within the data, evidenced by a decline in consumption over time, 

then the exclusion of non-current or infrequent drinkers would risk an underestimation of any 

downward trajectory. 

In secondary analyses that stratified the alcohol consumption trajectory according to drinking 

categories defined at wave one, the stratification variable was coded as per section 7.4.2.1. 

Never drinkers and non-current drinkers were combined into a single category owing to the 

absence of questions sufficient for disaggregating the two non-drinking groups at wave one.  

Due to the inherent variation of imputed data, between-imputation differences were present 

when allocating participants to baseline consumption categories when alcohol consumption 

data were missing. Accordingly, it was inappropriate to stratify longitudinal alcohol consumption 

trajectories by baseline consumption category when imputed alcohol data were used. Analyses 
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of the imputed dataset were thus restricted to participants with observed measures of baseline 

consumption, with models then capitalising upon imputed repeated measures of volume of 

alcohol consumption across waves. 

8.4.2.2 T2DM 

As documented in Section 6.4, cases of T2DM were defined according to any self-reported 

doctor diagnosis or self-reported use of hypoglycaemic medication, or a positive FPG result 

following clinical examination. Wave three was the first period of observation for which both 

subjective and objective measures were available, and thus represented the wave at which 

prevalent cases were identified and excluded. 

8.4.3 Statistical analysis 

8.4.3.1 Prospective trajectories of mean weekly volume of alcohol consumption 

Seeking to explore how alcohol consumption changed over the life course, age in years was 

selected as the timescale of interest for this subset of analyses. Age was defined according to 

the date on which the self-administered questionnaire was completed. In instances where no 

such date was documented, the date of clinical examination was used. Where both dates were 

undocumented, the mean wave-specific date of self-administered questionnaire completion 

was assumed.  

8.4.3.1.1 Linear mixed effects models 

Although trajectories of alcohol consumption could have been calculated using a standard 

regression model, this approach treats repeated measures as a series of unique and 

independent data points, leading to an overestimation of precision.403 Accordingly, consumption 

trajectories were calculated using mixed effects models, which nest repeated measures within 

participants. This inflates standard errors proportionate to the magnitude of correlation 

between repeated measures, with degrees of freedom calculated according to the number of 

participants as opposed to the number of data points. The resulting random intercept model is 

expressed in general terms per Formula 8.1, with the subscript i denoting the participant and 

the subscript j denoting the repeated measure: 

yi(tij)=(β0+b0i)+(β1)tij+εij 

Formula 8.1 Calculation of a linear random intercept model 

The true predicted value of weekly alcohol consumption at the age of the jth measurement for 

the ith participant is therefore calculated as the estimated mean intercept (β0) plus a random 
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effect denoting the participant’s predicted deviation from the mean intercept value (b0i), with a 

fixed slope (β1(tij)) that equates to the estimated mean rate of change in alcohol consumption 

per unit of age. Random error was denoted by εij, representing any remaining variation in alcohol 

consumption not explained by the model. The resulting random intercept model is illustrated in 

Figure 8.2a. 

As shown in Figure 8.2a, although the nesting of repeated measures allows each participant their 

own intercept value, slopes are constrained and therefore parallel to the mean trajectory. With 

existing research indicating a variety of slopes,259 the assumption that any change in alcohol 

consumption was equal between participants was unlikely to reflect reality. 

To capture any underlying differences in slopes between participants, a random slopes model 

was also constructed, which allowed each participant to exhibit their own rate of change in 

alcohol consumption per year increase in age. This was achieved by adding a random effects 

term to the fixed mean slope coefficient, which denotes the predicted deviation of each 

participant-specific slope from the mean slope (b1i(tij)). The resulting random slopes model is 

expressed per Formula 8.2, and illustrated in Figure 8.2b. 

yi(tij)=(β0+b0i)+(β1+b1i)tij+εij 

Formula 8.2 Calculation of a linear random slopes model 

An unstructured covariance matrix was specified for the random slopes models, which allowed 

the within-participant covariance between the intercept and repeated measures to take any 

form.  
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Figure 8.2 An illustration of random intercept and random slopes models 

8.4.3.1.2 Non-linear mixed effects models 

Although the random slopes model permitted individual-level variation in the rate of change, 

shifts in alcohol consumption with increased age were assumed to be linear. Owing to the 

possibility that changes over the life course may have been non-linear, age was subjected to a 

series of polynomial transformations as per the methods outlined in Section 3.2.4.1. The fit of 

each non-linear model was then compared against that of the linear model. Where trajectories 

were better explained by a non-linear slope, the output of any such models were reported.  

8.4.3.1.3 Stability of baseline categories 

To explore the longitudinal stability of drinking within baseline categories of alcohol 

consumption, an interaction term was included between the rate of change and the baseline 
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category of alcohol consumption. Where a significant interaction was identified, trajectories of 

were stratified according to categories of baseline intake. These analyses were undertaken using 

fixed slope models due to a lack of variation between repeated measures when nested within 

baseline categories. This may have been attributable to a real lack of individual-level variation 

in the rate of change among participants within the same baseline category, or a consequence 

of stratified sample sizes being too small to achieve numerical integration.  

8.4.3.2 Trajectories of mean weekly volume of alcohol consumption by T2DM diagnosis 

Participants were separated into two groups according to whether or not they developed T2DM 

over the course of the study. The period of observation began at the date of diagnosis for those 

who developed T2DM, or the final date of participation for those who did not, and in each cases 

coded as year zero. For each participant the volume of alcohol consumption was then traced 

backwards to the very first reported measure. A time of -15 years thus represented a measure 

of alcohol consumption that was taken 15 years prior to diagnosis or censoring from the study. 

As the number of participants predicted to have developed T2DM over the course of the study 

varied between imputations, analyses applied to the imputed dataset were restricted to 

participants with observed T2DM diagnosis data such that the number of participants remained 

static between imputations.342  

8.4.3.2.1 Linear mixed effects models 

Using methods described in Section 8.4.3.1.1, sex-specific trajectories were first calculated using 

linear mixed effects models with an interaction between T2DM diagnosis and time. Both fixed 

and random slopes were estimated, with results reported from the best-fitting model.  

8.4.3.2.2 Non-linear mixed effects models 

As per section 8.5.1.3, a number of non-linear trajectories were also explored. In this series of 

comparisons, transformations were restricted to quadratic and cubic exponents due to 

limitations concerning the range of transformations that can be applied to negative values of 

time. This was consistent with previous research.404,405 When calculating fit statistics for each 

non-linear mixed effects model, fixed slopes were assumed owing to issues of convergence 

when random slopes were expressed for some transformations. Results from the best-fitting 

models were reported allowing for random slopes. 

8.4.3.2.3 Sick-quitter effects 

Secondary analyses were undertaken to calculate the trajectory of alcohol consumption 

following diagnosis. These models were constructed in a piecewise manner, with models 
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constructed separately for consumption data prior to and after the date of diagnosis. Non-linear 

trajectories were explored in each instance as per the methods in section 8.5.1.3. 

8.4.3.2.4 Stability of baseline categories 

Finally, the longitudinal stability of alcohol consumption within baseline categories was explored 

per the methods outlined in Section 8.4.3.1.4.  

8.4.3.3 Goodness of fit 

Goodness of fit was reported according to the log-likelihood and BIC statistics, as described in 

Section 7.4.3.2. An improvement in fit was defined as any reduction in the BIC greater than or 

equal to a value of 10.406 

8.4.3.4 Statistical package 

Mixed models were calculated in Stata 13 using the -mixed- package.407 As per the conventional 

survival analysis reported in Chapter 7, robust Huber-White standard errors were utilised for the 

calculation of confidence intervals due to the positive skewness of the alcohol consumption 

variable in its natural form. Although the volume of intake could have been transformed, this 

would have complicated interpretation and the communication of results to general audiences.  

8.5 Results 

8.5.1 Prospective trajectories of mean weekly volume of alcohol consumption 

8.5.1.1 Descriptive statistics 

The weekly volume of alcohol consumption was measured across 31,342 person-observations 

among men and 13,765 person-observations among women, as reported by 6,882 and 3,402 

participants respectively across a mean 4.6 and 4.0 waves. Within the imputed dataset, alcohol 

consumption was captured across 39,160 person-observations among men and 19,305 person-

observations among women, representing 6,895 and 3,413 women across a mean 5.7 waves. 

The age of participants ranged from 34.1-83.6 years, capturing almost 50 years of the adult life 

course over the period of study. 

8.5.1.2 Linear trajectories 

Random slopes models best described the observed (Table 8.1) and imputed (Appendix 8.1) 

linear trajectory of alcohol consumption across the captured life course for both men and 

women. Covariance between the random intercepts and random slopes was negative, indicating 

a convergence of trajectories with increased age. 
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Table 8.1 Crude sex-specific linear trajectory of mean weekly volume of alcohol consumption between 
the ages of 34-84 years: goodness of fit statistics. Observed data. 

 

To confirm the suitability of stratifying drinking trajectories by sex, linear models were run with 

and without a sex interaction with age. The interaction term provided a statistically significant 

improvement in model specification (p=<0.001), supporting the case for sex stratification. As 

reported in Table 8.2, consumption at baseline was estimated as 110.5 g/week (95% CI 107.2-

113.8) among men and 48.5 g/week (95% CI 46.0-51.0) among women, falling by an average 2.8 

(95% CI 1.8-3.9) g/week and 2.2 (95% CI 1.5-3.0) g/week respectively per 10-year increase in 

age.  

Intercept values were slightly higher within the imputed dataset among both sexes, with a 

steeper rate of decline reported among men than evident within the observed dataset 

(Appendix 8.2). Among women, the rate of change was so small as to be rendered statistically 

insignificant (p=0.352). Plotted linear trajectories from analyses of the observed dataset are 

shown in Figure 8.3, with trajectories based upon the imputed dataset reported in Appendix 8.3. 

  

Linear mixed models Log-likelihood BICa

Men

Intercept only -184343 368717

Linear mixed model, fixed slopes -184318 368678

Linear mixed model, random slopes -184042 368146

Women

Intercept only -72552 145133

Linear mixed model, fixed slopes -72531 145100

Linear mixed model, random slopes -72500 145057

Fit statistics

aBayesian information criterion.
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Table 8.2 Crude sex-specific linear and non-linear trajectories of mean weekly volume of alcohol 
consumption between the ages of 34-84 years. Observed data. 

 

 
  

Mixed models g/week (95% CI) p-value

Men (n=6,882)

Linear model

Intercept 110.5 (107.2, 113.8) <0.001

Age -2.8 (-3.9, -1.8) <0.001

Non-linear model

Intercept 91.8 (90.0, 95.7) <0.001

Age1 12.2 (10.1, 14.4) <0.001

Age3 -0.9 (-1.0, -0.8) <0.001

Women (n=3,402)

Linear model

Intercept 48.5 (46.0, 51.0) <0.001

Age -2.2 (-3.0, -1.5) <0.001

Non-linear model

Intercept 45.4 (43.4, 47.4) <0.001

lnAge 3.5 (1.7, 5.3) <0.001

Age3 -0.2 (-0.3, -0.2) <0.001

Age coefficients refer to the change in the average volume of weekly alcohol 

consumption per 10-year increase in age.
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Figure 8.3 Crude sex-specific linear trajectories of mean weekly volume of alcohol consumption 
between the ages of 34-84 years. Observed data. 

8.5.1.3 Non-linear trajectories 

A range of non-linear slopes were explored, with fit statistics for each non-linear transformation 

reported in Appendices 8.4 and 8.5. When applied to both the observed and imputed datasets, 

non-linear slopes were found to provide a substantial improvement in fit over the linear models. 

Coefficients from the best-fitting non-linear models are documented in Table 8.2 for the 

observed dataset and Appendix 8.2 for the imputed dataset, with trajectories plotted in Figure 

8.4 and Appendix 8.6 respectively. 

Within the observed dataset, the volume of alcohol consumption was consistently highest 

among men. The mean weekly volume of alcohol consumption increased up to around 56 years 

of age among men and 51 years of age among women, peaking at 110 g/week (95% CI 107-112) 

and 46 g/week (95% CI 44-48) respectively (Figure 8.4). Beyond 56 and 51 years of age, the mean 

volume of alcohol consumption steadily declined, falling to 49 g/week (95% CI 43-55) among 

men and 23 g/week (95% CI 19-26) among women by the age of 83.5 years (Figure 8.4). Analyses 

based upon the imputed dataset reported higher volumes of alcohol consumption, measuring a 

peak of 114 g/week (95% CI 111-117) among men aged 55 years and 52 g/week (95% CI 50-55) 

among women aged 59 years, before falling to 63 g/week (95% CI 57-68) among men and 28 

g/week (95% CI 24-33) among women by the age of 83.5 years (Appendix 8.6). 
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Figure 8.4 Crude sex-specific non-linear trajectories of mean weekly volume of alcohol consumption 
between the ages of 34-84 years. Observed data. 

8.5.1.4 Stability of baseline categories 

As reported in Table 8.3 and shown in Figure 8.5, significant differences in the longitudinal slope 

were identified according to the category of intake at baseline, with similar trends apparent in 

both sexes. Specifically, slopes between baseline categories tended to converge with increased 

age, whereby participants in higher categories exhibited downward longitudinal trajectories and 

those in lower baseline categories exhibited upward or stable slopes over the period, on 

average.  

Among both men and women, changes over the captured life course were most pronounced 

within the highest baseline category. Relative to the rate of change among non-drinkers, 

consumption within the highest baseline category fell by an average 29.7 g/week among men 

and 20.1 g/week among women for every 10 year increase in age. Increases were greatest 

among infrequent drinkers, whose drinking rose by 8.7 g/week and 3.1 g/week respectively per 

10 year increase in age, relative to non-drinkers. However, this rise may have been a 

consequence of such participants having consumed alcohol more frequently with advancing age 

such that their drinking was more likely to have been captured by the quantity-frequency 

questionnaire at each successive wave (Table 6.2). The only stable baseline category was female 

light drinkers (0.1-50.0 g/week), who showed no statistically significant change in alcohol 

consumption with increased age, relative to pooled non-drinkers. Although drinking declined 
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among women defined as more moderate drinkers at baseline (50.1-100.0 g/week), this 

equated to a mere 2.6 g/week change per decade, relative to non-drinkers. As such, light and 

moderate baseline consumption categories appeared largely stable over the period of the life 

course captured by the Whitehall II study. 

Results based upon the imputed dataset were similar, with decreasing consumption evident 

within higher baseline categories and increasing consumption within lower baseline categories 

(Appendices 8.7 and 8.8). Interestingly, analyses applied to the imputed dataset indicate an 

increase in alcohol consumption among pooled non-drinkers equal to an average 5.9 g/week 

(95% CI 4.2-7.6) among men and 5.2 g/week (95% CI 3.8-6.6) among women, suggesting that 

some former or never drinkers with missing data were predicted to resume or take up drinking 

alcohol as they aged. 

Given that participants varied between 35 and 55 years of age at the time that baseline 

categories were defined, and with marked differences in alcohol consumption reported by age 

group in Sections 2.2.1 and 8.5.1.5, there was a possibility that some of the difference in 

longitudinal trajectories may have been attributable to disparities in the age of participants 

within each baseline category. A post-hoc sensitivity analyses was thus undertaken which re-ran 

the mixed effects models with adjustment for differences in age at baseline, parameterised as 

dates of birth. Adjustment for birth date provided no improvement in the fit of either sex-

specific model, and altered intercept and slope coefficients only by fractions of a g/week. The 

effect of any difference in age at baseline within each category was thus considered negligible.  
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Figure 8.5 Crude sex-specific linear trajectories of mean weekly volume of alcohol consumption 

between the ages of 34-84 years, stratified by baseline alcohol consumption category. Observed data. 
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Table 8.3 Crude sex-specific interaction between the trajectory of mean weekly volume of alcohol 
consumption and baseline alcohol consumption category. Observed data. 

 

8.5.2 Trajectories of mean weekly volume of alcohol consumption by T2DM diagnosis 

8.5.2.1 Descriptive statistics 

Of the 10,308 individuals originally enlisted at baseline, 8,815 participated at wave three. Among 

these, 250 prevalent cases were documented and thus excluded. A total 5,723 T2DM-free men 

and 2,570 T2DM-free women survived to and participated in at least one subsequent wave such 

that incident diagnosis status could be determined. After excluding repeated measures of 

alcohol consumption recorded after the date of diagnosis, plus one female participants who did 

not provide a measure of alcohol consumption for at least one wave prior to their date of 

Linear mixed models Sample n g/week (95% CI) p-value

Men

Difference in baseline consumption by drinking category

Non-drinker 220 Reference

Infrequent drinker 669 0.7 (-2.4, 3.9) 0.651

0.1-50.0 g/week 2,073 30.3 (27.8, 33.0) <0.001

50.1-100.0 g/week 1,432 76.5 (72.5, 80.4) <0.001

100.1-150.0 g/week 881 131.6 (127.3, 125.9) <0.001

>150.0 g/week 1,563 286.6 (278.5, 294.7) <0.001

Difference in the rate of change by drinking category

Non-drinker Reference

Infrequent drinker 8.7 (6.8, 10.5) <0.001

0.1-50.0 g/week 6.2 (4.9, 7.5) <0.001

50.1-100.0 g/week 4.5 (2.2, 6.8) <0.001

100.1-150.0 g/week -2.7 (-5.0, -0.4) 0.020

>150.0 g/week -29.7 (-32.8, -26.6) <0.001

Women

Difference in baseline consumption by drinking category

Non-drinker 216 Reference

Infrequent drinker 764 1.0 (-0.7, 2.6) 0.256

0.1-50.0 g/week 1,428 29.3 (27.5, 31.2) <0.001

50.1-100.0 g/week 542 76.2 (72.7, 79.6) <0.001

>100.0 g/week 422 176.5 (167.3, 185.7) <0.001

Difference in the rate of change by drinking category

Non-drinker Reference

Infrequent drinker 3.1 (1.9, 4.2) <0.001

0.1-50.0 g/week -0.0 (-1.2, 1.1) 0.936

50.1-100.0 g/week -2.6 (-4.8, -0.4) 0.019

>100.0 g/week -20.1 (23.6, 16.6) <0.001
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censoring or diagnosis, this left an analytic sample of 5,723 men and 2,569 women with 27,711 

male person-observations and 11,734 female person-observations over a mean 4.8 waves. 

Participants were observed over a median 9.5 years for both sexes, up to a maximum of 28.0 

years among men and 27.9 years among women. In total, 620 men and 296 women developed 

T2DM over the period. 

Participants who developed T2DM exhibited a worse metabolic profile at wave one than those 

who did not develop the condition (Table 8.4), with a greater proportion of such participants 

being physically inactive, of South Asian ethnicity, a lower occupational grade and having a 

family history of T2DM as well as a higher BMI and more advanced age. In terms of alcohol 

consumption behaviour, women who developed T2DM reported a lower volume of weekly 

alcohol consumption at baseline. Imputed descriptive statistics were comparable (Appendix 

8.9).  
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Table 8.4 Baseline characteristics of T2DM-free participants, stratified by T2DM diagnosis. Observed 
data. 

  

 

T2DM Censored

Variables (wave one)
% (95% CI)

n

% (95% CI)

n Differencea

Men

Age

Mean years 45.0 (44.6, 45.5)b

620

44.4 (44.2, 44.6)b

5,103

0.013

Alcohol consumption frequency

None in past year 4.4 (3.0, 6.3)

27

2.6 (2.2, 3.1)

132

0.028

<1/week 21.8 (18.8, 25.3)

135

19.7 (18.6, 20.8)

1,001

1-3 times/week 40.3 (36.5, 44.2)

249

43.7 (42.3, 45.0)

2,223

Daily or almost daily 33.5 (29.9, 37.3)

207

34.1 (32.8, 35.4)

1,734

Alcohol consumption volume

Median g/week 98.8 (89.8, 107.8)c

617

101.5 (98.5, 104.6)c

5,067

0.570

BMI

Mean kg/m2 26.1 (25.8, 26.3)b

619

24.3 (24.2, 24.4)b

5,094

<0.001

Ethnicty

White 84.8 (81.8, 87.5)

526

94.6 (93.9, 95.2)

4,815

<0.001

South Asian 11.8 (9.5, 14.6)

73

3.4 (3.0, 4.0)

175

Otherd 3.4 (2.2, 5.1)

21

2.0 (1.6, 2.4)

101

Family history of T2DM

Yes 81.1 (77.8, 84.1)

495

91.2 (90.4, 91.9)

4,589

<0.001

No 18.9 (15.9, 22.2)

115

8.8 (8.1, 9.6)

444

Occupational grade

Administrative (top) 35.0 (31.3, 38.9)

217

41.3 (39.9, 42.6)

2,106

<0.001

Professional (middle) 54.0 (50.1, 57.9)

335

52.1 (50.7, 53.4)

2,657

Clerical (bottom) 11.0 (8.7, 13.7)

68

6.7 (6.0, 7.4)

340

Physical activitye

Inactive 12.4 (10.0, 15.2)

76

8.1 (7.4, 8.9)

410

<0.001

Below guidelines 40.1 (36.2, 44.0)

246

37.4 (36.1, 38.8)

1,892

Met guidelines 47.6 (43.6, 51.5)

292

54.5 (53.1, 55.8)

2,753

Smoking

Never 42.0 (38.1, 45.9)

258

49.8 (48.5, 51.2)

2,525

<0.001

Former 39.3 (35.6, 43.3)

242

36.4 (35.1, 37.7)

1,845

Current 18.7 (15.8, 22.0)

115

13.8 (12.8, 14.7)

697

Women

Age

Years 46.7 (46.0, 47.4)b

296

45.3 (45.1, 45.6)b

2,274

<0.001

Alcohol consumption frequency

None in past year 9.5 (6.6, 13.4)

28

5.7 (4.8, 6.7)

128

<0.001

<1/week 51.4 (45.6, 57.0)

152

35.4 (33.4, 37.4)

801

1-3 times/week 28.7 (23.8, 34.2)

85

36.6 (34.6, 38.6)

829

Daily or almost daily 10.5 (7.4, 14.5)

31

22.4 (20.7, 24.1)

507

Alcohol consumption volume

g/week 29.4 (23.3, 35.5)c

296

46.9 (44.4, 49.4)c

2,247

<0.001

BMI

kg/m2 28.0 (27.4, 28.6)b

296

24.2 (24.0, 24.3)b

2,273

<0.001
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Smoking

Never 42.0 (38.1, 45.9)

258

49.8 (48.5, 51.2)

2,525

<0.001

Former 39.3 (35.6, 43.3)

242

36.4 (35.1, 37.7)

1,845

Current 18.7 (15.8, 22.0)

115

13.8 (12.8, 14.7)

697

Women

Age

Mean years 46.7 (46.0, 47.4)b

296

45.3 (45.1, 45.6)b

2,274

<0.001

Alcohol consumption frequency

None in past year 9.5 (6.6, 13.4)

28

5.7 (4.8, 6.7)

128

<0.001

<1/week 51.4 (45.6, 57.0)

152

35.4 (33.4, 37.4)

801

1-3 times/week 28.7 (23.8, 34.2)

85

36.6 (34.6, 38.6)

829

Daily or almost daily 10.5 (7.4, 14.5)

31

22.4 (20.7, 24.1)

507

Alcohol consumption volume

Median g/week 29.4 (23.3, 35.5)c

296

46.9 (44.4, 49.4)c

2,247

<0.001

BMI

Mean kg/m2 28.0 (27.4, 28.6)b

296

24.2 (24.0, 24.3)b

2,273

<0.001

Ethnicty

White 71.2 (65.7, 76.1)

210

89.1 (87.7, 90.3)

2,012

<0.001

South Asian 14.6 (11.0, 19.1)

43

4.6 (3.8, 5.5)

103

Otherd 14.2 (10.7, 18.7)

42

6.4 (5.4, 7.5)

144

Family history of T2DM

Yes 68.8 (63.1, 73.9)

198

89.2 (87.8, 90.4)

1,989

<0.001

No 31.3 (26.1, 36.9)

90

10.8 (9.6, 12.2)

242

Occupational grade

Administrative (top) 4.1 (2.3, 7.0)

12

14.0 (12.7, 15.5)

319

<0.001

Professional (middle) 36.8 (31.5, 42.5)

109

43.0 (41.0, 45.1)

978

Clerical (bottom) 59.1 (53.4, 64.6)

175

43.0 (40.9, 45.0)

977

Physical activitye

Inactive 31.9 (26.7, 37.6)

91

22.6 (20.9, 24.4)

504

0.002

Below guidelines 34.4 (29.1, 40.1)

98

40.7 (38.7, 42.8)

907

Met guidelines 33.7 (28.4, 39.4)

96

36.6 (34.6, 38.6)

815

Smoking

Never 59.0 (53.3, 64.6)

173

54.2 (52.2, 56.3)

1,227

0.299

Former 22.2 (17.8, 27.3)

65

24.9 (23.2, 26.8)

564

Current 18.8 (14.7, 23.7)

55

20.8 (19.2, 22.5)

471

Sample sizes differed according to item non-response at baseline (wave one). Employment 

status not l isted as all  participants were employed at wave one.
aTo explore differences between non-response groups, one-way ANOVA was used on 

continuous data, and the chi 2 test on categorical data; bMean and 95% confidence interval; 
cMedian and 25th and 75th percentiles; de.g. black Caribbean, African and Arabic; eMeeting 

guidelines (≥150 minutes of moderate-intensity or ≥75 minutes of vigorous-intensity activity 

per week); inactive (<60 minutes of moderate and <60 minutes of vigorous activity; below 

guidelines (not inactive or meeting guidelines).
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8.5.2.2 Linear trajectories 

For both sexes, random slopes models best described the observed (Table 8.5) and imputed 

(Appendix 8.10) linear trajectories of alcohol consumption over the period leading up to the 

development of T2DM or censoring, suggesting marked variability in drinking between repeated 

measures.  

Table 8.5 Sex-specific interaction between the linear trajectory of mean weekly volume of alcohol 
consumption and T2DM diagnosis: goodness of fit statistics. Observed data 

 

Likelihood ratio tests were undertaken to formally establish the suitability of stratifying linear 

mixed models by sex. The inclusion of sex interactions between time and diagnosis status each 

improved the goodness of fit (p=<0.001), supporting the case for sex stratification. Sex stratified 

results are reported in Table 8.6, with corresponding plots shown in Figure 8.6. Men who did 

not develop T2DM over the course of study showed a gradual decline in their volume of alcohol 

consumption up to their time of censoring, while men who did develop the condition exhibited 

a marked increase in consumption up to their time of diagnosis. Based upon the coefficients 

Ethnicty

White 71.2 (65.7, 76.1)

210

89.1 (87.7, 90.3)

2,012

<0.001

South Asian 14.6 (11.0, 19.1)

43

4.6 (3.8, 5.5)

103

Otherd 14.2 (10.7, 18.7)

42

6.4 (5.4, 7.5)

144

Family history of T2DM

Yes 68.8 (63.1, 73.9)

198

89.2 (87.8, 90.4)

1,989

<0.001

No 31.3 (26.1, 36.9)

90

10.8 (9.6, 12.2)

242

Occupational grade

Administrative (top) 4.1 (2.3, 7.0)

12

14.0 (12.7, 15.5)

319

<0.001

Professional (middle) 36.8 (31.5, 42.5)

109

43.0 (41.0, 45.1)

978

Clerical (bottom) 59.1 (53.4, 64.6)

175

43.0 (40.9, 45.0)

977

Physical activitye

Inactive 31.9 (26.7, 37.6)

91

22.6 (20.9, 24.4)

504

0.002

Below guidelines 34.4 (29.1, 40.1)

98

40.7 (38.7, 42.8)

907

Met guidelines 33.7 (28.4, 39.4)

96

36.6 (34.6, 38.6)

815

Smoking

Never 59.0 (53.3, 64.6)

173

54.2 (52.2, 56.3)

1,227

0.299

Former 22.2 (17.8, 27.3)

65

24.9 (23.2, 26.8)

564

Current 18.8 (14.7, 23.7)

55

20.8 (19.2, 22.5)

471

Sample sizes differed according to item non-response at baseline (wave one). Employment 

status not l isted as all  participants were employed at wave one.
aTo explore differences between non-response groups, one-way ANOVA was used on 

continuous data, and the chi 2 test on categorical data; bMean and 95% confidence interval; 
cMedian and 25th and 75th percentiles; de.g. black Caribbean, African and Arabic; eMeeting 

guidelines (≥150 minutes of moderate-intensity or ≥75 minutes of vigorous-intensity activity 

per week); inactive (<60 minutes of moderate and <60 minutes of vigorous activity; below 

guidelines (not inactive or meeting guidelines).

Mixed model Log-likelihood BICa Log-likelihood BICa

Crude linear mixed model, fixed slope -162536 325134 -61948 123953

Crude linear mixed model, random slopes -162287 324655 -61907 123889

Men Women

aBayesian information criterion. 
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reported in Table 8.6, the mean volume of alcohol consumption thirty years prior to diagnosis 

or censoring was estimated to have been 108.1 g/week (103.6+[1.5*3]) among male non-cases 

and 75.6 g/week ([103.6+22.4]+[-16.8*3]) among male cases. By the time of diagnosis or 

censoring, the weekly volume of alcohol consumption was estimated to be an average 103.6 

g/week and 126.0 g/week respectively. 

By contrast, women who developed T2DM exhibited consistently lower volumes of alcohol 

consumption throughout the period of observation than those who were censored. By the end 

of observation, female consumption measured a mean 46.1 g/week among non-cases and 27.7 

g/week (46.1-18.4) among cases, or a difference of 18.4 g/week. Results from analyses based 

upon the imputed dataset were comparable for both sexes, and reported in Appendices 8.11 

and 8.12. 

Table 8.6 Crude sex-specific interaction between the linear trajectory of mean weekly volume of alcohol 
consumption and T2DM diagnosis. Observed data. 

 

Crude linear mixed models g/week (95% CI) p-value

Men (n=5,723)

Consumption volume

Intercept 103.6 (100.5, 106.6) <0.001

Change per 10 years prior to diagnosis or censoring -1.5 (-2.7, -0.3) 0.011

Difference in consumption at the time of diagnosis or censoring

Censored Reference

T2DM 22.4 (11.2, 33.7) <0.001

Difference in the rate of change by diagnosis or censoring

Censored Reference

T2DM 16.8 (10.9, 22.7) <0.001

Women (n=2,569)

Consumption volume

Intercept 46.1 (43.5, 48.6) <0.001

Change per 10 years prior to diagnosis or censoring -1.5 (-2.5, -0.6) 0.002

Difference in consumption at the time of diagnosis or censoring

Censored Reference

T2DM -18.4 (-24.5, -12.3) <0.001

Difference in the rate of change by diagnosis or censoring

Censored Reference

T2DM 1.3 (-2.7, 5.2) 0.529
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Figure 8.6 Crude sex-specific linear trajectory of mean weekly volume of alcohol consumption, stratified 
by T2DM diagnosis. Observed data. 
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8.5.2.3 Non-linear trajectories 

A range of non-linear slopes were explored, with fit statistics reported in Appendices 8.13 and 

8.14. Consumption trajectories among men and women who developed T2DM were best 

described as a linear function of time, with a non-linear trajectories provided the best fit of the 

underlying data among censored participants (Table 8.7 and Figure 8.7). Results from models 

applied to the imputed dataset were comparable and reported in Appendices 8.15 and 8.16. 

At 30 years prior to date of diagnosis or censoring, alcohol consumption was roughly equivalent 

among men at around 80.0 g/week regardless of whether they later developed T2DM or were 

censored. However, by the time of diagnosis or censoring, mean alcohol intake among men who 

didn’t develop T2DM was lower than among men who developed the condition, at 92.6 g/week 

and 126.0 g/week respectively. This equated to a difference of 33.4 g/week, or around 1.8 pints 

of 4.0% ABV lager.11 Among women, consumption remained consistently higher among those 

that did not develop T2DM. In contrast to men, disparities were most acute at both the 

beginning and end of the observation period, at just 13.3 g/week at the time of event or 

censoring, or around 0.7 pints of 4.0% ABV lager.11 

Table 8.7 Crude, sex-specific and best-fitting trajectory of mean weekly volume of alcohol consumption, 
stratified by T2DM diagnosis. Observed data. 

 

Crude best-fitting mixed models g/week (95% CI) p-value

Men

T2DM (n=620)

Intercept 126.0 (115.2, 136.9) <0.001

Time1 15.2 (9.4, 21.0) <0.001

Censored (n=5,103)

Intercept 92.6 (89.6, 95.6) <0.001

Time1 -33.2 (-36.6, -29.8) <0.001

Time2 -1.3 (-1.4, -1.1) <0.001

Women

T2DM (n=296)

Intercept 27.8 (22.2, 33.4) <0.001

Time1 -0.2 (-4.1, 3.7) 0.919

Censored (n=2,273)

Intercept 41.1 (38.6, 43.6) <0.001

Time1 -15.9 (-19.0, -12.7) <0.001

Time2 -0.6 (-0.7, -0.4) <0.001

Time coefficients refer to the change in the average volume of weekly alcohol consumption 

per 10 years prior to diagnosis or censoring. 
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Figure 8.7 Crude sex-specific linear trajectory of mean weekly volume of alcohol consumption, stratified 

by T2DM diagnosis. Observed data. 
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8.5.2.4 Sick-quitter effects 

Looking specifically at participants who developed T2DM, trajectories were estimated for 

alcohol consumption beyond the date of diagnosis, with goodness-of-fit statistics for all 

corresponding models reported in Appendices 8.17 and 8.18. Of the 620 men and 296 women 

who developed T2DM over the course of the study, alcohol consumption data were observed 

after the date of diagnosis among 552 and 267 participants respectively. Trajectories of alcohol 

consumption were estimated based upon a 3,262 person-observations among men and 1,513 

person-observations among women. 

Table 8.8 Crude trajectories of mean weekly volume of alcohol consumption up to and beyond the date 

of diagnosis, stratified by sex 

 

As shown in Table 8.8 and Figure 8.8, both sexes showed significant reductions in their 

consumption following diagnosis, equal to 21.2 g/week per decade among men and 4.5 g/week 

per decade among women. Trajectories from analyses of the imputed dataset differed little, and 

are shown in Appendix 8.19. 

Piecewise models g/week (95% CI) p-value g/week (95% CI) p-value

Up to diagnosis

Intercept 126.0 (115.2, 136.9) <0.001 27.8 (22.2, 33.4) <0.001

Time1 15.2 (9.4, 21.0) <0.001 -0.2 (-4.1, 3.7) 0.919

After diagnosis

Intercept 103.1 (91.4, 114.8) <0.001 21.2 (16.4, 25.9) <0.001

Time1 -21.2 (-32.2, -10.3) <0.001 -4.5 (-7.9, -1.2) 0.008

Time coefficients refer to the change in the average volume of weekly alcohol 

consumption per 10 years of follow-up.

Men Women
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Figure 8.8 Crude trajectories of mean weekly volume of alcohol consumption up to and beyond the date 
of T2DM diagnosis, stratified by sex 

8.5.2.5 Stability of baseline categories 

Significant differences in the longitudinal trajectory of alcohol consumption were identified 

according to categories of intake at baseline, as reported in Table 8.9 and shown for men and 

women in Figures 8.9 and 8.10 respectively. The length of each plotted trajectory was 

dependent upon the time between baseline and diagnosis or censoring. No incident cases were 

observed in the final wave of observation among participants defined as baseline non-drinkers.  

Regardless of diagnosis status, male drinking increased on average within all but the highest 

baseline consumption categories. Within the highest category, alcohol intake was estimated to 

fall by an average 20.8 g/week per decade among men that developed T2DM, relative to non-

drinkers, or 27.2 g/week per decade among those that were censored. Of the upward 

trajectories apparent within more moderate categories of baseline consumption, increases were 

shallower among participants that did not develop T2DM.  

Present within both the highest (>100.0 g/week) and second-highest (50.1-100.0 g/week) 

categories of baseline consumption, downward trajectories were more apparent among 

women. These slopes were steepest among those that developed T2DM. For instance, of women 

who drank 50.1-100.0 g/week at baseline, the mean volume of alcohol consumption fell by 17.0 

g/week among those who were diagnosed with T2DM and by just 1.9 g/week among those who 
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were censored, relative to non-drinkers. Although longitudinal increases in consumption were 

evident among both censored and diagnosed baseline moderate drinkers, elevations appeared 

too small to be clinically significant. For example, of women who drank just 0.1-50.0 g/week at 

baseline, consumption rose by an average 3.0 g/week each decade among those that went on 

to develop T2DM, and by a statistically insignificant 0.4 g/week among women that were 

censored, relative to non-drinkers. These same longitudinal trends were observed within the 

imputed dataset, as reported in Appendices 8.20-8.22. 
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Table 8.9 Crude sex-specific interaction between the trajectory of mean weekly volume of alcohol 
consumption and baseline category, stratified by T2DM diagnosis. Observed data. 

 

 

 

Crude linear mixed models g/week (95% CI) p-value g/week (95% CI) p-value

Men

Difference in consumption at the time 

of diagnosis or censoring by baseline 

consumption category

Non-drinker Reference Reference

Infrequent drinker 26.2 (6.9, 45.4) 0.008 29.7 (23.5, 36.0) <0.001

0.1-50.0 g/week 59.1 (40.2, 78.1) <0.001 51.9 (47.4, 56.4) <0.001

50.1-100.0 g/week 123.7 (99.5, 148.0) <0.001 92.4 (85.4, 99.3) <0.001

100.1-150.0 g/week 162.3 (130.1, 194.5) <0.001 122.7 (115.3, 130.2) <0.001

>150.0 g/week 216.1 (182.6, 249.7) <0.001 188.3 (179.3, 197.2) <0.001

Difference in the rate of change by 

baseline consumption categorya

Non-drinker Reference Reference

Infrequent drinker 11.7 (3.4, 20.0) 0.006 8.3 (6.2, 10.4) <0.001

0.1-50.0 g/week 14.7 (6.2, 23.2) 0.001 6.1 (4.5, 7.7) <0.001

50.1-100.0 g/week 25.9 (14.6, 37.3) <0.001 4.9 (2.1, 7.8) 0.001

100.1-150.0 g/week 26.0 (11.0, 41.1) 0.001 -1.9 (-4.7, 0.8) 0.173

>150.0 g/week -20.8 (-39.1, -2.5) 0.026 -27.2 (-30.8, -23.7) <0.001

Women

Difference in consumption at the time 

of diagnosis or censoring by baseline 

consumption category

Non-drinker Reference Reference

Infrequent drinker 11.6 (4.8, 18.5) 0.001 14.4 (10.8, 18.0) <0.001

0.1-50.0 g/week 27.0 (19.7, 34.2) <0.001 30.9 (27.4, 34.4) <0.001

50.1-100.0 g/week 39.5 (24.5, 54.6) <0.001 70.4 (64.3, 76.4) <0.001

>100.0 g/week 100.7 (68.8, 132.7) <0.001 109.4 (98.8, 119.9) <0.001

Difference in the rate of change by 

baseline consumption categorya

Non-drinker Reference Reference

Infrequent drinker 6.8 (2.7, 10.9) 0.001 3.6 (2.1, 5.2) <0.001

0.1-50.0 g/week 3.0 (-1.1, 7.1) 0.155 0.4 (-1.1, 1.9) 0.609

50.1-100.0 g/week -17.0 (-24.5, -9.4) <0.001 -1.9 (-4.4, 0.6) 0.139

>100.0 g/week -25.0 (-52.2, 2.3) 0.072 -18.3 (-22.6, -14.0) <0.001

aRate of change per 10 years prior to diagnosis or censoring.

CensoredT2DM
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Figure 8.9 Crude male trajectories of mean weekly volume of alcohol consumption, stratified by baseline alcohol 

consumption category and T2DM diagnosis. Observed data. 
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Figure 8.10 Crude female trajectories of mean weekly volume of alcohol consumption, stratified by baseline alcohol 

consumption category and T2DM diagnosis. Observed data. 
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8.6 Summary of results 

Between the ages of 34 and 84 years, the mean weekly volume of alcohol consumption was 

markedly higher among men than women. Despite this, the relationship with age was broadly 

comparable, with volumes increasing up to around 56 years of age among men and 51 years of 

age among women before decreasing thereafter (Figure 8.4). 

When trajectories were stratified by categories of baseline consumption, moderate drinkers 

were found to remain relatively stable across the adult life course, while heavy drinkers 

decreased their volume of alcohol consumption and infrequent drinkers increased their intake 

over the period (Figure 8.5). These changes indicated that, depending upon when in the adult 

life course a study categorises the alcohol intake of a participant, cross-sectionally defined 

moderate drinkers may be subject to differential degrees of misclassification error through 

contamination with heavy and infrequent drinkers.  

Stratifying the longitudinal trajectory by T2DM diagnosis revealed that consumption among men 

and women who did not develop T2DM gradually increased up to around 15 years prior to the 

time of censoring, before decreasing steadily toward the end of the observation period (Figure 

8.7). By contrast, linear increases were evident among men that developed the condition. Thus, 

by the time of diagnosis or censoring, the mean weekly volume of alcohol consumption among 

men who didn’t develop T2DM was 33.4 g/week lower than among men who developed the 

condition. A different picture was apparent among women. Here, rather than a similar linear 

increase among those who developed T2DM, the mean weekly volume of alcohol consumption 

remained consistently lower than among women who were censored. These differences were 

most acute at both the beginning and end of the observation period. 

Regardless of sex-specific differences in the consumption trajectory prior to developing T2DM, 

drinking fell among both sexes after the date of diagnosis, at 21.2 g/week among men and 4.5 

g/week among women per decade of follow-up (Figure 8.8). 

8.7 Limitations 

Although Whitehall II captured around 50 years of the adult life course, the dataset was not 

comprehensive, lacking measures of consumption through early adulthood (18-33 years of age) 

and advanced old age (≥83 years). Although data concerning these periods were missing, it was 

expected based on existing research that the unobserved period of early adulthood was likely 

to have been marked by a trend of increasing consumption, with a decrease in drinking during 

the unobserved period of advanced old age.259,266  
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As noted in Section 7.6, all analyses of Whitehall II data were dependent upon self-reported 

measures of alcohol consumption. Consequentially, plotted trajectories were potentially subject 

to some degree of inaccuracy owing to factors including reporting and recall biases391 as well as 

measurement error.392 In addition, no consideration was given to changes in reported 

consumption frequency across the life course. This decision was taken after having previously 

identified no difference in the dose-response relationship according to the frequency of 

consumption (Table 7.5). 

The results reported in this chapter focus on the mean trajectory of sampled participants by age 

and time. Although some analyses stratified alcohol consumption trajectories according to 

categories of baseline consumption, providing an indication as to how different drinking groups 

altered their intake over the life course, all results nonetheless dealt with averages that mask 

longitudinal changes to the constitution of the mean trajectory. For instance, the declining 

slopes seen among censored men and women in Figure 8.7 may have been a consequence of 

either a general decrease in the weekly volume of alcohol consumption to more moderate 

intakes or the transition of a minority of participants from heavy consumption to non-drinking. 

To get a rough idea as to the effect of transitions to non-drinking upon plotted trajectories, a 

post-hoc analysis was undertaken that calculated the best-fitting models in Figure 8.8 when 

participants with zero consumption (0 g/week) were excluded from each wave. Estimated 

trajectories are shown in Appendix 8.23. Although little difference was evident among male 

trajectories beyond an expected elevation in intercept values, both female slopes were shifted 

upward relative to those reported in Figure 8.7. The degree of change was largest among women 

who developed T2DM. While results in Table 8.7 indicated a flat trajectory among such 

participants (-0.2 g/week per decade, p=0.919), the exclusion of non-drinkers resulted in a near-

significant upward trajectory equal to an average increase of 5.5 g/week per decade (p=0.103). 

By contrast, among censored women, the difference in slopes between the two models was 

closer to just 1.5 g/week per decade. Such differences suggest that both female slopes may have 

been skewed downward by transitions from drinking to non-drinking up to the time of diagnosis 

or censoring, with transitions to zero consumption being most pronounced among women who 

developed T2DM.  

A further limitation of the longitudinal mean trajectories was the testing of just two polynomial 

terms within the non-linear mixed effects models. Although two polynomial terms 

accommodate a broad family of non-monotonic trajectories,176 the range and complexity of any 

resulting slopes is limited to a maximum of one turning point. Plotted non-linear trajectories 
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may therefore be simplistic and fail to reflect multimodal trajectories present within the 

underlying data. However, while multiple turning points can be accommodated through the 

introduction of additional polynomial terms,176 the added flexibility of such an approach comes 

at the risk of overfitting the data, producing trajectories that provide a better statistical fit of the 

observed dataset at the cost of poor generalisability to other cohorts.175 

As outlined in Section 6.6.1, mortality was likely to have represented a competing risk, with 

some study participants potentially censored due to mortality before they would otherwise have 

developed T2DM. Assuming that participants predominantly died due to chronic non-

communicable conditions, those who were censored due to death may have exhibited a 

pronounced downward trajectory in the period leading up to their final wave of participation. In 

order to investigate the effect of mortality upon the longitudinal trajectories, the best-fitting 

models were calculated for each sex excluding data from any participant censored due to death. 

This involved the exclusion of observations from 594 men and 290 women. As shown in 

Appendix 8.24, the omission of data from participants censored through death had little impact 

upon plotted trajectories.  

8.8 Discussion 

8.8.1 Prospective trajectories of mean weekly volume of alcohol consumption 

Analyses confirm that drinking varies with advancing age, increasing up to 56 years of age among 

men and 51 years of age among women before declining thereafter. This finding is consistent 

with previous research 266 and calls into question the validity of results from analyses that define 

consumption according to a single baseline measurement.  

When consumption trajectories were stratified according to baseline categories of alcohol 

consumption, mean alcohol intake was found to vary differentially as a function of age (Table 

8.3) and in a manner concordant with findings elsewhere.267 Drinking among both sexes was 

least stable within the highest baseline categories, where volumes of consumption fell markedly 

with increasing age. Reasons for such a decline are likely to be complex, as indicated by a study 

of Whitehall II participants aged 61-85 years at wave 11.408 Of the 40% of participants who 

reduced their consumption during the decade preceding wave 11, one of the main reasons given 

was a decline in opportunities for social drinking (men: 46%; women: 41%), with attenuations 

also commonly described as a proactive health precaution (men: 45%; women: 34%) or a 

response to ill-health or pharmaceutical contraindication (men: 20.7%; women: 21.9%). If 

heavier drinkers were more likely to have reduced their intake owing to ill-health, this may go 
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some way toward explaining the elevated risks of T2DM evident among non-current drinkers 

(Chapter 7). 

Trajectories stratified according to baseline consumption were found to converge toward 

moderate volumes with advancing age. There was therefore an indication that the risk of 

misclassification error may be greatest in studies of older cohorts where cross-sectionally 

defined moderate drinkers are likely to be contaminated by a greater proportion of infrequent 

and former heavy drinkers than in younger samples. If infrequent and former heavy drinkers are 

at greater risk of T2DM than stable moderate drinkers, this longitudinal contamination may help 

explain why less pronounced reductions in the risk of CHD409 and all-cause mortality395 are 

apparent among older moderate drinkers in conventional survival analyses. 

While results from analyses of the imputed dataset showed similar disparities in the longitudinal 

trajectory by categories baseline consumption, non-drinkers exhibited a more pronounced 

increase in consumption with advancing age. This suggests either that many former or never 

drinkers with missing data may have resumed or taken up drinking as they got older, or that the 

imputation model was poorly specified and did not predict zero values of alcohol consumption 

effectively. 

Whatever the reasons for changes in drinking across the life course, longitudinal variation in the 

volume of alcohol consumption indicate that the categorisation of study participants according 

to consumption reported at a single point in time risks introducing misclassification error, with 

the magnitude of error operating at least in part as a function of participant age.  

8.8.2 Trajectories of mean weekly volume of alcohol consumption by T2DM diagnosis 

Results from the revised and updated meta-analysis indicate increases in T2DM risk among men 

from very low volumes of consumption, with reductions in risk specific to moderate female 

drinkers (Figure 3.4). By examining differences in the trajectory of alcohol consumption by T2DM 

diagnosis, this chapter aimed to develop a better understanding of whether dose-response 

relationships reported by conventional survival analyses were the result of harms or benefits 

having accumulated over time following prolonged exposure to particular volumes of alcohol, 

or a consequence of acute differences in consumption during periods of the life course in which 

sensitivity to the effects of alcohol may be especially pronounced. 

Among men, alcohol intake was approximately equivalent between groups until just a few years 

prior to diagnosis, at which point the volume of consumption was greatest among men who 

developed the condition (Figure 8.7). This finding was most consistent with the second 
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hypothesis, which contended that sensitivity to the deleterious effects of higher alcohol intakes 

may be most pronounced later in the life course, with the mean age at diagnosis measuring 61.9 

(95% CI 61.4, 62.3) years among men.  

While male consumption increased linearly over the period, those who did not develop the 

condition exhibited a marked decline in their consumption prior to censoring. As noted in the 

preceding section, the reasons for such a decline were likely to be a combination of factors, 

including as a response to deteriorating health or as a proactive health precaution.408 Whatever 

the predominant motivation, the lack of a similar downward trajectory among men who 

developed T2DM appeared to be in conflict the third hypothesis outlined in Section 8.3, which 

posited that declining health prior to diagnosis would elicit a sick quitter effect marked by a 

reduction in consumption. When trajectories of alcohol consumption were calculated beyond 

the date of diagnosis, reductions were found to be evident among both sexes after the date of 

diagnosis (Figure 8.8), suggesting that any deterioration in health prior to the diagnosis of T2DM 

may have been of insufficient magnitude as to elicit a change in drinking behaviour, with 

consumption only falling following medical advice. 

Neither the first or second hypotheses were supported in women. Here, participants who 

developed T2DM exhibited an average weekly intake consistently below that of women who did 

not develop T2DM, with disparities by diagnosis status most pronounced during a period 15 

years prior to the date of diagnosis or censoring. Regardless of such a disparity, volumes of 

alcohol consumption within both female groups were well within the range of intake associated 

with reductions in the risk of T2DM among women in the updated meta-analysis (Figure 3.4). At 

least two reasons for this conflict with a priori hypotheses were possible. First, the lower 

volumes consumed by women who developed T2DM may have produced an effect insufficient 

to offset any increased risk conferred by other factors, with women who developed T2DM 

having a worse metabolic health profile at wave three than those who were censored (Table 

7.1). Secondly, given their worse metabolic health profile, the mean trajectory for women who 

developed T2DM may have been comprised not primarily of persistent low volume and 

therefore lower risk drinkers, but of sick quitters who had already attenuated their drinking 

owing to poor health. Thirdly, it was possible that the absence of distinct female trajectories by 

diagnosis status may have been attributable to a relatively limited range of alcohol consumption 

among women within the Whitehall II cohort, with heavier drinkers being few in number. For 

instance, while estimates from the meta-analysis in Chapter 3 indicate that the risk of T2DM 

becomes elevated among women at volumes >140 g/week, relative to pooled non-drinkers, just 
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239 women within the Whitehall II cohort reported consumption anywhere above that level at 

wave one, falling to just 105 participants by wave 11. A general population cohort with a greater 

breadth of female consumption similar to that available for men may be better suited to 

identifying disparities in the mean volume of alcohol consumption among women according to 

their diagnosis of T2DM.  

That the disparity in alcohol intake by diagnosis category was greatest among men in the few 

years preceding the end of observation suggests that any increased risk conferred by heavy 

alcohol consumption may occur later in the adult life course and over a relatively acute period 

of time. Given this indication, survival analyses in Chapter 9 will explore whether the dose-

response relationship is better parameterised according to different dimensions of the 

longitudinal trajectory, providing a clearer picture of differences in dose-response across the life 

course. Furthermore, while censored participants appeared to reduce their intake during the 

period leading up to the end of observation, it is unclear whether these downward trajectories 

represent a proactive attempt to modify negative health behaviours (a ‘worried well’) or a 

reaction to deteriorating health (‘sick quitters’). Accordingly, survival models reported in 

Chapter 9 will also be constructed to explore the association between the longitudinal slope and 

the risk of T2DM independent of the actual volume consumed. 
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9 Longitudinal alcohol consumption and the risk of T2DM 

9.1 Introduction 

Having established in Chapter 8 that drinking varies over the life course and differentially within 

baseline consumption categories, it was possible that estimates derived from conventional 

survival analyses may fail to adequately capture the complexity of the dose-response 

relationship between alcohol consumption upon T2DM risk. The primary aim of this chapter was 

thus to explore the utility of modelling the dose-response relationship according to 

parameterisations of the longitudinal trajectory other than just the baseline value of 

consumption. To achieve this, three increasingly complex survival models are considered: an 

age-varying covariate model, a two-stage model and a shared random effects model.410,411 Each 

approach is subject to its own advantages and limitations, and makes differing assumptions 

concerning the form of the longitudinal process.412,413,414,415  

Notably, the shared random effects approach offers greater flexibility than the other methods, 

permitting the calculation of differences in dose-response according to whether drinking is 

defined according to the intercept value of the longitudinal trajectory or consumption at the 

time of diagnosis. In modelling these two parameters within a single model, the shared random 

effects approach will help establish whether these different dimensions of the longitudinal 

process are each independently associated with T2DM risk. Additionally, with alcohol 

consumption varying as a function of each, the use of an age timescale within such models will 

permit an exploration of whether the dose-response relationship changes when alcohol is 

consumed at different points in the adult life course. 

With analyses in Chapter 8 having also identified longitudinal decreases in consumption among 

heavier drinkers and participants who were not diagnosed with T2DM, the shared random 

effects approach will also be used to estimate the relationship between the rate of change and 

T2DM risk after adjustment for the volume of past and current consumption. This final analysis 

will thus explore the sick quitter hypothesis, establishing whether participants who decreased 

their consumption tended to be at a higher risk of T2DM than those who did not.  

9.2 Objectives 

To formally explore the utility of using alternative parameterisations of the longitudinal 

trajectory, and establish whether downward trajectories are consistent with a sick quitter effect, 

the objectives of this chapter are thus to: 
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 Compare dose-response relationships reported according to different 

parameterisations of the longitudinal trajectory. 

 Investigate the effect of adjustment for heterogeneous non-drinking groups upon the 

sex-specific dose-response relationship. 

 Establish whether declining trajectories represent a group of drinkers at elevated risk of 

T2DM. 

9.3 Hypotheses 

9.3.1 The primary dose-response relationship 

Based on results from the preliminary conventional survival model reported in Chapter 7, it is 

hypothesised that the dose-response relationship estimated according to the intercept of the 

longitudinal trajectory would indicate a null or increased risk of T2DM among men and a 

decreased risk among women at higher volumes of consumption (Table 7.5). By contrast, when 

parameterised according to intake at the time of diagnosis, it is posited that the so-called 

‘current value’ of consumption would be associated with a heightened risk of T2DM, particularly 

among men. As indicated in Chapter 8, differences in male drinking were most pronounced in 

the few years prior to diagnosis or censoring, with volumes markedly higher on average among 

those who developed T2DM (Figure 8.8). With a mean age of diagnosis around 62 years, there 

was thus some suggestion that an increased risk of T2DM may be most pronounced when 

alcohol is consumed in higher volumes at older ages, representing a period in the life course 

during which the metabolism of alcohol is impaired and sensitivity to its deleterious effects 

potentially intensified.196,197,198,199,416,417 Given the possibility that dose-response effects may 

differ according to a deterioration in the alcohol metabolism with increased age, it was 

hypothesised that both the intercept and current value parameterisations would have 

contrasting and independent associations with T2DM risk. 

9.3.2 Sick quitter effects 

At least as far back as 1988, study participants who reduce their intake over time have been 

referred to as ‘sick quitters’ – a group of individuals speculated to attenuate their consumption 

owing to ill-health.138 This is a view maintained within the alcohol literature136 and supported by 

the heightened risk of T2DM among former drinkers (Table 7.3). Elsewhere, T2DM risk 

factors139,140 and poor self-reported health141,142,143 have been identified as more prevalent 

among former drinkers than current drinkers, with the onset of ill-health associated with a 

cessation from alcohol consumption.144,145,146 
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Based on such findings, it is possible that downward trajectories of alcohol consumption may be 

indicative of an increased risk of T2DM owing to a worse metabolic health. For instance, an 

analysis of participants from the English Longitudinal Study of Ageing showed that declines in 

the frequency of alcohol consumption were most rapid among participants who reported a 

deterioration in self-rated health or otherwise exhibited poor self-rated health across the entire 

period of follow-up.418 Similarly, although sub-group sample sizes were small, results from the 

Health Professionals Follow-Up Study indicate that those who decreased their intake over a four-

year period tended to show an elevated if non-significant risk of T2DM regardless of baseline 

consumption category.267  

However, a longitudinal decrease in alcohol consumption may not solely occur due to a ‘sick 

quitter’ effect. As reported following an analysis of Whitehall II participants aged 61-85 years at 

wave 11, reasons for a reduction in drinking range from illness, medicinal contraindication, 

proactive health precaution, a decline in opportunities for social drinking and a history of alcohol 

misuse.408 It was therefore likely that individuals with decreasing consumption may not simply 

represent a homogenous group of ‘sick quitters’, but a cohort of ‘worried well’ or socially 

isolated adults. It was perhaps because of these disparate motivations that analyses stratified 

by categories of baseline consumption showed decreasing slopes among heavier baseline 

drinkers irrespective of T2DM diagnosis (Figures 8.10 and 8.11). 

If reductions in alcohol consumption were primarily a response to poor metabolic health, a 

downward trajectory was expected to be associated with an increased risk of T2DM 

independent of the volume consumed. Alternatively, if reductions in the volume of alcohol 

consumption were instead a consequence of proactive attempts to improve health or were a 

result of fewer opportunities for social drinking due to factors unrelated to health status,408 then 

a downward slopes is expected to be associated with a decreased or null association with T2DM 

risk respectively. The precise constitution of any downward trajectory will thus determine the 

direction of any relationship between the rate of change and T2DM. 

9.4 Methods 

9.4.1 Sample 

The survival models chosen to calculate dose-response according to different parametrisations 

of the drinking trajectory all handle data in a different manner. For instance, while conventional 

survival models exclude any participant for whom covariate data are missing at baseline, 

longitudinal methods are able to include such participants by utilising measures obtained at later 
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waves. By contrast, while a conventional survival model can estimate dose-response 

associations for baseline participants based on all observed cases, longitudinal models drop any 

case diagnosed at a wave on which covariate data are missing. In order that results from each 

set of analyses were directly comparable, it was necessary to restrict the sample such that the 

number of participants and incident cases of T2DM were internally consistent.  

Given notable if non-significant differences in the risk of T2DM as reported by infrequent and 

heterogeneous non-drinkers (Table 7.3), the baseline was set as wave three, the first wave at 

which drinking data were sufficient for disaggregating and thereby adjusting for differences in 

risk between such groups. The restriction of the sample thus began by including only those 

individuals who participated at wave three (men: 6,057; women: 2,758) and who were free of 

prevalent T2DM at wave three (men: 5,898; women: 2,691). Participants were then excluded if 

they did not provide valid responses to questions concerning the volume and frequency of 

alcohol consumption (men: 306; women: 169), and did not participate in at least one other wave 

such that their diagnosis status could not be determined (men: 136; women: 88). Finally, 

participants were excluded if incident T2DM was documented on a wave for which covariate 

data were missing (men: 29; women: 0). 

In the case of crude models adjusted only for consumption category, this left an analytical 

sample of 5,427 men and 2,434 women, or 89.2% of wave three participants. A total incident 

560 and 268 cases were identified respectively. Longitudinal alcohol consumption data were 

available across 21,337 and 8,842 person-observations among men and women, with a median 

follow-up of 20.2 years and 20.0 years. In multivariable-adjusted models, sample sizes were 

reduced to 4,793 men and 2,053 women, with 451 and 206 incident cases respectively. 

9.4.2 Variables 

9.4.2.1 Alcohol consumption 

The weekly volume of alcohol consumption was captured and defined as described in Section 

6.3 and treated as a continuous variable. As robust standard errors could not be calculated 

within the shared random effects model, the continuous g/week variable was transformed 

according to the base 2 logarithm owing to positive skewness. Here, any risk estimate is thus 

interpreted as the change in risk per two-fold increase in the volume consumed. 

All models include adjustment for heterogeneous consumption category, defining participants 

at each wave according to whether they were never drinkers, non-current drinkers, infrequent 

drinkers or current drinkers. Using the volume and frequency variables described in Section 6.3, 
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never drinkers were strictly defined at each wave as those who reported never having consumed 

alcohol at the current and all prior waves. This definition thus excludes any participant who 

reported ‘always being a non-drinker’ at given wave yet also reported non-zero consumption at 

a prior wave. Such individuals were categorised as non-current drinkers, defined as any 

individual who reported no alcohol consumption in the year prior to interview but who 

otherwise reported non-zero consumption at a prior wave. Current drinkers were defined at 

each wave as anyone who reported non-zero consumption in the week prior to interview, while 

infrequent drinkers were participants who reported consuming alcohol during the year but did 

not drink alcohol in the week prior to interview.  

As a consequence of seeking to explicitly identify different groups of non-drinkers, continuous 

alcohol consumption data reported prior to wave three were excluded, as questions concerning 

never drinking were only available from wave three onwards. Additionally, as never drinking 

could not be imputed among individuals with missing data due to the small number of such 

participants, alcohol consumption was restricted to observed data only in all models. 

Representing the largest category at all waves, current drinkers were selected as the reference 

group. 

9.4.2.2 T2DM 

As documented in Section 6.4, cases of T2DM were defined according to any self-reported 

doctor diagnosis or use of hypoglycaemic medication, or a positive FPG result following clinical 

examination. Analyses focussed upon incident cases of T2DM and so therefore excluded any 

prevalent diagnoses at baseline. 

As the number of participants predicted to have developed T2DM over the course of the study 

varied between imputations, analyses applied to the imputed dataset were restricted to 

participants with observed T2DM diagnosis data such that the number of diagnosed participants 

remained static between imputations.342 

9.4.2.3 Covariates 

Covariates were defined in Section 6.5 and include BMI, ethnicity, employment status, family 

history of T2DM, occupational grade, physical activity, and smoking status. As described in the 

statistical analysis section below, age in years was selected as the timescale. As such, it was 

inappropriate to also adjust for the age of participants at each wave. Instead, adjustment was 

made for date of birth. Where repeated measures were available, covariates were treated as 

age-varying within all but the conventional survival analysis where only the baseline values were 
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used. Given the lack of any indication as to an interaction between the volume and frequency 

of consumption (Table 7.5), or differences in dose-response according to drink type (Table 7.6), 

these two factors were not included.  

9.4.3 Statistical analysis 

9.4.3.1 Time scale 

With an interest in testing differences in dose-response according to consumption reported at 

disparate periods of the adult life course, age in years was selected as the most meaningful 

timescale. This was contrary to the approach commonly adopted within existing studies, but 

serves as a conceptual distinction recommended elsewhere over the use of a time-to-event 

metric due to the incidence of T2DM operating as a function of advancing age as opposed to 

time since study entry.419,420,421  

For the conventional survival analyses, which only considered covariate values at baseline, start 

times were defined as the age of each participant at baseline, with stop times defined according 

to the age at diagnosis or censoring. For all other analyses, which utilised repeated measures, 

start times were equal to the age at participation in each wave, and stop times equal to the age 

at participation in the next wave of study. In circumstances where the date of participation in a 

wave was identical to their date of diagnosis or censoring, a value of 0.001 was arbitrarily added 

to their stop variable such that covariate data for that final wave could be included. The start 

and stop variables were scaled according to the minimum age at baseline so that intercept 

values were equal to consumption at 39.6 years of age. 

As Stata does not permit the use of imputed survival data, start and stop data were not imputed 

for waves of unit non-response. Accordingly, results from analyses applied to the imputed 

dataset only gave account of item non-response present on included covariates during observed 

waves of participation.  

9.4.3.2 Conventional survival model 

A proportional hazards model was constructed as per the method described in Chapter 7, with 

all covariates fixed according to their values at wave three. This approach is consistent with the 

method conventionally applied for survival analyses of the alcohol-T2DM relationship. Given the 

highly significant sex interaction reported in Chapter 7, all survival analyses were stratified by 

sex. 



Chapter 9: Longitudinal alcohol consumption and the risk of T2DM 

238 
 

As the maximisation procedure of the shared random effects model requires that the functional 

form of the underlying baseline hazard be explicitly defined,415,422 proportional hazards models 

were run using parametric Weibull, Gompertz and exponential distributions. The parametric 

distribution that provided the best fit of the unobserved baseline hazard function was then 

selected for all subsequent models, defined as the model with the smallest BIC. 

9.4.3.3 Age-varying covariates survival model 

The age-varying covariates model serves as an extension of the conventional survival model and 

represents the simplest method for estimating the association between a longitudinally varying 

exposure and a survival process. As per Formula 9.1, alcohol consumption for the ith participant 

at the jth measurement is represented at each diagnosis by the last observed value (dij). The 

association parameter (α) linking alcohol consumption and T2DM thus reports the change in risk 

for a one-unit increase in the last observed or ‘current’ volume of alcohol consumption. 

Additional explanatory variables included in the survival model are represented by xi(t), with the 

effect of such covariates captured by their associated regression coefficients (β). Notably, 

although covariate values are allowed to change as a function of age, the regression effect of 

each covariate value is treated as proportional and thereby independent of age. 

hi(t)=h0(t)exp{βxi(t)+αdi(tij)} 

Formula 9.1 Calculation of a Cox proportional hazard model with time-varying covariates 

When obtaining the most probable risk estimates given the observed data, the survival model 

in Formula 9.1 requires that a complete covariate history is known for all participants.423 

However, in Whitehall II as in other cohorts, longitudinal measures are only captured 

periodically. The age-varying covariate model thus operates under the assumption that 

observed values of a covariate remain constant between examinations when drawing on the last 

known covariate value, as illustrated in Figure 9.1. Although this approach may work well if 

repeated measures are sufficient in number and frequency as to capture acute changes in 

consumption, the treatment of the longitudinal trajectory as a step-function is simplistic and can 

produce a hazard rate unlikely to reflect biological reality.424  

A further limitation of the age-varying covariates model is that the longitudinal trajectory is 

assumed to be measured without error. By giving no account of the inherent variability of the 

observed values and the degree to which they may differ from the true covariate values, noise-

attributable regression dilution can lead to an underestimation of the true longitudinal 

trajectory and thereby the real effect of alcohol consumption upon T2DM risk.412,413,424  
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Figure 9.1 Illustration of the longitudinal trajectory and hazard function within age-varying covariate 
and two-stage survival models 

9.4.3.4 Two-stage survival model 

The two-stage method provides a better reflection of the inherent uncertainty surrounding the 

observed values of weekly alcohol consumption. Instead of a survival model that estimates 

hazards according to the last observed value of alcohol intake, the two-stage approach utilises 

participant-specific predictions of the true volume of alcohol consumption as first estimated via 

a mixed effects model.412 By accounting for sampling variability through the inclusion of a 

random error term, predicted values are closer to the true values of weekly alcohol consumption 

than the crudely observed data. As such, any underestimation of the association between the 

weekly volume of alcohol consumption and T2DM tends to be reduced relative to an age-varying 

covariate model (Figure 9.2).412 

hi(t)=h0(t)exp{βxi(tij)+αŷi(tij)} 

ŷi(tij)=(β0+b0i)+(β1+b1i)tij+εij 

Formula 9.2 Calculation of a two-stage survival model 

As shown in Formula 9.2, predicted values of weekly volume of alcohol consumption for the ith 

individual at the jth observation (ŷi(tij)) are calculated within the mixed effects model as the 

estimated mean intercept (β0) and the predicted deviation of each participant from the mean 
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intercept (b0), plus the estimated mean change in alcohol consumption per unit increase in age 

(β1(tij)) and the predicted participant-specific deviation from the mean slope per year increase 

in age (b1(tij)), with εij representing random error.  

Given that the accuracy of a survival model is dependent upon an appropriately specified 

function of alcohol consumption, linear and non-linear mixed effects models were run on the 

log2-transformed volume of alcohol intake according to the restricted range of fractional powers 

defined in Section 3.2.4.1. Random slopes were assumed in all cases and individual-level 

predictions from the best-fitting sex-specific models then extracted and added to the parametric 

survival model.  

However, while measurement error is factored in during the calculation of the individual-level 

predictions, this uncertainty is not carried across into the survival model, which only utilises the 

fitted values estimated by the mixed model. As a consequence, while a two-stage approach 

generally provides an improvement in accuracy over age-varying covariate models, producing 

parameter estimates that are less biased toward the null by random error, resulting coefficients 

tend to exhibit too great a degree of precision.412 Additionally, in only using fitted values as 

predicted for each jth observation, the survival component of the two-stage model still assumes 

that covariate values are constant between observations (Figure 9.1). 

9.4.3.5 Shared random effects survival model 

In an attempt to circumvent some of the limitations that carry over into the two-stage method, 

the dose-response relationship between the volume of alcohol consumption and T2DM risk was 

also estimated using a shared random effects model. Unlike the two-stage approach, the shared 

random effects model estimates the longitudinal and survival processes simultaneously within 

a single model.415 In doing so, rather than the risk of T2DM being calculated according to the last 

fitted value available, predictions are instead calculated for all points across the life course (yi(t)), 

as illustrated in Figure 9.3.425  
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Figure 9.2 Illustration of the longitudinal trajectory and hazard function within a shared random effects 
survival model 

Though computationally intensive, the result is a longitudinal sub-model that better 

operationalises the unobserved trajectory of alcohol consumption for each participant and 

allows for the risk of T2DM among surviving participants at each diagnosis to be calculated 

according to the predicted participant-specific volume of alcohol consumption at the precise age 

recorded at diagnosis (Formula 9.3).415,422 

hi(t)=h0(t)exp{βxi(tij)+αyi(t)} 

yi(t)=(β0+b0i)+(β1+b1ij)tij+εij 

Formula 9.3 Calculation of a shared random effects survival model 

In simulation studies, these shared random effects models have been found to produce the least 

biased estimates of any of the three methods considered,411,412 with hazards closest to the true 

association under study and the most robust to any misspecification within the mixed effects 

model.422,426 Furthermore, by directly accounting for measurement error through the inclusion 

of random effects within the survival sub-model, parameters estimated by a shared random 
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effects approach also exhibit a larger and more appropriate degree of precision relative to the 

two-stage method.412,425 

9.4.3.5.1 Intercepts versus current values 

To explore how the dose-response relationship differs according to consumption at different 

points in the adult life course, separate models were run that calculated risk according to 

consumption as predicted at the intercept ((β0+b0i)) or the age at diagnosis 

((β0+b0i)+(β1+b1ij)tij). Then, to ascertain the independent contribution of the two parameters, 

each was then adjusted for the other via concurrent inclusion within a single model. 

9.4.3.5.2 Sick quitter effects 

To test whether participants with downward trajectories represented a group of ‘sick quitters’ 

at increased risk of T2DM, shared random effects models were constructed that also included a 

parameter equal to the association between the rate of change and the risk of T2DM (α3). By 

holding constant any differences in consumption at the intercept (α1) and at the age of diagnosis 

(α2), these fully adjusted models report the relationship between the slope of the longitudinal 

trajectory independent of past and current consumption (Formula 9.4). 

hi(t)=h0(t)exp{βxi(tij)+α1ya
i(t)+α2yb

i+α3yc
i} 

ya
i(t)=(β0+b0ij)tij+εij 

yb
i(t)=(β0+b0ij)+(β1+b1ij)tij+εij 

yc
i(t)=(β1+b1ij)tij+εij 

Formula 9.4 Calculation of a shared random effects survival model with an age-dependent slope 
parameterisation 

The resulting slope coefficient is interpreted as the difference in risk per unit increase in the rate 

of change per year of age (i.e. a slope coefficient equal to one). In order to make this coefficient 

more meaningful, it was transformed as shown in Formula 9.5 to reflect a 5% increase (HRinc) or 

decrease (HRdec) in the rate of change per decade increase in age, versus the mean percentage 

change in weekly alcohol consumption over the period (v).427 The p-values reported for the each 

HR are equal, referring to the p-value for the untransformed slope coefficient. To simplify the 

calculation of the mean rate of change per decade, these shared random effects models were 

calculated with linear slopes. 

 

HRinc=exp(α2*((log(1+5/100))-log(1+v/100))) 
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HRdec=exp(α2*((log(1-5/100))-log(1+v/100))) 

Formula 9.5 Calculating the risk of T2DM for a 5% increase or decrease in the rate of change versus 

the mean percentage change over the period 

9.4.3.5.3 Reference category 

Finally, to formally explore the effect of providing no adjustment for differences in risk between 

heterogeneous infrequent, non-current and never drinkers, a sensitivity analyses was run that 

calculated the intercept and current value dose-response associations without the inclusion of 

the alcohol consumption indicator variable. Doing so was considered equivalent to running a 

survival analysis relative to pooled non-drinkers. 

9.4.3.6 Goodness of fit 

As in Chapter 8, goodness of fit was measured according to the log-likelihood and BIC statistics, 

with an improvement in fit defined as any reduction in the BIC greater than or equal to a value 

of 10.406  

9.4.3.7 Statistical packages 

Proportional hazard models were calculated using the -st- package.390 Where fitted values of 

weekly alcohol consumption were predicted for inclusion within the two-stage survival model, 

linear and non-linear predictions were created using the -mixed- package.407 Shared random 

effects models were calculated using the -stjm- package.415 Results from analyses that utilised 

imputed covariate data were calculated using the -mi- suite of commands.342 The use of imputed 

data was not supported by the -stjm- package. 

9.5 Results 

9.5.1 Conventional survival model 

Construction of the conventional survival model began with identifying the best-fitting 

parametric baseline hazard. Fit statistics from the resulting crude models are reported in Table 

9.1. For both men and women, the baseline hazard function was best represented by a Weibull 

distribution, which was thus selected for all subsequent models in this chapter. The observed 

and predicted baseline hazard functions are shown in Appendix 9.1. 

 

Table 9.1 Relationship between the average weekly volume of alcohol consumption and the risk of 
T2DM, stratified by sex. Shared random effects model, goodness of fit statistics, observed data. 
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After adjustment for drinking category, a two-fold increase in the weekly volume of alcohol 

consumption at the intercept was associated with a 4% (HR 1.04, 95% CI 0.98-1.12) increase in 

the risk of T2DM among men and a statistically significant 26% (HR 0.74, 95% CI 0.65-0.84) 

decrease in risk among women (Table 9.2).  

Multivariable adjustment improved the fit of both male and female conventional survival 

models. Increases in risk among men were attenuated to the null (HR 0.99, 95% CI 0.92-1.06), 

and reductions in risk among women reduced to 20% (HR 0.80, 95% CI 0.69-0.93) per two-fold 

increase in consumption. Results from the imputed dataset, which accounted for missing 

covariate data, showed comparable results (Appendix 9.2). 

 

 

 

 

 

 

 

 

Table 9.2 Relationship between the average weekly volume of alcohol consumption and the risk of 
T2DM, stratified by sex. Conventional survival analysis, observed data. 

Baseline hazard function Log-likelihood BICa

Men

Cox (unspecified) -4461 8957

Exponential -1728 3500

Gompertz -1698 3448

Weibull -1693 3437

Women

Cox (unspecified) -1879 3790

Exponential -759 1557

Gompertz -749 1546

Weibull -747 1542
a
Bayes ian information cri terion.
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9.5.2 Age-varying covariates survival model 

Hazard ratios reported according to the current value of alcohol consumption were elevated 

relative to those associated with consumption at the intercept in Table 9.2. As reported in Table 

9.3, doubling of alcohol consumption was associated with an 11% (HR 1.11, 95% CI 1.03-1.19) 

increase in the risk of T2DM among men and a 16% (HR 0.84, 95% CI 0.74-0.95) reduction in risk 

among women in crude models. Following multivariable adjustment, risks among men were 

reduced slightly to a 7% increase in hazards (HR 1.07, 95% CI 0.99-1.15), with an 8% reduction 

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Model 1

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.04 (0.98, 1.12) 0.211 0.74 (0.65, 0.84) <0.001

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.25 (0.75, 2.08) 0.385 0.48 (0.24, 0.95) 0.036

Non-current drinker 1.74 (0.83, 3.67) 0.142 0.46 (0.19, 1.11) 0.084

Never drinker 2.39 (1.24, 4.60) 0.009 0.42 (0.18, 0.96) 0.040

Log likelihood -1693 -747

BIC a 3437 1542

Model 2

Cases/non-cases 451/4,342 206/1,847

Consumption volume

g/week (log2) 0.99 (0.92, 1.06) 0.679 0.80 (0.69, 0.93) 0.004

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 0.84 (0.48, 1.44) 0.519 0.51 (0.23, 1.12) 0.092

Non-current drinker 1.19 (0.56, 2.55) 0.652 0.44 (0.16, 1.20) 0.109

Never drinker 0.81 (0.38, 1.75) 0.597 0.36 (0.14, 0.95) 0.040

Log likelihood -1253 -521

BIC a 2666 1188

WomenMen

Model 1 reported the dose-response relationship between the volume alcohol consumption and 

T2DM following adjustment for consumption category. Model 2 included additional adjustment 

for BMI, date of birth, employment status, ethnicity, family history of T2DM, occupational grade, 

physical activity and smoking status, as defined at baseline. Ethnicity was derived from responses 

at waves one and five. aBayesian information criterion.
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in hazards reported among women (HR 0.92, 95% CI 0.80-1.06). Hazard ratios estimated using 

the imputed dataset were comparable (Appendix 9.3). 

Table 9.3 Relationship between the average weekly volume of alcohol consumption and the risk of 
T2DM, stratified by sex. Age-varying covariate survival analysis, observed data. 

 

Alcohol consumption HR (95% CI) p-value HR (95% CI) p-value

Model 1

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.11 (1.03, 1.19) 0.004 0.84 (0.74, 0.95) 0.005

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 2.35 (1.37, 4.05) 0.002 0.96 (0.48, 1.91) 0.906

Non-current drinker 2.07 (0.98, 4.37) 0.057 1.15 (0.53, 2.48) 0.722

Never drinker 3.91 (1.95, 7.84) <0.001 0.67 (0.26, 1.67) 0.387

Log likelihood -1673 -734

BIC a 3406 1523

Model 2

Cases/non-cases 451/4,342 206/1,847

Consumption volume

g/week (log2) 1.07 (0.99, 1.15) 0.098 0.92 (0.80, 1.06) 0.241

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.61 (0.90, 2.89) 0.110 1.14 (0.53, 2.45) 0.732

Non-current drinker 1.29 (0.57, 2.95) 0.539 1.26 (0.54, 2.96) 0.594

Never drinker 1.30 (0.58, 2.93) 0.528 0.62 (0.23, 1.71) 0.358

Log likelihood -1157 -478

BIC a 2500 1124

WomenMen

Model 1 reported the dose-response relationship between the volume alcohol consumption and 

T2DM following adjustment for consumption category. Model 2 included additional adjustment 

for BMI, date of birth, employment status, ethnicity, family history of T2DM, occupational grade, 

physical activity and smoking status. Ethnicity was derived from responses at waves one and five. 
aBayesian information criterion.
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9.5.3 Two-stage survival model 

The best-fitting mixed effects model was determined separately for men and women and 

plotted in Figure 9.3. These trajectories were consistent with those reported in Chapter 8 (Figure 

8.3), with the average volume of consumption increasing up to around 55 years of age before 

declining thereafter.  

 

Figure 9.3 Crude, sex-specific and best-fitting trajectories of the mean weekly volume of alcohol 
consumption (log2) between the ages of 40-84 years. Observed data. 

Multivariable-adjusted risk estimates were closer to the null and no longer statistically 

significant when calculated based upon predicted values of alcohol consumption. A 4% (HR 1.04, 

95% CI 0.97-1.11) increase in T2DM risk was observed per two-fold increase in alcohol intake 

among men, and an 8% (HR 0.93, 95% CI 0.85-1.02) reduction in risk among women (Table 9.4). 

Analyses based on the imputed dataset were comparable and are reported in Appendix 9.4.  
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Table 9.4 Relationship between the average weekly volume of alcohol consumption and the risk of 
T2DM, stratified by sex. Two-stage survival analysis, observed data. 

 

  

Alcohol consumption HR (95% CI) p-value HR (95% CI) p-value

Model 1

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.05 (0.98, 1.11) 0.151 0.82 (0.76, 0.89) <0.001

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.41 (1.01, 1.97) 0.045 1.29 (0.91, 1.84) 0.155

Non-current drinker 1.31 (0.66, 2.58) 0.440 1.35 (0.81, 2.25) 0.253

Never drinker 2.52 (1.36, 4.67) 0.003 0.75 (0.36, 1.56) 0.445

Log likelihood -1677 -730

BIC a 3413 1514

Model 2

Cases/non-cases 451/4,342 206/1,847

Consumption volume

g/week (log2) 1.04 (0.97, 1.11) 0.262 0.93 (0.85, 1.02) 0.145

Consumption category

Current drinker (reference)

Infrequent drinker 1.23 (0.85, 1.78) 0.279 1.43 (0.95, 2.13) 0.083

Non-current drinker 1.04 (0.49, 2.20) 0.923 1.51 (0.85, 2.67) 0.160

Never drinker 1.06 (0.50, 2.22) 0.880 0.73 (0.33, 1.65) 0.456

Log likelihood -1158 -478

BIC a 2502 1123

Men Women

Model 1 reported the dose-response relationship between the volume alcohol consumption and 

T2DM following adjustment for consumption category. Model 2 included additional adjustment 

for BMI, date of birth, employment status, ethnicity, family history of T2DM, occupational grade, 

physical activity and smoking status. Ethnicity was derived from responses at waves one and five. 
aBayesian information criterion.



Chapter 9: Longitudinal alcohol consumption and the risk of T2DM  

249 
 

9.5.4 Shared random effects model 

9.5.4.1 Intercept versus the current value 

Using the same best-fitting trajectories as shown in Figure 9.3, the multivariable-adjusted risk of 

T2DM per two-fold increase in the intercept and current values of alcohol consumption were 

estimated in separate models for each sex (Table 9.5). Intake predicted at the age of 39.6 years 

was associated with little change in the risk of T2DM among men (HR 0.98, 95% CI 0.92-1.05), 

while a two-fold increase in the current value of alcohol consumption was associated with a non-

significant 5% increase in risk (HR 1.05, 95% CI 0.97-1.14). Among women, both the intercept 

and current values of alcohol consumption were associated with non-significant reductions in 

risk, though with an effect strongest according to the intercept parameterisation.  

Table 9.5 Multivariable-adjusted relationship between intercept and current value parameterisations 
of average weekly volume of alcohol consumption and the risk of T2DM, stratified by sex. Shared 
random effects survival analysis, observed data. 

 

Parameterisation HR (95% CI) p-value HR (95% CI) p-value

Intercept value

Consumption volume

g/week (log2) 0.98 (0.92, 1.05) 0.628 0.89 (0.79, 1.00) 0.054

Consumption category

Current drinker (reference)

Infrequent drinker 1.03 (0.71, 1.50) 0.868 1.29 (0.83, 1.99) 0.259

Non-current drinker 0.84 (0.43, 1.66) 0.619 1.33 (0.71, 2.50) 0.368

Never drinker 0.82 (0.40, 1.68) 0.588 0.63 (0.26, 1.55) 0.315

Log likelihood -38234 -15907

BIC a 76703 32026

Current value

Consumption volume

g/week (log2) 1.05 (0.97, 1.14) 0.189 0.92 (0.81, 1.06) 0.244

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.32 (0.86, 2.02) 0.209 1.37 (0.83, 2.28) 0.217

Non-current drinker 1.14 (0.55, 2.39) 0.725 1.45 (0.73, 2.90) 0.289

Never drinker 1.14 (0.53, 2.44) 0.741 0.69 (0.27, 1.77) 0.443

Log likelihood -38233 -15908

BIC a 76701 32029

Men (n=4,793) Women (n=2,053)

All models included adjustment for consumption category as well as BMI, date of birth, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity and 

smoking status. Ethnicity was derived from responses at waves one and five. aBayesian 

information criterion.
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Table 9.6 reports the same two parameterisations but included concurrently within single sex-

specific models. After adjusting for the current value of alcohol consumption, a two-fold 

increase in the intercept was associated with a statistically significant 20% (HR 0.80, 95% CI 0.69-

0.92) reduction in risk among men and a 36% (HR 0.64, 95% CI 0.43-0.97) reduction among 

women. By contrast, when holding intercept values constant, a two-fold increase in the current 

value of alcohol intake was associated with a statistically significant 35% increase in risk (HR 

1.35, 95% CI 1.12-1.62) among men and a 47% increase in risk among women (HR 1.47, 95% CI 

0.94-2.31). No differences in goodness of fit were observed between parameterisations. 

After adjustment for the intercept and current values of alcohol consumption, risks were 

elevated at any age among all heterogeneous non-drinking categories except for female never 

drinkers, for whom a non-significant reduction in risk was apparent relative to pooled current 

drinkers (HR 0.82, 95% CI 0.31-2.18). 

Table 9.6 Multivariable-adjusted associations between conditional intercept and current value 
parameterisations of average weekly volume of alcohol consumption and the risk of T2DM, stratified 
by sex. Shared random effects survival analysis, observed data. 

 

Parameterisation HR (95% CI) p-value HR (95% CI) p-value

Intercept value

Consumption volume

g/week (log2) 0.80 (0.69, 0.92) 0.002 0.64 (0.43, 0.97) 0.034

Current value

g/week (log2) 1.35 (1.12, 1.62) 0.001 1.47 (0.94, 2.31) 0.091

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.56 (1.00, 2.45) 0.052 1.74 (0.99, 3.06) 0.053

Non-current drinker 1.61 (0.73, 3.55) 0.242 1.87 (0.88, 3.99) 0.104

Never drinker 1.43 (0.63, 3.24) 0.397 0.82 (0.31, 2.18) 0.692

Log likelihood -38228 -15905

BIC a 76700 32032

Men (n=4,793) Women (n=2,053)

All models included adjustment for consumption category as well as BMI, date of birth, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity and 

smoking status. Ethnicity was derived from responses at waves one and five. aBayesian 

information criterion.
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9.5.4.2 Reference category 

When the separate survival models reported in Table 9.5 were re-run without adjustment for 

the differences in risk among heterogeneous non-drinking groups, little change in risk estimates 

was observed among men, while reductions in risk among women were increased. For instance, 

compared to a non-significant 8% (HR 0.92, 95% CI 0.81-1.06) reduction in risk per two-fold 

increase in the current value of alcohol intake after adjustment for consumption category, 

results in Table 9.7 show a significant 13% (HR 0.87, 95% CI 0.81-0.89) reduction in risk. 

Table 9.7 Multivariable-adjusted relationship between intercept and current value parameterisations 
of average weekly volume of alcohol consumption and the risk of T2DM, stratified by sex and without 
adjustment for alcohol consumption category. Shared random effects survival analysis, observed data. 

 

9.5.4.3 Sick quitter effects 

The linear trajectory on the log2 scale was flat over time among men, falling by 0.2% (p=0.894) 

per decade. By contrast, female consumption fell by an average 3.1% (p=<0.001) per decade. 

Table 9.8 reports the multivariable-adjusted association between differences in these rates of 

change and the risk of T2DM, after adjustment for past and current alcohol consumption.  

Among both sexes, a 5% increase in the decennial rate of change was associated with a slight 

increase in the risk of T2DM (men: HR 1.12, 95% CI 0.59-2.10; women: HR 1.11, 95% CI 1.01-

1.62). By contrast, a 5% reduction in the rate of change was associated with a small decrease in 

Parameterisation HR (95% CI) p-value HR (95% CI) p-value

Intercept value

Consumption volume

g/week (log2) 0.99 (0.94, 1.04) 0.569 0.86 (0.79, 0.93) <0.001

Log likelihood -38551 -16088

BIC a 77308 32361

Current value

Consumption volume

g/week (log2) 1.02 (0.97, 1.08) 0.358 0.87 (0.81, 0.95) 0.001

Log likelihood -38551 -16089

BIC a 77307 32364

Men (n=4,793) Women (n=2,053)

All models included adjustment for BMI, date of birth, employment status, ethnicity, family history 

of T2DM, occupational grade, physical activity and smoking status. Ethnicity was derived from 

responses at waves one and five. aBayesian information criterion.
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the risk of T2DM among both sexes (men: HR 0.89, 95% CI 0.46-1.73; women: HR 0.97, 95% CI 

0.60-0.99).  

Table 9.8 Multivariable-adjusted relationship between the rate of change in the average weekly volume 
of alcohol consumption and the risk of T2DM, stratified by sex. Shared random effects survival analysis, 
observed data. 

 

9.6 Summary of findings 

This chapter aimed to investigate the merit of utilising parameterisations of the longitudinal 

trajectory conventionally overlooked by existing survival analyses, and establish whether 

participants with downward trajectories of alcohol consumption represent a distinct group of 

sick quitters at elevated risk of T2DM. 

Despite adopting a different timescale, results from the conventional survival models reported 

in Table 9.2 are consistent with the meta-analysis reported in Chapter 3, whereby consumption 

predicted at 39.6 years of age was associated with reductions in risk only among women. When 

the dose-response relationship was instead modelled according to the current value of 

Parameterisation HR (95% CI) p-value HR (95% CI) p-value

Intercept value

Consumption volume

g/week (log2) 0.48 (0.24, 0.93) 0.030 0.54 (0.22, 1.33) 0.179

Current value

Consumption volume

g/week (log2) 2.45 (1.23, 4.88) 0.010 1.80 (0.73, 4.45) 0.202

Slope

5% increase in the rate of change

g/week (log2) 1.12 (0.59, 2.10) 0.733 1.11 (1.01, 1.62) 0.897

5% decrease in rate of change

g/week (log2) 0.89 (0.46, 1.73) 0.733 0.97 (0.60, 0.99) 0.897

Log likelihood -38282 -15917

BIC a 76808 32056

Men (n=4,793) Women (n=2,053)

All models included adjustment for consumption category as well as BMI, date of birth, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity and 

smoking status. Ethnicity was derived from responses at waves one and five. aBayesian information 

criterion.
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consumption, female reductions in risk remained present but were of a smaller magnitude 

regardless of the method used (Tables 9.3 to 9.5).  

In order to establish which of these two different dimensions of the longitudinal trajectory might 

be the most important for estimating T2DM risk, a shared random effects model was 

constructed that modelled both parameters concurrently (Table 9.6). After adjusting for 

differences in the current volume of intake, a two-fold increase in alcohol consumption at the 

intercept was associated with sizeable reductions in T2DM risk. Conversely, when adjusting for 

differences in intercept values, higher current values of consumption were associated with a 

greater risk of T2DM. A sensitivity analysis that excluded adjustment for consumption category 

indicated more pronounced reductions in risk among women for both parameterisations of 

alcohol consumption (Table 9.7). 

Finally, to determine whether participants who decreased their consumption over time 

represented a group of ‘sick quitters’ who may have attenuated their intake owing to having 

manifested symptoms associated with an elevated risk of T2DM, a shared random effects model 

was constructed that modelled the effect of differences in rate of change independent of past 

and current consumption (Table 9.8). Although men and women who decreased their 

consumption at a faster rate appeared to show slightly lower risks of T2DM, associations were 

not statistically significant.  

9.7 Limitations 

The dose-response relationship between the weekly volume of alcohol consumption and the 

risk of T2DM was estimated by linking longitudinal and survival processes via a range of 

increasingly complex methods. An alternative approach considered was to jointly model both 

processes with trajectories of alcohol consumption captured via latent classes.428,429 Rather than 

treating participants as a homogenous group by estimating participant-specific slopes 

constrained according to the same longitudinal function, the joint latent class approach instead 

treats the population as heterogeneous and thus constituted of multiple disparate trajectory 

profiles, such as those illustrated in Figure 3.17. Using this approach, participants are divided 

into a finite number of latent sub-groups, with their membership defined according to a 

categorical latent variable that can then be included within a survival sub-model.428 As each 

latent class represents a specific average trajectory, corresponding risk estimates can be used 

to ascertain the effect of a particular drinking typologies upon the risk of T2DM, such as a pattern 

of stable moderate consumption. In this sense, a joint latent class model can offer an 

interpretive benefit over a shared random effects model.  
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However, the joint latent class approach is subject to its own limitations.428 As described 

elsewhere, the composition of distinct latent classes is in part dependent upon population 

heterogeneity or, more specifically, the degree of longitudinal variability in a given variable.259 

Thus, if most participants within a cohort exhibit similar consumption trajectories over time, the 

majority will be categorised into a single latent class with no resulting capacity for exploring 

differences in risk according to heterogeneous trajectories of clinical interest. This particular 

shortcoming has been found to apply to the Whitehall II dataset, with heterogeneous non-

drinking groups pooled with light drinkers, and heavier drinkers combined with more moderate 

users of alcohol.430,431 Such groupings highlight the arbitrary and potentially non-informative 

nature of statistically-derived latent classes, and indicate that joint latent class models applied 

to Whitehall II data for the exploration of T2DM risk were likely to insufficiently disaggregate 

heterogeneous consumption categories, thereby falling foul of the same misclassification errors 

present in analytic methods conventionally applied in epidemiologic research. In addition, by 

modelling heterogeneity in longitudinal consumption solely through the derivation of latent 

categories, it is not possible to explore the relationship between different dimensions of such 

heterogeneity and T2DM risk, such as the rate of change or deviation from the mean 

trajectory.422 It was for these reasons that a shared random effects approach was chosen. 

In contrast to the majority of previous studies, which report age-adjusted risk estimates with a 

time-to-event metric, the analyses reported in this chapter used age as the timescale of interest 

due to both the incidence of T2DM and volume of alcohol consumption operating as a function 

of age as opposed to the time and length of participation.419,420 Results derived from models in 

this chapter and those reported elsewhere thus may not be directly comparable. To explore how 

results may have differed according to the choice of timescale, post-hoc sensitivity analyses 

were run that reproduced the shared random effects models reported in Tables 9.5 and 9.6 but 

using a conventional time-to-event timescale. With the intercept and current value 

parameterisations modelled separately, estimates remain of the same direction and 

approximate magnitude, with reductions in risk continuing to be most pronounced among 

women (Appendix 9.5). When both parameters were estimated concurrently, as per Table 9.6, 

both parameterisations remained statistically significant, with the same differential dose-

response relationships still reported (Appendix 9.6). These sensitivity analyses affirm that similar 

conclusions are drawn irrespective of the choice of timescale. Specifically, that conventional 

approaches may oversimplify the relationship between alcohol and T2DM risk through a failure 

to consider changes in alcohol consumption across the life course.  
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Utilising an age-based timescale within a shared random effects framework should permits the 

calculation of dose-response relationships according to intakes at specific ages that may be of 

utility to policymakers or clinicians. This is achieved by applying a lag effect to the current value 

parameter, whereby the risk of T2DM at age t is calculated according to the value of the 

longitudinal trajectory at t-c, where c is the lag of interest.422 Unfortunately, the -stjm- package 

still in the process of being developed, with such functionality is not yet available. As a result, 

risks reported Chapter 9 were limited to alcohol consumption at the intercept (40 years of age) 

and the current value (a mean 62 years of age). Although possible to rescale the age variable 

such that the intercept intersects age at a point in the life course that may be of greater 

interested to policymakers, such as the minimum legal drinking age, such a model would be 

required to extrapolate the longitudinal trajectory far beyond the period observed. The validity 

of any resulting estimates would thus be questionable given that the functional form of the 

longitudinal trajectory between middle age and later life was unlikely to hold when extended to 

a period such as young adulthood, which is marked by pronounced elevations in consumption 

from very low volumes.259,266  

All reported models assumed a linear dose-response relationship between the volume of alcohol 

consumption and the risk of T2DM. Such an assumption was not consistent with the non-linear 

dose-response curve reported in Chapter 3. However, as indicated in Chapter 7, the positive 

skewness and low average volume of alcohol consumption within the Whitehall II cohort were 

such that it may not have been possible to detect non-linear dose-response relationships, such 

as increases in risk at higher intakes. To explore the possibility that a non-linear dose-response 

relationship may be present between an alternative parameterisation of alcohol consumption 

and T2DM risk, fitted values from the two-stage models reported in Table 9.4 were transformed 

according to a restricted range of fractional powers, as detailed in Section 3.2.4.1. No 

improvements in BIC were identified for any non-linear dose-response association, relative to 

the linear model. As a result of such a limitation, caution should be applied when interpreting 

the linear dose-response coefficients and seeking to extrapolate them to higher volumes of 

drinking. Moreover, from a public health perspective, while higher volumes of alcohol 

consumption at the intercept appear associated with reductions in T2DM risk among both sexes 

after adjustment for consumption later in the life course (Table 9.6), it should be borne in mind 

that drinking may still be associated with a heightened risk of other health conditions even at 

relatively low volumes.432 
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Although little difference was evident between coefficients reported for models applied to the 

observed data and those that accounted for item non-response on covariates, all models were 

restricted to individuals free of missing alcohol consumption and diagnosis data at wave three. 

As reported in Chapter 6, participants with unit non-response across ≥4 waves of follow-up 

(Table 6.5) or item non-response at any point during the study (Table 6.7) exhibited a lower 

volume of alcohol consumption and worse metabolic risk profile at the beginning of the study 

than those with observed data. There was thus the possibility that risks associated with lower 

volumes of alcohol may have been underestimated. 

9.8 Discussion 

Analyses reported in Chapter 3 and Chapter 7 both indicate a disparity in the dose-response 

relationship between men and women, with reductions in risk specific to female participants. 

When the dose-response relationship was parameterised according to drinking at the intercept, 

two-fold increases in the weekly volume of alcohol consumption were associated with a null 

effect among men and a borderline significant 11% reduction in risk among women (Table 9.5), 

consistent with earlier findings.  

Capitalising upon the flexibility afforded by shared random effects models, the relationship 

between intake at the intercept and T2DM risk was recalculated with adjustment for the current 

value of consumption (Table 9.6). Here, two-fold increases in the intercept were associated with 

significant reductions in risk in both sexes, but with the magnitude of reduction remaining 

greatest among women (men: 20%; women: 36%). By contrast, when holding the intercept 

constant, increases in the current volume of consumption were marked by sizeable increases in 

risk (men: 35%; women: 45%). With this same disparity in effect found to be apparent when 

shared random effects models were recalculated based on a time-to-event as opposed to an 

age-based timescale (Appendix 9.6), there was thus an indication that both parameterisations 

of the longitudinal trajectory exhibit statistically independent and divergent relationships with 

T2DM risk. Additionally, that conventional survival analyses which adjust for age and rely upon 

a single measurement of alcohol consumption fail to report important differences in the dose-

response relationship across the adult life course.  

Given a mean age of 62 years at the time of diagnosis, and a median follow-up of 20 years from 

the intercept, the results suggest that increases in risk associated with higher volumes of 

consumption may be specific to intake at older age. Such an effect would be in accordance with 

studies that report age-related impairments to the alcohol metabolism196,197,198,199 and 

consequent increases in length of exposure to higher concentrations of pro-inflammatory 
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metabolites such as acetaldehyde and acetate.200,201 Unfortunately, although interventional 

studies have investigated the relationship between alcohol consumption and a range of 

inflammatory biomarkers, the number of studies is small, methods are heterogeneous and 

pooled effects statistically insignificant.118 While a J-shaped association was estimated between 

alcohol consumption and CRP in an analysis based on data from 22 Mendelian randomisation 

studies,131 estimates were not disaggregated by age group. As such, it was not possible to state 

conclusively whether alcohol may differentially affect the concentration of inflammatory 

biomarkers according to the age of participants. Although evidence concerning the 

inflammatory pathway is currently tenuous, results in Table 9.6 nonetheless allude to the 

possibility that any advantageous biological effects of alcohol consumption, such as the linear 

increases in HDL concentration reported by interventional studies,117,118,119 may be outweighed 

in later life by heightened inflammatory responses following age-related impairments to the 

alcohol metabolism. 

This hypothesis was further substantiated by a post-hoc analysis, which estimated the effect of 

differences in the longitudinal trajectory after adjusting solely for drinking at the intercept 

(Appendix 9.7). Relative to the mean slope, a 5% decrease in the rate of change was associated 

with significant reductions in the risk of T2DM among both sexes (men: HR 0.42, 95% CI 0.29-

0.61; women: HR 0.77, 95% CI 0.63-0.94). These reductions in risk may have been a consequence 

of participants with faster longitudinal declines in alcohol consumption having consumed 

alcohol in lower volumes during the sensitive period of old age, relative to those who decreased 

their intake at the average rate.  

Adults who reduce their intake over time are typically posited to represent a group of individuals 

who attenuate their drinking owing to ill-health,136,138 with a number of studies linking the onset 

of poor health to a cessation of drinking144,145,146 or a reduction in the frequency of 

consumption.418 In an effort to isolate the relationship between differences in the rate of change 

and T2DM risk, analyses were undertaken that reported a slope coefficient following adjustment 

for past and current intake (Table 9.8). Among both sexes, participants who reduced their 

alcohol consumption at a faster rate than the mean experienced a lower risk of T2DM, though 

risk estimates were non-significant. Accordingly, the fully-adjusted model failed to corroborate 

the presence of a sick quitter effect, whereby participants with a faster rate of decline would 

instead be expected to report a higher risk of T2DM, independent of the volume consumed. 

It was possible that a sick quitter effect was lost as a consequence of the diverse reasons for 

which study participants appear to attenuate their alcohol consumption. For instance, while 
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previously published analyses of Whitehall II data indicate that around 21% of men and 22% of 

women who reduced their intake did so as a direct consequence of illness or pharmaceutical 

contraindication, a far higher proportion reduced their drinking as a health precaution (men: 

45%; women: 34%), with others doing so for reasons as broad as a reduction in opportunities 

for social drinking, an effort to save money, pressure from family and friends and a history of 

alcohol misuse.408 Elsewhere, an analysis of longitudinal data from the Health and Retirement 

Study reported differences in longitudinal trajectories according to a range of socio-economic 

factors, with greater affluence and a higher frequency of socialising all associated with increased 

probabilities of an upward drinking trajectory.289 Other studies report similar findings, with low 

incomes433,434,435 and low education435 associated with reductions or steeper declines in the 

volume or frequency of alcohol consumption, suggesting that disposable incomes and social 

networks may affect drinking behaviours other than just the onset of poor health. Although 

associations have also been found between drinking trajectories and retirement, effects appear 

to vary according to differences in occupational drinking cultures.435 While differences in 

consumption by these socio-economic factors could feasible be a consequence of correlations 

between socio-economic status and health,436 effects were robust to adjustment for illness and 

self-reported health.289,433,434,435 Thus, despite evidence linking decreases in alcohol consumption 

to a decline in health, the determinants of downward trajectories are complex, with health 

protection, family pressures and socio-economic factors all playing a role in determining 

longitudinal drinking patterns.  

As an alternative explanation for the absence of an increased risk among participants with faster 

rates of decline, it was possible that selection bias may have been a factor. Specifically, 

participants who were experiencing a decline in health status owing to issues associated with a 

heightened risk of T2DM, such as such as obesity or hypertension, may have chosen to withdraw 

themselves from the study. In doing so, sampled participants with downward trajectories would 

disproportionately represent those who decreased their consumption due to factors not 

associated with an increased T2DM risk. 

In summary, the results reported in this chapter appear to indicate that conventional survival 

analyses may provide too simplistic a picture of the relationship between alcohol consumption 

and the risk of T2DM. When intercept and current values of alcohol intake were estimated 

concurrently, disparate dose-response associations were identified. With age used as the 

timescale, there was an indication that reductions in risk associated with alcohol consumption 

in midlife may be countered by a greater sensitivity to alcohol in older age. In the absence of 
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more robust evidence concerning the validity of putative pathways by which alcohol may reduce 

the risk of T2DM, it would be unwise to recommend that non-drinking adults begin consuming 

alcohol, especially if such individuals abstained owing to ill-health, pharmaceutical 

contraindication or a history of alcohol misuse. Furthermore, with higher volumes of alcohol 

consumption associated with an increased risk of T2DM with advancing age, and relatively 

moderate volumes in midlife associated with reductions in risk, it would be a reasonable 

precaution to recommend a general attenuation to the volume of consumption among drinkers.  
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10 Discussion  

10.1 Research questions 

Previous meta-analyses suggest that moderate alcohol consumption may reduce the risk of 

T2DM, with the latest publication at the time of commencing this project having reported a J-

shaped association and a peak reduction in risk at around 22-24 g/day among both sexes, 

relative to quasi-never drinkers.10 When this meta-analysis was updated through the inclusion 

of 21 studies that were either newly published or provided updated data with longer periods of 

follow-up or improved confounder adjustment, significant differences in dose-response were 

found between men and women. As reported in Chapter 3, the most up-to-date observational 

data suggest that any reduction in risk may actually be specific to women, peaking among those 

that consume an average 35 g/day (HR 0.66, 95% CI 0.55-0.78).  

However, when constituent studies were investigated in more detail, a series of methodological 

flaws were identified that may undermine the validity of any inference drawn from this result, 

including a failure to account for differences in risk among heterogeneous non-drinkers and 

limited consideration as to the effect of longitudinal changes in alcohol consumption upon the 

dose-response relationship reported. 

As a result of such observations, a number of primary aims were formulated: 

1. Determine the degree to which categories of alcohol consumption risked being subject 

to misclassification error as a result of longitudinal changes in alcohol consumption. 

2. Describe differences in the mean volume of alcohol consumption over the life course 

according to T2DM diagnosis. 

3. Formally explore the utility of more advanced survival models in developing a better 

understanding of the relationship between alcohol consumption and T2DM. 

Findings from each resulting analysis are summarised in the following section. 

10.2 Summary of findings 

10.2.1 Misclassification error 

Although analyses of the relationship between alcohol consumption and T2DM have 

conventionally defined intake according to a single measure as reported at baseline, longitudinal 

data from multiple cohort studies have shown that alcohol consumption varies across the life 

course.259 As a consequence of such changes, there was a risk that categories of alcohol 



Chapter 10: Discussion  

263 
 

consumption defined in the existing literature may have been subject to misclassification error, 

complicating interpretations of associated risk estimates. To provide an indication as to how any 

misclassification error might be distributed across baseline categories, mixed effects models 

were constructed to plot the mean longitudinal trajectory of alcohol consumption within a series 

of distinct baseline categories. 

When the sex-specific trajectory was stratified in such a manner, marked differences in rates of 

change were apparent over the adult life course captured by Whitehall II (Figure 8.5). While 

consumption among moderate baseline drinkers remained little changed over time, male and 

female participants in the highest categories exhibited a marked decline in drinking with 

advancing age, with gradual increases in consumption among infrequent drinkers. Accordingly, 

depending upon the point in the life course at which baseline categories are defined, moderate 

drinkers may be subject to differential degrees of misclassification error through contamination 

with heavy and infrequent drinkers. Given the longitudinal convergence of baseline 

consumption categories toward moderate volumes, misclassification error may be most 

pronounced in cohorts of older ages. This may go some way toward explaining the less 

pronounced reductions in the risk of CHD409 and all-cause mortality395 reported elsewhere 

among moderate drinkers in older age groups. 

Further stratifying longitudinal trajectories according to the diagnosis of T2DM revealed that the 

risk of misclassification error appeared greatest among men and women who developed the 

condition, with greater rates of change as a function of age than those who were censored 

(Figures 8.10 and 8.11). In particular, consumption among male moderate baseline drinkers 

increased to such a degree as to be markedly higher than originally classified come the time of 

diagnosis. As a consequence, conventional survival analyses may risk overestimating the 

hazardous effects of moderate drinking among men by failing to consider increases to their 

consumption over time. By contrast, while moderate female drinkers who developed T2DM 

instead showed little change in consumption over time, they instead risked being increasingly 

contaminated by infrequent and former heavy drinkers depending upon the point of baseline 

measurement. As such, studies of women with a shorter time to event may underestimate any 

advantageous effects of moderate drinking by giving no consideration to the disparate drinking 

histories of cross-sectionally defined moderate drinkers. 

Longitudinal changes to the volume of alcohol consumption as reported in Chapter 8 help draw 

attention to the risk of misclassification error inherent to conventional survival analyses 

according to the age of participants at baseline and the time to diagnosis. In so doing, Chapter 
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8 highlights the possibility that studies may be improved by analyses that give consideration to 

changes in alcohol consumption across the life course. 

10.2.2 Differences in alcohol consumption according to the diagnosis of T2DM  

Based on the current literature, a number of hypotheses were proposed concerning how the 

mean trajectory of alcohol consumption might differ by T2DM status. These included the 

possibility that the increased risk of T2DM associated with higher volumes of consumption may 

accumulate over time and therefore be indicated by prolonged or permanently elevated intakes 

among participants who developed the condition – particularly among men, for whom 

reductions in risk were not apparent at any level according to the revised and updated meta-

analysis reported in Chapter 3. Alternatively, it was possible that increases or decreases in the 

risk of T2DM might instead be specific to a period of the life course during which sensitivity to 

the effects of alcohol may be elevated. 

While male intake was equivalent around 30 years prior to diagnosis, differences by diagnosis 

category gradually increased over time. At the point of diagnosis or censoring, consumption 

among men that developed T2DM was higher than among those who were censored, with a 

difference equal to around 1.8 pints of 4.0% ABV lager per week on average. With an average 

age at the time of diagnosis of 62 years, male consumption trajectories were most in keeping 

with the second hypothesis: that male sensitivity to the deleterious effects of alcohol 

consumption may be most pronounced later in the life course.  

By contrast, neither hypothesis was supported by results from models applied to women. Rather 

than consumption among those who developed the condition being consistently higher than 

among censored female participants, or highest specifically during the few years preceding 

diagnosis, mean consumption was instead consistently below that of women who did not 

develop T2DM. Such a finding was in conflict with results from the revised meta-analysis in 

Chapter 3, particularly with mean consumption among both groups of women being 

permanently within the threshold at which reductions in risk were reported (Chapter 3).  

At least two reasons for this incongruity were possible. First, the plotting of mean consumption 

trajectories may have masked important differences in the constitution of each female 

trajectory. For instance, the mean trajectory for women who developed T2DM may have been 

comprised not primarily of persistent low volume and therefore lower risk drinkers, but of both 

infrequent and former heavy drinkers who may have attenuated their drinking due to poor 

health prior to study participation. Loosely supporting this, sensitivity analyses that plotted the 
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same trajectories but excluded zero consumption data indicated that transitions to non-drinking 

prior to diagnosis or censoring appeared most common among women who developed T2DM, 

attenuating the difference between the two trajectories (Appendix 8.25). It was therefore 

plausible that women at risk of T2DM tended to drink alcohol in lower volumes or were more 

likely to transition to abstention due to adverse health effects from pre-diabetes or its 

associated risk factors. In this sense, though their volume of drinking was within the range 

associated with a lower risk of T2DM, this reduction in risk may have been offset by risk factors 

unaccounted for in the crude analyses. As an alternative explanation, it was also plausible that 

the absence of trajectories consistent with a priori hypotheses may have been attributable to a 

relatively limited range of alcohol consumption among women, with heavier drinkers being few 

in number. As such, higher-risk heavier drinkers may have been hidden by a vastly greater 

proportion of more moderate female drinkers who developed the condition. 

10.2.3 Importance of different dimensions of the longitudinal trajectory 

10.2.3.1 Intercept versus current consumption 

10.2.3.1.1 Primary findings 

Despite marked changes to the volume of drinking across the life course, and apparent 

differences in longitudinal alcohol consumption among men by diagnosis status, survival 

analyses have conventionally parameterised the dose-response relationship according to just a 

single cross-sectional measurement obtained at baseline. A final series of analyses was thus 

undertaken to formally explore the appropriateness of limiting the parameterisation of alcohol 

consumption in such a fashion. 

To achieve this, shared random effects models were constructed that calculated the dose-

response relationship according to whether drinking was defined at the intercept (40 years) or 

the time of diagnosis (mean 62 years of age), with a further analysis undertaken to model both 

parameters concurrently so as to establish the relationship of each parameter with T2DM after 

accounting for future or prior drinking. By using age as the timescale, such analyses also 

permitted some inference to be made as to differences in the dose-response relationship 

according to the age at which alcohol was consumed. Although the use of age as a timescale is 

currently rare within the alcohol literature, with only one study selected as part of the revised 

and updated meta-analysis having adopted such an approach,245 sensitivity analyses that used 

the more conventional time-to-event timescale corroborated findings from the primary analyses 

(Appendices 9.5 and 9.6). 
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In models that parameterised the longitudinal trajectory according to consumption at the 

intercept, results were in keeping with those from the revised and updated meta-analyses 

reported in Chapter 3, whereby reductions in risk were specific to female drinkers (Table 9.5). 

When the relationship between the weekly volume of alcohol consumption and T2DM risk was 

instead parameterised according to the current value of alcohol consumption, reductions in risk 

remained among women but were attenuated in magnitude (Table 9.5). However, when the 

dose-response relationship was calculated between the intercept and T2DM risk following 

adjustment for consumption later in the life course, significant reductions in risk were apparent 

among both sexes, with the magnitude of reduction still greatest among women, at 36% per 

two-fold increase in consumption versus 20% among men (Table 9.6). By contrast, when the 

current value of consumption was modelled after holding constant the volume of drinking at the 

intercept, increased risks of T2DM were evident among both sexes. Such a finding confirms that 

both parameterisations exhibit statistically independent and divergent relationships with T2DM 

risk, and thereby suggests that conventional survival analyses fail to capture differences in dose-

response across the life course due to their use of a single baseline measure. 

That risks associated with higher volumes of consumption appeared more pronounced with 

advancing age was an effect in accordance with findings from Chapter 8 and consistent with 

studies that report an age-related deterioration to the alcohol metabolism.196,197,198,199 While 

such deterioration may to individuals of a more advanced age experiencing longer periods of 

exposure to higher concentrations of pro-inflammatory metabolites such as acetaldehyde and 

acetate,200,201 insufficient evidence is currently available to substantiate a dose-response effect 

of alcohol consumption upon inflammatory biomarkers, or how any such effect might operate 

differentially across the life course.  

10.2.3.1.2 Possible explanations for sex-specific dose-response effects 

Differential biological pathways 

Analyses undertaken in Chapters 3, 7 and 9 all report reductions in the risk of T2DM as being 

either specific to or most pronounced among women when defined at baseline, even following 

adjustment for consumption at the time of diagnosis. The reproducibility of this difference lends 

credence to the possibility that putative biological pathways may operate differently between 

men and women. However, of the studies available, little evidence of a sex interaction is 

currently apparent. While there is some suggestion from interventional studies that acute 

alcohol exposure may elicit a greater increase in insulin sensitivity among women than men, 

such a disparity was no longer statistically significant following the exclusion of a study that 
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represented a primary source of between-study heterogeneity.112 Although studies investigating 

the effect of alcohol upon HDL concentration are far greater in number, no sex-specific effects 

have been identified across interventional118 or Mendelian randomisation studies.85 Similarly, 

there is no apparent difference in CRP concentration among men and women sampled across 

42 Mendelian randomisation studies,85 while a meta-analysis of the few interventional studies 

investigating alcohol and inflammatory markers reported no sex interaction.118 Though possible 

that putative biological mechanisms may indeed operate differentially between men and 

women, robust supporting evidence is lacking.  

Differential drink preference 

Alternative explanations considered included sex-specific differences in drink preference. While 

current evidence tends to indicate greater reductions in risk among study participants who 

consume wine,238,246,398 no such effect appeared evident within the Whitehall II cohort, with no 

difference in dose-response found by drink type within preliminary conventional analyses (Table 

7.6). Although the magnitude of reductions in risk appeared greatest for beer consumption, 

current evidence concerning pathways between beer-specific compounds any anti-

inflammatory response was only available from a small number of in vitro399 and in vivo animal 

studies.400 Given its potency, it seems more likely that the inflammatory effects of ethanol may 

far outweigh any anti-inflammatory effects of drink-specific compounds.282 

Differential consumption patterns 

An alternative hypothesis concerned the possibility that female drinkers within the cohort were 

more likely to spread their weekly volume of alcohol consumption over a greater number of 

days, with a larger proportion of men being episodic heavy drinkers. Such an assertion was 

mooted following research indicating that reductions in the risk of T2DM and other vascular 

events may be lowest among regular moderate drinkers,95,97,240,244 with elevated risks most 

apparent among binge and episodic heavy drinkers,96 244 even if binge drinkers otherwise 

consume alcohol at moderate volumes the majority of the time.268 When continuous weekly 

alcohol consumption data were modelled in Chapter 7 with an interaction according whether 

participants consumed alcohol on a daily or non-daily basis, interaction terms were statistically 

insignificant for both sexes (Table 7.5). It was likely that the absence of a statistically significant 

interaction was attributable to Whitehall II volume and frequency data being insufficient to 

explicitly identify episodic heavy drinking – the specific characteristic most strongly associated 

with heightened risks relative to regular moderate drinking. However, even were such variables 

available, it was possible that the number of episodic heavy drinkers may have been insufficient 
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to detect an interaction, with both excessive consumption and binge drinking most prevalent 

within lower socio-economic groups396,397 and the Whitehall II being skewed toward higher levels 

of socio-economic status. 

Interaction with sex hormones 

A final alternative hypothesis pertains to the possibility that sex hormones may play a role in 

modifying the effect of alcohol upon T2DM risk. To date, two hormonal biomarkers have been 

implicated as modifiers of T2DM risk: estradiol, a female sex hormone, and SHBG, a protein 

involved in the transport of sex hormones. Although results pooled from multiple case-control 

studies have indicated no difference between men and women in the concentration of estradiol 

by diagnosis status, women who develop T2DM showed lower concentrations of SHBG while 

men displayed no difference in concentration by diagnosis status.273 Unfortunately, in addition 

a lack of any clear pathway by which factors such as SHBG may modify T2DM risk,273 research 

concerning a sex-specific effect of alcohol consumption upon hormone transport activity is 

lacking and almost entirely cross-sectional.  

Summary 

Current research is insufficient to draw any firm conclusions as to why female drinkers appear 

to experience the greatest reduction in the risk of T2DM. In the absence of further and more 

robust analyses concerning sex differences in the effects of alcohol consumption upon putative 

biological pathways, disparities in consumption pattern are perhaps the most likely 

determinant, with data from UK-based studies indicating a greater prevalence101 and 

probability269 of episodic heavy drinking among men.  

Whatever the precise reason for differences in dose-response between men and women, it is 

clear from more advanced survival analyses that the association between alcohol consumption 

and T2DM risk is likely to be more complex than captured from conventional survival analyses, 

which fail to consider differences in dose-response across the adult life course.  

10.2.3.1.3 Effect of abstention category upon dose-response 

Criticism has been levelled at the use of pooled non-drinkers as a reference group, with 

reductions in risk among current drinkers purported to be artificially increased given its inclusion 

of former drinkers predisposed to an increased risk of negative health events.136,137 In response, 

the revised and updated meta-analysis reported in Chapter 3 included sex-adjusted dose-

response curves stratified according to whether selected studies utilised a pooled non-drinking 

or strictly-defined never drinking abstention category. The dose-response relationship differed 
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significantly according to the choice of abstention reference category, with reductions in risk 

most pronounced among studies that calculated risks relative to pooled non-drinkers (Figure 

3.5). Such a finding is in keeping with studies of alcohol consumption and all-cause mortality, 

which report attenuated reductions in risk among current drinkers when former drinkers are 

excluded from the abstention reference category.136,147,148 

In Chapter 7 (Appendices 7.7 and 7.8) and Chapter 9 (Tables 9.5 and 9.7), sensitivity analyses 

were undertaken which calculated the dose-response relationship with and without adjustment 

for or the inclusion of heterogeneous infrequent and non-drinkers. Results from these analyses 

are in line with the meta-analysis of conventional survival studies, confirming the importance of 

disaggregating heterogeneous non-drinkers and accounting for any effect they may have upon 

the perceived harms or benefits of current drinking. In both chapters, effects were most 

pronounced among women. This nuance may have been attributable in part to the 

multivariable-adjusted risks among male infrequent and non-drinkers drinkers being closer to 

the null than among women (e.g. Table 9.5).  

10.2.4 Sick quitter effects 

Participants who reduce their intake over course of a study have for a long time been referred 

to as ‘sick quitters’ who attenuate their consumption owing to ill-health. 136,138 Such an assertion 

is supported by studies that report a higher prevalence of T2DM risk factors139,140 and poor self-

reported health141,142,143 among former drinkers than current drinkers, with the onset of ill-

health associated with a subsequent cessation from alcohol consumption.144,145,146 However, 

following a piecewise analysis of consumption trajectories prior to and following diagnosis 

(Figure 8.9), downward trajectories were only apparent after the date of diagnosis, suggesting 

that the effect of pre-diabetic symptoms may have been insufficient to elicit a change to drinking 

behaviour. Furthermore, when trajectories were stratified by baseline consumption, downward 

slopes were specific to heavier drinkers and evident regardless of sex or diagnosis status (Figures 

8.10 and 8.11). Such results indicate that any downward trajectories prior to diagnosis may not 

have been a consequence of declines to health status of a kind associated with a heightened 

T2DM risk. 

To explore this formally, shared random effects models were constructed that reported the 

effect of differences in the longitudinal rate of change upon the risk of T2DM after adjustment 

for past and current volume of consumption. As reported in Table 9.8, men and women who 

reduced their alcohol consumption at a faster rate than the sample average experienced a lower 

risk of T2DM, though risk estimates were non-significant. Such a finding appeared contrary to 
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the sick quitter hypothesis. However, it was possible that the presence of a sick quitter effect 

was lost as a consequence of the diverse reasons for which study participants attenuate their 

alcohol consumption, including financial constraints and a decline in opportunities for social 

drinking408 – factors not necessarily associated with T2DM risk. Thus, while some adults who 

reduce their consumption may indeed do so as a result of a deteriorating health status, a 

downward trajectory is not necessarily indicative of a heightened risk of T2DM but may instead 

be part of normal ageing processes. 

10.3 Limitations 

Despite a systematic attempt to describe and mitigate the impact of methodological 

shortcomings within the existing literature, a number of weaknesses remain that may potentially 

have biased or undermined the validity of reported associations.  

Perhaps the primary limitation concerns the variable used to denote the average weekly volume 

of alcohol consumed. Rather than strictly representing each participant’s average weekly intake, 

the variable was derived from questions that referred to the volume consumed during the week 

prior to each interview. It was possible that the volume of alcohol intake as documented during 

the week prior to an interview provided a poor surrogate for true average weekly consumption. 

For instance, heavy drinking during the week prior to interview may not have been indicative of 

a participant’s average weekly consumption throughout a given year, but instead an 

uncharacteristic period marked by a special occasion such as a family member’s birthday or 

wedding. Such a situation would thus have reflected an episodic heavy drinking occasion as 

opposed to a high average weekly volume of alcohol consumption. Unfortunately, episodic 

heavy drinking occasions, as associated elsewhere with a heightened risk of T2DM,96,240,245 could 

not be captured using the volume and frequency variables available within the Whitehall II 

cohort. It was perhaps because of this that interactions between these two drinking dimensions 

were not statistically significant, providing a poor parameterisation of the type of consumption 

pattern most associated with elevated risks of T2DM. The true effect of unobserved episodic 

heavy consumption upon the relationship between the weekly volume of alcohol consumption 

and T2DM risk was thus unknown and dependent upon the distribution of such episodes across 

the volume distribution.  

More useful alcohol consumption data may have been obtained from a graduated frequency 

questionnaire, which ask participants about the frequency with which they typically consume 

alcohol according to a series of pre-defined volumes. Such methods have been found to yield 

higher average volumes of estimated alcohol consumption than quantity-frequency 
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questionnaires,391 and would help with the identification of episodic heavy consumption. The 

identification of such episodes is likely to be critical to providing a more accurate assessment of 

the benefits and risks associated with alcohol consumption.  

Although associations identified within the Whitehall II cohort appear consistent with those 

reported from studies of general population samples, 296 it should nonetheless be noted that the 

relatively low volume of alcohol consumption was such that power to detect increases in the 

risk of T2DM at higher levels of the volume distribution was likely to have been impaired. Thus, 

although the presence of a non-linear dose-response relationship was tested in Chapter 7 as 

part of a conventional survival analysis, the null result was unlikely to have been a consequence 

of a true linear reduction in risk at ever-increasing volumes of alcohol consumption but rather 

an insufficient number of heavier drinkers with which to detect a turning point in the dose-

response relationship. For instance, while point estimates from the meta-analysis in Chapter 3 

indicate that the risk of T2DM becomes elevated among women at volumes >140 g/week, 

relative to pooled non-drinkers, just 152 women within the Whitehall II cohort reported 

consumption anywhere above that level at wave three, with the figure falling to just 105 by wave 

11. 

Another notable limitation concerned the application of imputed data. Firstly, regarding 

imputed values of alcohol consumption, it was not possible to predict never drinking among 

participants with missing alcohol consumption data due to the small number of strictly defined 

never drinkers within the Whitehall II cohort. As such, analyses inclusive of a categorical alcohol 

consumption variable were restricted to participants with observed alcohol consumption data 

only. Given that the median volume of alcohol consumption was lower and the prevalence of 

metabolic risk factors greater at the commencement of the study among participants with unit 

(Table 6.5) or item non-response (Table 6.7) than those with complete-case data, restriction of 

the dataset may have resulted in an underrepresentation of higher-risk light or non-drinkers in 

survival analyses undertaken for Chapters 7 and 9.  

Aside from limitations concerning the use of imputed categories of alcohol consumption, 

constraints of the statistical software are such that it was not possible to utilise imputed T2DM 

and time to event data. As noted above, participants with unit non-response tended to have a 

worse metabolic risk profile at baseline than those with complete-case data. It was therefore 

likely that the incidence of T2DM among the original cohort was underestimated, with analyses 

applied to a healthier sub-sample than originally participated. The precise impact of such 

attrition upon reported dose-response relationships would be dependent upon how unobserved 
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cases were dispersed across the alcohol consumption distribution. For instance, were attrition 

more common among heavier drinkers, then any increased risk associated with higher volumes 

of alcohol intake would have been underestimated. Perhaps as a consequence of the limits 

concerning the imputed data that could be applied, differences in the primary dose-response 

relationship between models applied to the observed and imputed datasets were negligible.  

10.4 Strengths 

A deliberate attempt was made to systematically overcome the limitations inherent to the 

existing body of epidemiological research in the field, with a view to providing a more accurate 

and detailed understanding of the dose-response relationship between alcohol consumption 

and the risk of T2DM.  

Firstly, contrary to the vast majority of current studies, participants with zero consumption were 

disaggregated into heterogeneous infrequent and non-drinking categories, each posited and 

later confirmed to exhibit disparate and usually elevated risks of T2DM, relative to current 

drinkers (Table 9.6). Rather than combining these heterogeneous groups into a single reference 

category, as per convention, risk estimates were instead adjusted for differences in risk between 

heterogeneous non-drinkers. Such an approach is expected to have helped reduce the extent to 

which any reductions in risk reported among current drinkers occurred as an artefactual 

consequence of having compared drinkers against a number of less healthy non-drinkers (Table 

7.2). Such an approach is supported by research elsewhere,136,137,148,437 as well as by results from 

the meta-analysis in Chapter 3, which showed a greater reduction in risk at moderate volumes 

of consumption when former drinkers were included within the abstention reference category. 

In addition, contrary to the minority of current studies to have also distinguished between 

different non-drinking groups,96,219,230,244 never drinkers were not defined according to a single 

self-report of life-long abstention. With longitudinal research elsewhere having reported that 

between 52%,150 67%315 and 87%438 of study participants cross-sectionally defined as never 

drinkers had previously reported drinking at an earlier wave, never drinkers were instead coded 

as those who consistently reported being never drinkers and who declared zero consumption at 

all previous waves, thereby reducing the misclassification of never drinkers. 

This project is the first to report differences in the longitudinal trajectory by T2DM diagnosis, 

highlighting discrepancies in the volume of alcohol consumption and thereby the periods in 

which increases or decreases in risk may most likely be conferred (Chapter 8). The results 

reported in Chapter 9 also represent one of the very few instances in which consideration has 
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ever been given to longitudinal changes in alcohol consumption, with just two previous studies 

known to have documented the risk of T2DM according to temporal variations in 

consumption.153,267 Contrary to the approaches adopted by these two studies, the analyses in 

reported in Chapter 9 estimated the independent dose-response relationship between different 

dimensions of the longitudinal trajectory and T2DM, utilising advanced joint modelling 

techniques that provide more accurate estimates than simpler analytic alternatives.411,412  

10.5 Further research 

Results reported in Chapter 9 indicate that the risks associated with drinking may be especially 

pronounced in older age, potentially countering any reductions in risk conferred earlier in the 

life course. Important now are replication studies designed to establish whether the same dose-

response associations are present in different cohorts. Such research should focus upon the 

analysis of longitudinal datasets with repeated measures of sufficient regularity and covering as 

broad a duration of the adult life course as to model acute fluctuations in dose-response with 

advancing age. In selecting studies for testing reproducibility, a number of other important 

characteristics should be considered given the limitations present within Whitehall II.  

Firstly, because of the narrow range of weekly alcohol consumption reported by Whitehall II 

participants, cohorts should be selected with a greater number of heavier drinkers, providing a 

better capacity for modelling the non-linear associations indicated in Chapter 3. Secondly, with 

apparent differences in dose-response according to whether or not individuals participate in 

binge drinking,94,240,245 and an underestimation of average consumption based on quantity-

frequency questionnaires,391 chosen cohorts should provide more accurate alcohol consumption 

estimates and sufficient detail for identifying episodic heavy drinking occasions. To achieve this, 

studies may benefit from the addition of objective transdermal ethanol sensing as a means of 

monitoring blood alcohol concentrations over extended periods. Such data may prove useful as 

a means of validating the accuracy of survey-based self-reports, adjusting subjectively reported 

consumption data as required.439 Thirdly, to reliably test interactions between the volume of 

alcohol consumption and factors such as episodic heavy drinking, cohorts should be of a size 

sufficient to permit tests of sound statistical power. One future possibility is the UK Biobank, 

which sampled close to 500,000 adults aged 40-69 years by 2010 and is estimated to have 

statistical power sufficient to detect an odds ratio ≥1.3 after just six years of follow-up for 

T2DM.440 

Although reductions in risk appear either specific to or most prominent among female drinkers, 

research concerning sex-specific differences in the action of putative biological pathways is weak 
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and inconclusive. Heterogeneous in design and often conflicting in their conclusions, findings 

are commonly reported by cross-sectional or small-scale interventional studies. Further 

research is required to better understand the dose-response effects of alcohol consumption 

upon hypothesised causal intermediates, including insulin sensitivity, HDL concentration and 

inflammatory response. Such research may benefit from structural equation models designed 

to quantify both the effect of alcohol upon intermediate factors and the effect of changes to 

those intermediate factors upon T2DM risk. At present, no analysis has been published that 

considers the causal pathway in full.  

10.6 Policy implications 

Since at least 2004,441 reviews of the evidence base have reported reductions in the risk of T2DM 

at moderate volumes of regular consumption, with similar findings reported elsewhere for 

vascular conditions ranging from ischaemic heart disease and stroke.442 Although recent meta-

analyses10,84 suggest that that peak reductions in the risk of T2DM may be conferred at volumes 

close to the current recommended limits of 21 units/week among men and 14 units/week 

among women,98 T2DM prevention strategies in the UK give no consideration to the role of 

alcohol, with public health interventions focussing instead upon the impact of other lifestyle 

factors such as diet and physical activity.9 

This omission sits contrary to recommendations by some academics that at-risk patients be 

encouraged to incorporate moderate drinking into their diet,443,444 and the general public 

advised that moderate drinking may afford an overall health benefit,443 even among 

abstainers.445 That such recommendations have yet to be adopted by the UK government 

appears attributable to a lack of consensus amongst epidemiologists regarding the health 

benefits of drinking.170 This lack of consensus stems from series of methodological shortcomings, 

including poor confounder adjustment,139,446 a lack of established biological mechanisms446 and 

the misclassification of drinking categories.446,136,148 

With the benefits of moderate alcohol consumption reported by existing studies likely to have 

been overestimated, and insufficient evidence available to substantiate a clear biological 

mechanism by which alcohol may reduce the risk of T2DM, the appropriateness of using the 

current literature as grounds for recommending a specific volume of moderate drinking either 

at the population level or among at-risk sub-groups is questionable. This is especially so when 

considering the net impact of alcohol consumption, with drinking even at low volumes having 

been associated with increases in the risk of various cancers.432 Indeed there are calls from some 
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quarters that alcohol guidelines should explicitly discourage the drinking of alcohol for perceived 

health benefits.447  

Health policy may need to be more nuanced than these two starkly opposed positions, instead 

advising a general attenuation to the volume of alcohol consumed. Such a position affords two 

benefits. First, regardless of whether alcohol consumption exhibits J-shaped or linear 

associations with assorted non-communicable diseases, the net burden of harms associated 

with alcohol consumption would be lowered through a general reduction in the volume of 

consumption. Second, by avoiding any suggestion that moderate alcohol consumption may 

provide a benefit to health, the danger of inadvertently encouraging abstainers to resume 

consumption would be mitigated. This second point is important given that adults who abstain 

appear to do so owing to previous alcohol abuse problems, existing ill-health, pregnancy or 

contraindication with medication.145,146,408 

Evidence from analyses reported in Chapter 9 suggest that initiatives or policies designed to 

reduce alcohol consumption may need to pay particular attention to older drinkers. Such a focus 

is supported by the Royal College of Psychiatrists, which argues that alcoholism and alcohol-

related harms within older populations are an under-recognised problem within the UK, with 

public health policy giving scant consideration to the risks facing drinkers in older age.448 In 

response to a perceived oversight by policymakers, the Royal College of Psychiatrists has advised 

the introduction of age-specific consumption guidelines as a means of communicating at the 

population level the heightened risks to health experienced by older drinkers, recommending 

no more than 10.5 units/week for persons aged ≥65.448 However, although the implementation 

of an age-specific drinking guidelines for older populations may appear appropriate, such an 

approach should be balanced against the risk of creating a more complex and less unified health 

message.449 With the body of current yet methodologically limited evidence indicating that any 

cardiovascular benefit from drinking may be limited solely to women aged >55 years who 

consume volumes below just 5 units/week, and with the risk of non-vascular conditions 

apparently elevated among both sexes even at low volumes,99 health messages for older adults 

should be no different from those for the general population: that current drinkers should aim 

to reduce the amount they drink, and that non-drinkers should be encouraged to maintain their 

abstinence. 

One notable recommendation from the 2016 Alcohol Guidelines Review was that the alcohol 

consumption guideline for men should be reduced from 21 units/week to 14 units/week.99 Such 

a decision was based on new evidence concerning an increased risk of cancer at low volumes of 
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consumption and the burden of acute alcohol-related harms that appears to disproportionately 

befall men, such as drink-related road traffic collisions. Nevertheless, such a recommendation is 

circumstantially in keeping with results reported throughout this project, which indicate that the 

risk of T2DM may also be greatest among male drinkers, regardless of the age at which alcohol 

is consumed. To date, precise reasons underlying this difference are unclear. Of the various 

possibilities considered, perhaps the most likely factor concerns disparities in drinking pattern 

by sex, with episodic heavy drinking associated with heightened risks for both 

T2DM95,96,97,239,240,244,245 and ischaemic heart disease,268 and such drinking patterns being most 

prevalent among men.101,269 It is therefore reassuring that the 2016 Alcohol Guidelines Review 

explicitly advises against heavy drinking occasions, with the caveat that adults who continue to 

binge drink should at the very least aim to reduce the frequency of such behaviour.99  

While some academics call for the promotion of moderate alcohol consumption among both 

sexes, observational studies indicative of protective effects at moderate volumes of intake are 

methodologically weak, with clear causal mechanisms yet to be clearly established. Pending 

more reliable information concerning the effect of alcohol upon T2DM and a broad range of 

health conditions, it is inappropriate to recommend that adults take up moderate drinking for a 

perceived benefit to health, especially given that individuals who abstain from drinking may do 

so for reasons including a history of addiction, chronic ill-health, pregnancy or pharmaceutical 

contraindication. Instead, current drinkers should be advised to attenuate both their average 

weekly consumption and frequency of episodic heavy drinking as a precaution against risks 

associated with heavy drinking. 
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Appendix 3.2 The Newcastle-Ottawa quality assessment checklist 

NEWCASTLE-OTTAWA QUALITY ASSESSMENT SCALE FOR COHORT STUDIES 

Note: A study can be awarded a maximum of one star for each numbered item within the 

Selection and Outcome categories. A maximum of two stars can be given for Comparability. 

Selection 

1) Representativeness of the exposed cohort 

a) truly representative of the average current drinker in the community *  

b) somewhat representative of the average current drinker in the community * 

c) selected group of users, e.g. nurses, volunteers 

d) no description of the derivation of the cohort 

2) Selection of the non-exposed cohort 

a) drawn from the same community as the exposed cohort * 

b) drawn from a different source 

c) no description of the derivation of the non-exposed cohort  

3) Ascertainment of exposure 

a) secure record, e.g. surgical records * 

b) structured interview * 

c) written self-report, e.g. postal questionnaire 

d) no description 

4) Demonstration that outcome of interest was not present at start of study 

a) yes * 

b) no 

Comparability 

1) Comparability of cohorts on the basis of the design or analysis 

a) study controls for a measure of adiposity * 

b) study controls for any additional factor *  

Outcome 

1) Assessment of outcome  

a) independent blind assessment or objective ascertainment * 

b) record linkage * 

c) self report  

d) no description 

2) Was follow-up long enough for outcomes to occur 

a) yes, at least six years duration * 
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b) no 

3) Adequacy of follow up of cohorts 

a) complete follow up: all subjects accounted for *  

b) subjects lost to follow up unlikely to introduce bias: >5% lost, or description of those lost 

c) follow up rate <95% and no description of those lost 

d) no statement 
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11.2 Appendices for Chapter 6 

Appendix 6.1 Effect of dietary factors upon the alcohol-T2DM relationship 
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Appendix 6.2 Trace plots illustrating convergence on key variables 
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11.3 Appendices for Chapter 7 

Appendix 7.1 Crude Nelson-Aalen cumulative hazard estimate, stratified by sex. Observed 

data. 
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Appendix 7.2 Baseline characteristics of participants free of T2DM at wave three and with 

valid follow-up data, stratified by sex. Imputed data. 
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Appendix 7.3 Crude Nelson-Aalen cumulative hazard estimate, stratified by sex and category 

of average weekly volume of alcohol consumption. Observed data. 
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Appendix 7.4 Crude Nelson-Aalen cumulative hazard estimate, stratified by sex and frequency 

of alcohol consumption. Observed data. 
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Appendix 7.5 Baseline characteristics of participants free of T2DM at wave three and with 

valid follow-up data, stratified by sex and categories of average weekly volume of alcohol 

consumption. Imputed data. 
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Appendix 7.6 Multivariable-adjusted dose response relationship between categories of 

average weekly volume of alcohol consumption and T2DM, stratified by sex. Imputed data. 

 

 

  

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Never drinkersa
(reference) (reference)

Non-current drinkers b 1.26 (0.61-2.64) 0.531 1.12 (0.53-2.39) 0.769

Infrequent drinkers c 0.99 (0.57-1.74) 0.981 1.62 (0.92-2.88) 0.098

0.1-50.0g/week 0.97 (0.57-1.64) 0.905 1.06 (0.59-1.91) 0.845

50.1-100.0g/week 1.03 (0.60-1.76) 0.925 0.86 (0.42-1.73) 0.666

100.1-150.0g/week 1.05 (0.60-1.84) 0.866 0.58 (0.27-1.25) 0.163

>150.0g/weekd 1.01 (0.59-1.73) 0.972 - -

Log likelihood -4733 (-4735, -4731) -1963 (-1964, -1962)

BIC e
9630 (9625, 9634) 4066 (4064, 4068)

Men (n=5,456) Women (n=2,434)

Models adjusted for all  a priori covariates at baseline: age, BMI, employment status, ethnicity, 

family history of T2DM, occupational grade, physical activity, smoking status. Ethnicity was 

derived from responses at waves one and five.
aParticipants who reported no consumption in the past week in waves 1 and 3, no consumption 

in the past year in waves 1 and 3, and stated they had 'always been a non-drinker' in wave 3, the 

first year the always non-drinker variable was available;   bParticipants who reported no 

consumption in the last year but had not 'aways been a non-drinker'; cConsumed alcohol in the 

past year but not in the past week; dAmong women, this category was merged with those who 

reported consuming 100.1-150.0g/week; eBayesian information criterion. Fit statistics refer to 

the mean and range of values reported by the first three imputations.
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Appendix 7.7 Multivariable-adjusted interaction between a continuous measure of average weekly 

alcohol volume and consumption frequency, stratified by sex and excluding non-current and 

infrequent drinkers. Imputed data. 

 

  

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Men (n=4,770)

Dose-response by volume

Per 10 g/week increase 1.00 (0.99-1.01) 0.761 1.00 (0.99-1.01) 0.480

Difference in risk by frequency

Daily - - (reference)

Non-daily - - 0.89 (0.67-1.20) 0.449

Difference in dose-response by 

frequency

Daily - - (reference)

Non-daily - - 1.01 (0.98-1.03) 0.653

Log likelihood -4074 (-4076, -4072) -4074 (-4075, -4071)

BIC a 8267 (8262, 8270) 8283 (8278, 8286)

Women (n=1,814)

Dose-response by volume

Per 10 g/week increase 0.95 (0.92-0.99) 0.021 0.96 (0.91-1.02) 0.156

Difference in risk by frequency

Daily - - (reference)

Non-daily - - 1.06 (0.52-2.17) 0.867

Difference in dose-response by 

frequency

Daily - - (reference)

Non-daily - - 0.95 (0.87-1.05) 0.324

Log likelihood -1095 (-1095, -1095) -1094 (-1094, -1094)

BIC a 2295 (2295, 2295) 2308 (2308, 2309)

Model 1 reported the linear dose-response relationship between volume alcohol consumption 

and T2DM. Model 2 included an interaction term between a continuous measure of volume 

alcohol consumption and whether participants reported drinking alcohol daily or less than 

daily over the year preceding interview. All models adjusted for baseline covariates: age, BMI, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity, 

smoking status. Ethnicity was derived from responses at waves one and five. All  models 

excluded non-current drinkers from the reference level of exposure (0g/week). aBayesian 

information criterion. Fit statistics refer to the mean and range of values reported by the first 

three imputations.

Model 1 Model 2
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Appendix 7.8 Multivariable-adjusted interaction between a continuous measure of average 
weekly volume of alcohol consumption and drinking frequency, stratified by sex and including 
non-current and infrequent drinkers. Observed data. 
 

 

  

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Men (n=4,874)

Dose-response by volume

Per 10 g/week increase 1.00 (0.99-1.00) 0.504 0.99 (0.98-1.00) 0.240

Difference in risk by frequency

Dai ly - - (reference)

Non-dai ly - - 0.86 (0.65-1.14) 0.301

Difference in dose-response 

by frequency

Daily - - (reference)

Non-daily - - 1.00 (0.98-1.03) 0.621

Log likelihood -4177 -4177

BIC a 8473 8489

Women (n=2,094)

Dose-response by volume

Per 10 g/week increase 0.94 (0.90-0.97) 0.001 0.93 (0.86-1.00) 0.055

Difference in risk by frequency

Dai ly - - (reference)

Non-dai ly - - 0.78 (0.35-1.72) 0.536

Difference in dose-response 

by frequency

Daily - - (reference)

Non-daily - - 0.97 (0.88-1.08) 0.536

Log likelihood -1700 -1700

BIC a 3507 3519

Model 1 Model 2

Model 1 reported the linear dose-response relationship between volume alcohol consumption 

and T2DM. Model 2 included an interaction term between a continuous measure of volume 

alcohol consumption and whether participants reported drinking alcohol daily or less than 

daily over the year preceding interview. All models adjusted for baseline covariates: age, BMI, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity, 

smoking status. Ethnicity was derived from responses at waves one and five. All  models 

included non-current drinkers in the reference level of exposure (0g/week).
aBayesian information criterion.
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Appendix 7.9 Multivariable-adjusted interaction between a continuous measure of average 
weekly volume of alcohol consumption and drinking frequency, stratified by sex and including 
non-current and infrequent drinkers. Imputed data. 
 

 

  

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Men (n=5,464)

Dose-response by volume

Per 10 g/week increase 1.00 (0.99-1.01) 0.695 1.00 (0.99-1.01) 0.565

Difference in risk by frequency

Daily - - (reference)

Non-daily - - 0.94 (0.72-1.23) 0.661

Difference in dose-response by 

frequency

Daily - - (reference)

Non-daily - - 1.00 (0.98-1.02) 0.910

Log likelihood -4734 (-4736, -4731) -4734 (-4735, -4731)

BIC a 9588 (9583, 9592) 9605 (9600, 9609)

Women (n=2,437)

Dose-response by volume

Per 10 g/week increase 0.93 (0.90-0.97) <0.001 0.93 (0.86-1.00) 0.039

Difference in risk by frequency

Daily - - (reference)

Non-daily - - 0.81 (0.39-1.67) 0.562

Difference in dose-response by 

frequency

Daily - - (reference)

Non-daily - - 0.95 (0.87-1.05) 0.347

Log likelihood -1964 (-1965, -1962) -1962 (-1963, -1961)

BIC a 4037 (4035, 4039) 4048 (4046, 4051)

Model 1 reported the linear dose-response relationship between volume alcohol consumption 

and T2DM. Model 2 included an interaction term between a continuous measure of volume 

alcohol consumption and whether participants reported drinking alcohol daily or less than 

daily over the year preceding interview. All models adjusted for baseline covariates: age, BMI, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity, 

smoking status. Ethnicity was derived from responses at waves one and five. All  models included 

non-current drinkers in the reference level of exposure (0g/week). aBayesian information 

criterion. Fit statistics refer to the mean and range of values reported by the first three 

imputations.

Model 1 Model 2
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Appendix 7.10 Multivariable-adjusted dose response relationship between categories of 
average weekly volume of alcohol consumption and T2DM, stratified by sex. Hazards were 
permitted to vary as a function of linear time. Observed data. 

 

  

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Risk at baseline

Never drinkersa
(reference) (reference)

Non-current drinkers b 1.83 (0.30-11.24) 0.515 8.41 (0.79-89.64) 0.078

Infrequent drinkers c 0.87 (0.20-3.85) 0.856 11.99 (1.59-90.47) 0.016

0.1-50.0g/week 1.13 (0.29-4.40) 0.864 9.48 (1.23-73.25) 0.031

50.1-100.0g/week 1.44 (0.35-5.86) 0.610 4.28 (0.42-43.71) 0.220

100.1-150.0g/week 0.69 (0.15-3.14) 0.631 2.51 (0.20-30.96) 0.472

>150.0g/weekd 1.34 (0.33-5.50) 0.686 - -

Risk per year increase in follow-up

Never drinkers (reference)

Non-current drinkers 0.98 (0.83-1.14) 0.772 0.84 (0.69-1.01) 0.064

Infrequent drinkers 1.01 (0.89-1.14) 0.906 0.83 (0.71-0.97) 0.017

0.1-50.0g/week 0.98 (0.88-1.10) 0.776 0.83 (0.71-0.96) 0.016

50.1-100.0g/week 0.97 (0.86-1.09) 0.636 0.87 (0.73-1.03) 0.113

100.1-150.0g/week 1.03 (0.91-1.17) 0.592 0.88 (0.72-1.06) 0.185

>150.0g/week 0.97 (0.87-1.10) 0.674 - -

Log likelihood -4162 -1690

BIC e 8647 3657

Men (n=4,874) Women (n=2,094)

Models adjusted for all  a priori covariates at baseline: age, BMI, employment status, ethnicity, 

family history of T2DM, occupational grade, physical activity, smoking status. Ethnicity was 

derived from responses at waves one and five.
aParticipants who reported no consumption in the past week in waves 1 and 3, no consumption 

in the past year in waves 1 and 3, and stated they had 'always been a non-drinker' in wave 3, the 

first year the always non-drinker variable was available;   bParticipants who reported no 

consumption in the last year but had not 'aways been a non-drinker'; cConsumed alcohol in the 

past year but not in the past week; dAmong women, this category was merged with those who 

reported consuming 100.1-150.0g/week; eBayesian information criterion.



Chapter 11: Appendices  

313 
 

Appendix 7.11 Multivariable-adjusted dose-response relationship between categories of 

average weekly volume of alcohol consumption, drink type and T2DM, stratified by sex. 

Imputed data. 

  

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Drink type

Beer (per 10 g/week) 0.99 (0.98-1.00) 0.236 0.85 (0.72-0.99) 0.042

Spirits (per 10 g/week) 1.01 (0.99-1.03) 0.343 0.94 (0.87-1.01) 0.113

Wine (per 10 g/week) 1.00 (0.98-1.02) 0.773 0.95 (0.90-1.01) 0.081

Log likelihood -4509 (-4574, -4378) -1758 (-1759, -1758)

BIC a
8895 (8893, 8897) 3640 (3640, 3641)

Men (n=5,083) Women (n=2,224)

Models reported results adjusted for all  a priori covariates: age, BMI, employment status, ethnicity, 

family history of T2DM, occupational grade, physical activity, smoking status. Ethnicity was derived 

from responses at waves one and five. Models also included variables representing the volume of each 

drink type consumed during the week prior to interview.

aBayesian information criterion. Fit statistics refer to the mean and range of values reported by the 

first three imputations.
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11.4 Appendices for Chapter 8 

Appendix 8.1 Crude sex-specific linear trajectory of mean weekly volume of alcohol 

consumption between the ages of 34-84 years: goodness of fit statistics. Imputed data. 

 

  

Linear mixed models Log-likelihood BICa

Men

Intercept only -232502 (-232763,-232191) 465035 (464414-465557)

Linear mixed model, fixed slopes -232476 (-232731,-232165) 464994 (464371-465504)

Linear mixed model, random slopes -232361 (-232622,-232023) 464786 (464109-465306)

Women

Intercept only -103392 (-103679,-103192) 206814 (206414-207387)

Linear mixed model, fixed slopes -103390 (-103677,-103191) 206820 (206422-207393)

Linear mixed model, random slopes -103355 (-103650,-103150) 206756 (206360-207320)

Fit statistics

aBayesian information criterion. Values refer to the mean and range of fit statistics as reported 

from the first three imputations.
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Appendix 8.2 Crude sex-specific linear and non-linear trajectories of mean weekly volume of 

alcohol consumption between the ages of 34-84 years: results. Imputed data. 

 

Mixed models g/week (95% CI) p-value

Men (n=6,895)

Linear model

Intercept 114.8 (111.3, 118.3) <0.001

Age -3.0 (-4.2, -1.9) <0.001

Non-linear model

Intercept 88.6 (84.2, 93.0) <0.001

Age1 2.5 (2.1, 2.8) <0.001

Age2 -6.1 (-6.8, -6.3) <0.001

Women (n=3,413)

Linear model

Intercept 50.5 (47.6, 53.4) <0.001

Age -0.5 (-1.4, 0.5) 0.352

Non-linear model

Intercept 39.4 (36.1, 42.8) <0.001

Age1 0.8 (0.6, 1.0) <0.001

Age3 -0.4 (-0.5, -0.3) <0.001

Age coefficients refer to the change in the average volume of weekly 

alcohol consumption per 10-year increase in age.
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Appendix 8.3 Crude sex specific trajectories of mean weekly volume of alcohol consumption 

between the ages of 34-84 years: figure. Imputed data. 
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Appendix 8.4 Crude sex-specific linear and non-linear trajectories of mean weekly volume of 

alcohol consumption between the ages of 34-84 years: goodness of fit statistics. Observed 

data. 

  

First-order polynomial models Log-likelihood BICa
Log-likelihood BICa

age-2
-184343 368748 -72549 145156

age-1
-184320 368702 -72538 145133

age-0.5
-184254 368571 -72520 145098

ln(age) -184130 368322 -72496 145049

age0.5
-184072 368206 -72494 145045

age -184042 368146 -72500 145057

age2
-184056 368174 -72493 145043

age3
-184098 368259 -72465 144987

Second-order polynomial models Log-likelihood BICa
Log-likelihood BICa

age-2+age-1
-184343 368717 -72549 145164

age-2+age-0.5
-184342 368757 -72547 145161

age-2+ln(age) -184337 368747 -72543 145152

age-2+age0.5
-184329 368730 -72537 145140

age-2+age -184315 368702 -72529 145125

age-2+age2
-184284 368641 -72514 145095

age-2+age3
-184261 368552 -72503 145073

age-1+age-2
-184320 368712 -72538 145142

age-1+age-0.5
-184313 368699 -72533 145133

age-1+ln(age) -184304 368680 -72528 145123

age-1+age0.5
-184291 368655 -72522 145110

age-1+age -184276 368624 -72514 145096

age-1+age2
-184246 368564 -72501 145068

age-1+age3
-184225 368523 -72491 145050

age-0.5+age2
-184253 368579 -72520 145106

age-0.5+age-1
-184247 368565 -72517 145101

age-0.5+ln(age) -184225 368523 -72508 145083

age-0.5+age0.5
-184207 368487 -72500 145067

age-0.5+age -184190 368452 -72493 145052

age-0.5+age2
-184160 368392 -72480 145027

age-0.5+age3
-184143 368358 -72472 145011

Men Women
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ln(age)+age-2
-184127 368327 -72495 145058

ln(age)+age-1
-184117 368306 -72492 145051

ln(age)+age-0.5
-184106 368284 -72489 145044

ln(age)+age0.5
-184051 368174 -72469 145005

ln(age)+age -184035 368143 -72463 144993

ln(age)+age2
-184009 368090 -72452 144971

ln(age)+age3
-183997 368067 -72447 144960

age0.5+age-2
-184068 368208 -72494 145054

age0.5+age-1
-184054 368180 -72490 145047

age0.5+age-0.5
-184037 368147 -72485 145037

age0.5+ln(age) -184000 368072 -72473 145013

age0.5+age -183968 368009 -72462 144991

age0.5+age2
-183941 367954 -72452 144970

age0.5+age3
-183933 367938 -72447 144961

age+age-2
-184037 368147 -72500 145066

age+age-1
-184022 368116 -72497 145060

age+age-0.5
-184003 368079 -72492 145050

age+ln(age) -183968 368009 -72481 145029

age+age0.5
-183953 367978 -72476 145019

age+age2
-183909 367890 -72461 144988

age+age3
-183905 367883 -72458 144983

age2+age-2
-184052 368177 -72493 145052

age2+age-1
-184037 368147 -72491 145048

age2+age-0.5
-184019 368110 -72486 145040

age2+ln(age) -183990 368052 -72479 145024

age2+age0.5
-183975 368023 -72475 145016

age2+age -183961 367994 -72470 145008

age2+age3
-183953 367978 -72467 145000

age3+age-2
-184096 368264 -72465 144996

age3+age-1
-184084 368241 -72464 144995

age3+age-0.5
-184070 368213 -72461 144989

age3+ln(age) -184050 368172 -72456 144980

age3+age0.5
-184041 368155 -72454 144975

age3+age -184034 368141 -72452 144971

age3+age2
-184033 368138 -72452 144970

aBayesian information criterion.
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Appendix 8.5 Crude sex-specific linear and non-linear trajectories of mean weekly volume of 

alcohol consumption between the ages of 34-84 years: goodness of fit statistics. Imputed data. 

 

First-order polynomial models Log-likelihood BICa

Men

age-2
-232501 (-232762, -232191) 465034 (464414, 465556)

age-1
-232501 (-232762, -232191) 465045 (464424, 465567)

age-0.5
-232501 (-232762, -232191) 465044 (464423, 465567)

ln(age) -232501 (-232761, -232191) 465044 (464423, 465564)

age0.5
-232492 (-232750, -232181) 465027 (464405, 465542)

age -232476 (-232731, -232165) 464994 (464371, 465504)

age2
-232436 (-232686, -232126) 464915 (464295, 465415)

age3
-232407 (-232655, -232099) 464857 (464241, 465352)

Women

age-2
-103392 (-103677, -103192) 206823 (206424, 207394)

age-1
-103389 (-103673, -103190) 206817 (206419, 207385)

age-0.5
-103389 (-103673, -103189) 206817 (206418, 207386)

ln(age) -103391 (-103677, -103191) 206822 (206421, 207393)

age0.5
-103392 (-103679, -103192) 206824 (206424, 207397)

age -103390 (-103677, -103191) 206820 (206422, 207393)

age2
-103380 (-103666, -103184) 206800 (206408, 207372)

age3
-103369 (-103655, -103176) 206778 (206391, 207349)

Second-order polynomial models Log-likelihood BICa

Men

age-2+age-1
-232501 (-232762, -232191) 465034 (464414, 465556)

age-2+age-0.5
-232500 (-232762, -232190) 465032 (464412, 465555)

age-2+ln(age) -232500 (-232761, -232190) 465043 (464423, 465563)

age-2+age0.5
-232492 (-232750, -232181) 465026 (464405, 465542)

age-2+age -232475 (-232730, -232164) 464993 (464371, 465503)

age-2+age2
-232436 (-232686, -232126) 464914 (464294, 465414)

age-2+age3
-232407 (-232655, -232099) 464856 (464240, 465351)

age-1+age-2
-232501 (-232762, -232191) 465045 (464424, 465567)

age-1+age-0.5
-232500 (-232762, -232190) 465054 (464433, 465576)

age-1+ln(age) -232500 (-232761, -232190) 465054 (464433, 465574)

age-1+age0.5
-232492 (-232750, -232181) 465037 (464415, 465552)

age-1+age -232475 (-232730, -232164) 465004 (464381, 465513)

age-1+age2
-232436 (-232686, -232126) 464925 (464304, 465425)

age-1+age3
-232407 (-232655, -232099) 464867 (464251, 465362)

Men (m=3/50)a
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age-0.5+age2
-232500 (-232762, -232190) 465032 (464412, 465555)

age-0.5+age-1
-232500 (-232762, -232190) 465054 (464433, 465576)

age-0.5+ln(age) -232466 (-232722, -232152) 464985 (464357, 465498)

age-0.5+age0.5
-232444 (-232699, -232131) 464942 (464314, 465450)

age-0.5+age -232422 (-232674, -232109) 464897 (464271, 465401)

age-0.5+age2
-232387 (-232635, -232077) 464827 (464206, 465324)

age-0.5+age3
-232369 (-232617, -232062) 464791 (464176, 465286)

ln(age)+age-2
-232500 (-232761, -232190) 465043 (464423, 465563)

ln(age)+age-1
-232500 (-232761, -232190) 465054 (464433, 465574)

ln(age)+age-0.5
-232466 (-232722, -232152) 464985 (464357, 465498)

ln(age)+age0.5
-232419 (-232671, -232105) 464890 (464264, 465394)

ln(age)+age -232396 (-232646, -232084) 464845 (464222, 465345)

ln(age)+age2
-232367 (-232614, -232058) 464786 (464169, 465281)

ln(age)+age3
-232357 (-232604, -232051) 464766 (464156, 465261)

age0.5+age-2
-232492 (-232750, -232181) 465026 (464405, 465542)

age0.5+age-1
-232492 (-232750, -232181) 465037 (464415, 465552)

age0.5+age-0.5
-232444 (-232699, -232131) 464942 (464314, 465450)

age0.5+ln(age) -232419 (-232671, -232105) 464890 (464264, 465394)

age0.5+age -232374 (-232622, -232064) 464800 (464180, 465296)

age0.5+age2
-232353 (-232600, -232047) 464759 (464147, 465252)

age0.5+age3
-232352 (-232599, -232048) 464756 (464149, 465250)

age+age-2
-232475 (-232730, -232164) 464993 (464371, 465503)

age+age-1
-232475 (-232730, -232164) 465004 (464381, 465513)

age+age-0.5
-232422 (-232674, -232109) 464897 (464271, 465401)

age+ln(age) -232396 (-232646, -232084) 464845 (464222, 465345)

age+age0.5
-232374 (-232622, -232064) 464800 (464180, 465296)

age+age2
-232348 (-232594, -232044) 464748 (464140, 465240)

age+age3
-232353 (-232600, -232051) 464758 (464155, 465253)

age2+age-2
-232436 (-232686, -232126) 464914 (464294, 465414)

age2+age-1
-232436 (-232686, -232126) 464925 (464304, 465425)

age2+age-0.5
-232387 (-232635, -232077) 464827 (464206, 465324)

age2+ln(age) -232367 (-232614, -232058) 464786 (464169, 465281)

age2+age0.5
-232353 (-232600, -232047) 464759 (464147, 465252)

age2+age -232348 (-232594, -232044) 464748 (464140, 465240)

age2+age3
-232362 (-232611, -232062) 464778 (464176, 465275)



Chapter 11: Appendices  

321 
 

 

age3+age-2
-232407 (-232655, -232099) 464856 (464240, 465351)

age3+age-1
-232407 (-232655, -232099) 464867 (464251, 465362)

age3+age-0.5
-232369 (-232617, -232062) 464791 (464176, 465286)

age3+ln(age) -232357 (-232604, -232051) 464766 (464156, 465261)

age3+age0.5
-232352 (-232599, -232048) 464756 (464149, 465250)

age3+age -232353 (-232600, -232051) 464758 (464155, 465253)

age3+age2
-232362 (-232611, -232062) 464778 (464176, 465275)

Women

age-2+age-1
-103386 (-103670, -103186) 206821 (206421, 207389)

age-2+age-0.5
-103388 (-103673, -103188) 206826 (206425, 207395)

age-2+ln(age) -103391 (-103676, -103191) 206831 (206431, 207402)

age-2+age0.5
-103391 (-103677, -103192) 206832 (206434, 207404)

age-2+age -103389 (-103675, -103191) 206827 (206431, 207398)

age-2+age2
-103378 (-103664, -103184) 206806 (206417, 207376)

age-2+age3
-103368 (-103652, -103176) 206785 (206401, 207353)

age-1+age-2
-103386 (-103670, -103186) 206821 (206421, 207389)

age-1+age-0.5
-103388 (-103673, -103189) 206826 (206428, 207395)

age-1+ln(age) -103388 (-103672, -103190) 206825 (206429, 207394)

age-1+age0.5
-103385 (-103669, -103189) 206819 (206427, 207387)

age-1+age -103380 (-103663, -103186) 206809 (206420, 207376)

age-1+age2
-103368 (-103650, -103177) 206785 (206403, 207350)

age-1+age3
-103358 (-103639, -103168) 206765 (206386, 207328)

age-0.5+age2
-103388 (-103673, -103188) 206826 (206425, 207395)

age-0.5+age-1
-103388 (-103673, -103189) 206826 (206428, 207395)

age-0.5+ln(age) -103383 (-103666, -103187) 206815 (206423, 207382)

age-0.5+age0.5
-103377 (-103660, -103183) 206804 (206416, 207368)

age-0.5+age -103370 (-103652, -103178) 206790 (206405, 207353)

age-0.5+age2
-103357 (-103637, -103168) 206763 (206384, 207324)

age-0.5+age3
-103348 (-103627, -103160) 206745 (206368, 207304)

ln(age)+age-2
-103391 (-103676, -103191) 206831 (206431, 207402)

ln(age)+age-1
-103388 (-103672, -103190) 206825 (206429, 207394)

ln(age)+age-0.5
-103383 (-103666, -103187) 206815 (206423, 207382)

ln(age)+age0.5
-103367 (-103648, -103175) 206784 (206400, 207345)

ln(age)+age -103359 (-103639, -103169) 206767 (206386, 207327)

ln(age)+age2
-103346 (-103624, -103157) 206741 (206364, 207298)

ln(age)+age3
-103338 (-103617, -103151) 206726 (206351, 207283)
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age0.5+age-2
-103391 (-103677, -103192) 206832 (206434, 207404)

age0.5+age-1
-103385 (-103669, -103189) 206819 (206427, 207387)

age0.5+age-0.5
-103377 (-103660, -103183) 206804 (206416, 207368)

age0.5+ln(age) -103367 (-103648, -103175) 206784 (206400, 207345)

age0.5+age -103348 (-103627, -103159) 206746 (206368, 207303)

age0.5+age2
-103337 (-103615, -103149) 206724 (206348, 207280)

age0.5+age3
-103333 (-103611, -103145) 206715 (206339, 207272)

age+age-2
-103389 (-103675, -103191) 206827 (206431, 207398)

age+age-1
-103380 (-103663, -103186) 206809 (206420, 207376)

age+age-0.5
-103370 (-103652, -103178) 206790 (206405, 207353)

age+ln(age) -103359 (-103639, -103169) 206767 (206386, 207327)

age+age0.5
-103348 (-103627, -103159) 206746 (206368, 207303)

age+age2
-103333 (-103611, -103145) 206715 (206338, 207271)

age+age3
-103331 (-103610, -103143) 206712 (206335, 207269)

age2+age-2
-103378 (-103664, -103184) 206806 (206417, 207376)

age2+age-1
-103368 (-103650, -103177) 206785 (206403, 207350)

age2+age-0.5
-103357 (-103637, -103168) 206763 (206384, 207324)

age2+ln(age) -103346 (-103624, -103157) 206741 (206364, 207298)

age2+age0.5
-103337 (-103615, -103149) 206724 (206348, 207280)

age2+age -103333 (-103611, -103145) 206715 (206338, 207271)

age2+age3
-103333 (-103613, -103144) 206716 (206337, 207276)

age3+age-2
-103368 (-103652, -103176) 206785 (206401, 207353)

age3+age-1
-103358 (-103639, -103168) 206765 (206386, 207328)

age3+age-0.5
-103348 (-103627, -103160) 206745 (206368, 207304)

age3+ln(age) -103338 (-103617, -103151) 206726 (206351, 207283)

age3+age0.5
-103333 (-103611, -103145) 206715 (206339, 207272)

age3+age -103331 (-103610, -103143) 206712 (206335, 207269)

age3+age2
-103333 (-103613, -103144) 206716 (206337, 207276)

Fit statistics calculated on fixed effect models due to issues of convergence when some 

transformations were included as random effects. Values represent the mean and range of 

fit statistics as reported from the first three imputations. aBayesian information criterion.
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Appendix 8.6 Crude sex-specific non-linear trajectories of mean weekly volume of alcohol 

consumption between the ages of 34-84 years: figure. Imputed data. 
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Appendix 8.7 Crude sex-specific interaction between the trajectory of mean weekly volume of alcohol 

consumption and baseline alcohol consumption category: results. Imputed data. 

 

Linear mixed models Sample n g/week (95% CI) p-value

Men

Difference in baseline consumption by drinking category

Non-drinker 220 Reference

Infrequent drinker 669 7.8 (3.6, 12.0) <0.001

0.1-50.0 g/week 2,073 37.6 (33.9, 41.3) <0.001

50.1-100.0 g/week 1,432 85.6 (81.1, 90.1) <0.001

100.1-150.0 g/week 881 140.8 (135.1, 146.3) <0.001

>150.0 g/week 1,563 291.9 (283.1, 301.0) <0.001

Difference in the rate of change by drinking category

Non-drinker Reference

Infrequent drinker 4.0 (1.9, 6.2) <0.001

0.1-50.0 g/week 1.7 (-0.3, 3.6) 0.092

50.1-100.0 g/week -1.3 (-3.8, 1.1) 0.276

100.1-150.0 g/week -8.9 (-11.6, -6.1) <0.001

>150.0 g/week -36.4 (-40.0, -32.8) <0.001

Women

Difference in baseline consumption by drinking category

Non-drinker 216 Reference

Infrequent drinker 764 4.9 (2.0, 7.8) 0.001

0.1-50.0 g/week 1,428 33.4 (30.4, 36.5) <0.001

50.1-100.0 g/week 542 82.0 (77.1, 86.8) <0.001

>100.0 g/week 422 184.1 (173.2, 195.0) <0.001

Difference in the rate of change by drinking category

Non-drinker Reference

Infrequent drinker 1.2 (-0.4, 2.8) 0.143

0.1-50.0 g/week -2.6 (-4.3, -1.0) 0.002

50.1-100.0 g/week -7.1 (-9.5, -4.6) <0.001

>100.0 g/week -27.1 (-31.2, -23.0) <0.001
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Appendix 8.8 Crude sex-specific linear trajectories of mean weekly volume of alcohol 

consumption between the ages of 34-84 years, stratified by baseline alcohol consumption 

category: figure. Imputed data. 

 

 

 

  



Chapter 11: Appendices 

326 
 

Appendix 8.9 Baseline characteristics of T2DM-free participants, stratified by T2DM diagnosis. 

Imputed data. 

 

 

T2DM Censored

Variables (wave one)
% (95% CI)

n

% (95% CI)

n

Men

Age

Mean years 45.0 (44.6, 45.5)a

620

44.4 (44.2, 44.6)a

5,103

Alcohol consumption frequency

None in past year 4.4 (2.8, 6.1)

28

2.6 (2.2, 3.0)

132

<1/week 21.9 (18.6, 25.1)

136

19.6 (18.5, 20.7)

1,002

1-3 times/week 40.2 (36.4, 44.1)

249

43.6 (42.3, 45.0)

2,226

Daily or almost daily 33.5 (29.7, 37.2)

207

34.2 (32.8, 35.5)

1,743

Alcohol consumption volume

Median g/week 98.8 (89.9, 107.8)b

620

101.8 (98.7, 104.9)b

5,103

BMI

Mean kg/m2 26.1 (25.8, 26.3)a

620

24.3 (24.2, 24.4)a

5,103

Ethnicty

White 84.8 (82.0, 87.7)

526

94.6 (94.0, 95.2)

4,826

South Asian 11.8 (9.2, 14.3)

73

3.4 (2.9, 3.9)

175

Otherc 3.4 (2.0, 4.8)

21

2.0 (1.6, 2.4)

101

Family history of T2DM

Yes 81.1 (78.0, 84.2)

503

91.2 (90.4, 92.0)

4,652

No 18.9 (15.8, 22.0)

117

8.8 (8.0, 9.6)

451

Occupational grade

Administrative (top) 35.0 (31.2, 38.8)

217

41.3 (39.9, 42.6)

2.106

Professional (middle) 54.0 (50.1, 58.0)

335

52.1 (50.7, 53.4)

2,657

Clerical (bottom) 11.0 (8.5, 13.4)

68

6.7 (6.0, 7.3)

340

Physical activityd

Inactive 12.4 (9.8, 15.0)

77

8.3 (7.6, 9.1)

425

Below guidelines 40.0 (36.1, 43.9)

248

37.4 (36.1, 38.8)

1,911

Met guidelines 47.6 (43.6, 51.5)

295

54.2 (52.9, 55.6)

2,767

Smoking

Never 42.4 (38.5, 46.3)

263

49.9 (48.5, 51.2)

2,545

Former 39.1 (35.2, 42.9)

242

36.4 (35.0, 37.7)

1,855

Current 18.6 (15.5, 21.6)

115

13.8 (12.8, 14.7)

703

Women

Age

Years 46.7 (46.0, 47.4)a

296

45.3 (45.1, 45.6)a

2,274

Alcohol consumption frequency

None in past year 9.5 (6.1, 12.8)

28

5.7 (4.7, 6.6)

129

<1/week 51.4 (45.6, 57.1)

152

35.3 (33.4, 37.3)

803

1-3 times/week 28.7 (23.5, 33.9)

85

36.6 (34.6, 38.5)

831

Daily or almost daily 10.5 (7.0, 14.0)

31

22.5 (20.7, 24.2)

511
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Physical activityd

Inactive 12.4 (9.8, 15.0)

77

8.3 (7.6, 9.1)

425

Below guidelines 40.0 (36.1, 43.9)

248

37.4 (36.1, 38.8)

1,911

Met guidelines 47.6 (43.6, 51.5)

295

54.2 (52.9, 55.6)

2,767

Smoking

Never 42.4 (38.5, 46.3)

263

49.9 (48.5, 51.2)

2,545

Former 39.1 (35.2, 42.9)

242

36.4 (35.0, 37.7)

1,855

Current 18.6 (15.5, 21.6)

115

13.8 (12.8, 14.7)

703

Women

Age

Mean years 46.7 (46.0, 47.4)a

296

45.3 (45.1, 45.6)a

2,274

Alcohol consumption frequency

None in past year 9.5 (6.1, 12.8)

28

5.7 (4.7, 6.6)

129

<1/week 51.4 (45.6, 57.1)

152

35.3 (33.4, 37.3)

803

1-3 times/week 28.7 (23.5, 33.9)

85

36.6 (34.6, 38.5)

831

Daily or almost daily 10.5 (7.0, 14.0)

31

22.5 (20.7, 24.2)

511

Alcohol consumption volume

Median g/week 29.4 (23.3, 35.5)b

296

47.0 (44.5, 49.5)b

2,274

BMI

Mean kg/m2 28.0 (27.4, 28.6)a

296

24.2 (24.0, 24.3)a

2,274

Ethnicty

White 71.1 (65.9, 76.3)

211

89.1 (87.8, 90.3)

2,025

South Asian 14.5 (10.5, 18.6)

43

4.6 (3.7, 5.4)

103

Otherc 14.3 (10.3, 18.4)

42

6.4 (5.4, 7.4)

145

Family history of T2DM

Yes 68.9 (63.6, 74.3)

204

89.1 (87.8, 90.4)

2,026

No 31.1 (25.7, 36.4)

92

10.9 (9.6, 12.2)

248
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Alcohol consumption volume

g/week 29.4 (23.3, 35.5)b

296

47.0 (44.5, 49.5)b

2,274

BMI

kg/m2 28.0 (27.4, 28.6)a

296

24.2 (24.0, 24.3)a

2,274

Ethnicty

White 71.1 (65.9, 76.3)

211

89.1 (87.8, 90.3)

2,025

South Asian 14.5 (10.5, 18.6)

43

4.6 (3.7, 5.4)

103

Otherc 14.3 (10.3, 18.4)

42

6.4 (5.4, 7.4)

145

Family history of T2DM

Yes 68.9 (63.6, 74.3)

204

89.1 (87.8, 90.4)

2,026

No 31.1 (25.7, 36.4)

92

10.9 (9.6, 12.2)

248

Occupational grade

Administrative (top) 4.1 (1.8, 6.3)

12

14.0 (12.6, 15.5)

319

Professional (middle) 36.8 (31.3, 42.4)

109

43.0 (41.0, 45.0)

978

Clerical (bottom) 59.1 (53.5, 64.8)

175

43.0 (40.9, 45.0)

977

Physical activityd

Inactive 32.8 (27.4, 38.3)

97

23.0 (21.2, 24.7)

522

Below guidelines 34.2 (28.7, 39.7)

101

40.3 (38.3, 42.3)

917

Met guidelines 33.0 (27.6, 38.4)

98

36.7 (34.7, 38.7)

835

Smoking

Never 59.1 (53.5, 64.7)

175

54.3 (52.2, 56.3)

1,234

Former 22.2 (17.4, 27.0)

66

24.9 (23.1, 26.7)

567

Current 18.7 (14.2, 23.1)

55

20.8 (19.1, 22.5)

473

aMean and 95% confidence interval; bMedian and 25th and 75th percentiles; ce.g. black 

Caribbean, African and Arabic; dMeeting guidelines (≥150 minutes of moderate-intensity or 

≥75 minutes of vigorous-intensity activity per week); inactive (<60 minutes of moderate and 

<60 minutes of vigorous activity; below guidelines (not inactive or meeting guidelines).
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Appendix 8.10 Sex-specific interaction between the linear trajectory of mean weekly volume 

of alcohol consumption and T2DM diagnosis: goodness of fit statistics. Imputed data 

 

  

Mixed model Log-likelihood BICa

Men

Crude linear mixed model, fixed slope -173035 (-173255, -172857) 346132 (345776, 346571)

Crude linear mixed model, random slopes -172951 (-173171, -172765) 345984 (345613, 346424)

Women

Crude linear mixed model, fixed slope -67229 (-67566, -67016) 134514 (134089, 135188)

Crude linear mixed model, random slopes -67196 (-67546, -66969) 134467 (134014, 135167)
aBayesian information criterion. Values refer to the mean and range of fit statistics as reported by 

the first three imputations.
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Appendix 8.11 Crude sex-specific interaction between the linear trajectory of mean weekly 

volume of alcohol consumption and T2DM diagnosis: results. Imputed data. 

 

Crude linear mixed models g/week (95% CI) p-value

Men (n=5,723)

Consumption volume

Intercept 104.9 (101.9, 107.9) <0.001

Change per 10 years prior to diagnosis or censoring -1.5 (-2.7, -0.4) 0.009

Difference in consumption at the time of diagnosis or censoring

Censored Reference

T2DM 22.2 (10.8, 33.5) <0.001

Difference in the rate of change by diagnosis or censoring

Censored Reference

T2DM 17.0 (11.1, 23.0) <0.001

Women (n=2,570)

Consumption volume

Intercept 48.3 (45.7, 50.8) <0.001

Change per 10 years prior to diagnosis or censoring -1.0 (-2.0, -0.0) 0.045

Difference in consumption at the time of diagnosis or censoring

Censored Reference

T2DM -18.2 (-24.4, -12.0) <0.001

Difference in the rate of change by diagnosis or censoring

Censored Reference

T2DM 2.1 (-1.7, 6.0) 0.279
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Appendix 8.12 Crude sex-specific linear trajectory of mean weekly volume of alcohol 

consumption, stratified by T2DM diagnosis: figure. Imputed data. 
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Appendix 8.13 Crude sex-specific linear and non-linear trajectories of mean weekly alcohol 

consumption, stratified by T2DM diagnosis: goodness of fit statistics. Observed data. 

 

First-order models Log-likelihood
aBIC Log-likelihood

aBIC

Men

time-2
-12665 25361 -149882 299804

time-1
-12665 25361 -149866 299772

time1
-12648 25327 -149877 299794

time2
-12647 25324 -149882 299805

time3
-12649 25329 -149876 299792

Women

time-2
-4758 9543 -57154 114345

time-1
-4758 9543 -57153 114343

time1
-4759 9545 -57152 114342

time2
-4759 9545 -57159 114355

time3
-4759 9545 -57159 114355

Second-order models Log-likelihood
aBIC Log-likelihood

aBIC

Men

time-2+time-1
-12665 25368 -149813 299678

time-2+time -12648 25334 -149875 299801

time-2+time2
-12647 25332 -149880 299812

time-2+time3
-12649 25336 -149874 299799

time-1+time-2
-12665 25368 -149813 299678

time-1+time -12648 25334 -149862 299774

time-1+time2
-12647 25332 -149864 299778

time-1+time3
-12649 25336 -149857 299764

time+time-2
-12648 25334 -149875 299801

time+time-1
-12648 25334 -149862 299774

time+time2
-12647 25332 -149709 299468

time+time3
-12647 25333 -149730 299510

time2+time-2
-12647 25332 -149880 299812

time2+time-1
-12647 25332 -149864 299778

time2+time -12647 25332 -149709 299468

time2+time3
-12646 25331 -149779 299609

time3+time-2
-12649 25336 -149874 299799

time3+time-1
-12649 25336 -149857 299764

time3+time -12647 25333 -149730 299510

time3+time2
-12647 25331 -149779 299609

T2DM No T2DM
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Women

time-2+time-1
-4758 9549 -57152 114351

time-2+time -4758 9550 -57147 114340

time-2+time2
-4758 9550 -57154 114354

time-2+time3
-4758 9550 -57154 114354

time-1+time-2
-4758 9549 -57152 114351

time-1+time -4758 9549 -57146 114339

time-1+time2
-4758 9549 -57152 114351

time-1+time3
-4758 9549 -57153 114352

time+time-2
-4758 9550 -57147 114340

time+time-1
-4758 9549 -57146 114339

time+time2
-4759 9552 -57103 114252

time+time3
-4759 9552 -57111 114268

time2+time-2
-4758 9550 -57154 114354

time2+time-1
-4758 9549 -57153 114351

time2+time -4759 9552 -57103 114252

time2+time3
-4759 9552 -57129 114305

time3+time-2
-4758 9550 -57154 114354

time3+time-1
-4758 9549 -57153 114352

time3+time -4759 9552 -57111 114268

time3+time2
-4759 9552 -57129 114305

Fit statistics calculated on models with fixed slopes and without robust standard errors due 

to issues of convergence for some transformations when random slopes were expressed. 
aBayesian information criterion.
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Appendix 8.14 Crude sex-specific linear and non-linear trajectories of mean weekly alcohol 

consumption, stratified by T2DM diagnosis: goodness of fit statistics. Imputed data. 
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Appendix 8.15 Crude, sex-specific and best-fitting trajectories of mean weekly volume of 

alcohol consumption, stratified by T2DM diagnosis: results. Imputed data. 

 

  

Crude best-fitting mixed models g/week (95% CI) p-value

Men

T2DM (n=620)

Intercept 127.1 (116.0, 138.2) <0.001

Time1 15.4 (9.4, 21.3) <0.001

Censored (n=5,103)

Intercept 93.4 (90.4, 96.3) <0.001

Time1 -34.9 (-38.6, -31.1) <0.001

Time2 -1.3 (-1.5, -1.2) <0.001

Women

T2DM (n=296)

Intercept 30.1 (24.5, 35.7) <0.001

Time1 1.2 (-2.5, 5.0) 0.514

Censored (n=2,274)

Intercept 42.7 (40.1, 45.3) <0.001

Time1 -17.0 (-20.4, -13.6) <0.001

Time2 -0.6 (-0.8, -0.5) <0.001

Time coefficients refer to the change in the average volume of weekly alcohol consumption 

per 10 years prior to diagnosis or censoring.
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Appendix 8.16 Crude sex-specific best-fitting trajectories of mean weekly volume of alcohol 

consumption, stratified by T2DM diagnosis: figure. Imputed data. 
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Appendix 8.17 Crude linear and non-linear trajectories of alcohol consumption up to and 

beyond the date of diagnosis, stratified by sex: goodness of fit statistics. Observed data. 

 

  

Function Log-likelihood
aBIC Log-likelihood

aBIC

Up to diagnosis

time-2
-12665 25361 -4758 9543

time-1
-12665 25361 -4758 9543

time1
-12648 25327 -4759 9545

time2
-12647 25324 -4759 9545

time3
-12649 25329 -4759 9545

time-2+time-1
-12665 25368 -4758 9549

time-2+time -12648 25334 -4758 9550

time-2+time2
-12647 25332 -4758 9550

time-2+time3
-12649 25336 -4758 9550

time-1+time -12648 25334 -4758 9549

time-1+time2
-12647 25332 -4758 9549

time-1+time3
-12649 25336 -4758 9549

time+time2
-12647 25332 -4759 9552

time+time3
-12647 25333 -4759 9552

time2+time3
-12646 25331 -4759 9552

After diagnosis

time-2
-6777 13582 -2721 5468

time-1
-6775 13578 -2721 5467

time1
-6767 13562 -2719 5463

time2
-6766 13561 -2718 5461

time3
-6768 13565 -2718 5462

time-2+time-1
-6769 13573 -2720 5472

time-2+time -6766 13566 -2718 5469

time-2+time2
-6766 13568 -2718 5468

time-2+time3
-6768 13571 -2718 5467

time-1+time -6766 13566 -2718 5469

time-1+time2
-6766 13568 -2718 5468

time-1+time3
-6768 13571 -2718 5468

time+time2
-6766 13567 -2718 5468

time+time3
-6766 13568 -2718 5468

time2+time3
-6766 13567 -2718 5468

Men Women

Fit statistics calculated on models with fixed slopes and without robust standard errors due to 

issues of convergence for some transformations when random slopes were expressed. aBayesian 

information criterion.
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Appendix 8.18 Crude linear and non-linear trajectories of alcohol consumption up to and 

beyond the date of diagnosis, stratified by sex: goodness of fit statistics. Imputed data. 
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Appendix 8.19 Crude trajectories of mean weekly volume of alcohol consumption up to and 

beyond the date of diagnosis, stratified by sex. Imputed data. 
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Appendix 8.20 Crude sex-specific interaction between the trajectory of mean weekly volume 

of alcohol consumption and baseline alcohol consumption category, stratified by T2DM 

diagnosis: results. Imputed data. 

 

Crude linear mixed models Sample n g/week (95% CI) p-value g/week (95% CI) p-value

Men

Difference in consumption at the time 

of diagnosis or censoring by baseline 

consumption category

Non-drinker Reference Reference

Infrequent drinker 24.9 (5.3, 44.5) 0.013 27.7 (21.1, 34.3) <0.001

0.1-50.0 g/week 59.4 (40.8, 78.1) <0.001 50.0 (44.9, 55.0) <0.001

50.1-100.0 g/week 122.3 (97.9, 146.7) <0.001 89.6 (83.1, 96.2) <0.001

100.1-150.0 g/week 160.6 (126.2, 195.1) <0.001 120.9 (112.9, 129.0 <0.001

>150.0 g/week 209.1 (176.0, 242.2) <0.001 184.2 (175.0, 193.5) <0.001

Difference in the rate of change by 

baseline consumption categorya

Non-drinker Reference Reference

Infrequent drinker 10.8 (1.4, 20.1) 0.024 7.4 (5.0, 9.8) <0.001

0.1-50.0 g/week 14.4 (5.1, 23.7) 0.002 5.1 (3.1, 7.0) <0.001

50.1-100.0 g/week 25.1 (12.9, 37.3) <0.001 3.3 (0.7, 6.0) 0.012

100.1-150.0 g/week 24.1 (6.0, 42.2) 0.009 -3.3 (-6.4, -0.3) 0.034

>150.0 g/week -27.5 (-45.8, -9.3) 0.003 -30.0 (-33.9, -26.4) <0.001

Women

Difference in consumption at the time 

of diagnosis or censoring by baseline 

consumption category

Non-drinker Reference Reference

Infrequent drinker 14.4 (7.4, 21.4) <0.001 14.0 (10.0, 18.0) <0.001

0.1-50.0 g/week 28.5 (21.1, 35.9) <0.001 29.5 (25.6, 33.4) <0.001

50.1-100.0 g/week 39.6 (24.4, 54.6) <0.001 68.8 (62.3, 75.4) <0.001

>100.0 g/week 102.0 (65.6, 138.5) <0.001 106.2 (95.5, 116.9) <0.001

Difference in the rate of change by 

baseline consumption categorya

Non-drinker Reference Reference

Infrequent drinker 8.3 (4.0, 12.7) <0.001 3.6 (1.8, 5.4) <0.001

0.1-50.0 g/week 4.1 (-0.2, 8.4) 0.064 -0.2 (-1.9, 1.5) 0.849

50.1-100.0 g/week -17.4 (-25.0, -9.7) <0.001 -2.5 (-5.3, 0.2) 0.071

>100.0 g/week -25.0 (-52.4, 2.4) 0.074 -20.4 (-24.7, 16.1) <0.001

aRate of change per 10 years prior to diagnosis or censoring.

T2DM Censored
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Appendix 8.21 Crude male trajectories of mean weekly volume of alcohol consumption, 

stratified by baseline alcohol consumption category and T2DM diagnosis: figure. Imputed 

data. 
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Appendix 8.22 Crude female trajectories of mean weekly volume of alcohol, stratified by 
baseline alcohol consumption category and T2DM diagnosis: figure. Imputed data. 
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Appendix 8.23 Crude sex-specific best-fitting trajectory of mean weekly volume of alcohol 

consumption, stratified by T2DM diagnosis and excluding non-drinkers. Observed data. 
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Appendix 8.24 Crude sex-specific and best-fitting trajectory of mean weekly volume of alcohol 

consumption, stratified by T2DM diagnosis: a competing risk sensitivity analysis. Observed 

data. 
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11.5 Appendices for Chapter 9 

Appendix 9.1 Alternative distributional functions of the cumulative baseline hazard 
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Appendix 9.2 Relationship between the average weekly volume of alcohol consumption and 
the risk of T2DM, stratified by sex. Conventional survival analysis, imputed data. 

Alcohol consumption (wave 3) HR (95% CI) p-value HR (95% CI) p-value

Model 1

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.04 (0.98, 1.12) 0.211 0.74 (0.65, 0.84) <0.001

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.25 (0.75, 2.08) 0.385 0.48 (0.24, 0.95) 0.036

Non-current drinker 1.74 (0.83, 3.67) 0.142 0.46 (0.19, 1.11) 0.084

Never drinker 2.39 (1.24, 4.60) 0.009 0.42 (0.18, 0.96) 0.040

Log likelihood -1693 (-1693, -1693) -747, (-747, -747)

BIC a 3437 (3437, 3437) 1542 (1542, 1532)

Model 2

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.00 (0.93, 1.06) 0.888 0.81 (0.71, 0.93) 0.003

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 0.94 (0.57, 1.54) 0.805 0.61 (0.30, 1.22) 0.160

Non-current drinker 1.16 (0.57, 2.37) 0.686 0.42 (0.18, 1.00) 0.050

Never drinker 0.96 (0.49, 1.88) 0.911 0.38 (0.16, 0.90) 0.028

Log likelihood -1507 (-1508, -1505) -639 (-640, -638)

BIC a 3177 (3173, 3180) 1427 (1425, 1428)

Model 1 reported the dose-response relationship between the volume alcohol consumption and T2DM 

following adjustment for consumption category. Model 2 included additional adjustment for BMI, 

date of birth, employment status, ethnicity, family history of T2DM, occupational grade, physical 

activity and smoking status, as defined at baseline. Ethnicity was derived from responses at waves 

one and five. aBayesian information criterion. Fit statistics refer to the mean and range of values 

reported from the first three imputations.

Men Women
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Appendix 9.3 Relationship between the average weekly volume of alcohol consumption and 

the risk of T2DM, stratified by sex. Age-varying covariate survival analysis, imputed data. 

 

 

Alcohol consumption HR (95% CI) p-value HR (95% CI) p-value

Model 1

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.11 (1.03, 1.19) 0.004 0.84 (0.74, 0.95) 0.005

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 2.35 (1.37, 4.05) 0.002 0.96 (0.48, 1.91) 0.906

Non-current drinker 2.07 (0.98, 4.37) 0.057 1.15 (0.53, 2.48) 0.722

Never drinker 3.91 (1.95, 7.84) <0.001 0.67 (0.26, 1.67) 0.387

Log likelihood -1673 (-1673, -1673) -734 (-734, -734)

BIC a 3406 (3406, 3406) 1523 (1523, 1523)

Model 2

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.07 (1.00, 1.15) 0.053 0.93 (0.82, 1.05) 0.227

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.68 (0.99, 2.86) 0.054 1.19 (0.60, 2.34) 0.623

Non-current drinker 1.19 (0.56, 2.54) 0.654 1.27 (0.59, 2.72) 0.536

Never drinker 1.67 (0.84, 3.33) 0.146 0.67 (0.28, 1.64) 0.386

Log likelihood -1456 (-1456, -1455) -620 (-621, -620)

BIC a 3101 (3099, 3102) 1414 (1412, 1415)

Men Women

Model 1 reported the dose-response relationship between the volume alcohol consumption and T2DM 

following adjustment for consumption category. Model 2 included additional adjustment for BMI, 

date of birth, employment status, ethnicity, family history of T2DM, occupational grade, physical 

activity and smoking status. Ethnicity was derived from responses at waves one and five. aBayesian 

information criterion. Fit statistics refer to the mean and range of values reported from the first three 

imputations.
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Appendix 9.4 Relationship between the average weekly volume of alcohol consumption and 

the risk of T2DM, stratified by sex. Two-stage survival analysis, imputed data. 

 

  

Alcohol consumption HR (95% CI) p-value HR (95% CI) p-value

Model 1

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.05 (0.98, 1.11) 0.151 0.82 (0.76, 0.89) <0.001

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.41 (1.01, 1.97) 0.045 1.29 (0.91, 1.84) 0.155

Non-current drinker 1.31 (0.66, 2.58) 0.440 1.35 (0.81, 2.25) 0.253

Never drinker 2.52 (1.36, 4.67) 0.003 0.75 (0.36, 1.56) 0.445

Log likelihood -1677 (-1677, -1677) -730 (-730, -730)

BIC a 3413 (3413, 3413) 1514 (1514, 1514)

Model 2

Cases/non-cases 560/4,867 268/2,155

Consumption volume

g/week (log2) 1.04 (0.98, 1.10) 0.209 0.92 (0.85, 1.00) 0.056

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.25 (0.90, 1.74) 0.189 1.38 (0.97, 1.96) 0.073

Non-current drinker 0.93 (0.46, 1.85) 0.831 1.41 (0.84, 2.35) 0.190

Never drinker 1.33 (0.72, 2.45) 0.370 0.74 (0.37, 1.50) 0.404

Log likelihood -1457 (-1458, -1456) -620 (-620, -619)

BIC a 3103 (3101, 3104) 1412 (1411, 1413)

Men Women

Model 1 reported the dose-response relationship between the volume alcohol consumption and T2DM 

following adjustment for consumption category. Model 2 included additional adjustment for BMI, 

date of birth, employment status, ethnicity, family history of T2DM, occupational grade, physical 

activity and smoking status. Ethnicity was derived from responses at waves one and five. aBayesian 

information criterion. Fit statistics refer to the mean and range of values reported from the first three 

imputations.



Chapter 11: Appendices  

353 
 

Appendix 9.5 Multivariable-adjusted relationship between intercept and current value 

parameterisations of average weekly volume of alcohol consumption and the risk of T2DM, 

stratified by sex. Shared random effects survival analysis, time-to-event timescale, observed 

data. 

 

 

 

  

Parameterisation HR (95% CI) p-value HR (95% CI) p-value

Intercept value

Consumption volume

g/week (log2) 1.02 (0.95, 1.09) 0.90 (0.80, 1.02) 0.111

Consumption category

Current drinker (reference)

Infrequent drinker 1.14 (0.77, 1.69) 1.31 (0.80, 1.02) 0.250

Non-current drinker 0.96 (0.47, 1.93) 1.35 (0.70, 2.59) 0.369

Never drinker 1.03 (0.49, 2.16) 0.67 (0.27, 1.66) 0.385

Log likelihood -38075 -15914

BIC a 76384 32039

Current value

Consumption volume

g/week (log2) 1.05 (0.97, 1.13) 0.258 0.95 (0.83, 1.08) 0.411

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.28 (0.83, 1.97) 0.268 1.47 (0.89, 2.43) 0.135

Non-current drinker 1.10 (0.53, 2.30) 0.796 1.54 (0.77, 3.10) 0.221

Never drinker 1.19 (0.55, 2.55) 0.664 0.77 (0.30, 1.97) 0.584

Log likelihood -38074 -15915

BIC a 76383 32041

Men (n=4,793) Women (n=2,053)

All models included adjustment for consumption category as well as BMI, date of birth, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity and 

smoking status. Ethnicity was derived from responses at waves one and five. aBayesian 

information criterion.
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Appendix 9.6 Multivariable-adjusted associations between conditional intercept and current 

value parameterisations of average weekly volume of alcohol consumption and the risk of 

T2DM, stratified by sex. Shared random effects survival analysis, time-to-event timescale, 

observed data. 

 

  

Parameterisation HR (95% CI) p-value HR (95% CI) p-value

Intercept value

Consumption volume

g/week (log2) 0.83 (0.67, 1.02) 0.075 0.32 (0.15, 0.72) 0.005

Current value

g/week (log2) 1.28 (1.01, 1.63) 0.042 3.05 (1.33, 6.96) 0.008

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.41 (0.90, 2.20) 0.134 2.06 (1.16, 3.64) 0.013

Non-current drinker 1.26 (0.59, 2.68) 0.553 2.28 (1.06, 4.89) 0.035

Never drinker 3.52 (1.80, 14.64) 0.547 0.97 (0.36, 2.62) 0.957

Log likelihood -38073 -15909

BIC a 76389 32038

Men (n=4,793) Women (n=2,053)

All models included adjustment for consumption category as well as BMI, date of birth, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity and 

smoking status. Ethnicity was derived from responses at waves one and five. aBayesian 

information criterion.
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Appendix 9.7 Multivariable-adjusted relationship between the rate of change in the average 

weekly volume of alcohol consumption and the risk of T2DM, stratified by sex and adjusted 

for intake at the intercept. Shared random effects survival analysis, observed data. 

 

  

  

Parameterisation HR (95% CI) p-value HR (95% CI) p-value

Intercept value

Consumption volume

g/week (log2) 1.14 (1.03, 1.26) 0.010 0.96 (0.83, 1.11) 0.581

Consumption category

Current drinker (reference) (reference)

Infrequent drinker 1.69 (1.08, 2.64) 0.023 1.80 (1.05, 3.10) 0.034

Non-current drinker 1.97 (0.88, 4.42) 0.100 2.00 (0.93, 4.29) 0.077

Never drinker 1.83 (0.76, 4.40) 0.175 0.84 (0.31, 2.29) 0.730

Slope

5% increase in the rate of change

g/week (log2) 2.42 (1.65, 3.56) <0.001 2.89 (1.28, 6.54) 0.011

5% decrease in rate of change

g/week (log2) 0.42 (0.29, 0.61) <0.001 0.77 (0.63, 0.94) 0.011

Log likelihood -38285 -15918

BIC a 76804 32048

Men (n=4,793) Women (n=2,053)

All models included adjustment for consumption category as well as BMI, date of birth, 

employment status, ethnicity, family history of T2DM, occupational grade, physical activity and 

smoking status. Ethnicity was derived from responses at waves one and five. aBayesian 

information criterion.
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