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Abstract: In this paper, a class of interconnected systems with structured and unstructured un-
certainties is considered where the known interconnections and uncertain interconnections are
nonlinear. The bounds on the uncertainties are employed in the observer design to enhance the
robustness when the structure of the uncertainties is available for design. Under the condition that
the structure distribution matrices of the uncertainties are known, a robust sliding mode observer
is designed and a set of sufficient conditions is developed to guarantee that the error dynamics
are asymptotically stable. In the case that the structure of uncertainties is unknown, an ultimately
bounded approximate observer is developed to estimate the system states using sliding mode tech-
niques. The results obtained are applied to a multimachine power system, and simulation for a
two machine power system is presented to demonstrate the feasibility and effectiveness of the
developed methods.

1. Introduction

The development of advanced technologies has produced corresponding growth in the scale of
physical systems, and thus the scale of many practical systems becomes large in order to satisfy
the increasing requirement for system performance. Such systems are called large scale systems
and usually can be modeled by sets of lower-order ordinary differential equations which are linked
through interconnections. These systems are typically called large scale interconnected systems
(see, e.g.[1, 2, 3, 4]). Large scale interconnected systems widely exists in the real world, for
example, energy systems and biological systems etc [1, 2]. One of the most important examples of
interconnected systems is the interconnected power system or multimachine power system which
consists of multi power generators connected via a power distribution network [5]. Naturally, the
model of the power system is inherently nonlinear containing disturbances and uncertainties [6, 5].
As a consequence, the transient stability of power systems is a big challenge.

Transient stability is the ability of a power system to maintain the dynamic behaviour of the
system at the steady state to meet different load demands or follow any significant unpredictable
behaviour [7, 6]. Therefore, large numbers of researchers have developed control techniques to en-
hance the reliability of the power supply [8, 9]. Nonlinear optimal control of a multimachine power
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system is considered in [10] in which improved performance is achieved in terms of the transient
stability and robustness under different fault conditions. The direct feedback linearization method
is widely used to design controllers for interconnected power systems [11, 12]. However, the lin-
earization technique may not be applicable for a complex network of interconnected systems and
in this case it is necessary to consider multimachine power system with nonlinear interconnections.
Recently, sliding mode controllers have been successfully applied for large scale power systems
due to their performance and robustness against various disturbances [13]. A decentralized contin-
uous higher-order sliding mode excitation control scheme is proposed in [14] to enhance transient
stability and robustness of a multimachine power system. The authors in [15] used sliding mode
techniques combined with a decentralized coordinated excitation and steam valve adaptive control
to obtain high performance for the terminal voltage and the rotor speed simultaneously in the pres-
ence of a sudden fault and a wide range of operating conditions. In all the results mentioned above,
it is assumed that all the system state variables are available for design. However, in practice, only
a subset of state variables is accessible/measurable. In order to implement these control schemes,
one of the choices is to design an observer to estimate system states, and then use the estimated
states to form the feedback loop whenever possible. Therefore, a state estimation process is very
important in both theoretical analysis and practical design.

It should be noted that observer-based controller design has been studied extensively for power
systems. An observer-based controller proposed in [16] by combining a variable structure control
with a reduced-order observer, which is then applied to a power system stabilizer. However, the
observer-based controller is designed for a linear system and the system considered incorporates
one power system. In addition, there are no unstructured uncertainties considered in the system.
The research in [17] considers controller design for nonlinear systems and a nonlinear observer
is used to estimate the unmeasurable states. This requires that the system can be represented
in a Hamiltonian and triangular form. The authors in [18] designed a decentralized controller,
i.e., for each subsystem a local controller is designed, using sliding mode techniques. This work
does not involve observer design. The authors in [19] develop a functional observer approach for
load frequency control of highly interconnected power networks. A quasi-decentralized functional
observer is used to generate the control signal rather than estimate all the system states without
considering any uncertainties. A load frequency control strategy based on sliding mode techniques
and a disturbance observer is proposed in [20] . Although the authors consider uncertainties in the
structure of the power system model, the observer designed is just for a power system instead of
a multimachine power system. In [21] a controller which uses a nonlinear observer is developed
for multimachine power systems to improve the transient stability. However, the authors did not
consider the impact of disturbances. In [22] an unknown-input observer is deployed which can
estimate the system states as well as perform fault detection and isolation. This is applied to a
three-bus power system with one generator and two loads. However, the power system model
considered is a differential algebraic model which is called a singular system [23]. Moreover, from
the point of view of observation, observer based controller design imposes strong requirements
on the considered system as the designed observer is for a specific task. In addition, observer
design in the presence of unknown signals is challenging. An extended Kalman filter is used in
[24, 25] to enhance frequency estimation of distorted power signals. However, in real time, it is
difficult to implement this Kalman filter due to the poor flexibility in dealing with higher order
systems. In addition, sliding mode techniques have advantages over Kalman filter approaches for
electric power systems. One of these advantages is that robustness of the sliding-mode observer to
parameter uncertainties and external noise can be guaranteed [26, 27]. State estimation and sliding
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mode control for a special class of stochastic dynamic systems, semi Markovian jump systems, is
presented in [28]. The authors designed a state observer to estimate unmeasured state components,
and then synthesize a sliding mode control law based on the state estimates. The exact feedback
linearization technique is used to design a nonlinear observer in [29] when the power system can be
fully linearized. A sliding mode observer is presented in [30] to develop a robust observer-based
nonlinear controller. This is used to construct the state variables of the system and estimate the
perturbation. A sliding mode observer is designed in [31] where the observation error dynamics
are ultimately stable instead of asymptotically stable as the structure of the uncertainties is not
available. Moreover, results relating to sliding mode observer design for multimachine power
systems are limited. It should be noted that when the structure of the interconnections is known and
when the interconnections have certain properties, it is possible to design an asymptotic observer
to obtain estimates with high accuracy. However, when the structure of the interconnections is not
available, to design an asymptotic observer is challenging. In this case an approximate observer
for large scale interconnected systems may satisfy the practical requirements.

In this paper, robust sliding mode observers are established for a class of interconnected sys-
tems in the presence of uncertainties. Both the known nonlinear interconnections and uncertain
interconnections are considered. All the uncertainties are bounded by nonlinear functions. These
nonlinear terms differentiate the contribution of this work from the state of the art. Coordinate
transformations are introduced to simplify the system structure and transform the interconnected
system to a new form with a particular structure which facilitates observer design. A set of suf-
ficient conditions is developed such that the error dynamics are asymptotically stable when the
structure of the uncertainties is known and satisfies the constrained Lyapunov equation. In the
case where the structure of the uncertainties is not available but the bounds on the uncertainties
are known, an ultimately bounded sliding mode observer is proposed to estimate the states of the
interconnected systems, where the estimation error is dependent on the magnitude of the uncer-
tainties. The results obtained are applied to multimachine power systems. Simulation results for a
two machine power system are presented to demonstrate the effectiveness of the developed results.
The main contribution includes: (i) The developed results can be applied to a wide class of inter-
connections due to the assumption on the limitations of the known interconnections and the wide
class of bounds assumed on the unknown interconnections; (ii) Both a robust asymptotic observer
and approximate observer are developed; (iii) the developed results are applicable to multimachine
power systems of large order which shows their utility.

2. System description and Preliminaries

Consider a nonlinear interconnected system composed of N subsystems as follows

ẋi = Aixi +Biui + ∆φi(xi, ui) +Mi(x) + ∆Mi(x) (1)
yi = Cixi (2)

where xi ∈ Rni , ui ∈ U ∈ Rmi (U is the admissible control set) and yi ∈ Rpi with mi ≤
pi ≤ ni are the state variables, inputs and outputs of the i-th subsystem respectively. The matrix
triples (Ai, Bi, Ci) are constant with appropriate dimensions and Ci are full row rank. The terms
∆φi(xi, ui) and ∆Mi(x) are the uncertainties in the i-th isolated subsystems and interconnections
respectively. The terms Mi(x) are the known interconnections for i = 1, · · · , N .
Assumption 1. The uncertainties ∆φi(xi, ui) and ∆Mi(x) have the decomposition

∆φi(xi, ui) = Ha
i ∆ξi(xi, ui), ∆Mi(x) = Hb

i∆Ei(x) (3)
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where Ha
i ∈ Rni×ki and Hb

i ∈ Rni×ri are the distribution matrices of the uncertainties, and

‖∆ξi(xi, ui)‖ ≤ ρi(xi, ui) and ‖∆Ei(x)‖ ≤ σi(x) (4)

where ρi(xi, ui) is known and Lipshitz about xi uniformly for ui ∈ U , and σi(x) is known and
Lipshitz about x.

Since theCi are full row rank, there exist nonsingular matrices Tci such that

Āi =

[
Āi1 Āi2
Āi3 Āi4

]
:= TciAiT

−1
ci
, (5)

B̄i =

[
B̄i1

B̄i2

]
:= TciBi, C̄i =

[
0 Ipi

]
:= CiT

−1
ci

(6)

where Āi1 ∈ R(ni−pi)×(ni−pi), B̄i1 ∈ R(ni−pi)×mi and B̄i2 ∈ Rpi×mi for i = 1, · · · , N .
Then in the new coordinates

x̄i = Tcixi (7)

system (1)-(2) can be rewritten as

˙̄xi1 = Āi1x̄i1 + Āi2x̄i2 + B̄i1ui + H̄a
i1∆φ̄i(x̄i, ui) + M̄i1(x̄) + H̄b

i1∆M̄i(x̄) (8)

˙̄xi2 = Āi3x̄i1 + Āi4x̄i2 + B̄i2ui + H̄a
i2∆φ̄i(x̄i, ui) + M̄i2(x̄) + H̄b

i2∆M̄i(x̄) (9)

yi = x̄i2 (10)

where x̄ = col(x̄1, x̄2, · · · , x̄N), x̄i = col(x̄i1, x̄i2), x̄i1 ∈ Rni−pi , x̄i2 ∈ Rpi , Āij and B̄il are
defined in (5)-(6) for j = 1, 2, 3, 4 , l = 1, 2, i = 1, 2, · · · , N , and[

H̄a
i1

H̄a
i2

]
: = TciH

a
i ,

[
H̄b
i1

H̄b
i2

]
:= TciH

b
i (11)[

M̄i1(x)
M̄i2(x)

]
: = TciMi(x) (12)

∆φ̄i(x̄i, ui) = ∆ξi(T
−1
ci
x̄i, ui) (13)

∆M̄i(x̄) = ∆Ei(T
−1
ci
x̄) (14)

where H̄a
i1 ∈ R(ni−pi)×ki , H̄b

i1 ∈ R(ni−pi)×ri , and M̄i1(·) ∈ R(ni−pi) for i = 1, 2, · · · , N .
Assumption 2. The matrix pair (Āi, C̄i) in (5)-(6) is observable for i = 1, 2, · · · , N .

Under Assumption 2, there exists a matrix Li such that Āi − LiC̄i is stable, and thus for any
Qi > 0 the Lyapunov equation

(Āi − LiC̄i)TPi + Pi(Āi − LiC̄i) = −Qi (15)

has an unique solution Pi > 0 for i = 1, 2, · · · , N .
Assumption 3. There exist matrices F a

i ∈ Rki×pi and F b
i ∈ Rri×pi such that the solution Pi to the

Lyapunov equation (15) satisfies the constraint

H̄aT
i Pi = F a

i C̄i (16)
H̄bT
i Pi = F b

i C̄i (17)
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For further analysis, introduce partitions of Pi and Qi which are conformable with the decom-
position in (8)-(10) as follows

Pi =

[
Pi1 Pi2
P T
i2 Pi3

]
, Qi =

[
Qi1 Qi2

QT
i2 Qi3

]
(18)

where Pi1 ∈ R(ni−pi)×(ni−pi) and Qi1 ∈ R(ni−pi)×(ni−pi). Then, from Pi > 0 and Qi > 0, it follows
that Pi1 > 0, Pi3 > 0, Qi1 > 0 and Qi3 > 0.

The following results are required for further analysis.
Lemma 1. If Pi and Qi have the partition in (18), then under Assumption 3, the following results
hold

(i). P−1
i1 Pi2H̄

a
i2 + H̄a

i1 = 0 if (16) is satisfied.
(ii). P−1

i1 Pi2H̄
b
i2 + H̄b

i1 = 0 if (17) is satisfied.
(iii). The matrix Ai1 + P−1

i1 Pi2Ai3 is Hurwitz stable if the Lyapunov equation (15) is satisfied.

Proof. See Lemma 2.1 in [32].

3. Sliding mode observer design

Consider the system in (8)-(10). Introduce a linear coordinate transformation

zi =

[
Ini−pi P−1

i1 Pi2
0 Ipi

]
︸ ︷︷ ︸

Ti

x̄i (19)

In the new coordinate system zi, system (8)-(10) has the following form

żi1 = (Āi1 + P−1
i1 Pi2Āi3)zi1 + (Āi2 − Āi1P−1

i1 Pi2 + P−1
i1 Pi2(Āi4 − Āi3P−1

i1 Pi2))zi2

+B̄i1ui + P−1
i1 Pi2B̄i2ui + M̄i1(T−1z) + P−1

i1 Pi2M̄i2(T−1z) (20)

żi2 = Āi3zi1 + (Āi4 − Āi3P−1
i1 Pi2)zi2 + B̄i2ui + H̄a

i2∆φ̄i(T
−1
i zi, ui)

+M̄i2(T−1z) + H̄b
i2∆M̄i(T

−1z) (21)

yi = zi2 (22)

where zi = col(zi1, zi2) with zi1 ∈ Rni−pi . From Assumption 1, (13) and (14)

‖∆φ̄i(T−1
i zi, ui)‖≤ρi((TiTci)−1zi, ui):=ρ̄i(zi, ui) (23)

‖∆M̄i(T
−1z)‖≤σi((TTc)−1z) := σ̄i(z) (24)

and ρ̄i(zi, ui), σ̄i(z) satisfy the Lipschitz condition

‖ρ̄i(zi, ui)− ρ̄i(ẑi, ui)‖ ≤ `ρ̄i‖zi − ẑi‖ (25)

‖σ̄i(z)− σ̄i(ẑ)‖ ≤ `σ̄i‖z − ẑ‖ (26)

Here `ρ̄i may be a function of ui.
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For system (20)-(22), consider a dynamical system

˙̂zi1 = (Āi1 + P−1
i1 Pi2Āi3)ẑi1 + (Āi2 − Āi1P−1

i1 Pi2 + P−1
i1 Pi2(Āi4 − Āi3P−1

i1 Pi2))yi

+B̄i1ui + P−1
i1 Pi2B̄i2ui + M̄i1(T−1ẑ) + P−1

i1 Pi2M̄i2(T−1ẑ) (27)
˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3P−1

i1 Pi2)ẑi2 + B̄i2ui + M̄i2(T−1ẑ) + di(·) (28)

ŷi = ẑi2 (29)

where ẑ = col(ẑ1, y), and the injection term di(·) is defined by

di(·) =(‖H̄a
i2‖ρ̄i(ẑi, ui) + ‖H̄b

i2‖σ̄i(ẑ) + ‖Āi4 − Āi3P−1
i1 Pi2‖‖yi − ŷi‖+ ki)sgn(yi − ŷi) (30)

where ρ̄i(ẑi, ui) = ρ̄i(ẑi1, yi, ui) and σ̄i(ẑ) = σ̄i(ẑ11, y1, ẑ21, y2, · · · , ẑN1, yN).
Let ei1 = zi1− ẑi1 and eyi = yi− ŷi. Then from (20)-(22) and (27)-(29), the error dynamics are

described by

ėi1 =(Āi1 + P−1
i1 Pi2Āi3)ei1 + [M̄i1(T−1z)− M̄i1(T−1ẑ)]

+P−1
i1 Pi2[M̄i2(T−1z)− M̄i2(T−1ẑ)] (31)

ėyi = Āi3ei1 + (Āi4 − Āi3P−1
i1 Pi2)eyi + [M̄i2(T−1z)− M̄i2(T−1ẑ)]

+H̄a
i2∆φ̄i(T

−1
i zi, ui) + H̄b

i2∆M̄i(T
−1z)− di(·) (32)

where di(·) is given in (30) for i = 1, 2, · · · , N .
From the structure of the transformation matrix Ti in (19) and the fact that ẑi = col(ẑi1, yi), it

follows that

‖T−1
i zi − T−1

i ẑi‖ = ‖T−1
i (zi − ẑi)‖ =

∥∥∥∥T−1
i

[
ei1
0

]∥∥∥∥ = ‖ei1‖

From the analysis above, it is straightforward to see

‖T−1z − T−1ẑ‖ = ‖e1‖ (33)

where
e1 := col(e11, e21, · · · , eN1) (34)

Therefore,

‖M̄i1(T−1z)− M̄i1(T−1ẑ)‖ ≤ `M̄i1
‖e1‖ (35)

‖M̄i2(T−1z)−Mi2(T−1ẑ)‖ ≤ `M̄i2
‖e1‖ (36)

The following conclusion is ready to be presented:
Theorem 1. Under Assumptions 1− 3, the error system (31) is asymptotically stable if the matrix
W T +W is positive definite, where the matrix W = [wij]N×N , and its entries wij are defined by

wij=

{
λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i = j

−2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i 6= j

(37)
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where Pi1, Pi2 and Qi1 are given in (18).
Proof. For system (31), consider a Lyapunov function candidate

V =
N∑
i=1

eTi1Pi1ei1

Then, the time derivative of V along the trajectories of system (31) is given by

V̇ =
N∑
i=1

{
eTi1[Pi1(Āi1 + P−1

i1 Pi2Āi3)T + (Āi1 + P−1
i1 Pi2Āi3)Pi1]ei1

+2‖Pi1‖‖ei1‖
{[
`M̄i1

+ ‖P−1
i1 Pi2‖`M̄i2

]
‖e1‖

}}
≤

N∑
i=1

{
− eTi1Qi1ei1 + 2‖ei1‖

{[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖e1‖

}}
(38)

From the definition of e1 in (34)

‖e1‖ ≤
N∑
j=1

‖ej1‖ = ‖ei1‖+
N∑
j=1

j 6=i

‖ej1‖ (39)

Then, from (38) and (39)

V̇ ≤
N∑
i=1

{
− eTi1Qi1ei1 + 2‖ei1‖

{[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

][
‖ei1‖+

N∑
j=1

j 6=i

‖ej1‖
]}}

≤
N∑
i=1

{
− eTi1Qi1ei1 + 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`Mi2

]
‖ei1‖2

+
N∑
j=1

j 6=i

2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖ei1‖‖ej1‖

}

≤−
N∑
i=1

{{
λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]}
‖ei1‖2

−
N∑
j=1

j 6=i

2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖ei1‖‖ej1‖

}
(40)

Then, from the definition of the matrix W in (37) and the inequality above, it follows that

V̇ ≤ −1

2
XT [W T +W ]X

where X = [‖e11‖, ‖e21‖, · · · , ‖eN1‖]T . Hence, the conclusion follows from W T +W > 0. 4
Remark 1. From the error dynamics (31)-(32), it is clear to see that the ei1 dynamics interact with
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the dynamics eyi through the interconnection terms M̄i1(·) and M̄i2(·). From the inequalities (35)
and (36), it follows that the interconnections on the right-hand side of equation (31) are bounded by
functions of e1 only. The proof of Theorem 1 further shows that the stability of the error dynamics
(31) are actually independent of eyi . This fact will be used to show the stability of the sliding
motion later.
Remark 2. From the stability of Theorem 1, it follows that e1 is bounded and thus there exists a
constant β > 0 such that

‖e1‖ ≤ β, (41)

where β can be estimated using the approach given in [32].
For system (31)-(32), consider a sliding surface

S = {(e11, ey1 , e21, ey2 , · · · , eN1, eyN )
∣∣ey1 = 0, ey2 = 0, · · · , eyN = 0} (42)

From the structure of the error dynamical system (31)-(32), it follows that the sliding mode of the
error system (31)-(32) with respect to the sliding surface (42) is the system (31) when limited to
the sliding surface (42). From Remark 1 and Theorem 1, the sliding mode associated with the
sliding surface S given in (42) is asymptotically stable if the the conditions of Theorem 1 hold.
All that remains is to determine the gains ki in (30) such that the system (31)-(32) can be driven to
the sliding surface S in finite time and a sliding motion maintained thereafter.
Theorem 2. Under Assumptions 1-3, system (31)-(32) is driven to the sliding surface (42) in finite
time and remains on it if

ki ≥ (‖Āi3‖+ `M̄i2
+ ‖H̄a

i2‖`ρ̄ + ‖H̄b
i2‖`σ̄)β + η (43)

where β is determined by (41) and η is a positive constant.
Proof. From (32)

N∑
i=1

eTyi ėyi =
N∑
i=1

eTyi

{
Āi3ei1 + (Āi4 − Āi3P−1

i1 Pi2)eyi + [M̄i2 − ˆ̄Mi2]

+H̄a
i2∆φ̄i(T

−1
i zi, ui) + H̄b

i2∆M̄i(T
−1z)− di(·)

}
≤

N∑
i=1

{
‖Āi3‖‖ei1‖‖eyi‖+ `M̄i2

‖eyi‖‖e1‖+ ‖H̄a
i2‖ρ̄i(zi, ui)‖eyi‖

+‖H̄b
i2‖σ̄i(z)‖eyi‖+ ‖(Āi4 − Āi3P−1

i1 Pi2)‖eyi‖2 − ‖eyi‖
{
‖H̄a

i2‖ρ̄i(ẑi1, yi, ui)

+‖H̄b
i2‖σ̄i(ẑ) + ‖Āi4 − Āi3P−1

i1 Pi2‖‖eyi‖+ ki)sgn(eyi)
}}

(44)

From (41), ‖ei1‖ ≤ β. Applying (41) to (44), it follows that

N∑
i=1

eTyi ėyi ≤
N∑
i=1

{{
(‖Āi3‖+ `M̄i2

+ ‖H̄a
i2‖`ρ̄i + ‖H̄b

i2‖`σ̄i)β − ki
}
‖eyi‖

}
(45)

Applying (43) to (45)

N∑
i=1

eTyi ėyi ≤ −η
N∑
i=1

‖eyi‖ (46)
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which implies that
eTy ėy ≤ −η‖ey‖

where ey = col(ey1 , ey2 , · · · , eyN ) and the inequality ‖ey‖ ≤
∑N

i=1 ‖eyi‖ is applied to obtain the
inequality above. This shows that the reachability condition is satisfied. Hence the conclusion
follows. 4

The study above shows that (27)-(29) is an asymptotic observer of the system (20)-(22).
If the structure of the uncertainties ∆φi(xi, ui) and ∆Mi(x) in the system (1)-(2) are unknown,

which implies that Assumption 1 does not hold, then an asymptotic observer usually is not avail-
able. In this case, an ultimately bounded observer will be designed. The following Assumption is
required.
Assumption 4. The uncertainties ∆φi(xi, ui) and ∆Mi(x) in system (1)-(2) satisfy

‖∆φi(xi, ui)‖ ≤ εi (47)
‖∆M̄i(x)‖ ≤ Υi (48)

where εi and Υi are positive constants.
In this case, in the new coordinate z the system (1)-(2) is described by

żi1 =(Āi1 + P−1
i1 Pi2Āi3)zi1 + (Āi2 − Āi1P−1

i1 Pi2 + P−1
i1 Pi2(Āi4 − Āi3P−1

i1 Pi2))zi2

+B̄i1ui + P−1
i1 Pi2 × B̄i2ui + M̄i1(T−1z) + P−1

i1 Pi2M̄i2(T−1z)

+∆φ̃i1(T−1
i zi, ui) + ∆M̃i1(T−1z) (49)

żi2 = Āi3zi1 + (Āi4 − Āi3P−1
i1 Pi2)zi2 + B̄i2ui + M̄i2(T−1z)

+∆φ̃i2(T−1
i zi, ui) + ∆M̃i2(T−1z) (50)

yi = zi2 (51)

where [
∆φ̃i1(T−1

i zi, ui)

∆φ̃i2(T−1
i zi, ui)

]
=T−1

i

[
∆φi1(T−1

i zi, ui)
∆φi2(T−1

i zi, ui)

]
(52)[

∆M̃i1(T−1z)

∆M̃i2(T−1z)

]
=T−1

i

[
∆M̄i1(T−1z)
∆M̄i2(T−1z)

]
(53)

and zi = col(zi1, zi2) with zi1 ∈ Rni−pi . From (47)-(48), there are constants εai , ε
b
i , Υa

i and Υb
i

such that

‖∆φ̃i1(T−1
i zi, ui)‖ ≤ εai (54)

‖∆φ̃i2(T−1
i zi, ui)‖ ≤ εbi (55)

‖∆M̃i1(T−1z)‖ ≤ Υa
i (56)

‖∆M̃i2(T−1z)‖ ≤ Υb
i (57)

Now consider the dynamical systems
˙̂zi1 = (Āi1 + P−1

i1 Pi2Āi3)ẑi1 + (Āi2 − Āi1P−1
i1 Pi2 + P−1

i1 Pi2(Āi4 − Āi3P−1
i1 Pi2))yi

+B̄i1ui + P−1
i1 Pi2B̄i2ui + M̄i1(T−1ẑ) + P−1

i1 Pi2M̄i2(T−1ẑ) (58)

˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3P−1
i1 Pi2)ẑi2 + B̄i2ui + M̄i2(T−1ẑ) + di(·) (59)

ŷi = ẑi2 (60)
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where ẑ = col(ẑ1, y). The injection term di(·) is defined by

di(·) = (‖∆φ̃i2(T−1
i ẑi, ui)‖+ ‖∆M̃i2(T−1ẑ)‖

+‖Āi4− Āi3P−1
i1 Pi2‖‖yi − ŷi‖+ ki)sgn(yi − ŷi) (61)

Let ei1 = zi1 − ẑi1 and eyi = yi − ŷi. Then from (49)-(51) and (58)-(60), the error dynamical
equation is described by

ėi1 =(Āi1 + P−1
i1 Pi2Āi3)ei1 + [M̄i1(T−1z)− M̄i1(T−1ẑ)] + P−1

i1 Pi2[M̄i2(T−1z)

−M̄i2(T−1ẑ)] + ∆φ̃i1(T−1
i zi, ui) + ∆M̃i1(T−1z) (62)

ėyi = Āi3e1 + (Āi4 − Āi3P−1
i1 Pi2)eyi + [M̄i2(T−1z)− M̄i2(T−1ẑ)]

+∆φ̃i2(T−1
i zi, ui) + ∆M̃i2(T−1z)− di(·) (63)

The following result is ready to be presented:
Theorem 3. Under Assumptions 2 and 4, the system (62) is ultimately bounded stable if the
function matrix W T +W is positive definite, where the matrix W = [wij]N×N , and its entries wij
are defined by

wij=

{
λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i = j

−2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i 6= j

(64)

where Pi1, Pi2 and Qi1 are from (18).
Proof. Consider a Lyapunov function candidate for the system (62)

V =
N∑
i=1

eTi1Pi1ei1

where Pi1 is defined in (18).
Following a similar proof as in Theorem 1, it is obtained

V̇ ≤−
N∑
i=1

{{
λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]}
‖ei1‖

−
N∑
j=1

j 6=i

2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖ej1‖

}
‖ei1‖+ 2

N∑
i=1

‖Pi1‖
[
εai + Υa

i

]
‖ei1‖ (65)

Then, from the definition of the matrix W in Theorem 2 and the inequality above, it follows that

V̇ ≤ −1

2
XT [W T +W ]X + µX

= −(
1

2
λmin(W T +W )‖X‖ − µ)‖X‖ (66)

where µ = 2
√∑N

i=1(‖Pi1‖
[
εai + Υa

i

]
)2 and X = [‖e11‖, ‖e21‖, · · · , ‖eN1‖]T . It is clear to see

that V̇ is negative definite if µ < 1
2
λmin(W T +W ). Therefore system (62) is ultimately bounded.

4
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For system (62)-(63), consider the same sliding surface S given in (42). It is straightforward
to see that Theorem 3 implies that the sliding mode of the system (62)-(63) associated with the
sliding surface S given in (42) is ultimately bounded.

The objective now is to determine the gains ki in (61) such that the system can be driven to the
sliding surface S in (42) in finite time and a sliding motion maintained thereafter.
Theorem 4. Under Assumptions 2 and 4, the system (62)-(63) is driven to the sliding surface (42)
in finite time and remains on it if

ki ≥ (‖Āi3‖+ `M̄i2
+ `∆φ̃i2

+ `∆M̃i2
)β + η (67)

where β is determined by (41) and η is a positive constant.
Proof. The proof of Theorem 4 can be obtained directly by following the proof of Theorem 2. It
is omitted here.
Remark 3. The results above show that the sliding mode observers of the interconnected system
(1)-(2) in z coordinates are given by (27)-(29) or (58)-(60). Let

x̂i = (TiTci)
−1ẑi, i = 1, 2, . . . , N (68)

where Tci and Ti are given in (7) and (19) respectively and ẑi are given in (27)-(29) or (58)-(60)
for i = 1, 2, . . . , N . Therefore the varibles x̂i given in (68) are the estimate of the states xi of the
interconnected system (1)-(2) for i = 1, 2, . . . , N .

4. Case study: multimachine power system

In this section, a case study on a multimachine power system is developed. In this case, the state
variable of each machine is given by xi = [xi1 xi2 xi3] = [δi−δi0 ωi ∆Pei] with ∆Pei ≡: Pei−Pmi0
where δi is the generator power angle [rad], Pei is electrical power [p.u.], and ωi is relative speed
[rad/s] for i = 1, 2, · · · , N . It is assumed that Pmi = Pmi0 = constant. All the symbols and terms
are the same as in [33]. Then by using direct feedback linearsation compensation for the power
system as in [34], the multimachine power system can be described by the system (1)-(2) with

Ai =

 0 1 0
0 − Di

2Hi
− ω0

2Hi

0 0 − 1
T ′
doi

 , Bi =

 0
0
T ′doi

 , Ci =

[
1 0 0
0 0 1

]
(69)

From the matrix Ci, it is clear to see that the measured states are the generator power angle δi [rad]
and the electrical power Pei [p.u.]. The objective is to estimate the relative speed ωi [rad/s] for
i = 1, 2, · · · , N .

The known and uncertain interconnections are given by

M̄i(x) = 0, ∆M̄i(x) =

 0
0
1


︸ ︷︷ ︸
Hb

i

Φi(x)

where

|Φi(x)| ≤
N∑
j=1

(γIij| sin δj|+ γIIij |ωj|)
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with the constants γIij and γIIij defined by

γIij =
4

|T ′doj|min
|Pei|max

γIIij = |Qei|max

for i = 1, 2, · · · , N , and

‖∆M̄i(x)‖ = |Φi(x)| ≤
N∑
j=1

(γIij| sinxj1|+ γIIij |xj2|) (70)

The input control variables are

vfi = IqiKciufi − (xdi − x′di)IqiIdi − Pmi0 − T ′doiQeiωi

Choose

Tci =

 0 1 0
1 0 0
0 0 1

 for i =, 1, 2, · · · , N.

Following the transformation x̄i = Tcixi , the system matrices become

Āi = TcAiT
−1
c =

 − Di

2Hi
0 − ω0

2Hi

1 0 0
0 0 − 1

T ′
doi

 (71)

B̄i = TcBi =

 0
0
1

T ′
doi

 , C̄i =
[

0 Ipi
]

(72)

and

M̄i(x̄) = 0, ∆M̄i(x̄) = Tc∆M̄i(x) =

 0
0
1


︸ ︷︷ ︸
Hb

i

Φi(x) (73)

Comparing (5)− (6), it follows that

Āi1 = − Di

2Hi

, Āi2 =
[

0 − ω0

2Hi

]
, Āi3 =

[
1
0

]
, Āi4 =

[
0 0
0 − 1

T ′
doi

]
B̄i1 = 0, B̄i2 =

[
0
1

T ′
doi

]
, ∆M̄i1 = 0, ∆M̄i2 =

[
0
1

]
Φi(x)

For simulation purposes, consider a two machine power system where all the parameters are chosen
as in [33]. In order to illustrate the obtained results, the following uncertainties are added to the

12



isolated subsystems

∆φ1(x1, u1) =

 0
0

0.5


︸ ︷︷ ︸

Ha
1

x11 sinu1︸ ︷︷ ︸
∆ξ1(x1,u1)

∆φ2(x2, u2) =

 0
0

0.2


︸ ︷︷ ︸

Ha
2

sin2(x21 + x23)︸ ︷︷ ︸
∆ξ2(x2,u2)

It is straightforward to see

|∆ξ1(x1, u1)| ≤ |x11| | sinu1| := ρ1(x1, u1)

|∆ξ2(x2, u2)| ≤ | sin2(x21 + x23)| := ρ2(x2, u2)

Then, let Q1 = Q2 = I3. The solutions of Lyapunov equation (15) are given by

P1 =

 0.5841 −0.135 0
−0.135 0.2304 0

0 0 0.5

 , P2 =

 0.6799 −0.3 0
−0.3 0.3485 0

0 0 0.5

 ,
The transformation matrix Ti in the equation zi = Tix̄i is given by

T1=

 1 −0.2311 0
0 1 0
0 0 1

 , T2=

 1 −0.4412 0
0 1 0
0 0 1

 (74)

Therefore, under the transformation xi = (TiTci)
−1zi with Tci and Ti defined in (71) and (74), the

two machine power system can be described in z coordinates as follows

ż11 =−0.704z11 +
[
−0.0555 −39.27

]
z12 (75)

ż12 =

[
1
0

]
z11 +

[
0.0788535 0

0 −0.1449

]
z12 +

[
0

0.1449

]
u1

+

[
0

0.5

]
∆φ̄1(T−1z1, u1) + M̄12(T−1z) +

[
0
1

]
∆M̄12(T−1z) (76)

y1 = z12 (77)

ż21 = −0.4941z21 +
[
−0.1 −30.8

]
z22 (78)

ż22 =

[
1
0

]
z21 +

[
0.2 0
0 −0.1256

]
z22 +

[
0

0.1256

]
u2

+

[
0

0.2

]
∆φ̄2(T−1z2, u2) + M̄22(T−1z) +

[
0
1

]
∆M̄22(T−1z) (79)

y2 = z22 (80)
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where zi1 ∈ R, zi2 := col(zi21, zi22) ∈ R2. From (74)− (74).

‖ρ̄1(z1, u1)‖ ≤ |z121|| sinu1| (81)
‖ρ̄2(z2, u2)‖ ≤ | sin2(z221 + z222)| (82)

By direct calculation `ρ̄1 = 1, `ρ̄2 = 2. From (24) and (70).

|σ̄1(z)| ≤ (γI11| sin z121|+ γII11 |(z11 + 0.2311z121|))
+(γI12| sin z221|+ γII12 |(z21 + 0.4412z221|)) (83)

|σ̄2(z)| ≤ (γI21| sin z121|+ γII21 |(z11 + 0.2311z121|))
+(γI22| sin z221|+ γII22 |(z21 + 0.4412z221|)) (84)

Therefore,

|σ̄1(z)− σ̄1(ẑ)| =

[
γII11 γI11 + 0.2311γII11 0 γII12 γI12 + 0.4412γII12 0

] 
|z11 − ẑ11|
‖z12 − ẑ12‖
|z21 − ẑ21|
‖z22 − ẑ22‖

 (85)

|σ̄2(z)− σ̄2(ẑ)| =

[
γII21 γI21 + 0.2311γII21 0 γII22 γI22 + 0.4412γII22 0

] 
|z11 − ẑ11|
‖z12 − ẑ12‖
|z21 − ẑ21|
‖z22 − ẑ22‖

 (86)

where γI11 = 0.9, γI12 = 0.7355, γII11 = γII12 = 1.4 and γI21 = 0.966, γI22 = 0.788, γII21 = γII22 =
1.5. Thus `σ̄1 = 2.69224 and `σ̄2 = 2.88532.

By direct computation, it follows that the matrix W T + W is positive definite. Thus, all the
conditions of Theorem 1 are satisfied. Therefore the following dynamical system is an asymptotic
observer of the system (75)-(80)

˙̂z11 = −0.704ẑ11 +
[
−0.0555 −39.27

]
ẑ12 (87)

˙̂z12 =

[
1
0

]
ẑ11 +

[
0.0788535 0

0 −0.1449

]
ẑ12 +

[
0

0.1449

]
u1 + d1(·) (88)

ŷ1 = ẑ12 (89)

˙̂z21 = −0.4941ẑ21 +
[
−0.1 −30.8

]
ẑ22 (90)

˙̂z22 =

[
1
0

]
ẑ21 +

[
0.2 0
0 −0.1256

]
ẑ22 +

[
0

0.1256

]
u2 + d2(·) (91)

ŷ2 = ẑ22 (92)
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where the terms d1(·) and d1(·) are defined by

d1(·) = (

∥∥∥∥[ 0
0.5

]∥∥∥∥ ρ̄1(T−1ẑ1, u1) +

∥∥∥∥[ 0
1

]∥∥∥∥ σ̄1(T−1ẑ)

+

∥∥∥∥[ 0.0788535 0
0 −0.1449

]∥∥∥∥ ‖y1 − ŷ1‖+ k1)sgn(y1 − ŷ1)

d2(·) = (

∥∥∥∥[ 0
0.2

]∥∥∥∥ ρ̄2(T−1ẑ2, u2) +

∥∥∥∥[ 0
1

]∥∥∥∥ σ̄2(T−1ẑ)

+

∥∥∥∥[ 0.2 0
0 −0.1256

]∥∥∥∥ ‖y2 − ŷ2‖+ k2)sgn(y2 − ŷ2)

where k1 and k2 are given by

k1 ≥ (

∥∥∥∥[ 1
0

]∥∥∥∥+ `M̄12
+

∥∥∥∥[ 0
0.5

]∥∥∥∥ `ρ̄1 +

∥∥∥∥[ 0
1

]∥∥∥∥ `σ̄1)β + η

k2 ≥ (

∥∥∥∥[ 1
0

]∥∥∥∥+ `M̄22
+

∥∥∥∥[ 0
0.2

]∥∥∥∥ `ρ̄2 +

∥∥∥∥[ 0
1

]∥∥∥∥ `σ̄2)β + η

Therefore, x̂i = (TiTci)
−1ẑi is an estimate of xi = [xi1 xi2 xi3] = [δi − δi0 ωi ∆Pei] where Tci

and Ti are defined in (71) and (74) respectively. The simulation results presented in Figs 1 and 2
show the effectiveness of the designed observer. It should be noted that the estimation process is
implemented on-line.

Remark 4. As in existing work in [14, 15, 21, 33], both the multimachine power system considered
and the interconnections are nonlinear. However, most work focuses on control design or observer-
based control design. In this paper, the observer can be applied to the multimachine power system
as shown in the example. Specifically the interconnections are nonlinear and all the uncertainties
are bounded by nonlinear functions which encompasses a large class of disturbances.

5. Conclusion

In this paper, robust sliding mode observers have been designed for a class of nonlinear intercon-
nected systems with uncertainties. The known nonlinear interconnections and uncertain nonlinear
interconnections have been dealt with separately to reduce the effects of the interconnections with-
out introducing unnecessary conservatism. A set of sufficient conditions has been provided such
that the error dynamics are asymptotically stable if the structure of the uncertainties is known. All
the bounds on the uncertainties involved are nonlinear and are employed in the observer design
to reject/reduce the effect of uncertainties. An ultimately bounded sliding mode observer is pro-
posed to estimate the states of the interconnected system if the structure of the uncertainties is not
available. A case study relating to a multimachine power system has been used to demonstrate the
proposed approach.
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Fig. 1. The time response of the 1st subsystem states x1 = col (x11, x12, x13) and their estimation x̂1 = col (x̂11, x̂12, x̂13)
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