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Abstract
High-grade gliomas in children are different from those that arise in adults. Recent collaborative molecular analy-
ses of these rare cancers have revealed previously unappreciated connections among chromatin regulation, devel-
opmental signaling, and tumorigenesis. As we begin to unravel the unique developmental origins and distinct 
biological drivers of this heterogeneous group of tumors, clinical trials need to keep pace. It is important to avoid 
therapeutic strategies developed purely using data obtained from studies on adult glioblastoma. This approach has 
resulted in repetitive trials and ineffective treatments being applied to these children, with limited improvement in 
clinical outcome. The authors of this perspective, comprising biology and clinical expertise in the disease, recently 
convened to discuss the most effective ways to translate the emerging molecular insights into patient benefit. This 
article reviews our current understanding of pediatric high-grade glioma and suggests approaches for innovative 
clinical management.
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In a remarkably short period of time, our understanding of 
the origin and biological features of childhood brain tumors 
has been revolutionized through the application of genome- 
and epigenome-wide molecular profiling techniques.1 The 
resulting data have led to a fundamental reclassification of 
these diseases; moving from a solely morphology-based 
categorization to molecular-based separation into sub-
groups with meaningful clinical correlation, particularly in 
terms of age at presentation, anatomical location, and prog-
nosis.1–6 Most importantly, these subgroups appear to have 
distinct cellular origins and biological drivers that could lead 
to specific and effective therapeutic targets.7 Despite these 
scientific advances, clinical trials for children with gliomas 
are usually based on previously tested and often ineffective 
regimens that ignore the key biological differences between 
tumors in adults and children. Furthermore, these studies 
are largely underpowered to detect potential subgroup-spe-
cific efficacy among an unselected patient population.

Biological advances are occurring rapidly in the field of 
pediatric high-grade gliomas (pHGGs; classified as World 
Health Organization [WHO] astrocytomas grades III and IV), 
for which there have been no significant improvements in 
survival in decades.8 In general, clinical trial design has not 
kept pace with the recent biological advances and there is 
a risk of recapitulating the mistakes of the past. At a recent 
symposium held in San Francisco on February 5–8, 2015 a 
working group of scientists and clinicians met to discuss 
how to better define diffusely infiltrative gliomas in children 
and to identify new ways to translate biological results into 
more effective patient care. In particular, we focused on a 
fundamental question facing the field: what key aspects of 
the biology of pHGG and diffuse intrinsic pontine glioma 
(DIPG) can drive clinical practice forward, and how do neuro-
oncologists utilize this new biology to develop, run, and ana-
lyze clinical trials likely to improve outcome? (Box 1).

Unique Biological Drivers and Distinct 
Therapeutic Targets

Although DNA copy number and gene expressions were 
known to differ in glioblastomas arising in children and 

adults,9–14 the key discovery that best illustrates the unique 
biology of tumors in children was the identification of 
somatic histone mutations.8,15 Specific recurrent mutations 
in the genes encoding the H3.3 (H3F3A) and H3.1 (HIST1H3B, 
HIST1H3C) histone variants result in amino acid substitu-
tions at 2 key residues in the histone tail: lysine-to-methio-
nine at position 27 (K27M) and glycine-to-arginine or -valine 
at position 34 (G34R/V). These are as yet not found in other 
cancer types, such as glioblastoma in the elderly popula-
tion,5 though similar variants have been reported in rare 
childhood bone tumors (H3F3A G34W/L in giant cell tumors 
of bone, H3F3B K36M in chondroblastoma16). These mutually 
exclusive mutations mark clear subgroups of the disease, as 
defined by numerous molecular and clinical parameters,2 
including tumors that arise in young adults (20–30 y) (Fig. 1).

These mutations rewire the epigenome17–20 and deliver 
potent and distinct oncogenic insults to susceptible pools 
of progenitors cells, likely originating early in neurodevel-
opment.18,21 These distinct origins are also reflected in the 
anatomical distribution of tumors carrying the mutations, 
with H3.3 G34R/V found exclusively in the cerebral hemi-
spheres, H3.3 K27M distributed throughout the midline 
structures (including the thalamus, brainstem, cerebel-
lum, and spine), and H3.1 K27M restricted to the pons22–25 
(Fig. 1). Indeed more than 85% of DIPGs, a nonsurgically 
resectable glial tumor of the pons which may display his-
tological features ranging from grade II to grade IV, har-
bor a K27M mutation in one or other histone variant, 
with H3.1 mutant tumors displaying a younger age, dis-
tinct clinicopathological and radiological features, and a 
slightly longer survival time.26 This mutation confers loss 
of the transcriptionally repressive trimethyl mark at lysine 
27 on the histone tail, which may be easily detected by 
immunohistochemistry,27,28 and the first preclinical stud-
ies targeting this mechanism in DIPG model systems are 
pointing the way to future novel clinical interventions.29–31 
The relationship of these tumors to the remaining histone 
wild-type cases originally diagnosed as DIPG is uncertain. 
A  small number of histologically low-grade glioneuronal 
tumors have been described that harbor both H3 K27M and 
BRAF V600E mutations, and these may have an improved 
prognosis compared with typical high-grade K27M tumors 
(although the numbers remain small).32,33 Thus, in very 

Box 1

•	 Subdivision of HGGs is based on an arbitrary histo-
logical classification system and age cutoff is not 
reflective of their unique disease biology, and is un-
helpful for describing diffusely infiltrating gliomas of 
children and young adults.

•	 Integration of genetics, epigenetics, and clinico-
pathological features better defines robust tumor 
subgroups with significant translational relevance.

•	 While grouping patients into large cohorts reduces 
the number of patients needed for a clinical trial, 
heterogeneity in those groups limits the ability to 

interpret the data. Trials need to have clearly “de-
fined” patients with the appropriate target to be 
eligible for a clinical trial using a treatment against 
that target.

•	 Children are the healthiest dying patients but they 
do die of their tumors. Funders, regulatory agencies, 
pharma, and clinicians have to work together to de-
velop strategies that limit unnecessary risk but also 
offer reasonable hope to these patients. They cannot 
be ignored simply because they are children and/or 
because their tumors are rare.
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rare exceptions, K27M mutation can be compatible with 
longer survival.

Although both histone H3 mutations lead to a reduction 
in DNA methylation throughout the epigenome, K27M 

globally and G34R/V mostly at subtelomeric regions,21 
there are notable exceptions. Of particular clinical rel-
evance is hypermethylation of the MGMT gene promoter 
region, which encodes a DNA repair enzyme associated 

Fig. 1  Biologically and clinically defined subgroups of pediatric infiltrating glioma. Specific, selective, recurrent, and 
mutually exclusive mutations in the genes encoding the histone H3.3 (H3F3A) and H3.1 (HIST1H3B, HIST1H3C) vari-
ants, along with BRAF V600E, mark distinct subgroups of disease in children and young adults. There are clear differ-
ences in location, age at presentation, clinical outcome, gender distribution, predominant histology and concurrent 
epigenetic and genetic alterations. The remaining half of tumors comprising these diseases harbor numerous, par-
tially overlapping putative drivers or other (epi)genomic characteristics, but as yet do not form well-validated bio-
logical and clinical subgroups. The small proportion of children (mostly adolescents) with IDH1 mutations represent 
the lower tail of age distribution of an otherwise adult subgroup, and are excluded here.
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with resistance in adult glioblastoma to alkylating agents 
such as temozolomide (TMZ).34 The role of TMZ resist-
ance is not entirely clear in children.35–38 This may be due 
to MGMT methylation being predominantly found in the 
H3.3 G34R/V subgroup and less frequent in tumors with 
K27M mutations,39 likely contributing to the lack of clini-
cal response to TMZ in most HGG including DIPG across 
numerous trials.40–43 Aside from possessing a distinct 
epigenetic profile, these histone-defined subgroups fre-
quently co-segregate with differential secondary genetic 
alterations, such as ATRX in the H3.3 G34R/V group,8,22 
FGFR1 in thalamic H3.3 K27M,24 and seemingly uniquely in 
human cancer,44 ACVR1 mutations in H3.1 K27M DIPG,22–25 
a subgroup in which the otherwise common TP53 muta-
tions are absent (Fig. 1).

Despite the ability to subclassify tumors on the basis of 
histone H3 mutations, more than half of all childhood dif-
fusely infiltrating gliomas do not fall into these categories. 
A small proportion (<5%) harbor hotspot mutations in the 
IDH1/2 genes associated with a global hypermethylation 
(“G-CIMP”)21,45 and likely represent the younger tail of an 
age distribution for these tumors, which peaks at around 
40–45 years of age, as reviewed elsewhere.5 A larger group 
(5%–10%) of predominantly cortical tumors harbor an acti-
vating BRAF V600E mutation,46 have histological and epi-
genetic similarities to pleomorphic xanthoastrocytoma,39 
and have a better clinical outcome. Unlike lower-grade gli-
omas with mitogen-activated protein kinase pathway acti-
vation, they frequently co-segregate with CDKN2A/B (p16) 
deletion39,47 (Fig.  1). Patients whose tumors have these 
mutations are candidates for target-driven clinical trials48,49 
and provide a paradigm for translational progress in this 
disease (below).

The remaining tumors form a heterogeneous group 
with numerous potential driver events, which are poorly 
defined in terms of distinct molecular and clinicopatho-
logical features (Fig. 1). Mutations in the histone methyl-
transferase SETD2 may extend the proportion of tumors 
with dysregulated H3K36 trimethylation,50 the likely con-
sequence of H3.3 G34R/V mutation,18 though the func-
tional overlap between these mutations has not been 
determined. They otherwise frequently harbor altera-
tions associated with receptor tyrosine kinase activation, 
most commonly through amplification and/or mutation of 
PDGFRA51,52 (and in contrast to adult glioblastoma,53 only 
rarely through EGFR involvement2,5), though this is also 
often found in association with H3.3 K27M mutation. Gene 
fusions involving the NTRKs 1–3 are found in a small pro-
portion of cases, often in infants,22 and may overlap with 
a group of low-grade gliomas with similar genetic altera-
tions.54 MYCN (and to a lesser extent, MYC) amplifications 
are also seen, although it is unclear to what extent they 
mark a distinct subgroup either in nonbrainstem tumors or 
DIPG.22–25 Together, integrated genetic and epigenetic char-
acterization of pHGG and DIPG may allow for the deline-
ation of distinct prognostic risk groups which will inform 
future clinical trial interpretation—for instance, a high-risk 
group based upon K27M mutation and/or amplification of 
PDGFRA, MYCN, etc, and an intermediate group enriched 
for G34R/V and IDH1 mutations.39

Finally, there is a significant proportion of nonhistone, 
non-IDH1, non-BRAF mutated tumors with remarkably 

stable genome profiles,9,12,22,25,39 for whom archetypal 
genetic events remain elusive. Some of these may even-
tually be reclassified as other entities on the basis of 
their epigenetic profiles; however, there likely remains a 
uniquely pediatric group of these highly malignant tumors 
which thus far defy definition by classical “driver” molecu-
lar alterations.

Tumor Microenvironment of the 
Childhood Brain

The developmental context in which pHGGs arise may pro-
vide further insights into the pathobiology and potential 
therapeutic targets for this group of tumors. While the cell 
of origin for pHGGs is still controversial,55 multiple lines of 
evidence point to a neural precursor cell, possibly in the 
oligodendroglial lineage.31,56,57 Consistent with this hypoth-
esis, pHGGs occur in relatively discrete spatial and tempo-
ral patterns21 that coincide with waves of developmental 
myelination in the childhood and adolescent brain.57,58 The 
observation that elevated neuronal activity promotes the 
proliferation of oligodendroglial lineage precursor cells59 
prompted an examination of the role active neurons may 
play in the pHGG microenvironment. Excitatory neuronal 
activity was found to robustly promote the growth of 
pHGG, including both pediatric cortical glioblastoma and 
DIPG.60 Neuronal activity-regulated pHGG growth depends 
upon activity-regulated secretion of neuroligin-3 (a synap-
tic adhesion molecule that promotes glioma proliferation 
through stimulation of the phosphatidylinositol-3 kinase–
mammalian target of rapamycin pathway) and brain-
derived neurotrophic factor.60 These observations highlight 
the manner in which pHGGs “hijack” mechanisms of devel-
opment and plasticity in the childhood brain, and may elu-
cidate novel therapeutic strategies in the future.

Immune cells, particularly tumor-associated mac-
rophages (TAMs), are known to play an important role 
in the microenvironment of low-grade pediatric gliomas 
and in adult high-grade gliomas.61 Mouse models of low-
grade glioma reveal a tumor growth-promoting effect of 
TAMs.62,63 Similarly, in adult gliomas the number of cells 
in the tumor mass immunopositive for the activated micro-
glia/macrophage marker CD68 increases with increasing 
tumor grade,64 and M2 phenotype microglia appear to pro-
mote glioblastoma growth.65 The effects of TAMs on glioma 
growth and progression appear to depend on the TAM 
activation state along the M1–M2 spectrum, with M2 phe-
notype TAMs promoting tumor growth and M1 phenotype 
TAMs potentially inhibiting growth.65 Gene expression data 
from pediatric infiltrating astrocytoma demonstrate enrich-
ment in expression of M1 and M2 microglia/macrophage 
gene signatures,66 and differences in TAM phenotype may 
explain the observation that in pilocytic astrocytomas 
of childhood, tumor recurrence correlates inversely with 
CD68+ TAMs.67 As in other gliomas, microglia account for 
approximately one third of the cellular mass of DIPG.68 The 
functional role TAMs may play in DIPG and other infiltrat-
ing gliomas of childhood remains to be determined.

While our understanding of TAMs in pediatric infil-
trating gliomas remains incomplete, the potential of 
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harnessing the power of the immune system in pediatric 
gliomas is presently under exploration using a variety of 
immune-modulatory strategies, including blockade of pro-
grammed cell death protein 1 (ClinicalTrials.gov identifiers 
NCT01952769 and NCT02359565) and tumor vaccine strate-
gies (NCT01400672 and NCT00874861). It should be noted 
that one blocker trial of programmed cell death protein 1 
using pembrolizumab (NCT02359565) was stopped for 
safety concerns, highlighting the precarious location of the 
pons for inflammation and subsequent edema.

A Clinical Conundrum and a Way 
Forward

Despite a significant number of prospective clinical tri-
als for children with HGG, either at initial diagnosis or 
recurrence, over the past 4 decades, there has been little 
improvement in patient outcome. It is important to note 
that while most studies examining adult brain tumors 
are limited to WHO grade IV astrocytomas (ie, glioblas-
toma), the majority of pHGG clinical trials have included 
both WHO grade III (anaplastic astrocytoma) and grade IV 
tumors. The first prospective, randomized clinical trial for 
children with HGG was published in 1989 by the Children's 
Cancer Study Group and showed a significant improve-
ment in outcome using adjuvant radiation therapy (RT) 
followed by pCV chemotherapy (prednisone, chloroethyl-
cyclohexyl nitrosourea [CCNU], and vincristine) compared 
with RT alone.69 In this study, the addition of chemother-
apy led to a dramatic increase in 5-year progression-free 
survival, from 16% to 46%, and as a result no subsequent 
cooperative group study used an “RT-only” arm going for-
ward. The survival rates on both treatment arms on this 
particular trial far exceeded what has been observed in 
more recent studies; a subsequent retrospective central 
review demonstrated inclusion of large numbers of low-
grade gliomas on the older HGG study,70 explaining the 
discrepant results. Contemporary trials using updated neu-
ropathology criteria and central review have shown 3-year 
event-free survival (EFS) and overall survival (OS) rates 
of ∼10% and 20%, respectively.35 The successor Children's 
Cancer Group Study (CCG-945) performed between 1985 
and 1990 comparing preradiation and postradiation chem-
otherapy with the 8-in-1 regimen to postradiation procar-
bazine, CCNU, and prednisone, also demonstrated the 
difficulty in utilization of institutional diagnosis; on a retro-
spective, central review 51 of 172 tumors were classified as 
discordant.70,71 The majority of the differences were again 
inclusion of low-grade tumors. Patients with HGGs in this 
study had a similar poor OS rate of 20% at 5 years. It dem-
onstrated that the strongest factors associated with more 
favorable outcome were extent of resection (>90% resec-
tion), low methylation-inhibited binding protein 1 indices, 
and non-overexpression of p53.

Single-agent TMZ, when administered during and after 
RT, has been shown to significantly prolong EFS and OS 
in adults with glioblastoma compared with RT alone; 
however, the use of a similar regimen in children in the 
Children's Oncology Group (COG) single-arm study 
ACNS0126 did not improve outcome compared with 

historical controls treated with different adjuvant chemo-
therapy regimens.35 While expression of O6-DNA methyl-
guanine-methyltransferase was confirmed as a prognostic 
marker, the predictive value for benefit from TMZ has not 
been demonstrated as in the adult setting.34,72 In the sub-
sequent COG HGG trial, ACNS0423, CCNU was added to 
TMZ during maintenance, and the final study results have 
not been published. However, 1-year OS was reported as 
100% in patients with isocitrate dehydrogenase 1 (IDH1) 
mutant tumors versus 81% in those with IDH wild-type 
tumors (P = .03, one-sided log-rank test),73 underscoring 
the strong prognostic value of IDH1 mutations in pediatric 
HGG patients, similar to adults.

The most recent COG HGG trial, ACNS0822, compared 
2 different experimental arms with vorinostat or bevaci-
zumab during RT with a control arm with TMZ during RT. 
Patients on all 3 arms received bevacizumab during main-
tenance therapy post RT. The study was initially planned 
as a “pick-the-winner” phase II design to be advanced 
into phase III testing, but the study was permanently 
closed in 2014 during phase II, as no arm showed any clear 
superiority.74

In patients with pHGG treated on the German HIT-GBM-C 
cooperative group study with intensive chemotherapy dur-
ing and after RT (cisplatin, etoposide, and vincristine, with 
one cycle of cisplatin, etoposide, and ifosfamide during 
the last week of radiation, and subsequent maintenance 
chemotherapy followed by oral valproic acid), survival 
was better than that seen in prior HIT-GBM studies in the 
subgroup of patients with HGG who had undergone gross 
total resection (5-year OS rate 63% vs 17% for the histori-
cal control group, P = .003, log-rank test).75 Molecular data 
were not provided, however, rendering the data difficult to 
interpret.

The use of adjuvant pCV in addition to RT provided no 
survival benefit in patients with brainstem tumors, includ-
ing DIPG.76 Furthermore, no subsequent DIPG trial has 
shown convincing benefit of any adjuvant therapy beyond 
RT alone, independent of whether the chemotherapy is 
given before, during, and/or after RT.43 Additionally, the use 
of higher doses of RT, given in hyperfractionated regimens, 
to cumulative doses as high as 7800 cGy, has shown no 
survival benefit and increased neurotoxicity.77,78

The studies mentioned above are but a small number of 
those that have attempted to improve the outcome of non-
brainstem HGG and DIPG. Unfortunately, based on a limited 
understanding of the biology and heterogeneity of these 
tumors, most studies resulted in added toxicity and little 
activity. Even with the increased recognition of the clinical 
and biological differences observed between different sub-
groups of tumors, they were treated as a single uniform 
group. Incorporation of biology into diagnostic evaluations 
has been slow, and until recently robust markers were not 
available. There was reluctance by regulatory agencies and 
physicians to put patients at increased risk for obtainment 
of tissue for biological assessment unless the results were 
used to guide therapy, especially for DIPGs, as DIPGs arise 
in an eloquent brain area for which resection cannot be 
accomplished, and biopsy was considered to carry substan-
tial risk. DIPGs frequently are associated with typical radio-
logical features on MRI; a decision to forgo surgical biopsy 
resulted in limited tissue being available for subsequent 
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molecular analysis. Excessive caution and the inability to 
use biological information to guide clinical studies resulted 
in a very limited understanding of the biology of DIPGs.

Only through the efforts of centers that performed surgi-
cal biopsies on patients prior to treatment, coupled with 
increased emphasis on rapid obtainment of autopsy tis-
sue for molecular analysis, did the field advance more 
in 5 years than in the prior 50 years combined. The initial 
reports on the heterogeneity within DIPG13 and identifica-
tion of potential targets79 were the first in rapid succes-
sion that made the current conference even possible. As 
described above, the identification of the chromatin muta-
tions, their association with aberrant pathway activation 
that appears to segregate into different groups, and the 
identification of a new target not previously associated 
with any cancer has changed the very landscape by which 
we think about these tumors.

The growing recognition of HGG, especially pHGG, as a 
biologically diverse group of tumors rather than a single 
disease, has profound implications for the design and plan-
ning of future clinical trials. Mounting evidence indicates 
that clinical behavior more closely follows tumor biology 
(ie, molecular genetics and epigenetics) rather than histo-
pathological grading or traditional clinical factors, such as 
extent of resection. Moreover, novel and emerging drugs 
for the treatment of HGG will likely target only a subset of 
pHGG, resulting in relatively small eligible populations for 
targeted clinical trials.

Any therapy, whether a conventional cytotoxic chemo-
therapy or a targeted novel agent, will fail to have any 
clinical benefit if it does not achieve sufficient drug concen-
trations at the target tissue. The issue of poor drug delivery, 
as a result of the blood–brain barrier, may be a major reason 
for failure in both adult and pediatric diffuse HGG. Studies in 
adult glioblastoma have investigated drug levels of targeted 
agents in post-exposure resected tumors and have demon-
strated both inter- and intratumoral variation of tumor drug 
concentrations, confirming concerns of poor drug delivery 
as a cause of failure.80–82 A phase II study of the ErbB inhibi-
tor lapatinib in children with refractory CNS tumors has 
reported low intratumoral drug concentrations (10%–20% of 
simultaneous plasma sample) similar to results in an adult 
glioblastoma.82,83 To date, direct measurement of tumor 
drug concentrations in DIPG has not been reported, and it 
is postulated that the blood–brain barrier is more intact and 
hence a greater barrier than in other nonbrainstem CNS 
tumors. As promising agents with a strong biological ration-
ale emerge, it is essential that the ability to achieve required 
target drug concentrations is studied in both accurate pre-
clinical models and, if appropriate, confirmed in proof of 
mechanism clinical trials measuring tumor drug concentra-
tions in post-biopsy/surgical resection.

Recent efforts to establish patient-derived pHGG cell 
cultures and orthotopic xenograft models29,56,84 have ena-
bled preclinical testing. In addition to confirming the rela-
tive insensitivity of pHGGs to traditional chemotherapies, 
such efforts in DIPG have demonstrated the potential ther-
apeutic efficacy of epigenetic modifying agents targeting 
histone demethylases and histone deacetylases.29,30 Both 
classes of agents promote restoration of histone-3 K27 
trimethylation through differing mechanisms, and dem-
onstrate synergy when used in combination.29 A  phase 

I clinical trial of the histone deacetylase inhibitor panobi-
nostat in children with DIPG was set to open in late 2015 
within the Pediatric Brain Tumor Consortium (PBTC 047).

These studies highlight the therapeutic implications of 
targeting epigenetic lesions induced by histone mutations. 
However, the impact of K27M and G34R/V on the global 
chromatin landscape is still largely unknown. For example, 
it is highly likely that K27me3 loss in K27M causes down-
stream consequences on other histone marks or chroma-
tin machinery which can be targeted pharmacologically. 
Evidence for this comes from work showing decreased 
DIPG proliferation when inhibiting menin, a member of 
the trithorax group, which is a complex that antagonizes 
K27me3, depositing polycomb repressive complex.31 
This suggests that mechanistic studies of how K27M and 
G34R/V mutations impact the global epigenetic landscape 
will provide further insight into prognostic and rational, 
targeted therapeutic strategies in DIPG.

The existing trial paradigms (ie, separate DIPG vs 
supratentorial HGG studies, and even pediatric vs adult 
HGG studies) are being greatly challenged by molecular 
subgrouping. For example, future trials targeting K27M 
mutant tumors should include patients regardless of ana-
tomical location.39 On the other hand, given that IDH1 
mutant tumors are much more common in adults, the 
inclusion of IDH mutant tumors on pediatric studies with-
out a specific rationale generally makes little sense (and 
perhaps should be included in a separate stratum of the 
adult trials). While BRAF V600E represents an attractive tar-
get in HGG, the design of appropriately powered clinical 
trials with BRAF V600E inhibitors in the upfront setting will 
be daunting, especially as the enthusiasm for randomized 
studies with a control arm will be low. The specific chal-
lenges relate to the very small patient numbers, as well as 
the fact that BRAF V600E mutant tumors include secondary 
HGG arising via malignant transformation of a low-grade 
lesion, and tend to have a more favorable outcome com-
pared with other HGG.85 As a result, our ability to plan and 
conduct adequately powered studies in this population 
requires international collaboration among clinical centers 
and needs to somehow incorporate first-world molecular 
diagnostic capabilities for patients in third-world countries. 
For patients with recurrent BRAF V600E mutant tumors, 
including HGG, the feasibility of clinical trials is far greater, 
and such studies are already under way (NCT01677741, 
NCT01748149). It is expected that these trials will gener-
ate valuable preliminary data on the efficacy of BRAF 
V600E targeted therapies in HGG, including durability of 
response.

Conclusions

The general challenges for future clinical trial design in 
pediatric HGG are 4-fold: (i) lack of currently actionable 
alterations in a large proportion of patients, (ii) intratu-
mor heterogeneity and molecular pathway redundancy, 
(iii) issues with drug delivery including poor blood–brain 
barrier penetration of many molecular targeted agents, 
and (iv) small subsets of patients for each given biology 
and target expression. While novel clinical trial designs 
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are needed, large-scale studies using adaptive clinical trial 
designs as proposed for adult glioblastoma86 will only be 
feasible in the much smaller pediatric population through 
international collaboration. A more promising design could 
involve real-time molecular diagnostics ideally involving 
multiple areas of the tumor (including the contrast-enhanc-
ing as well as the nonenhancing, infiltrative components), 
and a “personalized medicine” approach to custom-select 
medications with a matching target profile and favorable 
pharmacokinetics, including blood–brain barrier penetra-
tion. Such an approach is currently being explored in a 
pilot trial testing the feasibility of molecular profiling in 
adults with recurrent/progressive glioblastoma (Clinical 
Trials.gov identifier NCT02060890). Another is being per-
formed in children and young adults with newly diag-
nosed and recurrent DIPGs through the Pacific (Pediatric) 
Neuro-Oncology Consortium (PNOC). Additional layers of 
complexity that remain poorly understood but will need 
to be addressed include intratumoral heterogeneity and 
clonal evolution at the single cell level,87,88 as well as the 
role of the tumor microenvironment,60 tumor metabo-
lism,89 and tumor immunology,90 and how to exploit them 
therapeutically.
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