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Abstract

We analyze the empirical performance of several non-parametric estimators of
the pricing functional for European options, using historical put and call prices on
the S&P500 during the year 2012. Two main families of estimators are considered,
obtained by estimating the pricing functional directly, and by estimating the (Black-
Scholes) implied volatility surface, respectively. In each case simple estimators based
on linear interpolation are constructed, as well as more sophisticated ones based on
smoothing kernels, à la Nadaraya-Watson. The results based on the analysis of the
empirical pricing errors in an extensive out-of-sample study indicate that a simple
approach based on the Black-Scholes formula coupled with linear interpolation of
the volatility surface outperforms, both in accuracy and computational speed, all
other methods.

Keywords: non-parametric estimation; option pricing; implied volatility.

JEL codes: G13, C14, C52.

1 Introduction

The purpose of this work is to analyze the empirical performance of some non-parametric
and semi-parametric estimators of pricing functional, with particular emphasis on the
simplest contingent claims, i.e. European put and call options. The well-known idea
underlying non-parametric estimation is the following: assume that the price of a con-
tingent claim of a certain type can be written as π(y1, . . . , ym), where π : Rm → R is a
function to be estimated, and y1, . . . , ym are observable parameters. Given a sample

(yk)1≤k≤N =
(

y1k, . . . , y
m
k

)

1≤k≤N
, (πk)1≤k≤N =

(

π(y1k, . . . , y
m
k )

)

1≤k≤N

and y0 ∈ Rm, one can estimate π(y0) by linear interpolation (for instance) of the function
π̃ : Rm → R defined as

π̃(y) :=
N
∑

k=1

πk1{yk}(y).
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This procedure is well understood if y0 belongs to the convex hull of (yi)1≤i≤N (see
§3.1 for more details). There exist of course many other procedures based on nonlinear
interpolation, rather than linear, that may be preferable in certain situations, for instance
to obtain estimators that are more regular than just continuous. The same problem
has also been studied from a statistical perspective, leading to the large literature on
non-parametric estimation of regression functions1 (see, e.g., [3] and references therein).
One of the most popular estimators in this literature is the so-called Nadaraya-Watson
estimator (see [12, 18]), that is

π̂ε(y) =

m
∑

k=1

ρε(y − yk)πk

m
∑

k=1

ρε(y − yk)

,

where ρ : Rm → R is a strictly positive continuous radial function with integral equal to
1 and ρε := ε−mρ(· ε−1), or a slight generalization thereof.

Other functions of the parameters (y1, . . . , ym) can clearly be estimated in the same
manner. In particular, if the parameters are the usual inputs in the Black-Scholes pricing
formula (except the volatility), one can estimate the implied volatility, which can then
be fed back to the Black-Scholes formula to produce further estimates of the pricing
functional.

One of the first works applying non-parametric regression à la Nadaraya-Watson in
pricing problems is [1], where the authors, among other things, report impressive empir-
ical results on the precision of semi-parametric estimators applied to pricing European
call options on the S&P500. To date, a large literature deals with this approach to
pricing – see, e.g., [7] and references therein, as well as [6, 14] for related ideas.

Our purpose is to understand how different (but related) non-parametric approaches
perform in terms of pricing precision, also in comparison with non-trivial fully paramet-
ric alternatives. A natural question, of clear relevance for practical purposes, is whether
Nadaraya-Watson kernel estimation produces better estimates than elementary linear
interpolation. In order to avoid rather heavy Markovianity and stationarity assump-
tions on the price process of the underlying index, we use observed option prices in a
given day to estimate (unobserved!) option prices in the same day. It turns out that,
from the empirical point of view, there does not seem to be any advantage connected
with Nadaraya-Watson kernel estimators, which perform rather poorly in comparison
with simple linear-interpolation estimators. The latter also consistently outperform a
benchmark parametric estimator based on the (skewed) Variance-Gamma process (see
[11]).

The focus of this work is somewhat different from that of [1], whose main aim is to
estimate the so-called state-price density. However, such estimates are obtained by the
second derivative with respect to the strike price of (estimates of) the pricing functional

1The even larger literature on non-parametric density estimation treats a less general but very related
problem.

2



for European call options, and their main (practical) application seems to be pricing
anyway. On the other hand, the main terms of comparison used in [1] are rather involved
methods based on neural networks and on implied binomial trees, and empirical tests
are done in a very different way: observed option prices over a period of nine months are
aggregated to construct a Nadaraya-Watson estimator of the implied volatility surface,
seen as a function of underlying’s futures price, strike, and time to maturity. This
estimator is then used to forecast prices of European call options (with strike prices
within a certain range) at five later dates, namely from one to twenty days in the future.

We have not been able to find in the literature neither empirical studies where ob-
served option prices over different dates are not aggregated, nor a discussion about the
practical aspects of non-parametric estimation of pricing functionals, for the mere pur-
pose of pricing plain vanilla European options.2 Our goal is to try and answer some
basic fundamental questions in this regard, on the basis of an extensive out-of-sample
analysis.

The rest of the paper is organized as follows: in Section 2, after recalling some facts
about yield processes associated to dividend-paying assets that are not easily found in
standard textbooks, we prove a put-call parity identity for European options written
on a dividend-paying asset, under a conditional uncorrelation assumption involving the
asset, dividend rate, and risk-free rate processes. These basic theoretical results are
needed because the S&P500 pays dividends. The various estimators used in the empirical
analysis to follow are introduced in detail in Section 3. A preliminary analysis on the
data set of option prices on the S&P500 for the whole year 2012 is conducted in Section
4. Finally, Section 5 contains a detailed study of the empirical performance of the
estimators introduced in Section 3.

2 Setting and preliminaries

Given a probability space (Ω,F ,P) endowed with a (right-continuous, complete) filtra-
tion F = (Ft)0≤t≤T , let the adapted processes β and S : Ω × [0, T ] → R describe the
price of two traded assets: the former is just the risk-free cash account, i.e.

βt = exp

(
∫ t

0
rs ds

)

∀t ∈ [0, T ],

where r denotes the adapted, P-a.s. positive, short-rate process; the latter is a risky
asset with an associated adapted, P-a.s. positive, dividend rate process q, such that

exp

(
∫ T

0
qu du

)

∈ L∞(Ω,FT ,P).

The corresponding yield process Y is defined as

Yt = St +

∫ t

0
qsSs ds ∀t ∈ [0, T ].

2One can find, however, articles that use non-parametric methods to study related problems, without
aggregating option prices across days. For instance, [8] estimate the risk-neutral density and [2] test the
monotonicity of the pricing kernel.
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We assume that there exists a probability measure Q, equivalent to P, such that, setting
Št := β−1

t St, the discounted yield process Y̌ , defined by

Y̌t := Št +

∫ t

0
quŠu du ≡ β−1

t St +

∫ t

0
quβ

−1
u Su du ∀t ∈ [0, T ],

is a square integrable Q-martingale. Setting A := e
∫ ·
0
qu du, the integration by parts

formula yields

ŠtAt = S0 +

∫ t

0
Šu− dAu +

∫ t

0
Au− dŠu + [Š, A]t,

where
∫ t

0
Šu− dAu =

∫ t

0
Šu−Auqu du =

∫ t

0
ŠuAuqu du,

and, by continuity of A,

∫ t

0
Au− dŠu =

∫ t

0
Au dŠu, [Š, A]t = 0.

In particular,

St exp

(
∫ t

0
(qu − ru) du

)

= ŠtAt = S0 +

∫ t

0
Au dY̌u

is a (square integrable) Q-martingale , because A is bounded and predictable.
As is well known, the existence of an equivalent probability measure Q such that the

discounted yield process Y̌ is a Q-martingale implies that the market defined by β and
S is free of arbitrage. In general Q is not unique, unless the market is complete, and we
assume that Q is just a fixed pricing measure. More precisely, we assume that we are
given a pricing functional

π : L∞(Ω,FT ,P) → R

X 7→ EQβ
−1
T X,

or, equivalently,

π(X) := EZTX, ZT :=
1

βT

dQ

dP
,

where the random variable ZT often goes under the name of stochastic discount factor.
We shall write, for compactness of notation,

A(t, T ) := exp

(
∫ T

t
qu du

)

, q̄(t, T ) :=
1

T − t
logEQ[A(t, T )|Ft],

B(t, T ) := exp

(

−
∫ T

t
ru du

)

, r̄(t, T ) := − 1

T − t
logE[B(t, T )|Ft],

where 0 ≤ t ≤ T .
We are going to use several times the following assumptions on r, q, and S.
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Hypothesis (H). One has, for any 0 < t ≤ T ,

CovQ
(

A(t, T ), B(t, T )
∣

∣Ft

)

= 0, CovQ
(

A(t, T ), B(t, T )ST

∣

∣Ft

)

= 0.

Here, for any two random variables X, Y ∈ L2(Ω,FT ,Q),

CovQ
(

X,Y
∣

∣Ft

)

:= EQ

[(

X − EQ[X|Ft]
)(

Y − EQ[Y |Ft]
)
∣

∣Ft

]

.

Hypothesis (H) is equivalent to

EQ[A(t, T )B(t, T )|Ft] = EQ[A(t, T )|Ft]EQ[B(t, T )|Ft],

EQ[A(t, T )B(t, T )ST |Ft] = EQ[A(t, T )|Ft]EQ[B(t, T )ST |Ft]

for all 0 < t ≤ T .

2.1 Put-call parity with dividends and applications

To implement some estimators of the pricing functional, but also to carry out a prelim-
inary analysis on the raw option prices, we shall need a version of put-call parity for
European call and put options. This will also yield a natural estimator for (a functional
of) the dividend rate process q.

Proposition 2.1. Assume that Hypothesis (H) holds. Then, for any 0 ≤ t ≤ T ,

Ste
−q̄(t,T )(T−t) −Ke−r̄(t,T )(T−t) = Ct − Pt, (1)

where Ct and Pt denote the prices at time t of European call and put options, respectively,

with maturity T , strike price K, and underlying price process S.

Proof. Multiplying the identity

ST −K = (ST −K)+ − (K − ST )
−

by β−1
T = B(0, T ) = e−

∫
T

0
ru du and taking conditional expectation yields

EQ

[

β−1
T ST

∣

∣Ft

]

−KEQ

[

β−1
T

∣

∣Ft

]

= EQ

[

β−1
T (ST −K)+

∣

∣Ft

]

− EQ

[

β−1
T (K − ST )

−
∣

∣Ft

]

= B(0, t)
(

Ct − Pt

)

.

Using Hypothesis (H) and the martingale property of the discounted yield process asso-
ciated to S and q, one has

EQ

[

β−1
T ST

∣

∣Ft

]

EQ

[

A(0, T )
∣

∣Ft

]

= EQ

[

β−1
T A(0, T )ST

∣

∣Ft

]

= A(0, t)B(0, t)St,

where EQ

[

A(0, T )
∣

∣Ft

]

= A(0, t)EQ

[

A(t, T )
∣

∣Ft

]

, hence

EQ

[

β−1
T ST

∣

∣Ft

]

= StB(0, t)
1

EQ

[

A(t, T )
∣

∣Ft

] = StB(0, t)e−q̄(t,T )(T−t).

Similarly,
EQ

[

β−1
T

∣

∣Ft

]

= B(0, t)EQ

[

B(t, T )
∣

∣Ft

]

= B(0, t)e−r̄(t,T )(T−t).

Collecting terms and simplifying yields

Ste
−q̄(t,T )(T−t) −Ke−r̄(t,T )(T−t) = Ct − Pt.
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Recall that the forward price at time t ≤ T of a contingent claim X ∈ L2(Ω,FT ,Q)
is defined as

fX
t :=

EQ[Xβ−1
T |Ft]

EQ[β
−1
T |Ft]

(see, e.g., [10, §2.4]). Using arguments entirely analogous to those in the proof of the
above Proposition, one obtains the following “spot-forward parity”.

Proposition 2.2. If Hypothesis (H) holds, then

fST

t = St e
(r̄(t,T )−q̄(t,T ))(T−t).

In particular, (1) could also be written as

fST

t e−r̄(t,T )(T−t) −Ke−r̄(t,T )(T−t) = Ct − Pt.

The put-call parity identity of Proposition 2.1 implies a procedure to estimate q̄(t, T ):
assuming that an estimator of r̄(t, T ) is available and is denoted by the same symbol,
and that prices of call and put options with the same maturity and strike price are
observable, identity (1) yields

q̄(t, T ) = − 1

T − t
log

C(t, T,K)− P (t, T,K) +Ke−r̄(t,T )(T−t)

St
, (2)

where C(t, T,K) and P (t, T,K) denote the price at time t of European call and put
options, respectively, with maturity T and strike price K. This estimate of q̄(t, T ) is
usually preferred in applications to option pricing to other proxies of q, such as historical
estimates.

3 Estimators of the pricing functional

From now on we shall assume that

(a) the filtration F is the (right-continuous, completed) filtration generated by (S, r, q);

(b) the process (S, r, q) is Markovian, i.e., for any bounded random variable ξ measur-
able with respect to σ

(

(Ss, rs, qs)t≤s≤T

)

, one has

E[ξ|Ft] = E[ξ|t, St, rt, qt].

These assumptions immediately imply that there exists a function πp : R6 → R such
that

πp(t, St, rt, qt,K, T ) = βtEQ

[

β−1
T (K − ST )

+
∣

∣Ft

]

= EQ

[

e−
∫
T

t
ru du(K − ST )

+
∣

∣

∣
Ft

]

for all t ∈ [0, T ]. In particular, without any further assumptions, the pricing functional
will be time-dependent, hence it is wrong, in general, to use the price functional estimated
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at time t to price options at time t+ 1, or, similarly, to estimate the pricing functional
aggregating data of different dates.3 This procedure become meaningful if we further
assume that the process (S, r, q) is a time-homogeneous Markov process: in this case πp
depends on t and T only through their difference T − t. However, it is far from clear that
a time-homogeneity assumption on the data-generating process would be appropriate,
hence the empirical analysis of Section 5 is carried out with t fixed. In §4.1 we also provide
empirical data that does not seem to support the plausibility of a time-homogeneity
assumption.

We now proceed to describe in detail the various estimators of the pricing functional
for put options that will be tested in Section 5. Analogous considerations, not spelled
out in detail, hold for call options and, in fact, for arbitrary European derivatives: some
care has to be taken only if the payoff function is unbounded, in which case integrability
conditions have to be assumed.

3.1 Linear interpolator

Let (Yk)1≤k≤N and (pk)1≤k≤N subsets of Rn and R, and f : Rn → R a function such that
f(Yk) = pk for all 1 ≤ k ≤ N . Denoting the convex hull of (Yk)1≤k≤N by C, the linear

interpolator f̂ : C → R is a function obtained by linear interpolation of the function
〈µN ,1〉, where µN is the marked empirical measure

µN :=
N
∑

k=1

pkδYk
,

δ stands for the Dirac measure, and 〈µN ,1〉 := ∑N
k=1 pk1{Yk}.

Linear interpolation here means that the Delaunay triangulation of (Yk) is computed,
and, for any y0 ∈ C, f̂(y0) is obtained by interpolation of 〈µN ,1〉 on the vertices of the
simplex containing y0. We recall that a triangulation of the set of points (Yk)1≤k≤N is a
partitioning of the convex hull C into simplices whose vertices are the points (Yk)1≤k≤N .
In particular, any two simplices of such a partition either do not intersect or share a
common face. A Delaunay triangulation of (Yk)1≤k≤N satisfies the following additional
property: if B is a ball in Rn such that all vertices of a simplex belong to its boundary,
then the interior of B does not contain any element of (Yk)1≤k≤N . Once a Delaunay

triangulation of (Yk)1≤k≤N has been obtained, f̂(y0), with y0 ∈ C, is defined as follows:
let v1, . . . , vd the vertices of the unique simplex V such that y0 ∈ V , and write

y0 =
d

∑

j=1

αjvj, αj ≥ 0,
∑

αj = 1.

Then we set f̂(y0) :=
∑

j αjf(vj). For an extensive treatment of these topics, see,
e.g., [13].

3For a related discussion, also from an economic point of view, cf. [14].
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Let t > 0 be fixed. Then, as seen above, we can write

EQ

[

e−
∫
T

t
ru du(K − ST )

+
∣

∣

∣
Ft

]

= πp(K,T − t).

Assuming that St > 0, adaptedness of S and Markovianity imply

πp(K,T − t) = EQ

[

e−
∫
T

t
ru du(K − ST )

+
∣

∣Ft

]

= StEQ

[

e−
∫
T

t
ru du

(

S−1
t K − S−1

t ST

)+∣
∣Ft

]

= Stφ(K,T − t).

Denoting by φ̂ the linear interpolator of φ, we define the normalized linear interpolator
π̂p of πp by π̂p := Stφ̂. This is the estimator used in the empirical analysis of Section 5.

Note that the linear interpolator is defined only on the convex hull C of the couples
(Kk, Tk − t)1≤k≤N . In other words, this estimator is unable to estimate the price of
options whose parameters (K,T − t) do not belong to C. From a purely numerical point
of view, the estimator π̂p could be extended outside C, for instance by extrapolation.
However, the estimates obtained this way are rarely reliable. Another possibility to
extend the estimator outside C is to add fictitious couples (Kj , Tj − t)j to the sample
where the value of the function πp is known, e.g. for Tj − t = 0, or for Kj “very large”.
This idea, which is obviously more meaningful than a mere numerical extrapolation,
may lead, in some situations, to relatively satisfactory results. Details are discussed in
Section 5 below.

3.2 Nadaraya-Watson estimator

Let (Yk, pk)1≤k≤N and f be as in the previous subsection. Let ρ : R → R+ be an
integrable function with integral equal to 1, and set, for any ε > 0, ρε(x) = ε−1ρ(xε−1).
With a slight abuse of notation, for any ε = (ε1, . . . , εn) ∈ (0,∞)n, we define the function
ρε : R

n → R as ρε = ρε1 ⊗ · · · ⊗ ρεn , i.e.

ρε(x) ≡ ρε(x1, . . . , xn) = ρε1(x1) · · · ρεn(xn).
The Nadaraya-Watson (NW) estimator f̂ε of f : Rn → R, with smoothing parameters
ε = (ε1, . . . , εn), based on the observations (Yk, pk)k, is defined as

f̂ε(x) =

N
∑

k=1

pkρε(x− Yk)

N
∑

k=1

ρε(x− Yk)

.

The value of the function f̂ε at x is thus a weighted average of the observations (pk)k
of the type

f̂ε(x) =

N
∑

k=1

pkwk

(

x; (Yk)
)

, wk

(

x; (Yk)
)

:=
ρε(x− Yk)

∑

k ρε(x− Yk)
.
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Usually ρ is such that ρ = g ◦ |·| (i.e. it is symmetric), with g is decreasing, so that the
NW estimator effectively computes a weighted average of the observations assigning more
weight to those closer to x. If ρ has compact support, the average is on a finite number of
points whose distance from x does not exceed a certain threshold (depending on ε). The
NW estimator can also be interpreted as a local constant least square approximation of
the observed values (pk), because (assuming for simplicity n = 1)

f̂ε(x) = arg min
θ∈R

N
∑

k=1

(pk − θ)2 ρ(ε−1(x− Yk))

(see, e.g., [17, p. 34]). Here “local” simply refers to the weighting through ρ that, as
before, assigns more weights to observations Yk closer to x.

The explicit form of the Nadaraya-Watson estimator of πp we shall use is

π̂ε(K,T ) =

N
∑

k=1

pkρε1(K −Kk)ρε2(T − Tk)

N
∑

k=1

ρε1(K −Kk)ρε2(T − Tk)

,

where ρ is the density of the standard Gaussian measure on R.

As is well known (see, e.g., [17]), the choice of the smoothing parameter ε is crucial
in the implementation of non-parametric regression techniques: as ε → 0 the estimator
is “undersmoothing”, and as ε → ∞ it is “oversmoothing”.4 We are going to select ε
by (leave-one-out) cross-validation (cf. [17, §1.4, p. 27-ff.]) as follows: let f̂ε,−j be the
Nadaraya-Watson estimator of f based on the sample (Yk, pk)k∈I\{j}, I := {1, . . . , N},
and

CV (ε) :=
∑

j∈I

∣

∣fj − f̂ε,−j(Xj)
∣

∣

2
.

Then we set
εCV := argmin

ε>0
CV (ε).

In the NW estimator of the pricing functional we replace CV (ε) above with

CV (ε) :=
∑

j∈I

∣

∣1− f̂ε,−j(Xj)/fj
∣

∣

2
,

i.e. the smoothing parameter is chosen as to minimize the relative error rather than the
absolute error.

4Roughly speaking, as ε → 0 the estimator f̂ε(x) reproduces the data, i.e. it is equal to pk for x = Yk

and zero elsewhere, and it converges to a constant equal to the average of the pk as ε → ∞.
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Since the cross-validation procedure is computationally very intensive, hence rather
slow, we shall also consider a much simpler choice of the smoothing parameters as a
term of comparison. In particular, following [16, §3.4.2], we shall use

εj := 0.9 min
(

Dj , Qj/1.34
)

N−1/5, j = 1, 2,

where D1 and Q1 are the (sample) standard deviation and the inter-quartile range of
Kk, k = 1, . . . , N , respectively, and D2, Q2 are defined in the same way with Tk − t in
place of Kk.

Remark 3.1. (a) In some applications (e.g. to estimate a function together with its
derivatives) it is useful to allow ρ to take negative values. Then π̂ε is not guaranteed
to be positive. The usual convention is then simply to redefine π̂ε as its positive part.
(b) If ρ is supported on the whole space, the Nadaraya-Watson estimator is defined also
for points that do not lie in the convex hull C of (Yk). However, since this estimator
is nothing else than a local average, estimates produced for points that lie outside C
should be taken with extreme care, if not plainly discarded.

3.3 Implied volatility estimators

Let BS(S0, r, q,K, x, σ) denote the Black-Scholes price of a put option with time to
maturity x and strike K, written on an underlying with current price S0, constant
dividend rate q and volatility σ, where the risk-free rate r is also constant. As is well
known, σ 7→ BS is strictly monotone, hence, for any S0, x > 0, K, r, q ≥ 0 and 0 < p < K,
there exists a unique σ0 > 0, called implied volatility, such that p = BS(S0, r, q, x,K, σ0).
We shall call by the same name also the function (p, S0, r, q, x,K) 7→ σ0 that is uniquely
defined by the procedure just described.

If (pk,Kk, xk), k = 1, . . . , N , is a sample of observed option prices and corresponding
strike prices and times to maturity in a fixed day (so that S0 is also fixed), then for each
k there exists a unique positive number σ̂k such that

pk = BS(S0, r, q,Kk, xk, σ̂k),

hence (σ̂k)k can be interpreted as (estimates of the) values of the implied volatility
function on the set of points (Yk)k, i.e., for some function σ : R2 → R+, σ̂k = σ(Yk) for
all k = 1, . . . , N . This yields

pk = BS
(

Kk, xk, σ̂(Kk, xk)
)

∀k = 1, . . . , N,

which immediately suggest another procedure to estimate the pricing functional πp: let
y0 ∈ C, where C ⊂ R2 denotes the convex hull of (Kk, xk)1≤k≤N , and define σ̂(y0) by
linear interpolation of σ (in the sense of §3.1), hence set

π̂p(y0) := BS
(

y0, σ̂(y0)
)

.

In the empirical study below we shall employ a normalized estimator of the implied
volatility function σ : C → R, in complete analogy to the construction of the normal-
ized linear interpolator of §3.1. Namely, given y0 = (K0, x0) ∈ C, we define σ̂(y0) by
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linear interpolation at (K0/S0, x0) of the function whose value at (Kk/S0, xk) is σ̂k,
k = 1, . . . , N .

Alternatively, one could use, in place of the linear interpolator σ̂, a Nadaraya-Watson
estimator σ̂ε, obtaining another estimator of the pricing functional. Of course all con-
siderations of the previous subsection regarding the choice of the smoothing parameter,
as well as the lack of plausibility for estimates with y0 6∈ C, apply also in this case.

Note that, in contrast to the linear interpolator and the Nadaraya-Watson estimator,
estimating σk requires estimates of r and q. While historical data on the risk-free interest
rate are readily available, we use as a proxy for q the implied estimator discussed at
the end of Section 2 and, in more detail, in Section 4 below. Moreover, the Black-
Scholes structure allows to obtain an explicit expression for the sensitivity of the implied
volatility with respect to the parameter q. Such result, which could have some interest
in its own right, can be found in the Appendix (the derivation therein deals with call
options, but the corresponding result for put options follows easily).

3.4 A parametric estimator of the Variance-Gamma class

A measure µ on the Borel σ-algebra of R+ is called Gamma measure with parameters
c > 0 and α > 0 if

µ(B) =
αc

Γ(c)

∫

B
xc−1e−αx dx

for any Borel set B. A random variable G is said to be Gamma-distributed with pa-
rameters c and α if its law is a Gamma measure with the same parameters. Elementary
calculus (and the definition of the Gamma function) shows that, for any w < α,

∫

R+

ewxµ(dx) = (1− w/α)−c, (3)

and
∫

R+

eiuxµ(dx) = (1− iu/α)−c,

whence it immediately follows that Gamma laws are infinitely divisible. Let µ1 be a
Gamma measure with c = 1. Then there exists a positive increasing Lévy process
starting from zero (i.e., a subordinator) Γ such that the law of Γ1 is µ1, and

EeiuΓt = (1− iu/α)−t,

hence the law of Γt is Gamma with parameters t and α. We refer to, e.g., [15] for details.
Let W a standard Wiener process independent of Γ, and consider the process X

defined by
Xt = θΓt + σWΓt

,

where θ and σ > 0 are constants. Since t 7→ θt+Wt is a Lévy process and X is obtained
by subordination of the former process, X is itself a Lévy process, which goes under the
name of (asymmetric) Variance-Gamma process and was introduced in [11].

11



In order to construct a pricing functional, we are going to assume that

θ +
σ2

2
< α.

This condition guarantees that there exists a constant η such that the process exp(Xt+ηt)

is a Q-martingale. In fact, since WΓt
is equal in law to Γ

1/2
t W1, one has, recalling the

expression for the moment-generating function of Gaussian laws,

EQ exp
(

Xt

)

= EQ exp
(

θΓt + σΓ
1/2
t W1

)

= EQEQ

[

exp
(

θΓt + σWΓt

)
∣

∣Γt

]

= EQ exp
(

θΓt + σ2/2Γt

)

= EQ exp
(

(θ + σ2/2)Γt

)

.

Therefore, if θ + σ2/2 < α, (3) implies

EQ exp
(

Xt

)

=

(

1− θ + σ2/2

α

)−t

,

hence EQ exp(Xt + ηt) = 1 choosing

η = log

(

1− θ + σ2/2

α

)

.

Since X is a Lévy process, it is now easy to conclude that the process exp(Xt + ηt) is a
Q-martingale.

We postulate that the risk-free interest rate r and the dividend rate q are constant
and that the price process S can be written as

St = S0 exp
(

(r − q)t+Xt + ηt
)

,

so that the market satisfies the no-arbitrage condition.

Remark 3.2. The hypothesis on S just made is not equivalent to assuming that

St = S0 +

∫ t

0
(r − q)Ss ds +

∫ t

0
Ss− dXs.

In fact, setting S̃t := e−(r−q)tSt, t ≥ 0, the integration-by-parts formula yields

S̃t = S0 +

∫ t

0
S̃s− dXs,

hence S̃/S0 is given by the Doléans stochastic exponential of X (see, e.g., [9, The-
orem 26.8]), which in this case, recalling that X is a pure-jump process with finite
variation, reduces to

S̃t = S0

∏

s∈]0,t]

(

1 + ∆Xs

)

,

i.e. St = S0e
(r−q)t

∏

s∈]0,t]

(

1+∆Xs

)

. Since the Variance-Gamma process X has paths of
finite variation, the same conclusion can of course be obtained by elementary path-wise
considerations, without any recourse to stochastic calculus.
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The price at time zero of a European call option expiring at time T is

πT := e−rTEQ

(

S0 exp
(

(r − q)T + ηT +XT

)

−K
)+

= e−rTEQ

(

S0 exp
(

(r − q)T + ηT + θΓT + σΓ
1/2
T W1

)

−K
)+

= e−rTEQEQ

[(

S0 exp
(

(r − q)T + ηT + θΓT + σΓ
1/2
T W1

)

−K
)+∣

∣

∣
ΓT

]

.

Setting

q̃ ≡ q̃(ΓT ) := −(r − q + η)T −
(

θ + σ2/2
)

ΓT , σ̃ ≡ σ̃(ΓT ) := σΓ
1/2
T ,

it is immediately seen that

πT = e−rTEQEQ

[(

S0 exp
(

−q̃ + σ̃W1 − σ̃2/2
)

−K
)+∣

∣

∣
ΓT

]

= e−rTEQBS
(

S0,K, 0, q̃, σ̃, 1
)

= e−rTEQ

(

S0 exp
(

−q̃
)

Φ(d̃+)−KΦ(d̃−)
)

= e−rTEQ

(

S0 exp
(

(r − q + η)T + (θ + σ2/2)ΓT

)

Φ(d̃+)−KΦ(d̃−)
)

= S0e
(−q+η)TEQ

(

e(θ+σ2/2)ΓTΦ(d̃+)
)

−Ke−rTEQΦ(d̃−),

where

d̃+ =
logS0/K + (r − q + η)T + (θ + σ2)ΓT

σΓ
1/2
T

,

d̃− =
logS0/K + (r − q + η)T + θΓT

σΓ
1/2
T

.

A completely similar argument shows that the price of a put option with the same
features can be written as

Ke−rTEQΦ(−d̃−)− S0e
(−q+η)TEQ

(

e(θ+σ2/2)ΓTΦ(−d̃+)
)

.

The problem of option prices is thus reduced to the evaluation of integrals against a
Gamma measure. This can either be accomplished by numerical integration (the Gamma
measure has an explicit density and the integrands, as functions of ΓT , are “almost”
explicit), or, alternatively, by a simulation method. In particular, denoting a sequence
of independent copies of ΓT by (Gk), the strong law of large numbers yields

1

n

n
∑

k=1

F (Gk) → EQF (ΓT )
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Q-almost surely for any (measurable) function F : R → R such that EQ|F (ΓT )| < ∞.
Moreover, if F (ΓT ) ∈ L2(Q), the central limit theorem implies

1√
n

n
∑

k=1

(

F (Gn)− EQF (ΓT )
) d−→ N(0, ς2),

where ς := VarF (ΓT ). Writing πT = F (ΓT ), for a properly chosen F , it is immediately
seen that πT ∈ L1(Q) thanks to the hypothesis on the parameters (θ, σ, α), and πT ∈
L2(Q) if 2θ + σ2 < α. Since typically θ < 0 (negative skew) and σ rarely exceeds 1/2,
the condition α > 1/4 is not restrictive (the estimated values of α in our data set are
always larger than 1). For several representative choices of parameters, an average over
n = 10, 000 (pseudo)random variates produces estimates of πT that are in very good
agreement with those obtained by numerical integration.

Once a pricing formula for European options is available, calibration of the parame-
ters is rather straightforward. Namely, denoting by πV G(K,T−t; θ, σ, α) the (theoretical)
price of a put option in the above VG model (with t fixed), assuming that (Kk, Tk − t)
and pk, k = 1, . . . , N , are observed parameters corresponding and option prices in a
fixed day, one sets

(θ̂, σ̂, α̂) := arg min
(θ,σ,α)∈D

N
∑

k=1

∣

∣

∣

∣

πV G(Kk, Tk − t; θ, σ, α)− pk
pk

∣

∣

∣

∣

2

,

where D :=
{

(θ, σ, α) ∈ R× (0,∞)2 : θ + σ2/2 < α
}

. This procedure, possibly with the
sum of absolute errors instead of relative errors, is widely used by practitioners as well
as in academic publications (cf. e.g. [5] and [4], respectively).

Remark 3.3. It should be pointed out, however, that the map (θ, σ, α) 7→ πV G is not

injective, hence the calibration procedure just outlined is not well posed, i.e. the (daily)
estimates θ̂, σ̂, α̂ are not unique. In practice they will depend on the initialization of
the minimization algorithm (we have chosen θ0 = 0, σ0 = 0.3 and α0 = 2, respectively).

4 Data

We use S&P500 index option data5 for the period January 3, 2012 to December 31, 2012.
The sample contains 77 408 observations of European call and put options. Prices are
averages of bid and ask prices. Data points with time-to-maturity less than one day or
volume less than 100 are eliminated. This reduces the size of the sample to 75 022: 61%
and 39% of the options are of put and call type, respectively.

During 2012 the annualized mean and standard deviation of daily returns of the
S&P500 index were equal to 11.09% and 12.64%, respectively. During the same period
the 1-year T-bill rate was very close to zero, with minimal variations: in particular, its
mean was equal to 0.16%, with a standard deviation equal to 0.023%.

5The raw data are obtained from Historical Option Data, see www.historicaloptiondata.com.
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Table 1: Summary statistics for S&P500 index options data

This table collects some simple statistics for prices of European call and put options on the S&P500
index. The sample period is January 3, 2012 to December 31, 2012. Implied volatilities are annualized,
time to maturity is expressed in days, strike and futures prices are expressed in index points.

Percentiles

Variable Mean Std Min 5% 10% 50% 90% 95% Max

Call price 34.3 98.8 0.0 0.1 0.2 9.2 75.2 115.5 1270.0
Put price 21.3 46.5 0.0 0.1 0.1 5.9 58.2 93.7 1197.0
Implied vol. 0.2 0.1 0.0 0.1 0.1 0.2 0.4 0.4 2.6
Implied ATM vol. 0.2 0.1 0.0 0.1 0.1 0.2 0.4 0.4 2.0
Time to maturity 96.7 157.0 1.0 2.0 4.0 38.0 269.0 404.0 1088.0
Strike price 1301.0 208.4 100.0 950.0 1075.0 1345.0 1480.0 1525.0 3000.0
Futures price 1374.4 48.4 1207.2 1289.5 1309.1 1377.1 1435.9 1450.7 1466.8

As is well known, index options on the S&P500 are very actively traded: the average
daily volume is 618 490 contracts, with maturities ranging from 1 day to almost 3 years.
Descriptive statistics of the data are collected in Table 1.

It is commonly accepted that prices of in-the-money (ITM) options, because of their
small trading volume, are not reliable, and that, for this reason, they should be replaced
by prices computed via put-call parity whenever possible: the “new” prices are deter-
mined by prices of out-of-the-money (OTM) options, that are generally traded in larger
volumes, and are hence considered to be accurately priced (cf., e.g., [1, p. 517-ff.] and
[5]). We need therefore to check whether our data set is affected by such phenomenon.
In other words, we need to check whether the recorded prices for ITM options satisfy the
put-call parity relation with the corresponding OTM options. We are going to show that
prices of ITM options in our data set can be considered perfectly reliable, and hence that
no correction is needed. It is natural to argue that discarding prices of options whose
trading volume is lower than 100 already eliminates possibly unreliable quotes.

Basic summary statistics on the volume of the options in our database according to
their moneyness (see below for the precise definition we adopt) are collected in Table 2.
Note that the total number of traded ITM and OTM options are rather close.

Let us describe in detail the procedure to obtain “better” prices of ITM options via
prices of corresponding OTM options: let t < T , St and Ct be given, where St and
Ct denote the observed prices at time t of the index and of an ITM call option6 with
maturity T and strike priceK, respectively. Since the put option with the same maturity
and strike is necessarily OTM, if Hypothesis (H) is satisfied (or simply assumed to hold),
the put-call parity identity (1) provides an “alternative” price for the ITM call option,

6The reasoning obviously holds, mutatis mutandis, also for an ITM put option.
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Table 2: Statistics on the daily volume for S&P500 index options

This table collects basic descriptive statistical figures on the daily trading volume of European call
and put options on the S&P500 index. The sample period is January 3, 2012 to December 31, 2012.
Moneyness is defined in terms of the spot price falling within a 10% interval centered around the strike
price.

Percentiles

Moneyness Mean Std Min 5% 10% 50% 90% 95% Max

At-the-money 2696 4793 100 110 150 825 7824 12475 62334
In-the-money 1489 3972 100 100 113 490 3000 6000 65412
Out-of-the-money 1688 3191 100 108 133 640 4037 6381 101718

provided that

(a) a put option with the same maturity and strike is traded;

(b) estimates of r̄(t, T ) and q̄(t, T ) are available.

While good estimates of r̄(t, T ) are easily available, estimating q̄(t, T ) is in general not
straightforward. In particular, since we are going to use the estimator defined in (2),
which relies on put-call parity, one needs to avoid circular reasoning. This is achieved
by using pairs of at-the-money (ATM) put and call options with the same maturity
and strike to estimate q̄(t, T ). The latter estimates are then used in the put-call parity
formula for ITM/OTM options, so that no circularity is involved, as, for any given day,
the sets of ATM, ITM and OTM options are disjoint. ATM options are in general very
liquid, so that their observed prices can be considered accurate. This implies that the
corresponding estimates of q̄ can also be considered accurate. On the other hand, it may
happen that for an ITM option with maturity T there is no available estimate of q̄(t, T ),
simply because no couple of ATM options with that maturity is traded. In this case we
use linear interpolation, if possible, and nearest-neighbor extrapolation otherwise.

To implement the procedure just outlined, it is clearly necessary to define a measure
of moneyness, so that options can be (uniquely) classified as at-the-money, in-the-money,
or out-of-the-money. The simplest definition of (logarithmic spot) moneyness at time t
for a European call or put option with maturity T and strike K is logK/St. Closely
related is the logarithmic forward simple moneyness, defined as logK/fST

t , that is clearly
better suited especially for options with longer maturities. However, recalling that the
forward price fST

t depends on q̄(t, T ), the risk of falling into a circular reasoning appears
again. To avoid this problem we simply use as moneyness

M(t, T,K) = log(K/ft), ft := Ste
(rt−qt)(T−t),
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where rt is the spot rate at time t and qt is the (historical estimate7 of the) dividend
rate at time t. Then we say that an option is at-the-money (ATM) if its moneyness lies
in the interval [log 0.95, log 1.05], i.e. if its forward price at time t falls within a 10%
interval centered around its strike price. It is perhaps worth noting that, according to
[5], the industry-standard definition of moneyness is the so-called standardized forward
moneyness, defined as

log(K/fST

t )

σi
√
T − t

,

where σi is the (Black-Scholes) implied volatility of the option.8 At any rate, the em-
pirical results discussed below are essentially insensitive to the definition of moneyness.

After having spelled out in detail all steps in the implementation of put-call parity
to deduce prices of ITM options from those of corresponding OTM options, we can
now substantiate our claim that ITM prices can already be considered reliable and no
correction is needed. In fact, denoting by p the market price, by p̃ the “parity” price,
and defining the relative error by |(p̃ − p)/p|, the mean relative error is 0.3% with a
standard deviation of 0.4%. Moreover, the relative error is less than 1% in 97.5% of
cases, with a maximum value equal to 4%. It seems therefore perfectly fine to accept
the quoted prices of ITM option as reliable.

Remark 4.1. The procedure described above to “correct” ITM option prices is used in
[1] (up to details regarding the definition of moneyness, which is not explicitly stated
therein). The options in their data set, being about 20 years older than ours, had much
smaller trading volumes, at least on average. This might explain why they did need to
replace prices of ITM options in their database via the above correction procedure.

4.1 Option prices across different dates

We argued in Section 3 that it does not seem reasonable to impose (Markov) time-
homogeneity assumptions on the data-generating process. To substantiate this claim, we
identified two different dates in our data set (February 2, 2012 and June 21, 2012) when
the prices of the S&P500 were practically identical ($1325.54 and $1325.51, respectively),
and we looked for pairs of options, traded on both dates, having the same strike price
and time to maturity. Since the risk-free rate as well as the dividend rate were very
close to constant all over the year, a time-homogeneity assumption could be taken into
consideration if the above-mentioned pairs of options with identical characteristics had
prices very close to each other. Unfortunately this is clearly not the case: in Figure 1
prices of pairs of options, all having time to maturity equal to 8 days, are plotted as
function of their common strike price. From a practical viewpoint, the marked price
difference could be explained, at least in part, by different levels of volatility on the two
trading days. In fact, the CBOE Volatility Index for the two dates was equal to 17.98
and 20.08, respectively.

7Such estimates of qt, in the case of the S&P500, are readily available.
8In this formula one could replace f

ST

t with ft as defined above, however, the further problem of
having to estimate the implied volatility appear.
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Figure 1: Non-stationarity of the price process

This figure shows the difference in prices of options with same time to maturity and strike price, com-
paring two days (February 2 and June 21, 2012) when the prices of the underlying coincide.
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5 Empirical analysis

In this section we compare the empirical performance of the estimators introduced above.
The Variance-Gamma estimator, being a simple yet non-trivial parametric approach, can
be considered as a benchmark.

The analysis is carried out on the full data set as well as on a trimmed data set, where
options with price lower than 1/8 or implied volatility higher than 0.7 are discarded
a priori (the latter preliminary screening follows the approach of [1]). Moreover, we
consider both put and call options, that is, in one case we discard a priori all call prices,
and in another case all put prices. We have hence four different data sets on which the
(daily) performance of the estimators is tested.

We are going to perform out-of-sample tests as follows: let (pk)k∈Jt be observed
put option prices in a fixed trading day t, with Jt = J0

t ∪ J1
t , J0

t ∩ J1
t = ∅. The

index set J0
t is used to construct estimators of option prices and is randomly chosen

such that its size is 90% (up to rounding to the next integer) of the size of Jt. Since
t is fixed, under the hypotheses of Section 3 we can write, without loss of generality,
pk = πp(Kk, Tk − t) for all k ∈ Jt. Denoting any of the estimators of Section 3 by π̂,
constructed on the basis of (pk,Kk, Tk − t)k∈J0

t
, we obtain estimates p̂k = π̂(Kk, Tk − t)

for all k ∈ J1
t . These estimates are well defined, or meaningful, only for those k ∈ J1

t

such that (Kk, Tk − t) belongs to the convex hull of (Kk, Tk − t)k∈J0
t
whenever a linear

estimator or a Nadaraya-Watson estimator is used. The (relative) error for any one of
the estimators is then simply defined as ek = |1 − p̂k/pk| for all k ∈ J1

t such that p̂k is
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Figure 2: Time to maturity and strike prices: call vs. put

This figure shows time to maturity and strike price of all options traded in one day (June 21, 2012).
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well defined. This procedure is repeated for all trading days of the year. We the compute
various averages and related statistics on the obtained sample of relative errors (ek)k for
the whole year.

Remark 5.1. Discarding all call prices to construct estimators of the pricing functional for
put prices (and vice versa) implies that a large amount of potentially useful information is
being discarded. In fact, in view of put-call parity, prices of call options can be translated
into prices of put options with the same maturity and strike price, exactly as in the
procedure described at length in Section 4. However, given the usual characteristics of
call and put options on the S&P500, using the additional information does not improve
essentially the accuracy of the estimators. In fact, as one can see in Figure 2, the set of
points (K,x) for call and put options, where K and x stand for strike price and time
to maturity, respectively, are almost disjoint. It is clear, on the other hand, that taking
into account the information contained in the whole set of option prices could be very
useful to price (deep) ITM options.

Before presenting the empirical results, let us briefly introduce the labels used below
and in the corresponding tables:

LI Normalized linear interpolator of the pricing function defined in §3.1.

BS Black-Scholes price with volatility obtained by normalized linear interpolation of
the volatility surface, as defined in §3.3.

NW Nadaraya-Watson estimator of the pricing function with smoothing parameters
chosen by a quantile-based criterion, as defined in §3.2.

NWCV As NW, but with smoothing parameter chosen by cross-validation.
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BS-NW Black-Scholes price with volatility obtained by Nadaraya-Watson estimation.

BS-NWCV As BS-NW, but with smoothing parameter chosen by cross-validation.

VG The Variance-Gamma estimator as defined in §3.4.

5.1 Pricing within the hull

Statistics on the empirical pricing error computed on the whole data set, both for the
case of put and of call options, are collected in Table 3. Since, as mentioned above, the
linear interpolator of the pricing functional (LI) as well as the the linear interpolator
of the implied volatility function (hence BS) are only defined on the convex hull of the
sets of couples (Kk, Tk − t)k∈J0

t
, for all t, the set of empirical errors (ek)k is restricted

to those k such that the linear interpolator is well defined. This restriction implies that
5.1% of the put options and 7.4% of the call options (whose index k belongs to J1

t for
some t) cannot be priced by methods relying on linear interpolation. The behavior of
the estimators that do not suffer of this restriction (at least formally) is discussed later.

It turns out that all non-parametric estimators, if evaluated in terms of their mean
L1 relative error, are not satisfactory, with figures ranging from around 9% to 40%. The
parametric estimator based on the Variance-Gamma process (VG) has even higher mean
errors.9

A more accurate evaluation of the performance of the estimators is obtained by
looking at the distribution of the empirical errors, some points of which are also displayed
in Table 3. In particular, one observes that the best performance, in terms of the number
of options whose estimated price is reasonably near the market price, is achieved by the
estimator based on Black-Scholes formula with linearly interpolated volatility (BS). It
is also evident that the LI estimator has a considerably worse performance that the BS
estimator. Similarly, the Nadaraya-Watson estimator of the pricing functional displays
much weaker performance than the BS estimator, both when the smoothing parameter
is chosen via a simple quantile-based criterion and when it is chosen via cross validation.
In spite of the major improvement of the NW-based methods when cross validation is
used with respect to their simpler quantile-based counterparts, all NW-based methods
perform considerably worse than both methods based on simple linear interpolation, that
is LI and BS. Taking into account that the choice of the smoothing parameter by cross
validation is computationally much more intensive (and slower) than linear interpolation,
these empirical results suggest that, for the purpose of the pricing problem treated here,
keeping things simple is not only faster, but also significantly more accurate. At this
point we should remark that the empirical results reported in this section are obviously
influenced by the (random) splitting of the index set Jt in two disjoint sets J0

t and J1
t for

9It may be interesting to note that the mean relative in-sample and out-of-sample errors of the VG
estimator are very close. For example, the mean in-sample errors for put and call options on the trimmed
dataset are equal to 39.6% and 48.2%, respectively, while the corresponding mean out-of-sample errors
are equal to 38.5% and 49.6%. It is reasonable to speculate that the VG process is simply a poor fit to
the data-generating process. However, one should also recall that the calibration procedure of the VG
model is not well posed.
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Table 3: Pricing errors on the full dataset

The table displays descriptive statistics on the empirical pricing errors (in percentage points) of the
various estimators, on the basis of the complete dataset. Some points of the empirical distribution of
the pricing error are also reported. The labels used for the different estimators are defined on page 19.
The sample period is January 3, 2012 to December 31, 2012. The pricing error is computed on 4460 put
options and on 2732 call options.

Put Options

Error LI BS NW BS-NW NWCV BS-NWCV VG

Mean 11.9 10.7 289.1 39.8 29.5 32.2 46.9
St. Dev. 49.0 130.8 985.7 249.4 113.2 280.5 28.0
Median 3.1 1.1 26.9 16.0 10.8 6.4 45.7
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 2027.0 8079.8 17792.1 15551.7 4649.3 16892.0 314.7

Empirical Distribution

1% 23.7 48.0 3.1 6.2 8.1 16.3 0.9
5% 61.6 73.4 13.4 25.8 30.2 44.2 4.6
10% 75.9 82.9 24.5 40.0 47.4 60.0 9.3
20% 87.5 91.2 41.6 55.0 69.8 73.6 18.9
25% 90.0 93.0 48.0 59.6 75.7 77.0 23.9
30% 92.2 94.6 52.6 63.5 80.2 79.9 29.3
50% 96.0 97.2 65.3 75.4 89.3 87.0 56.6

Call Options

Error LI BS NW BS-NW NWCV BS-NWCV VG

Mean 30.1 8.7 278.3 26.6 40.0 14.7 57.4
St. Dev. 418.0 36.6 1013.1 48.1 180.0 51.1 30.3
Median 5.0 1.3 29.2 7.9 15.6 4.2 64.8
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 16075.0 1125.9 16053.6 830.2 4733.0 1811.3 276.1

Empirical Distribution

1% 18.9 45.8 2.4 10.0 7.5 19.4 1.9
5% 50.0 73.6 10.0 38.4 23.5 55.3 5.2
10% 67.9 83.4 17.9 54.7 35.7 71.4 9.0
20% 81.8 91.1 36.7 68.1 58.7 84.2 16.4
25% 85.4 93.3 45.2 72.2 65.8 87.0 19.5
30% 87.8 94.9 50.9 74.7 72.6 88.9 22.5
50% 93.2 97.4 64.6 82.7 85.8 94.2 36.3
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each date t. However, while changing the initialization of the random number generator
(obviously) results in different figures, the qualitative observations just made, as well as
the conclusions they imply, do not change.

The whole analysis has also been carried out on a smaller data set, obtained by
eliminating those options whose implied volatility is higher than 70% or price is lower
than $1/8. This procedure is adopted in [1] and is repeated here only for comparison
purposes with the results summarized in Table 3 (recall, however, that, as discussed
above, the analysis of [1] and ours are not directly comparable). The corresponding
results are collected in Table 4.

Even though, as is natural to expect, the mean pricing error improves for all esti-
mators, the qualitative picture emerged from the analysis of the whole data set does
not change. In particular, the only NW-based method with a barely acceptable perfor-
mance is the Black-Scholes estimator coupled with estimation of the implied volatility
when the smoothing parameter is chosen by cross validation. The important qualitative
observation, though, is, as before, that keeping things simple, especially using the BS
estimator, is both faster and more accurate in the vast majority of cases. Another impor-
tant qualitative conclusion is that pricing by non-trivial fully parametric models, such
as the Variance-Gamma model of §3.4 , calibrated to observed option prices, does not
produce reliable estimates, even though the model allows for skewed and (moderately)
heavy-tailed distributions of returns.

The empirical distribution of the (absolute) pricing errors clearly indicates that the
mean errors are heavily influenced by relatively few large values. This observation holds
both for the whole as well as for the reduced dataset. For instance, the mean pricing
error of the LI method for put options is around 12% and 9.5%, respectively, while more
than 75% of the errors are less than 10% in both cases. In particular, by direct inspection
of the results obtained for a few randomly chosen dates, one observes that high relative
errors mostly afflict options with low prices. It appears therefore interesting to analyze
the pricing performance of the various estimators on “expensive” options, i.e. whose
(observed, not estimated) price is higher than 1$, respectively.

The corresponding results are reported in Tables 5: the BS estimator still exhibits
a quite strong performance with mean absolute error around 2 - 3% and more than 85%
of options priced within a 5% error margin. On the other hand, other estimators show
a somewhat inconsistent performance: the LI estimator for put options has a mean
price error of approximately 7%, which increases to over 12% for call options, while
a completely symmetrical behavior is displayed by the BS-NW estimator. The main
qualitative conclusions drawn above are confirmed also in this situation: among the
NW-based methods, only the BS-NWCV is in some cases acceptable, and the simple
linear interpolation-based BS estimator still outperforms (by far) all others.

Moreover, a comparison of the cumulative distribution functions of (the absolute
value of) the relative pricing error reveals that the BS estimator stochastically dominates
all other estimators (see Figure 3). This conclusion is also supported by the results of
a two-sample Kolmogorov-Smirnov test, which rejects the hypothesis at confidence level
5% that the errors of any two estimators may come from the same distribution.
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Table 4: Pricing errors on the trimmed dataset

The table displays descriptive statistics on the empirical pricing errors (in percentage points) of the
various estimators, on the basis of the trimmed dataset. Some points of the empirical distribution of
the pricing error are also reported. The labels used for the different estimators are defined on page 19.
The sample period is January 3, 2012 to December 31, 2012. The pricing error is computed on 4021 put
options and on 2496 call options.

Put Options

Error LI BS NW BS-NW NWCV BS-NWCV VG

Mean 9.5 4.8 151.4 20.8 22.8 17.9 38.5
St. Dev. 35.5 13.3 425.5 29.0 62.6 72.8 24.6
Median 3.2 1.0 24.8 10.2 10.8 5.5 35.9
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 1129.3 322.9 6152.4 527.5 1462.2 3358.0 202.0

Empirical Distribution

1% 21.7 50.1 3.1 10.0 8.6 17.7 1.2
5% 62.0 78.6 13.2 33.6 31.1 48.1 5.8
10% 79.6 88.0 25.0 49.6 48.0 64.3 12.0
20% 91.3 95.1 43.0 67.0 71.1 78.6 25.2
25% 93.6 96.4 50.2 73.0 78.3 82.3 31.9
30% 94.6 97.1 55.7 77.4 83.0 85.2 40.0
50% 97.6 98.7 68.9 87.6 91.6 91.9 72.5

Call Options

Error LI BS NW BS-NW NWCV BS-NWCV VG

Mean 14.4 5.2 138.4 14.3 31.3 9.3 49.6
St. Dev. 45.2 18.7 375.1 20.0 77.0 17.6 27.6
Median 4.6 1.1 27.3 6.8 16.1 3.8 54.2
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 1233.6 649.1 4954.1 217.9 1952.5 315.4 227.0

Empirical Distribution

1% 17.7 47.2 2.5 9.7 7.6 19.2 2.3
5% 51.8 79.2 11.1 41.5 23.2 57.1 6.7
10% 69.4 88.1 19.7 60.8 34.9 75.1 11.7
20% 83.5 94.6 38.5 79.1 57.9 88.5 19.3
25% 87.3 96.0 46.4 82.6 65.6 91.2 23.2
30% 89.5 96.4 53.6 86.1 72.5 93.2 27.2
50% 94.2 98.4 69.0 93.7 86.2 97.0 45.0
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Table 5: Pricing errors on options with price larger than $1 (full dataset)

The table displays descriptive statistics on the empirical pricing errors (in percentage points) of the
various estimators restricted to options in the full dataset whose price is larger than $1. Some points
of the empirical distribution of the pricing error are also reported. The labels used for the different
estimators are defined on page 19. The sample period is January 3, 2012 to December 31, 2012. The
pricing error is computed on 3222 put options and on 2137 call options.

Put Options

Error LI BS NW BS-NW NWCV BS-NWCV VG

Mean 7.4 2.4 37.9 20.4 17.8 12.3 47.7
St. Dev. 31.0 7.4 71.2 35.8 57.4 33.9 24.1
Median 2.4 0.6 17.6 9.0 9.1 4.0 47.2
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 777.4 158.0 894.7 1051.8 2170.1 722.8 100.0

Empirical Distribution

1% 25.8 60.7 3.8 8.3 7.7 21.1 0.7
5% 73.2 88.6 17.6 34.5 34.0 56.0 3.6
10% 86.8 95.6 32.5 52.8 53.4 73.6 7.2
20% 94.2 98.6 54.7 70.6 77.6 86.0 15.0
25% 95.5 98.9 62.9 75.5 83.2 88.9 19.4
30% 96.6 99.1 68.8 79.6 87.4 91.1 24.4
50% 98.0 99.6 84.2 90.0 94.4 95.3 54.2

Call Options

Error LI BS NW BS-NW NWCV BS-NWCV VG

Mean 12.7 3.4 43.4 13.6 25.1 6.8 61.6
St. Dev. 51.5 13.3 100.5 23.3 63.8 14.0 26.4
Median 3.6 0.8 21.6 5.4 14.2 3.0 71.1
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 1287.4 270.5 3414.3 355.6 1437.5 273.0 98.9

Empirical Distribution

1% 20.7 55.8 3.1 12.4 7.5 23.6 1.9
5% 58.4 85.8 12.5 47.5 25.4 65.9 4.7
10% 77.3 93.8 22.4 67.4 38.9 83.1 7.4
20% 88.3 97.3 46.4 81.5 63.9 93.4 12.4
25% 90.7 98.2 57.0 85.7 71.3 95.2 14.5
30% 92.0 98.7 63.9 87.8 78.1 96.4 16.6
50% 95.7 99.3 80.4 93.6 90.6 98.6 27.5
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Figure 3: Cumulative distribution functions of pricing errors

This figure shows the cumulative distribution functions of pricing errors of the various estimators, on
the basis of the complete dataset. The labels used for the different estimators are defined on page 26.
The sample period is January 3, 2012 to December 31, 2012. The pricing error is computed on 2732 call
options (Panel A) and on 4460 put options (Panel B).
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5.2 Pricing outside the hull

As seen above, the NW-based as well as the VG estimators can (in principle) estimate the
prices at time t of options whose parameters K and T − t do not fall within the convex
hull of (Kk, Tk − t)k∈J0

t
. Let us recall, however, that NW non-parametric regression

simply produces estimates that are weighted averages, hence, as already remarked in
§3.2, estimates for parameters falling outside the convex hull of J0

t should be taken with
extreme care. Results on the empirical pricing error relative to options whose parameters
fall outside the convex hull of J0

t , t = 1, . . . , 250, are reported in Tables 6 and 7: with
mean errors over 30% and 50% or more options mispriced by at least 20%, the BS-NWCV

estimator, which also in this case performs better than all other NW-based as well as
VG estimators, could at best be used to get rough estimates of the correct price.

A way to extend the domain of definition of estimators based on linear interpolation
is to augment J0

t , for each t, with a set of fictitious parameters and corresponding option
prices. In particular, one can add synthetic options with time to maturity equal to 0,
so their prices are equal to their payoff. For each t, augmenting J0

t with 30 couples of
the type (Kk, 0)k=1,...,30, where (Kk) are increasing, equally spaced, ranging between the
smallest and the largest strike price of all options in J t, we obtain an “augmented” LI
estimator. This enlarges the domain of definition of LI, so that the proportion of options
that cannot be prices drops to 2% for put options and to 3.3% for call options. The
extension procedure just described can be applied to any data set, as the fictitious prices
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Table 6: Pricing errors outside the convex hull (full dataset)

The table displays descriptive statistics on the empirical pricing errors (in percentage points) of the
various estimators restricted to those options for which the LI estimator is not defined, on the basis of
the full dataset. Some points of the empirical distribution of the pricing error are also reported. The
labels used for the different estimators are defined on page 19. The sample period is January 3, 2012 to
December 31, 2012. The pricing error is computed on 241 put options and on 217 call options.

Put Options

Error NW BS-NW NWCV BS-NWCV VG

Mean 996.3 50.7 1945.7 49.8 62.9
St. Dev. 3381.5 45.5 10228.9 49.3 45.1
Median 69.0 45.5 66.5 38.7 50.8
Min 0.0 0.0 0.0 0.0 0.0
Max 44100.0 253.4 128466.9 380.6 271.1

Empirical Distribution

1% 3.7 7.5 8.7 8.7 0.8
5% 6.2 19.9 10.8 24.9 4.1
10% 7.1 34.4 13.3 37.8 13.7
20% 14.1 41.1 22.4 44.4 22.0
25% 18.7 44.4 27.4 45.6 24.1
30% 22.4 46.1 30.7 48.1 29.5
50% 33.2 51.0 41.9 52.3 49.8

Call Options

Error NW BS-NW NWCV BS-NWCV VG

Mean 1527.5 39.9 2110.3 36.4 53.6
St. Dev. 8394.3 47.6 13801.4 45.7 57.2
Median 62.2 11.2 63.6 15.5 47.7
Min 0.3 0.0 0.0 0.0 0.0
Max 107881.1 278.1 153605.4 278.1 342.5

Empirical Distribution

1% 2.3 19.4 6.5 20.3 18.4
5% 7.4 39.6 10.1 40.1 23.0
10% 15.2 48.8 16.1 46.1 29.5
20% 27.6 55.3 25.3 53.9 37.3
25% 33.6 57.1 29.0 55.3 40.6
30% 35.9 59.0 34.1 59.0 43.8
50% 43.8 63.1 42.4 67.7 51.6
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Table 7: Pricing errors outside the convex hull (trimmed dataset)

The table displays descriptive statistics on the empirical pricing errors (in percentage points) of the
various estimators restricted to those options for which the LI estimator is not defined, on the basis of
the trimmed dataset. Some points of the empirical distribution of the pricing error are also reported.
The labels used for the different estimators are defined on page 19. The sample period is January 3,
2012 to December 31, 2012. The pricing error is computed on 251 put options and on 225 call options.

Put Options

Error NW BS-NW NWCV BS-NWCV VG

Mean 682.9 51.5 414.5 46.1 58.0
St. Dev. 1404.9 39.6 1617.0 38.9 48.3
Median 120.8 59.3 40.5 44.8 43.6
Min 0.0 0.0 0.0 0.0 0.1
Max 9526.7 232.1 15964.3 232.1 316.5

Empirical Distribution

1% 0.8 5.2 6.4 8.0 1.2
5% 1.6 17.9 9.6 24.3 7.6
10% 5.2 27.1 13.9 30.3 15.1
20% 11.2 35.5 23.1 38.6 23.9
25% 13.5 37.5 29.9 40.6 26.7
30% 15.5 39.8 34.7 42.2 32.7
50% 33.1 45.4 57.4 52.6 55.8

Call Options

Error NW BS-NW NWCV BS-NWCV VG

Mean 650.2 34.3 321.7 32.8 46.3
St. Dev. 1357.2 42.8 897.7 45.0 45.1
Median 77.9 15.3 66.7 16.2 38.0
Min 0.2 0.0 0.0 0.0 0.0
Max 7997.1 277.8 6147.3 280.4 213.2

Empirical Distribution

1% 1.8 19.6 4.4 20.0 20.0
5% 4.4 34.2 7.6 36.4 25.3
10% 9.3 44.4 10.7 43.1 31.1
20% 21.8 54.2 21.8 51.1 37.8
25% 25.8 56.9 29.8 56.9 41.3
30% 30.7 59.6 34.7 61.3 44.4
50% 43.6 69.3 44.4 75.6 59.1
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Table 8: Linear estimator with fictitious options

The table displays descriptive statistics on the empirical pricing errors (in percentage points) of the
“augmented” normalized linear estimator, defined in §5.2 and labeled LIB, on the basis of the full
dataset. For comparison, the first column reports the statistics for the normalized linear interpolator
(LI). The sample period is 01/03/2012 to 12/31/2012.

Put Options Call Options

Error LI LIB LI LIB

Mean 11.9 14.0 30.1 30.4
St. Dev. 49.0 47.5 418.0 211.6
Median 3.1 3.5 5.0 5.3
Min 0.0 0.0 0.0 0.0
Max 2027.0 1167.4 16075.0 8860.8
Priced options 4460 4607 2732 2851

are universal. However, since observed prices tend to be higher than theoretical prices
for small times, it does not seem reasonable to eliminate from the data set options with
low price, which in the large majority of cases also have very short time to maturity, and
then to artificially add options with time to maturity equal to zero. In other words, the
extension procedure should be applied only, if necessary, to the full data set, and this is
what we do. The empirical results are reported in Table 8.

A Appendix

A.1 Sensitivity of implied volatility against dividend

We place ourselves in the well-known Black-Scholes setting. Let us denote by C the
price of a European call option on a dividend-paying stock, so that

C = Se−qtΦ(d+)−Ke−rtΦ(d−),

where

d+ :=
logS/K +

(

r − q + σ2/2
)

t

σ
√
t

, d− := d+ − σ
√
t.

Recalling that
Se−qtφ(d+) = Ke−rtφ(d−), (4)

it is immediate to obtain
∂C

∂q
= −tSe−qtΦ(d+).
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Moreover, one has
∂C

∂σ
=

√
tSe−qtφ(d+).

In particular, denoting the function (q, σ) 7→ C again just by C (i.e. treating all other
parameters as constants), the implicit function theorem implies that, for any q0, σ0,
there exists a function ς : R+ → R+ (to be interpreted as implied volatility) such that
σ0 = ς(q0), C = C(q, ς(q)), and

∂ς

∂q
(q0) = −∂C

∂q
(q0, σ0)

∂C

∂σ
(q0, σ0) =

√
t
Φ(d+)

φ(d+)
,

where d± = d±(q0, σ0). For the reader’s convenience, we are going to prove (4), which
is obviously equivalent to

S

K
e(r−q)t =

φ(d−)

φ(d+)
= exp

(

(

d2− − d2+
)

/2
)

,

hence also to

log(S/K) + (r − q)t =
d2− − d2+

2
=

1

2
(d− − d+)(d− + d+).

This identity can be verified by a direct computation, thus showing the validity of (4).
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cesses, Mathematical Finance 13 (2003), no. 3, 345–382. MR 1995283 (2005a:91054)

[5] P. Carr and L. Wu, Finite Moment Log Stable Process and Option Pricing, Journal
of Finance 58 (2003), no. 2, 753–777.

[6] M. Chernov and E. Ghysels, A study towards a unified approach to the joint esti-

mation of objective and risk neutral measures for the purpose of options valuation,
Journal of Financial Economics 56 (2000), no. 3, 407 – 458.
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