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Abstract 

Metallic nanoparticles have been utilized as analytical tools to detect a wide 

range of organic analytes. In most reports, gold (Au)-based nanosensors have been 

modified with ligands to introduce selectivity towards a specific target molecule. 

However, in a recent study a new concept was presented where bare Au-nanorods on 

self-assembled carboxymethyl-hexanoyl chitosan (CHC) nanocarriers achieved 

sensitive and selective detection of human serum albumin (HSA) after manipulation 

of the solution pH. Here this concept was further advanced through optimization of 

the ratio between Au-nanorods and CHC nanocarriers to create a 

nanotechnology-based sensor (termed CHC-AuNR nanoprobe) with an outstanding 

lower detection limit (LDL) for HSA. The CHC-AuNR nanoprobe was evaluated in 

simulated urine solution and a LDL as low as 1.5 pM was achieved at an estimated 

AuNR/CHC ratio of 2. Elemental mapping and protein adsorption kinetics over three 

orders of magnitude in HSA concentration confirmed accumulation of HSA on the 

nanorods and revealed the adsorption to be completed within 15 minutes for all 

investigated concentrations. The results suggest that the CHC-AuNR nanoprobe has 

potential to be utilized for cost-effective detection of analytes in complex liquids. 

 

Keywords: Surface plasmon resonance biosensor; Chitosan nanoparticles; Gold 

nanorods; Human serum albumin; Simulated urine 



3 
 

1. Introduction 

Nanosized objects of noble metals, i.e., Au, Ag, Pd, etc., have received enormous 

interest as their physicochemical properties differs significantly from larger objects of 

these elements. In particular, surface plasmon resonance (SPR) has been investigated 

and used in a number of biomedical applications, including diagnostic sensing [1-6], 

bio-imaging [7-10] and therapeutic cancer therapy [11-13]. Development of 

cost-effective, readily available and reliable diagnostic biosensor technologies is 

especially important for the healthcare sector as early-stage detection of diseases 

offers both cost savings and dramatically improved clinical outcomes. To be an 

effective tool in such early stage diagnostics, biosensors must be capable of detecting 

very low concentrations of analyte, while also being highly selective in their response. 

Therefore, development of biosensors with improved performance depends on designs 

that are highly selective for interactions with the target analyte and that present a large 

number of detection sites and/or present a strong reporter signal upon a detection 

event. Nano-dimensional objects have been heavily investigated to this end as they 

present a huge surface area for analyte binding and as binding events commonly can 

be detected by readily available UV-visible or fluorescent spectroscopy. 

Among the nano-dimensional objects used to construct biosensors, gold 

nanoparticles (AuNPs) have likely received the most attention. They present unique 

optoelectronic behavior, high surface-to-volume ratio and a chemistry that allows for 

modification with functional ligands for sensitive and selective responses to a target 

analyte. Such responses include changes in plasmonic resonance absorption, 

conductivity or emission spectrum in response to changes in the surrounding 

environment [14-18]. Despite their attractive properties, implementation of metal NPs 

(including AuNPs) in applications has been limited by that they are prone to 



4 
 

aggregation that weakens or eliminates their desirable properties. To prepare metal 

nanoparticles for realistic applications there has been much work on new synthetic 

strategies and surface modifications [19-22]. While the colloidal stability of AuNPs is 

critical to maintain their surface plasmon properties, it is equally important for 

biosensing applications that the biorecognition capability and response to the analyte 

is maintained [23]. Unfortunately, stabilizing molecules such as surfactants or other 

type of organic molecules on the AuNP surface often affect the SPR and may decrease 

the detection sensitivity.  

There are, however, other routes than core-shell designs that result in excellent 

stability and biosensing performance of AuNPs. In a recent investigation we adsorbed 

bare-surface Au-nanorods (AuNR) onto positively charged nanocarriers of 

self-assembled amphiphilic carboxymethyl-hexanoyl chitosan (CHC) and investigated 

the system for detection of the protein human serum albumin (HSA) using 

conventional UV-visible spectroscopy [24]. The negatively charged AuNRs were 

rapidly adsorbed on the positively charged surface of the CHC nanocarriers and were 

thus stabilized as individual rods, forming a stable CHC-AuNR nanosuspension 

(termed -  in the forthcoming discussion). Importantly and 

interestingly, by manipulating the pH the electrostatic interactions between the CHC 

nanocarriers, HSA, and deposited Au-nanorods could be tuned for excellent 

sensitivity and selectivity towards the analyte, without the use of any targeting ligands. 

Although promising, a number of physiological challenges remain before this 

technology can be put to use and design parameters will need to be investigated and 

optimized for individual analytes and physiological environments. 

In this work the CHC-AuNR nanoprobe was evaluated for detection of HSA in 

simulated urine (SU) while simultaneously investigating how the performance of the 
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system correlated with AuNR/CHC nanocarrier ratio and how the HSA adsorption 

kinetics depended on protein concentration. The selected model system is of relevance 

as the SU presents a moderately challenging environment that could interfere with the 

performance of the CHC-AuNR nanoprobe system and as the concentration of HSA in 

urine can be used as a marker for kidney function. 

 

2. Methods 

2.1. Materials 

Gold nanorods with an aspect ratio of 5.2 were purchased from Nanorods, LLC, 

United States. Buffer solution (pH 5) was purchased from Alfa Aesar. 

Carboxymethyl-hexanoyl chitosan (CHC) was purchased from Advanced Delivery 

Technology Co, Taiwan. Ethanol (99.8%), creatine, Na3PO4, urea and albumin from 

human serum (HSA) were purchased from Sigma Aldrich and used as received. NaCl 

and KCl were purchased from J.T. Baker. All the solutions were prepared with 

ultrapure deionized water (DI water). 

 

2.2. Preparation of simulated urine solution 

To prepare SU 1.21 g of urea was added to 50 ml of DI water. Subsequently, 0.5 g 

NaCl, 0.3 g KCl, 0.32 g Na3PO4 and 0.133 g of creatine were added to the solution. 

Finally, different amounts of HSA were dissolved to achieve desired concentrations. 

 

2.3. Preparation of CHC-AuNR nanoprobe solutions 

CHC-AuNR nanoprobe solutions with different CHC to AuNR ratios were 

prepared by mixing 0.6, 0.45 or 0.3 ml AuNR solution (2·1011 AuNR/ml) with DI 

water to a final volume of 1 ml. Subsequently, the samples were centrifuged at 15000 
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rpm for 15 minutes before addition of 0.1 mL of 1 wt% CHC solution and mixing. 

Thereafter, 0.9 mL of ethanol was mixed with the dispersion to remove the CTAB 

from the AuNRs  surfaces. Finally, the samples were centrifuged at 15000 rpm for 30 

minutes, the supernatant containing ethanol and CTAB was decanted and the gel-like 

CHC-AuNR-NPs were re-dispersed into 1 ml of DI water. The different volumes of 

added AuNR dispersion resulted in different AuNR/CHC nanocarrier ratios that were 

estimated as previously reported [24] to 4, 3, and 2, for added AuNR dispersion 

volumes of 0.6, 0.45 and 0.3 ml, respectively. Before use in analyte detection 0.5 ml 

of the CHC-AuNR dispersion was mixed with 0.5 ml of pH 5 buffer solution for pH 

control, effectively forming the completed CHC-AuNR nanoprobe solution. 

 

2.4. Analyses 

-wise to 1 ml of the CHC-AuNR 

nanoprobe solution, followed by 15 minutes of incubation. Subsequently, absorption 

spectra were obtained using a UV-visible spectrophotometer (Thermo Scientific 

Evolution 3000, USA) and a quartz cuvette that had been cleaned by soaking in aqua 

regia and washed with DI water and ethanol. From the acquired spectra the peak shift 

was recorded for different HSA concentrations. Every test condition was measured 

three times on different samples and results are reported as averages with standard 

deviation, where applicable. 

TEM and EDS mapping was performed using a JEOL JEM-2800F operated at 

200 kV. 

 

3. Results and discussion 

3.1. Performance in simulated urine 
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It is known from the literature that both the absorbance maximum [25] and 

spectral shift in response to surrounding refractive index [26, 27] increases with the 

aspect ratio of an AuNR. In sensing applications, the increase in spectral shift with 

increasing aspect ratio is used for improved resolution and lower detection limit (LDL) 

when determining the analyte concentration. In this work, AuNRs with an average 

aspect ratio of 5.2 were utilized. See Table 1 for size characteristics and Fig. 1 for 

TEM image. 

 

Table 1. Size characteristics of the gold nanorods. Each data point was obtained from 

at least 30 particles. 

Length/nm Diameter/nm Aspect ratio 

39 6.7 7 1.0 5.2 0.7 

 

 

Fig. 1. TEM image of used AuNRs 

 

In our previous work it was demonstrated that bare AuNRs could be assembled 
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onto CHC nanocarriers by simple mixing and removal of the CTAB by washing with 

ethanol, forming the CHC-AuNR nanoprobe system. The nanocarriers stabilized the 

AuNRs in solution with maintained sensitivity to the analyte. In contrast, CTAB 

stabilized nanorods presented poor sensitivity towards the analyte. It was further 

shown for the CHC-AuNR nanoprobe in DI water that the adsorption of HSA and 

lysozyme on the Au-NRs was highly selective and effective close to the isoelectric 

point (IEP), pH = 5 and pH = 9 for HSA and lysozyme, respectively [24]. This 

behavior was explained by pH dependent electrostatic interactions that caused the 

analytes to preferentially adsorb on the AuNR-surfaces close to the IEP. The 

implications are that the nanoprobe system can be tuned towards selective detection of 

analytes through optimization of solution pH, i.e., the selectivity is not dependent on 

any specific ligands. 

In this work the CHC-AuNR nanoprobe was evaluated and optimized for 

detection of HSA in SU. As a first step the absorption spectrum of the CHC-AuNR 

nanoprobe was recorded in DI water and SU and was compared with that of AuNRs. 

As shown in Fig. 2a the CHC-AuNR nanoprobe presented a peak value that was 

red-shifted about 5 nm compared to pure AuNRs. However, there was little difference 

in peak values (about 0.1 nm) between DI water and SU at pH = 5. The similar peak 

values suggested that there was little-to-no interference from the compounds in the 

SU (i.e., creatine and urea) for the CHC-AuNR nanoprobe configuration used in the 

subsequent analyses (prepared with pH 5 buffer). The difference in absorbance may 

be due to slight differences in concentration or physicochemical factors, such as 

aggregation. However, since the peak shift is the critical parameter for the sensing, no 

further attention was given to the slight difference in absorbance. The peak shift in 

response to HSA concentration was also investigated in SU or DI water for the 
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CHC-AuNR system with an AuNR/CHC ratio of 4. As seen in Fig. 2b the peak shift 

response was well resolved in the concentration range 105  108 fM. At higher 

concentrations the response plateaued, likely due to saturation of the available NR 

surface, and the variability between measurements increased. 

 

Fig. 2. (a) UV-visible spectra at pH 5 in DI water and SU solution for CHC-AuNR 

nanoprobe and AuNRs. (b) Peak shift for the nanoprobe system with AuNR/CHC 

ratio of 4 in response to different HSA concentrations in SU or DI water. 

 

3.2. The effect of AuNR/CHC ratio on lower detection limit 

The LDL of SPR-based sensors for various applications has been a subject of 

interests over the last decade [28-31]. Here the impact of the ratio between AuNRs 

and CHC on HSA detection was investigated for the CHC-AuNR nanoprobe system. 

The investigated AuNR/CHC ratios were 4/1, 3/1, and 2/1. As shown in Fig. 3, an 

increase in spectral shift was observed with decreasing AuNR/CHC ratio for all 

investigated HSA concentrations. The upper limit in concentration for reliable 

concentration determination was about 105 pM, above this concentration the peak 

shift plateaued and no significant difference could be detected. 
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Fig. 3. Peak shift for the nanoprobe system with different AuNR/CHC ratios in 

response to different HSA concentrations in SU. 

 

The LDL was as low as ~1.50 pM for an AuNR/CHC ratio of 2, which was a 

100-fold improvement compared to the LDL for an AuNR/CHC ratio of 4. 

Furthermore, at this ratio the peak shift in response to HSA concentration was larger 

than that observed for dispersed AuNRs in previous work.24 Unfortunately, further 

reduction of the AuNR/CHC ratio resulted in poor signal-to-noise that prevented 

reliable determination of the peak shift (data not shown). Thus the CHC-AuNR 

nanoprobe with an AuNR/CHC ratio of 2 can be considered an optimized version of 

the nanoprobe for use with readily available and low cost UV-visible spectroscopy, 

allowing for detection of a HSA concentration as low as 1.5 pM in SU. This LDL is a 

10-fold improvement compared to that previously reported for the non-optimized 

CHC-AuNR nanoprobe system in DI water [24], which is quite remarkable 

considering the complex biding environment in SU. The pM LDL is also lower than 

what has been reported in the literature for most HSA sensing systems. Some 

examples of recently reported approaches and their LDLs are: spectrofluorimetric, 
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LDL = 62 nM [32]; anti-aggregation of Au nanoparticles, LDL = 1.4 nM [33]; 

flavone-based fluorescent probe, LDL = 1.4 nM [34]; optical quantum dot-based 

immunosensor, LDL = 480 pM [35]. A LDL in the attomolar range has recently been 

reported against IgE proteins for an AuNR-SPR-based sensor [36]. Even if that 

technology has a lower LDL, it relied on SPR-specific instrumentation, an analysis 

time in the hours-range and analyses were seemingly conducted in non-complex 

solutions. In contrast, the CHC-AuNR system holds merit in that it can be used with 

readily available UV-visible instruments, offers fast analysis time (as further 

discussed in section 3.3. below) and that the performance was demonstrated in SU. 

Although speculative, extrapolation of the AuNR/CHC ratio towards lower values, as 

given in Fig. 4, also suggests that a lower LDL may be possible for the CHC-AuNR 

nanoprobe by utilization of spectroscopic techniques/instruments that enable 

acquisition of spectra with higher signal-to-noise at lower AuNR/CHC ratios. For 

example, the extrapolation indicates that a LDL of 100 fM could be achieved for an 

AuNR/CHC ratio of 1.2. 

 

Fig. 4. Lower detection limit for the CHC-AuNR nanoprobe system with different 

AuNR/CHC ratios. Extrapolation suggests that a lower detection limit of 100 fM may 

be possible for an AuNR/CHC ratio of 1.2 (indicated by the cross). 



12 
 

 

3.3. Kinetics of HSA adsorption  

The spectral shift is a result from HSA adsorption on the AuNR surface. The 

kinetics of the deposition will determine the time required to reach equilibrium. This 

will in turn determine the response time of the biosensor system as equilibrium is 

needed to reliably determine the concentration of the analyte. Therefore, adsorption 

kinetics of HSA onto the nanoprobe system with an AuNR/CHC ratio of 2 was 

investigated by observing the peak shift over time for HSA concentrations in the 

range 150 pM - 150 nM.  

As seen in Fig. 5, the spectral shift reached a plateau in less than 900 seconds for 

all investigated HSA concentrations, with the equilibrium seemingly being established 

quicker for lower concentrations. Based on the results it was concluded that an 

incubation time of 15 minutes was enough to ensure that the peak shift was close to 

equilibrium for relevant concentrations of HSA. Importantly, this time is short enough 

to allow for practical use of the nanoprobe system. 

 

Fig. 5. The relative peak shift over time for the nanoprobe system with an 

AuNR/CHC ratio of 2 when exposed to SU with different HSA concentrations. 

 

To further understand the concentration dependent adsorption of HSA onto the 



13 
 

nanorods elemental mapping was conducted after exposing the nanoprobe system to 

SU with 150 pM or 150 nM HSA. As seen in Fig. 6a, sulfur mapping indicated that in 

150 pM HSA there was some HSA adsorbed on the AuNR surface with only a very 

small number of molecules in the surroundings. On the other hand, in 150 nM HSA 

the AuNR was nearly fully covered with HSA while the surrounding still presented a 

lower concentration of randomly distributed molecules (Fig. 6b). These results 

confirm that there was preferential adsorption of HSA onto the AuNRs also in SU. 

The attractive interactions have previously been attributed to pH-dependent 

electrostatic interactions in DI water [24] and the mechanism should be the same in 

SU.  

 

Fig. 6. TEM high angle annular dark field (HAADF) and elemental mapping images 

of an AuNR in the nanoprobe system after exposure to SU containing (a) 150 pM 

HSA concentration and (b) 150 nM HSA. 
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4. Conclusions 

The biosensing concept of electrostatic-based, pH-dependent analyte specificity 

of AuNRs adsorbed on self-assembled CHC nanocarriers was optimized and 

demonstrated to achieve sensitive detection of HSA in SU. By controlling the ratio 

between AuNRs and CHC nanocarriers the response and sensitivity (lower detection 

limit) could be tuned. The results indicated that the lower the AuNR to CHC ratio, the 

better the response and sensitivity. However, due to limitations from signal-to-noise in 

the used UV-visible spectroscopic methodology, the lowest ratio that was practically 

feasible was an estimated 2 AuNRs per CHC nanocarrier, allowing for detection of 

1.5 pM HSA in SU, a 100-fold improvement compared with the ratio of 4/1. 

Furthermore, this LDL was a 10-fold improvement compared to that previously 

reported for a non-optimized CHC-AuNR system in the less complex environment of 

DI water. This pM LDL is also lower than what has been reported in recent literature 

for several HSA-sensing systems [32-35]. The results confirm the potential for using 

this sensitive nanoprobe in complex environments. It is however recognized that 

further experiments and optimization, using real urine samples from patients, is 

required to evaluate the potential of the system to indicate disease from urine tests in a 

clinical setting. In real samples any peak shift-analyte concentration correlations may 

be confounded by presence of other organic molecules that also adsorb at a given pH 

and their inter-individual variations. To circumvent this problem we hypothesize that a 

multivariate approach may be used to screen for diseases by recording the peak shift 

 pH-peak shift fingerprint characteristic for 

certain conditions, which could provide extremely powerful if successful. Such 

investigations will, however, require a large number of participants with clinically 
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classified conditions and will thus be a subject of future investigations. While more 

sensitive techniques are available, the nanoprobe system should hold merit in that it is 

ligand-free and utilizes readily available UV-visible spectroscopy for analysis.  
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