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Abstract

Preposterior analysis covers a wide range of approaches in many differ-
ent disciplines and relates to any analysis concerned with understanding
the properties of a future posterior distribution before relevant data have
been collected. Embedding preposterior analysis in a decision making
context implies that we are interested in the hypothetical values of the
posterior mean utility for different decision options, known as the dis-
tribution of the preposterior mean. The distribution of the preposterior
mean utility can be summarised with the Expected Value of Sample In-
formation (EVSI) and used to aid funding decisions for future data collec-
tion exercises, which is especially important in health economic decision
making. We present a method for estimating the distribution of the pre-
posterior mean utility with a small number of hypothetical data samples
using moment matching and samples from the prior of the utility. We
discuss why this methodology is likely to accurately approximate the dis-
tribution of interest. We also suggest some settings where the moment
matching method will be less accurate, particularly for small sample sizes
of the future data collection exercise. We then illustrate the success of this
methodology by calculating the EVSI in four varied examples, including
a practical example from the health economic literature.

1 Introduction

Preposterior analysis encompasses a large suite of approaches that are concerned
with estimating the properties of a posterior distribution before relevant data
have been collected. These approaches are used in many different domains, from
model calibration (Arendt et al., 2016; Jiang et al., 2015), to model checking
(Ben-Zvi et al., 1988) and experimental design (Chaloner and Larntz, 1989;
Erkanli and Soyer, 2000; Huang and Wu, 2008; Weaver et al., 2016). Using
these analyses for Bayesian experimental design involves determining a data
collection exercise that “optimises” in some sense a property of the posterior
distribution — for example, minimising the posterior variance.
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Another interesting application of preposterior analysis is to embed it within
a formal decision making process — how would a future data set affect the
decision? This naturally leads to the value of information (VoI) framework
(Howard, 1966), which compares the decision based on current evidence to a
decision made with “more information”. According to the precepts of decision
theory (Raiffa and Schlaifer, 1961), the value of each possible decision t =
0, . . . , T is quantified using a utility function that is typically conditional on
some underlying model parameters θ, which are subject to uncertainty.

The optimal decision given the current level of uncertainty in θ is the decision
option associated with the highest expected utility. From the decision-theoretic
point of view, the identification of the maximum expected utility is all that
is required to reach the optimal decision given the current state of knowledge
available to the decision-maker (Lindley, 2006). In general, “more information”,
typically gained from an additional data collection exercise, will decrease un-
certainty for the decision makers and may even change the optimal decision. If
this is the case and a sample does change the optimal decision, then it has a
value to the decision maker as it prevents them from wasting resources on a
non-optimal decision.

As the decision making process is concerned solely with the expected utility
of the different decision options, our principal interest is the preposterior mean,
conditional on a future data collection exercise. The analysis of the preposterior
mean utility to obtain the “value” of a data collection exercise was first intro-
duced by Schlaifer (1959) and extended by Raiffa and Schlaifer (1961) under
the heading of Expected Value of Sample Information (EVSI).

While the concept of the EVSI is relatively old, it has rarely been used in
formal decision making due to the immense computational burden required to
estimate it using nested Monte Carlo simulations (Brennan et al., 2007). These
nested simulations are required as, in general, hypothetical posterior means
must be estimated by simulation for a large number of different future samples.
To combat this, methods have been developed to take advantage of conjugate
families and thus remove the need for nested simulations (Schlaifer, 1959; Ades
et al., 2004; Brennan et al., 2007). However, these methods are limited in scope
and have consequently prevented the usage of EVSI as a tool for decision making.
Therefore, the aim of the current work is to approximate the distribution of the
preposterior mean for a general model structure in order to calculate the EVSI
for a broader set of possible decisions.

In this paper, we approximate the distribution of the preposterior mean
using moment matching. To achieve this, we demonstrate that it is possible
to accurately estimate the mean and variance of the preposterior mean using a
small number of future posterior samples. We then suggest that the distribution
of the preposterior mean is similar to the prior distribution for the quantity
of interest provided the sample size of the data collection exercise is suitably
large and can therefore be transformed to approximate the distribution of the
preposterior mean over all future samples. This transformation translates and
scales the prior distribution so it “matches” the moments of the preposterior
mean.
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We discuss different scenarios where this matching is successful and unsuc-
cessful at approximating the EVSI. We compare our methodology with analytic
results, where they are available, simulation based approaches and a new EVSI
estimation procedure which is based on non-parametric regression and sufficient
statistics (Strong et al., 2015). Specifically, we demonstrate that in these exam-
ples, our moment matching approach is successful in most settings where the
sample size of the future data collection exercise is sufficiently large.

Throughout the paper, we focus on applications in health economic eval-
uation as VoI analysis is an increasingly popular method of assessing the un-
certainty in health economic decisions (Felli and Hazen, 1998, 1999; Claxton,
1999; Claxton et al., 2001; Ades et al., 2004; Brennan and Kharroubi, 2005;
Briggs et al., 2006; Fenwick et al., 2006), with preposterior analysis and the cal-
culation of the EVSI becoming more widespread (Welton et al., 2014; Welton
and Thom, 2015). In this light, §2 introduces the health economic context of
the examples along with some notation and key statistical concepts. In §3, we
discuss the theoretical grounding of our estimation method for the distribution
of the preposterior mean utility before discussing how to find the approximate
distribution by simulations in §4. Finally, we demonstrate the success of our
method using different examples in §5.

2 Notation and Concepts

The discussion of our methodology begins with an introduction of the con-
cepts and notation that will be used throughout the paper. In general, health
economic models are characterised by a large number of parameters θ whose
distributions are based on the current evidence base from literature reviews,
possible clinical trials or meta analyses. Due to the complexity of these models,
health economic analysis normally uses a simulation based approach (Baio and
Dawid, 2011; Baio, 2012; Andronis et al., 2009), in which S values of the model
parameters are simulated, e.g. via MCMC, to fully characterise the uncertainty
in the economic analysis under current information.

Typically, these parameter distributions will be informed by past data, e.g. in
the form of a previously conducted trial, and would be denoted as p(θ | D),
where D indicates existing data used to estimate the parameters θ. However,
as we are considering collecting a future data set, this data D is obtained prior
to our investigation. Therefore, throughout, simulations from p(θ | D), denoted
θs, will be referred to as simulations from the prior for the parameters. We will
also drop the dependency on the past data D for notational simplicity so p(θ)
represents the prior for the parameters.

In health economic evaluations, p(θ) informs distributions for the cost and
effectiveness of a treatment (c, e). These measures reflect both uncertainty in
the parameter values and individual level variability, e.g. different responses to
a specific drug. Commonly, the utility of a treatment is calculated using the
monetary net benefit (Stinnett and Mullahy, 1998) which assigns a value for
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each decision, or treatment option, t = 0, . . . , T , defined by:

Ut(θ) = kE[e | θ; t]− E[c | θ; t],

where the expectation is taken over individual level uncertainty only. In the
above expression, k is the willingness to pay, which is used to put the cost and
effectiveness measures on the same scale, i.e. in terms of the amount of money
that the decision maker is willing to pay to increment the benefit by one unit.

Typically, under the simulation based approach, we have access to a vector of
values [Ut(θ1), . . . , Ut(θS)] which is a sample from the prior distribution of the
net benefit for each decision option. Uncertainty in this distribution is driven
directly by the current level of parameter uncertainty, quantified using the prior
distribution for the parameters p(θ).

For notational simplicity throughout the paper, we denote the utility, typi-
cally referred to as the net benefit, as NBθt , where the superscript θ indicates
that the utility is a function of θ. We will also continue to use S as the prior
simulation size. Finally, the notation p(·) will be used to indicate any density
function. The argument of the function then determines which density is being
discussed. Therefore, the functions p(θ) and p(NBθt ) are different and give the
density function of the random variables θ and NBθt respectively.

2.1 Sampling Strategy

We are interested in calculating the EVSI for a specific data collection exercise.
Throughout this paper we will use X to denote theoretical future samples from
that data collection exercise. For example, X could be the number of people
who survive an infection after 10 days in a future clinical trial. In a standard
Bayesian analysis, where X is a realised sample, the posterior distribution of
the parameters is obtained by combining the prior p(θ) and the model for the
data p(X | θ).

As X is a random variable, the conditional distribution p(X | θ) gives
the relationship between the future sample and the parameters. The marginal
distribution for the future samples is given by the prior predictive distribution
– again noting that prior in this setting means “prior to the new sample” and
may indeed be conditional on past data sets:

p(X) =

∫
Θ

p(X | θ)p(θ)dθ.

In most settings, the data collection exercise will consist of data about N
different individuals. For example we would record the survival time of N dif-
ferent patients in the clinical trial. Throughout the paper, N will be referred to
as the sample size and is reserved for discussion about the future data collection
exercises. This contrasts directly with simulation size S which is reserved for
discussion about simulating from the prior or posterior for θ. This distinction
allows us to discuss S simulations of sample size N which relates to S simula-
tions from the prior predictive distribution p(X) of a data collection exercise
with sample size N .
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At this point, it is also important to note that the design of the future
data collection exercise is irrelevant to the methodology we will present. The
design of a future study can have limitless variations including, but certainly
not limited to, variation in sample size. For example, data collection exercises
could vary in distribution, levels of missingness and follow-up time, to name but
a few.

2.2 The distribution of the preposterior mean

The distribution of the preposterior mean is the distribution over the possible
future values for the posterior mean before the data have been collected. In a
standard Bayesian analysis, performed after the data have become available and
observed to the value x, the posterior mean will simply be a number (or vector
for multivariate distributions), with the value of the mean conditional on those
data x. Therefore, the distribution of the posterior mean before collecting the
data is a random variable for a given p(X).

As in standard Bayesian analysis, the posterior mean is given by

µXt := Eθ|X

[
NBθt

]
=

∫
Θ

NBθt p(θ |X)dθ =

∫
Θ

NBθt
p(X | θ)p(θ)

p(X)
dθ.

The only difference for preposterior analysis is that X is a random variable
rather than an observed data set x. Throughout the paper, we use the notation
µXt to denote the preposterior mean, for decision t = 0, . . . , T highlighting that
it is a function of X.

2.3 Expected Value of Sample Information

As discussed in §1, the EVSI compares the optimal decision given the current
level of uncertainty to a decision made with “more information”. The decision
making process under current information is solely concerned with finding the
treatment option with the maximum expected net benefit. In other words, the
“value” of the current decision making process is simply

max
t

Eθ

[
NBθt

]
,

i.e. the value of the “optimal” decision based on the current information about θ.
If the future sample had been collected, then the optimal decision based on

that sample would be the treatment option with the maximum expected net
benefit

max
t

Eθ|X=x

[
NBθt

]
= max

t
µxt .

However, as the data have not been observed yet, the expectation over all pos-
sible future samples is taken to give the average value of the decision made with
the additional information in the sample. The EVSI is then given by

EVSI = EX

[
max
t
µXt

]
−max

t
Eθ

[
NBθt

]
.
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Notice that this calculation involves finding the treatment with the largest pos-
terior mean net benefit for each sample. Therefore, to calculate this value, it is
necessary to find the distribution of the joint preposterior mean across all the
alternative treatment options.

2.4 Examples of the distribution of the preposterior mean

To illustrate these concepts we introduce a simple example using the Beta-
Binomial conjugate family. Assume that a new drug is available and is associated
with a probability θ of curing a particular disease. As this drug is new, it is
assumed that there is very limited evidence on its effectiveness. This assumption
could be expressed, in a very simplistic way, by modelling θ ∼ Beta(1, 1). We
note, however, that it is likely that some information would be available, in
practical settings (e.g. from small trials), so a more informative prior could be
used instead. The effectiveness measure is whether the disease has been cured,
meaning that the population level effectiveness is θ. Assume further that the
drug costs c, where c is known, and that the willingness to pay is some constant
k.

The other possible treatment option is to do nothing. This has no cost and
no effectiveness as this (non-life-threatening) disease does not improve without
drug intervention. This implies that the two net benefit values are

NBθ0 = 0 and NBθ1 = kθ − c.

The future experiment is to give N people the drug and observe how many
are cured. This can be expressed using a binomial distribution for the future
sample X | θ ∼ Bin(N, θ). The prior predictive distribution in this setting is
given by

p(X) =

∫ 1

0

(
N

X

)
φX(1− φ)N−Xdφ = B(X + 1, N −X + 1)

N !

X!(N −X)!

=
X!(N −X)!N !

(N + 1)!X!(N −X)!
=

1

N + 1
,

where B(·, ·) is the Beta function. This implies that all samples for X are equally
likely, due to our choice of prior.

Once we know the prior predictive distribution, the distribution of the pre-
posterior mean for the two treatment options is determined by calculating the
posterior mean (conditional on X) for both the net benefit functions. Obvi-
ously, the posterior mean for NBθ0 is µX0 = 0 and therefore the distribution of
the preposterior mean is simply a point mass at 0. However, the posterior mean
for NBθ1 does depend on the future value of the random variable X:

µX1 = Eθ|X

[
NBθ1

]
=

∫ 1

0

(kθ − c) p(θ | X)dθ

= k
1 +X

2 +N
− c,
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as θ | X ∼ Beta(1 +X, 1 +N). Therefore, the distribution of µX1 is conditional
on the uniform prior predictive distribution for X, which in turn is conditional
on our uniform prior for θ. This means that the distribution of the preposterior
mean is uniform over all possible value for µX1 , calculated as a function of the
N + 1 possible X values.

The EVSI can then be used to summarise µX0 and µX1 and, dependent on the
values of k, c and N , give a upper limit to the value for the future data collection
exercise. We note that this trial has value as the future sample may change our
optimal treatment as a future sample indicates that t = 1 (the new drug) is

optimal if
1 +X

2 +N
>
c

k
and that t = 0 (doing nothing) is optimal otherwise. As

an example the EVSI, for k = 20 000, c = 10 000 and N = 5, can be calculated
exactly as:

EVSI =

(
0 + 0 + 0 +

10 000

7
+

30 000

7
+

50 000

7

)
1

6
− 0 =

15 000

7
= 2 142,

which is then compared with the cost of a trial with 5 participants to determine
whether that trial would be worth funding.

2.4.1 Distribution of preposterior mean for Exponential-Gamma con-
jugacy

In this second example, a Gamma prior is assumed for the parameter of inter-
est θ ∼ Gamma(α, β). The data collection exercise is then assumed to be
N independent observations from an exponential distribution conditional on θ,
Xj ∼ Exp(θ) with j = 1, . . . , N . We consider the distribution of the pre-
posterior mean for different values of N , where the two net benefit functions
are:

NBθ0 = c0 and NBθ1 = kθ − c1.
Figure 1 presents the distribution of the preposterior mean for NBθ1 for α = 5,
β = 1, k = 200, c0 = 900 and c1 = 100.

Note that the distribution of the preposterior mean gets closer to the prior as
the sample size increases for the data collection exercise. The distribution of the
preposterior mean also has a larger variance as the sample size increases. These
two properties are at odds with the intuition that the distribution of the mean
would get more concentrated and close to a normal as the sample size increases.
Nonetheless, these counterintuitive results hold because the “strength” of the
data increases as the sample size increases and so the posterior mean can deviate
further from the prior mean implying that the variance of the preposterior mean
does increase as the sample size increases. In addition to this, at the current
state of knowledge, i.e. before the data collection has taken place, it is not pos-
sible to learn anything additional about the parameters. Therefore, if a future
data collection exercise gives exact information about the parameter location
then the distribution of possible posterior means is equal to distribution of pos-
sible parameter values i.e. the prior distribution. To clarify these ideas further,
a normal-normal conjugate example is given in the supplementary material.
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Figure 1: The distribution of the exact preposterior mean for different samples
sizes using Exponential-Gamma conjugacy, with the prior for the net benefit
marked in black.

3 Estimating the preposterior mean distribution

Historically, it has been suggested that the distribution of the preposterior mean
should be estimated by Monte Carlo simulation (Pratt et al., 1995), specifically
in the health economic literature (Brennan et al., 2007; Ades et al., 2004). This
involves simulating a large number of draws from p(X). For each sample, the
posterior is then updated, either using conjugate models or by MCMC simu-
lation, and used to estimate the posterior mean. Our methodology presented
below reduces the number of simulations required from p(X) by exploiting the
information available in the prior.

Throughout, we have been concerned solely with the distribution of the
preposterior mean which, in §2.4, was computed by finding the prior predictive
distribution p(X) and the functional relationship between the preposterior mean
and the sample X. However, if the prior predictive distribution is not known,
as in most practical situations, then a known functional form of the µXt cannot
be used to determine the distribution of the preposterior mean. Therefore,
while other EVSI estimation methods have focused on estimating a functional
form for the expected net benefit conditional on the future sample (Strong

8



et al., 2015; Ades et al., 2004), we focus solely on estimating the distribution of
the preposterior mean. Therefore, we are simply concerned with estimating a
probability density, for which there is a large wealth of statistical theory.

3.1 Expectation and Variance for the preposterior mean

To approximate the probability density of the preposterior mean, we begin by
estimating its mean and variance. In this analysis, the interest lies with the
expectation and variance conditional on the value of X, implying that standard
formulæ for conditional iterated expectation can be used to calculate both the
expectation and variance of the preposterior mean.

Therefore the mean of the distribution of the preposterior mean is given by

EX
[
µXt
]

= EX

[
Eθ|X

[
NBθt

]]
= Eθ

[
NBθt

]
,

which implies that the expectation of the preposterior mean is equal to the prior
mean. Thus, unsurprisingly, preposterior analysis does not give any additional
information about the net benefit. On average, over all the expected samples
(which are conditional on the prior beliefs), the expected net benefit is the same.

The variance of the preposterior mean has a more complex formula but can
also be re-expressed using iterated expectation as

VarX
[
µXt
]

= VarX

[
Eθ|X

[
NBθt

]]
= Varθ

[
NBθt

]
− EX

[
Varθ|X

[
NBθt

]]
.

This means that the variance of the preposterior mean is equal to the variance of
the prior distribution minus the expectation, over all the possible samples X, of
the posterior variance. Therefore, to calculate the variance of the preposterior
mean distribution practically, the average posterior variance over all possible
samples X must be estimated. However, §4.1 demonstrates that the average
posterior variance can be estimated using a significantly reduced number of
posterior samples compared to calculating the EVSI by simulation.

3.2 Moment Matching

Moment matching is a common method of performing parameter inference
within a model but has recently been applied in the context of estimating an
unknown density (Çetinkaya and Thiele, 2016; Feng et al., 2015). In general,
an unknown distribution can be accurately characterised by a large set of mo-
ments. However, it can also be approximated using a known distribution and
“matching” a small number of the moments. This means that an alternative
family of distributions is chosen and then parameters are found to determine a
distribution in this family with the same moments as the distribution of inter-
est. In the simplest setting, this involves approximating the distribution of the
preposterior mean by a Gaussian with the mean and variance calculated using
the formulæ in (1).

However, this is unlikely to be sufficiently accurate for our purposes as the
EVSI is strongly influenced by the tails of the distribution of the preposterior
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mean. This is due to the fact that the optimal decision is most likely to be
different from the current optimal decision in the tails as our current decision is,
by definition, optimal for the majority of the prior mass. Therefore, the EVSI
estimate will be significantly improved if the distribution of the preposterior
mean is approximated using moment matching with an alternative distribution
that is closer to that of the preposterior mean. In fact, we suggest that the prior
distribution for the net benefit is similar enough to the true distribution of the
preposterior mean to give a good approximation for the EVSI, specifically for
larger sample sizes N . This is because, while a specific future sample would give
additional information, the preposterior analysis (before the data are collected)
cannot give any information in addition to that contained in the prior. At
this point, it is worth reiterating that typically the prior is actually a posterior
distribution conditional on data and is, therefore, more likely to contain useful
information about the parameters and the net benefits.

In this sense, the unknown distribution of the preposterior mean net benefit
is approximated by a distribution with the correct expectation and variance but
all other distributional properties such as the skewness are determined from the
prior p(NBθt ). This idea can be generalised to situations where the sample X
is dependent on a subset of the underlying model parameters θ (see §4.3) and
although we acknowledge difficulties in some specific cases (§5.1), it is successful
in many settings (§5).

3.2.1 Linear transformation to moment match

Practically, to “moment match” with the prior, the distribution of the prepos-
terior mean is estimated by a shifted and rescaled version of the prior. This
implies that a linear transformation of NBθt must be found such that aNBθt + b
has the same mean and variance as the distribution of the preposterior mean:

Eθ

[
a NBθt + b

]
= Eθ

[
µXt
]
⇒ aEθ

[
NBθt

]
+ b = Eθ

[
NBθt

]
Varθ[a NBθt + b] = Var[µXt ]⇒ a2Varθ[NBθt ] = σ2,

where σ2 is the variance of the preposterior mean distribution that can be
written as a function of the prior variance and the expected posterior variance.
Solving for a and b yields

a =

√√√√ VarX
[
µXt
]

Varθ

[
NBθt

] =
σ√

Varθ

[
NBθt

] and b = Eθ

[
NBθt

]
(1− a), (1)

which depend on the prior expectation, prior variance and expected posterior
variance for the net benefit.

Interestingly, these constants allow for a relatively simple interpretation of
the approximation of the density of the preposterior mean. The constant a can
be thought of as the proportion of the variance in NBθt that is explained by the
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future sample X. This means that the more closely the sample X reflects the
underlying θ values, the higher the value of a.

The constant b in (1), however, is the prior (and preposterior) mean weighted
by one minus this explained variance. This weight is directly related to how
closely the sample reflects the underlying values of θ. Thus, the density of the
preposterior mean is estimated as a convex combination of the prior for the net
benefit and the mean of the net benefit.

As the sample size in the data collection exercise increases, then the sample
X (or some summary measure of X) reflects the underlying value of θ more
closely. In turn, this implies that the density of the preposterior mean reflects
the prior for the net benefit more and more closely. This is property is required
for any approximation to the distribution of the preposterior mean, as seen in
Figure 1.

Given the linear transformation in (1), it is possible to write down our ap-
proximation for the density of the preposterior mean directly as a function of
the density of the prior p(NBθ)

p(µX) ≈ 1

a
p

(
µX − b
a

)
.

Note that this density does not approximate the function µX itself but the
density p(µX).

In general, samples from the prior of the net benefit are available or easy to
obtain. Thus, approximating the density of the preposterior mean is simply a
matter of estimating the constants a and b. However, as the prior mean and
variance can be calculated from the available prior samples, the approximation
of these two parameters reduces to estimating the expected variance of the
preposterior mean. We return to this consideration in §4 but continue now with
some validation of the proposed method.

3.2.2 Why does it work?

In order to provide more insight as to when it is possible to approximate the
density of the preposterior mean using this method, we consider here two special
cases. At one extreme, assume that X is independent of the underlying model
parameters: p(X | θ) = p(X). Evidently, this setting would never occur as
decision makers only consider data collection that would aid the decision making
process. Nevertheless, if the sample is independent of the model parameters then
the distribution of the preposterior mean is a point mass at the prior mean

Eθ|X

[
NBθt

]
= Eθ

[
NBθt

]
,

by the condition of independence.
Using the definition for a and b from (1), note that

a =

√√√√√Var
[
Eθ|X

[
NBθt

]]
Varθ

[
NBθt

] = 0
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and
b = Eθ

[
NBθt

]
(1− a) = Eθ

[
NBθt

]
,

which means that the approximation for the density of the preposterior mean is
also equal to the prior mean and therefore exact for all model structures when
the sample and the model parameters are independent. While, practically, this
is a relatively unimportant result, it does indicate that our approximation is
roughly accurate when the variance of the preposterior mean is small.

At the other end of the scale, it is possible to show that our approximation
using moment matching is exact when the sample is deterministically linked
to the model parameters, i.e. X = h(θ) for some h(·). In this setting the
conditional mean for the net benefit is equal to the net benefit since, if the
value for X is known, then the exact NBθt value is also known. In a similar
manner to above it can be shown that a = 1 and b = 0 so the approximation for
the density of the preposterior mean is equal to NBθt which, again, is the exact
distribution for the preposterior mean.

Therefore, as the variance of the preposterior mean increases, the approx-
imation becomes exact. This has a practical implication since, provided the
posterior is consistent, this approximation is accurate for large sample sizes.
This is because, as the sample size N increases, the distribution of the prepos-
terior mean reflects the prior more closely (Figure 1) as the sample contains
more information about the underlying values for θ.

To extend these ideas, this approximation is accurate for moderate N when
the posterior mean net benefit is a weighted average between the prior mean
and a data summary

Eθ|X

[
NBθt

]
= c Eθ

[
NBθt

]
+ d g(X),

where c and d are constants and g(·) is an arbitrarily complex function of the
data which must have a similar density to NBθt .

For all conjugate settings in the exponential family the posterior mean can
be written as weighted average of the prior mean and a data summary (Diaconis
and Ylvisaker, 1979). Therefore, it is sufficient to consider whether the prior
predictive distribution of the data summary has a similar distribution to the
prior. In the simplest setting, it is possible to demonstrate that this is true in
the normal-normal setting, as seen in the supplementary material, and there-
fore, our approximation will be accurate when the prior for the net benefit is
approximately normal, coupled with an approximately normal distribution for
g(X). In §5, we demonstrate that the approximation can give biased estimates
in non-normal settings. However, the bias is minimal for realistic sample sizes
and decreases further as the sample size N increases since the preposterior dis-
tribution approaches the prior and the variance of the preposterior mean tends
to the prior variance.
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4 Approximating the preposterior mean distri-
bution by simulation

As previously discussed, using the moment matching methodology reduces ap-
proximating the distribution of the preposterior mean to estimating the con-
stants a and b from §3.2, under the assumption (usually true, in the context
of health economic evaluation) that simulations from the distribution for NBθt
under current information are available. These constants are based on the mean
and variance of the prior for the net benefit (i.e. prior to the future sample X),
and the expected posterior variance over all possible samples X. Therefore, the
following section is concerned with estimating the expected posterior variance
using a small number of posterior samples. This reduces the number of posterior
samples needed compared to the nested Monte Carlo simulation and therefore
reduces the computational time required to approximate the distribution of the
preposterior mean.

4.1 Estimating the variance of the preposterior mean

To begin, it may seem that estimating the expected posterior variance over
different possible samples of X by Monte Carlo simulation would not save com-
putational time compared to estimating the distribution of the preposterior
mean by finding the posterior mean for different samples. However, in general,
the posterior variance is relatively stable implying that the posterior variance
changes relatively little across the different future samples X compared to the
posterior mean. This stability is most extreme in the normal-normal conjugate
setting where the posterior variance is independent of the posterior mean and
dependent simply on the variance of the sample X, not its location. Therefore,
the posterior variance is the same for each future sample X for a fixed sam-
ple size N , implying that only one posterior sample is required to estimate the
expected posterior variance which is then used to estimate the constant b (1).

With substantial departures from normality, the posterior variance is no
longer independent of the location of the samples, but, as shown in §5.3, a
small number of posterior samples (around 20-50) can be used to estimate the
expected posterior variance, even in highly non-normal settings. This is because
quadrature can be employed to reduce the number of hypothetical posterior
variance estimates that are needed for this estimation.

Specifically, quadrature is employed to calculate

EX

[
Varθ|X

[
NBθt

]]
= Eθ

[
EX|θ

[
Varθ|X

[
NBθt

]]]
,

where the two outer expectations on the RHS allow us to take an expectation
over the prior predictive distribution without direct sampling. We use quadra-
ture to estimate the outer expectation with respect to θ and Monte Carlo sim-
ulation across the different quadrature points for the inner expectation with
respect to X | θ.
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In most data collection exercises, X will only be directly conditional on a
small number of parameters as in general researchers are only directly interested
in 1 or 2 parameters when designing a trial. Therefore, the outer expectation,
with respect to θ above, will typically be over a uni- or bi-variate vector, in
which case quadrature is simple to implement. In §4.3, we further the discussion
of situations where the sample is only dependent on a sub set of the model
parameters.

In general, to perform quadrature, Q evenly spaced values in the domain of
interest are selected and then used to simulate from X | θ. These samples are
then used to update the posterior and calculate the variance. As Monte Carlo
simulations are used to estimate the inner expectation, we recommend in excess
of 20 simulations to avoid the dependence on specific samples. Notice here that
there is a clear trade-off between accuracy of the estimate for the variance of the
preposterior mean and the computational time required to obtain this estimate.

4.2 Calculating the EVSI for a specific set of treatment
options

Thus far, we demonstrated how to estimate the distribution of the preposterior
mean for the net benefit. However, to calculate the EVSI, we need to compute
the joint distribution of the preposterior means across the different treatments
to find the dominant treatment. In general, this requires the estimation of
the posterior variance-covariance matrix for the net benefits for the different
treatments.

While this adds little theoretical complexity, this EVSI estimation method is
more stable if we work directly with the incremental net benefit (INB); defined as
the difference between two treatment options, e.g. INBθ =NBθ1−NBθ0 . We can
then find the optimal treatment by comparing the INBθ with 0; if INBθ > 0
then treatment 1 (t = 1) is optimal and if it is negative t = 0 is optimal.
Therefore, if only two treatment options are available and the distribution of
the preposterior mean of the INB is estimated using moment matching, then
the EVSI can be calculated using

EX

[
max

{
0,Eθ|X

[
INBθ

]}]
−max

{
0,Eθ

[
INBθ

]}
,

where µX = Eθ|X

[
INBθ

]
is only based on scalar mean and variance values

rather than a mean vector and a variance-covariance matrix.
When more than two options are under consideration, it is also preferable

to work with the INB as it reduces the size of the variance-covariance matrix,
i.e. the EVSI can be calculated based on the variance-covariance matrix for
the distribution of NBθ1−NBθ0 and NBθ2−NBθ0 rather than NBθ0 , NBθ1 and NBθ2 .
This reduces the number of parameters that need to be estimated as there are
only 3 unique elements in the variance-covariance matrix rather than 6.
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4.3 Nuisance Parameters

In realistic health economic models it is very unlikely that the proposed data
collection exercise will depend directly on all the model parameters θ. For
example, a clinical trial may only give information about the drug effectiveness
and not the societal costs of the disease. In these settings, consider that the
parameter vector θ can be split into 2 components θ = (φ,ψ) where the sample
X is directly dependent of the parameters φ, while ψ are nuisance parameters.

In general, there is no guarantee that the shape of the prior distribution
for the INB conditional on all the model parameters θ will be the same as the
distribution of the INB conditional on φ with all the uncertainty due to the ψ
marginalised out. To demonstrate the phenomenon, we introduce a simple two
parameter model: φ ∼ Be(1, 4) and ψ ∼ N(−0.5, 1) where NBθ0 = 10 000ψ −
4 000; NBθ1 = 10 000φ− 6 500; and INBθ = 10 000(φ− ψ)− 2 500.
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Figure 2: The distribution of the incremental net benefit conditional on both
the model parameters θ (LHS) and conditional on the parameter of interest φ
(RHS).

Figure 2 (LHS) shows the prior for the INB which has a similar shape to a
normal distribution — particularly in the tails. However, as the INB is linear in
φ, the distribution of the INB conditional only on φ would be a shifted and scaled
Beta distribution which has a very different shape, as seen in Figure 2 (RHS).
Therefore, if the prior for the INB was used to approximate the distribution of
the preposterior mean where X only gives information about φ, the mean and
variance would be correct but the shape would be approximately normal which
would lead to wildly inaccurate estimates for the EVSI.
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To identify a more appropriate shape for the distribution of the preposterior
mean, the uncertainty due to ψ should be marginalised out so the nuisance
parameters do not impact the shape of the approximate distribution of the
preposterior mean:∫

Ψ

INB(φ,ψ)p(φ,ψ)dψ = Eψ|φ[INB(φ,ψ)]. (2)

In general, this marginalisation is a computationally intensive procedure. How-
ever, this expectation should be available as part of a standard Value of Infor-
mation (VoI) analysis (Tuffaha et al., 2016). As the EVSI is computationally
intensive to calculate, it should be preceded in a full VoI analysis with an assess-
ment of the value of resolving all the uncertainty in φ – known as the Expected
Value of Partial Perfect Information (EVPPI). Only if the value of resolving
all the uncertainty in φ is sufficiently large, i.e. a trial aimed at resolving the
uncertainty in φ would be significantly less expensive than the EVPPI, should
the EVSI for a specific data collection exercise be considered. This is because,
the EVSI is concerned with a specific data collection strategy which is typically
time-consuming to design. Only once we know there is some value in learn-
ing the parameter should we be concerned with whether a specific trial should
go ahead and what is the “optimal” design. More importantly, the EVPPI is
based on the expectation in (2) and therefore, the samples from the conditional
distribution of the INB should already have been calculated.

However, if these values are not available then Strong et al. (2014) and
Heath et al. (2016) offer computationally efficient procedures for marginalising
out uncertainty due to ψ based on non-parametric regression. These methods
were developed to estimate the EVPPI and therefore are likely to be familiar to
researchers who would be calculating the EVSI.

5 Examples

The approximation for the distribution of the preposterior mean is now used to
estimate the EVSI in some standard scenarios. This section begins with three
“toy” examples that exploit conjugacy to find both analytic results and com-
putationally efficient algorithms to calculate both the true distribution for the
preposterior mean and the true EVSI. These examples are used to explore some
difficulties associated with estimating the EVSI using this methodology and
demonstrate situations when it is suitable. Firstly, the Beta-Binomial example
from §2.4 is extended to demonstrate the difficulties associated with using a
continuous approximation for discrete samples. Secondly, Exponential-Gamma
conjugacy is exploited to demonstrate this methodology where the data sum-
mary does not have the same distribution as the prior. Finally, Normal-Normal
conjugacy is exploited to explore the variance estimation procedure §4.1 when
the net benefit function is highly non-normal.

To conclude this section a decision tree model developed in Ades et al. (2004)
is used to explore the use of non-parametric regression to marginalise out uncer-
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tainty due to the nuisance parameters presented in §4.3. The new methodology
presented here is also contrasted with another EVSI calculation method, de-
veloped in Strong et al. (2015), which requires explicit knowledge of summary
statistics and is based on non-parametric regression.

5.1 Discrete Samples with Beta-Binomial Conjugacy

Revisiting the first example presented in §2.4, the parameter θ is modelled using
a vague Beta prior θ ∼ Beta(1, 1) and the data have a binomial distribution
X | θ ∼ Bin(N, θ). The two net benefit functions are then NBθ0 = 0 and
NBθ1 = kθ − c.

In this setting, the approximation of the distribution of the preposterior
mean could be poor, as the data collection exercise is discrete, implying that
the true distribution of the preposterior mean is also discrete, while the prior
for NBθ1 is continuous. This phenomenon can be seen most clearly when the
binomial sample size N = 1 and there are 2 equally likely possible samples,
X = 0 and X = 1. This implies that there are two equally likely possible
preposterior means; µ0

1 = k
3 − c or µ1

1 = 2k
3 − c. Clearly, this distribution will

never be well approximated by a shifted and rescaled beta distribution.
To investigate when such a continuous approximation is suitably accurate, we

estimate the EVSI for different possible sample sizes N . Due to the conjugate
structure, it is possible to calculate both the EVSI and the variance of the
preposterior mean analytically. The true variance of the preposterior mean is
then used to calculate a and b from §3.2. These are then used to approximate
the EVSI by shifting and rescaling the prior for the net benefit:

EVSI ≈ 1

10 000

10 000∑
s=1

max
{

0, aNBθs1 + b
}
,

where θs is the s-th simulated value from the prior for θ (in this case, we use a
simulation size of 10 000).

While the variance of the preposterior mean is available analytically, the
estimator for the EVSI is still subject to variability due to the specific prior
simulation of θ. Therefore, 10 000 different simulations of size 10 000 were taken
from the prior for θ and used to calculate the EVSI with our method to find
the sampling distribution of the EVSI estimator. This distribution should be
centred on the true analytic value for the EVSI.

Figure 3 shows the sampling distribution of the EVSI estimator for different
sample sizes for X, with a red line marking the sample specific EVSI for each
sample size N . The top LHS shows that the EVSI estimator for N = 1 has a
significant downward bias as the sampling distribution does not include the true
EVSI value of 1667. This clearly indicates that the weighted prior distribution
is not a suitable approximation for the distribution of the preposterior mean
in this setting, as expected. However, as the sample size increases, the bias
decreases and for a sample size of only 10 it is negligible, as the distribution of
the EVSI is centred at the true value.
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Figure 3: The distribution of the EVSI estimator over 10 000 different simula-
tions from the prior of θ for 4 different sample sizes for X for the Beta-Binomial
conjugate model. The red line represents the analytical value of the EVSI.

This analysis indicates that even if the distribution of the preposterior mean
is discrete, it can be well approximated when the sample size for X is sufficiently
large, > 10 in this example. In general, if the estimation of the EVSI is the
primary interest, then a smaller sample size may be permitted, as we rarely
require that the EVSI is estimated to a high degree of accuracy. This is because
the EVSI is compared with trial costs which are rarely known with certainty.
Additionally, the EVSI is based on incorrect model assumptions meaning that
even if the EVSI is highly accurate given the model, it will be approximate when
applied in practice.
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5.2 Non-linear mean function with Exponential-Gamma
conjugacy

We now revisit the second example in §2.4 where a Gamma prior is assumed
for the parameter of interest θ ∼ Gamma(α, β), the data collection exercise
is assumed to be N independent observations from an exponential distribution
Xj ∼ Exp(θ), j = 1, . . . , N and the two net benefit functions are:

NBθ0 = c0 and NBθ1 = kθ − c1.

Throughout §5.2, we present the results for α = 5, β = 1, k = 200 and c0 = 900
and c1 = 100 as in Figure 1.

Using Gamma-Exponential conjugacy, it is trivial to show that the prepos-
terior mean is equal to

µX1 = Eθ|X

[
NBθ1

]
= k

α+N

β +
∑N
i=1Xi

− c1,

which means that both the variance of the preposterior mean and the EVSI can
be found analytically, as for the previous example. Therefore, any difficulties
in estimating the EVSI are because the weighted prior distribution is not a
suitable approximation to the distribution of the preposterior mean. As this is
a conjugate model, this misspecification is because the data summary does not
have the same distribution as the prior.

Figure 4 shows the sampling distribution of the EVSI values, over different
prior samples, for different values ofN . Clearly, moment matching with the prior
gives a biased EVSI estimate for small samples. However, this bias is at most
4% of the total EVSI value, meaning that it can still be used, as the estimate
is sufficiently accurate for decision making. It is recommended, however, to
remember that the EVSI estimate is slightly biased for small sample sizes and
therefore care should be taken interpreting the EVSI for these small samples. As
N increases, this bias becomes negligible as the distribution of the preposterior
mean tends exactly to the prior as the sample size increases, see Figure 1.

5.3 Estimating the variance of the preposterior mean

In this example we investigate the estimation procedure for the variance of the
preposterior mean given in §4.1. This estimation procedure is highly effective
when the prior for the INBθ is roughly normal. Therefore, to test this procedure
we use a model where the prior for the INBθ is highly non-normal.

Counterintuitively, it is possible to exploit normal-normal conjugacy to in-
vestigate this estimation procedure by setting INBθ = θ2 − 5 where θ is normal
a priori with mean 0 and precision 0.2: θ ∼ N (0, 5). The data collection is
then assumed to be 10 independent observations Xj ∼ N(θ, 1) for j = 1, . . . , 10.
Conjugacy can now be used to calculate a value for the posterior for θ efficiently,
while inducing a highly non-normal prior for the INBθ.

Using conjugacy, it is possible to estimate both the EVSI and the variance of
the preposterior mean cheaply using Monte Carlo methods (Ades et al., 2004).
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Figure 4: The distribution of the EVSI estimator over 10 000 different simula-
tions from the prior of θ for 4 different samples sizes forX using the Exponential-
Gamma conjugate model. The red line represents the analytic value of the EVSI,

Therefore, using 10 000 samples from the prior for the INBθ, the EVSI is esti-
mated as 2.00 and the variance of the preposterior mean is 35.20.

The estimation method for the variance of the preposterior mean requires
Q quadrature points spaced throughout the domain of θ. Practically these are
taken as the Q quantiles for θ, i.e. the S q

Q+1–th θ values in an ordered sample,
with q = 1, . . . , Q.

Figure 5 shows the average estimate, over 500 simulations, for the preposte-
rior variance for increasing values of Q up to Q = 100 — this means that 1 000
simulations were taken from 100 different posterior distributions 500 times. The
red line in Figure 5 shows the estimated value of the variance of the preposterior
distribution calculated using the method from Ades et al. (2004). The dashed
lines indicate plus or minus one standard deviation from the mean estimate of
the variance of the preposterior distribution for the different sample sizes.
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Figure 5: The estimate of the variance of the preposterior mean for increasing
numbers of quadrature points. The red line gives the variance of the preposterior
mean calculated using all the samples in the prior for θ. The dashed lines are
the standard errors for the estimates of the variance of the preposterior mean.

In general, our estimation method for the variance of the preposterior mean
produces biased estimates for small numbers of quadrature points. However,
once the number of quadrature points exceeds 30, the true variance is within
one standard deviation of the average estimate of the variance of the preposterior
mean. The standard deviation of this estimate also decreases as the number of
quadrature points increases.

Table 1: The EVSI estimate for different numbers of posterior samples using
the moment matching method.

Number of simulations 1 2 3 5 8 10 ∞
Estimate of EVSI 2.30 2.24 2.20 2.16 2.12 2.10 2.00
Percentage Bias 0.15 0.12 0.10 0.08 0.06 0.05 0.00

Number of simulations 20 30 40 50 75 100 ∞
Estimate of EVSI 2.06 2.05 2.03 2.02 2.01 2.01 2.00
Percentage Bias 0.03 0.02 0.02 0.01 0.01 0.01 0.00

Table 1 shows the EVSI estimate and its bias when we use the estimates for
the variance of the preposterior mean given in Figure 5 and our moment match-
ing methodology. Notice that while all the EVSI values are over-estimated the
percentage bias drops below 0.02 for more than 30 quadrature points. There-
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fore, it seems that a relatively small number of quadrature points are reasonable
for estimating the variance of the preposterior mean, even in significantly non-
normal settings.

5.4 Ades et al. Decision Tree Model

Ades et al. (2004) develop a simple decision tree model to demonstrate their
methods for calculating the EVSI using single step Monte Carlo. This involves
assuming that the stochastic model parameters, which represent odds ratios,
probabilities and utility measures for the different health states, are independent
and have distributions in conjugate families. In addition to this, the net benefit
function must be of a certain form in order to calculate the posterior mean
without sampling from the posterior distribution of the parameters. If this is
not the case, then Taylor series expansions are used to avoid sampling from the
posterior. This use of Taylor series expansions means that the results below do
not depend on conjugacy.

To compare our methodology with Ades et al. (2004) and Strong et al.
(2015), a recent EVSI approximation method that uses sufficient statistics and
non-parametric regression, the variance estimation procedure with 30 posterior
simulations of 10 000 was performed 1 000 times to give a distribution over the
posterior variance. Posterior updating was performed using OpenBUGS through
R. 10 000 samples from the prior for the incremental net benefit were used and
GAM regression (Hastie and Tibshirani, 1990) using the gam function from the
mgcv package (Wood et al., 2016) in R was used to integrate out uncertainty
due to ψ. For full details on the model structure see Ades et al. (2004) and
appendices therein.

Figure 6 shows the distribution for the EVSI estimate over the different esti-
mates for the variance of the preposterior distribution for 4 different parameter
combinations from the Ades et al. (2004) model. The EVSI for 3 of the 4 param-
eters, θ1, θ2 and θ3, are calculated in Strong et al. (2015) using nested Monte
Carlo simulation and their method based on 1010 and 106 simulations respec-
tively. The values are represented by red (nested Monte Carlo) and blue lines
(non-parametric regression) in Figure 6. The 4th parameter subset contains two
parameters θT3 and θC3 and was not considered in Ades et al. (2004) or Strong
et al. (2015) and therefore the blue line in the lower RHS panel represents the
Strong et al. (2015) estimate using 106 observations.

Our estimates for the EVSI are in line with both these alternative estimation
methods. This suggests that using non-parametric regression to marginalise out
uncertainty due to the additional model parameters gives sufficiently accurate
estimates for the EVSI. It also suggests that using quadrature over a two dimen-
sional parameter vector does not have an effect on the estimation properties.
As this example is fairly representative of many health economic models, we
believe that our method can be successfully applied in practise. This allows
practitioners to calculate the EVSI is most practical settings without resorting
to full nested Monte Carlo simulation which is prohibitively expensive.
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Figure 6: The sampling distribution of the EVSI conditional on the distribution
over the different estimates for the variance of the preposterior mean for θ1, θ2

and θ3 for the (Ades et al., 2004) example. The red line represents the EVSI
calculated using Monte Carlo methods and 1010 simulations. The blue line
represents the EVSI estimate obtained using the Strong et al. (2015) method
with 106 simulations. Both values are taken directly from Strong et al. (2015)
except for the bottom RHS graphic.
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A Normal normal conjugacy example.

This normal-normal example is presented for two reasons. Firstly, it demon-
strates that our method is exact in the normal-normal conjugate setting and
therefore can be used when the prior distribution and g(X) are both suffi-
ciently normal. It is also presented to help clarify some of the thinking presented
throughout the paper.
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To begin, it is assumed that the variances for the prior of θ and the data
collection exercise are known and denoted σ2

θ and σ2
X respectively. We then

assume that the prior for θ is

θ ∼ N(θ0, σ
2
θ)

and the data collection exercise is N independent samples from

Xi ∼ N(θ, σ2
X).

This implies that the sample mean of X has a distribution, conditional θ,

X̄ ∼ N
(
θ,
σ2
X

N

)
.

In a normal-normal setting with known variances, the prior-predictive distribu-
tion can be easily calculated with the prior-predictive distribution for X̄

X̄ ∼ N
(
θ0, σ

2
θ +

σ2
X

N

)
.

We assume that the net benefits in this example is given by

NBθ0 = 0 and NBθ1 = kθ − c.

The preposterior mean for the INB is then

Eθ|X(INBθ) = k

(
σ2
X

σ2
X +Nσ2

θ

θ0 +
σ2
θ

σ2
X

N + σ2
θ

X̄

)
− c,

which is a linear function of a normal distribution. Therefore, the distribution
of the preposterior mean is normal with mean and variance equal to the mean
and variance of the preposterior mean;

Eθ|X(INBθ) ∼ N

(
kθ0 − c, k2 σ4

θ
σ2
X

N + σ2
θ

)
.

Firstly, note that our approximation to the distribution of the preposterior
mean is a INBθ + b, which is a linear combination of a normal distribution.
Consequently, our approximation is also a normal distribution with the same
mean and variance as the preposterior mean. Therefore, our approximation is
exactly equal to the true distribution of the preposterior mean in this setting.

Secondly, note that as N → ∞, it is clear to see that the variance of the
preposterior mean INBθ tends to k2σ2

θ , meaning that the distribution of the
preposterior mean tends to the prior for the incremental net benefit. Another
way to think about this property is that for large sample sizes is that the sample
mean X̄ collapses to the underlying mean of Xi, which in this setting is θ
where θ itself is subject to uncertainty. Clearly, therefore, for an infinite sample
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size, i.e. when the sample mean is exactly equal to θ, the distribution of the
preposterior mean is exactly equal to the prior, as the preposterior mean is
exactly equal to X̄ ∼ N(θ, σ2

θ).
In addition to this, observe that, as N increases, the size of the denominator

decreases, meaning that the distribution of the preposterior mean gets more
variable as the sample size increases. This confirms our intuition that as more
information is contained in the data, i.e. the sample size increases, the posterior
mean can be “pulled” further from the prior mean and therefore more weight
in the distribution of the preposterior mean is given to values further from the
prior and the variance of the preposterior mean increases.

Finally, it is trivial to see how much the distribution of the preposterior
mean is dependent on our prior beliefs. Not only is it centred on the prior mean
but the prior variance has a larger impact on the variance of the preposterior
mean than the sample variance. The distributional assumptions for the prior
also impact the distribution of the preposterior mean. This underlines why this
moment matching methodology can be used so successfully as the hypothetical
data collection exercise gives us no additional information than the information
contained in the prior, remembering that once the data collection exercise has
been realised then this will give us additional information.
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