View metadata, citation and similar papers at core.ac.uk brought to you b

provided by UCL Discovery

REVIEW

Keywords: BRCA mutation; cytotoxic therapy; homologous recombination; ovarian cancer; PARP inhibitor; synthetic lethality

PARP inhibitors for BRCA1/2-mutated and
sporadic ovarian cancer: current practice and
future directions
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Poly(ADP-ribose) polymerase (PARP) inhibitors cause targeted tumour cell death in homologous recombination (HR)-deficient
cancers, including BRCA-mutated tumours, by exploiting synthetic lethality. PARP inhibitors are being evaluated in late-stage
clinical trials of ovarian cancer (OC). Recently, olaparib was the first PARP inhibitor approved in the European Union and United
States for the treatment of advanced BRCA-mutated OC. This paper reviews the role of BRCA mutations for tumorigenesis and
PARP inhibitor sensitivity, and summarises the clinical development of PARP inhibitors for the treatment of patients diagnosed
with OC. Among the five key PARP inhibitors currently in clinical development, olaparib has undergone the most extensive clinical
investigation. PARP inhibitors have demonstrated durable antitumour activity in BRCA-mutated advanced OC as a single agent in
the treatment and maintenance setting, particularly in platinum-sensitive disease. PARP inhibitors are well tolerated; however,
further careful assessment of moderate and late-onset toxicity is mandatory in the maintenance and adjuvant setting, respectively.
PARP inhibitors are also being evaluated in combination with chemotherapeutic and novel targeted agents to potentiate
antitumour activities. Current research is extending the use of PARP inhibitors beyond BRCA mutations to other sensitising
molecular defects that result in HR-deficient cancer, and is defining an HR-deficiency signature. Trials are underway to determine
whether such a signature will predict sensitivity to PARP inhibitors in women with sporadic OC.

high-grade serous epithelial ovarian, fallopian tube, or primary

INTRODUCTION

Current efforts to treat BRCA-associated ovarian cancer (OC) with
poly(ADP-ribose) polymerase (PARP) inhibitors result from >25
years of basic and translational cancer research. Recently, olaparib,
the first PARP inhibitor to treat BRCA mutation-positive patients,
has been approved in the European Union and United States (US).
Clinical studies have shown that BRCA1/2-deficient tumours are
sensitive to PARP inhibitors and platinum agents (Fong et al, 2009;
Byrski et al, 2010). PARP inhibitors are molecules that inhibit the
activity of PARP proteins, which are involved in a variety of DNA
damage repair pathways. The European Commission granted
marketing authorisation for the PARP inhibitor olaparib as mono-
therapy in the maintenance treatment of adult patients with platinum-
sensitive, relapsed BRCA-mutated (germline and/or somatic)

peritoneal cancer who are in complete response (CR) or partial
response (PR) following platinum-based chemotherapy (Lynparza
prescribing information, 2014). In the United States, olaparib received
accelerated approval by the Food and Drug Administration (FDA) as
monotherapy in patients with deleterious or suspected deleterious
germline BRCA-mutated (gBRCAm) advanced OC and who have
been treated with three or more prior lines of chemotherapy
(Lynparza prescribing information, 2014). Confirmatory phase III
trials are underway. This article will review the current role of BRCA
proteins and PARP inhibitors in OC, summarise completed and
ongoing clinical studies with PARP inhibitors, and outline future
directions for this new drug class.

BRCA1/2 and cancer risk. A major development in the treatment
of breast cancer and OC was the cloning of the suppressor genes
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BRCAI and BRCA2 (Friedman et al, 1994; Miki et al, 1994;
Wooster et al, 1995). BRCA1/2 encode proteins that are involved in
homologous recombination (HR) (Farmer et al, 2005). Epidemio-
logic studies have revealed an association between germline
BRCA1/2 (gBRCAI1/2) mutations and the development of
OC and breast cancer, and mutation frequencies are estimated to
be 5-15% for patients diagnosed with OC (Ramus and Gayther,
2009) and 10% for those diagnosed with breast cancer (Neuhausen
et al, 2009). However, mutation frequency can be much higher
among certain high-risk populations; for example, the mutations
are present in 41% of women of Ashkenazi Jewish decent (Moslehi
et al, 2000). Among a general female population, the lifetime risk
for development of OC and breast cancer ranges between 1% and
12%, respectively (National Cancer Institute, 2015a, b). However,
for patients harboring a deleterious gBRCAI/2 mutation, the
estimated lifetime risk by age 70 for developing OC is 40% for
gBRCAI mutation carriers and 11-18% for gBRCA2 mutation
carriers, and the risk for developing breast cancer is 57-65% for
gBRCAI and 45-49% for gBRCA2 mutation carriers (Antoniou et al,
2003; Chen and Parmigiani, 2007).

Patients with a gBRCA1/2 mutation have inherited a loss-of-
function mutation in a single copy of either BRCAI or BRCA2 in
every cell. Although it is understandable that the risk for
developing cancer is increased as the remaining second wild-type
copy of the gene can be inactivated by a somatic mutation or
epigenetic inactivation (Venkitaraman, 2014), it remains unclear
why mutations in BRACA1/2 specifically lead to OC or breast
cancer; and to a lesser degree, to pancreatic or prostate cancer.
Recent evidence indicates that oestrogen controls the survival of
BRCA1-deficient cells via a PI3K/NRF2-regulated pathway, which
may partially explain the reported occurrence of hormonally
driven tumours in patients who carry a BRCAI/2 mutation
(Gorrini et al, 2014). Preclinical mouse studies have found that
BRCAT1 protein interacts with NRF2 and that cells lacking BRCA1
activity accumulate reactive oxygen species resulting in attenuated
cell viability (Gorrini et al, 2013). NRF2 is a transcription factor
that regulates the antioxidant response (Li et al, 2004) and
reactivation of NRF2 by oestrogen results in cell survival (Gorrini
et al, 2013). NRF2 activity is governed by the activation of PI3K
pathway, which promotes oestrogen stimulation of NRF2 activity
to compensate for the lack of antioxidant response in the absence
of BRCAL activity (Gorrini et al, 2014).

DNA repair and role of BRCA. Currently, six primary pathways
have been identified for DNA repair, and they are engaged variably
to repair single- (SSB) and double-strand (DSB) DNA breaks
resulting from DNA damage (Lee et al, 2014). These repair
mechanisms include homologous recombination (HR), non-
homologous end joining (NHE]), base excision repair, nucleotide
excision repair, mismatch repair, and trans-lesional synthesis
(Lee et al, 2014). DNA damage can occur in a number of ways
including generation of reactive oxygen species, ultraviolet light,
ambient and therapeutic irradiation, day-to-day replication errors,
and chemical exposures (Lee et al, 2014).

In response to DNA damage, proteins that comprise repair
complexes are recruited to the site of damage (Gudmundsdottir
and Ashworth, 2006). Loss or reduction of function in proteins
involved in these complexes can result in impairment or loss of
proper DNA repair. Double-stranded breaks trigger HR, which
demonstrates high fidelity, and NHE], which is error prone
(Lee et al, 2014; Scott et al, 2015). BRCA1/2 proteins mediate what
might be the rate limiting step in HR (Farmer ef al, 2005) and play
a critical step in HR by facilitating the recruitment of RAD51 to
single-stranded DNA generated during the HR process (Ciccia and
Elledge, 2010; Polo and Jackson, 2011). RAD51 is a component of a
complex of factors, which also includes MRE11 and NBSI, that is
essential for HR (Stracker and Petrini, 2011). Therefore, cells that

lack BRCA1/2 are deficient in HR and demonstrate a high degree
of chromosomal instability as well as increased sensitivity to
ionising radiation and chemotherapeutic agents that lead to DSBs
(Ashworth, 2008). Whether HR or NHE]J occurs to correct DSBs
depends upon a number of factors, one of which is the cell-cycle
status; HR is used if DSBs arise during the S or G2 stages of
mitosis, and NHE] is utilised if DSBs occur during G1 (Symington
and Gautier, 2011; Chapman et al, 2012, 2013; Karanam et al, 2012;
Di Virgilio et al, 2013; Escribano-Diaz et al, 2013; Zimmermann
et al, 2013). Other factors that influence which mechanism is used
to repair DSBs are the complexity of the breaks and the presence of
co-factors (Karanam et al, 2012).

PARP function. Poly(ADP-ribose) polymerase 1 is the first
identified among a family of enzymes that transfer ADP-ribose
moieties from the dinucleotide NAD + to certain polypeptides
resulting in mono- or poly(ADP-ribosylation) (pADPr) of these
substrates (Burkle, 2001; Kim et al, 2005; Schreiber et al, 2006).
PARP inhibitors are designed to compete with NAD + for the
substrate binding to PARP, inhibiting PARP activity (Kim et al,
2005). Poly(ADP-ribose) polymerase 1, PARP2, and PARP3 have
all been implicated in DNA repair, with PARP1 being the most
abundant (Sousa et al, 2012). Certain types of DNA damage,
particularly DNA nicks and DSBs, result in an about a 500-fold
increase in PARP1 catalytic activity (Mendoza-Alvarez and
Alvarez-Gonzalez, 1993; Mendoza-Alvarez and Alvarez-Gonzalez,
2004; Hassler and Ladurner, 2012). Active PARP1 covalently adds
pADPr chains to a number of chromatin proteins, including itself
(Althaus and Richter, 1987; Hassler and Ladurner, 2012), which
alters the function of the respective proteins (Althaus and Richter,
1987; Realini and Althaus, 1992; Malanga and Althaus, 2004).
PARP1 functions in a number of DNA repair pathways
(Rouleau et al, 2010; Curtin, 2012). It has been most extensively
studied in base excision repair (de Murcia et al, 1997; Masson et al,
1998; Trucco et al, 1998) in which it facilitates the recruitment and
formation of DNA repair complexes, including XRCCI, which in
turn promotes SSB repair (Caldecott, 2008; Odell et al, 2013;
O’Sullivan et al, 2014). In addition, PARP1 acts in HR by sensing
stalled replication forks and recruitment of MRE11 and NBSI to
initiate HR (Schultz et al, 2003; Helleday et al, 2005; Haince et al,
2008; Bryant et al, 2009). PARP1 also adds pADPr to BRCA1 to
influence DSB repair during HR (Hu et al, 2014), and inhibits
NHE] repair by preventing the binding of the Ku proteins to free
DNA ends (Wang et al, 2006; Scott et al, 2015). In addition,
PARPI is necessary for the alternative microhomology-mediated
end joining repair (Robert et al, 2009; Soni et al, 2014). PARP2 and
PARP3 also contribute to DNA repair; PARP2 cooperates with
PARP1 to synthesise pADPr and PARP3 inhibits error prone
NHE] (Ame et al, 1999; Schreiber et al, 2002; Rulten et al, 2011).

PARP inhibitor activity

Synthetic lethality. Genetically, synthetic lethality occurs when
two genetic lesions, which are individually not lethal, become lethal
when combined in a single organism (or cell). Similarly, cells that
are deficient in HR (which is not lethal in itself) are hypersensitive
to reduction in PARP activity by PARP inhibitors (Bryant et al,
2005; Farmer et al, 2005; Patel et al, 2011; Scott et al, 2015).
Currently there are four models proposed for how PARP inhibitors
may instigate synthetic lethality: inhibition of base excision repair,
trapping PARP1 on damaged DNA, defective recruitment of
BRCA1 to damaged DNA, and activation of error-prone NHE]
(Figure 1).

Base excision repair. Synthetic lethality, observed with BRCA1/2
mutations plus inhibition of PARP activity, may result both from
removal of HR, and reduction in base excision repair (Scott et al, 2015)
(Figure 1). Under pharmacologic PARP inhibition, SSBs, normally
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Figure 1. Role of PARP in DNA repair and main effects of PARP inhibitors. (A) Main DNA repair mechanisms, key pathway components and role of
PARP1 for each pathway. (B) DNA single strand break repair by base excision repair. (C) Effect of PARP inhibition on DNA single and double strand
break repair. AP, apurinic/apyrimidinic; ATM, ataxia telangiectasia; BER, base excision repair; DNA-PKcs, DNA-dependent protein kinase, catalytic
subunit; DSB, double-strand break; FA, Fanconi anemia; FEN1, flap sructure-specific endonuclease 1; HR, homologous recombination; KU70 and
KU80, make up the Ku heterodimer; MMEJ, microhomologymediated end joining; MRN, MRE11-RAD50-NBS1 protein complex; NBN, Nibrin;
NHEJ, non-homologous end joining; PARP, poly (ADP-ribose) polymerase; PALB2, partner and localiser of BRC; PARPi, PARP inhibitor; RAD51,
eukaryote gene of RAD51 protein family; SSB, single-strand break.
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repaired by the base excision repair pathway, are left unresolved.
Following duplication of the DNA strand this can lead to a DSB, which
under normal circumstances can be repaired by the HR pathway,
preserving cell viability. When HR repair is compromised as in BRCA-
deficient cells, the DNA DSBs are not repaired (Ashworth, 2008).
However, the validity of this premise has been debated, as removal of
XRCC1 (a protein acting immediately downstream of PARP1 that is
essential for base excision repair) in HR-deficient cells does not result in
cell death suggesting that loss of PARP is critical for killing HR-deficient
cells, but loss of base excision repair is not (Rouleau et al, 2010; Patel
et al, 2011; Curtin, 2014; Scott et al, 2015).

PARPI trapping. Recent evidence suggests that PARP inhibitors
promote cell death by trapping PARP1 on the damaged DNA
(Figure 1; Helleday, 2011; Strom et al, 2011; Murai et al, 2012;
Horton et al, 2014). Normally, when DNA damage activates
PARPI1, the resulting pADPr recruits additional repair proteins,
but once repair is initiated, it also diminishes the affinity of PARP1
for DNA, allowing PARPI’s dissociation and the subsequent
binding of other repair factors (Satoh and Lindahl, 1992; Scott et al,
2015). If PARP1 activity is inhibited such that it cannot synthesise
pADPr polymers, it remains bound (trapped) to the damaged
DNA, essentially blocking DNA repair (Satoh and Lindahl, 1992).
Similarly, PARP inhibitor inactivation of PARP1 activity may
consequently trap PARP1 on DNA repair intermediates, obstruct-
ing replication forks (Figure 1c; Horton et al, 2014). Therefore,
PARP inhibitors may act, in part, as ‘poisons’ that trap the PARP1
enzyme on DNA. Importantly, PARP trapping may be more
cytotoxic than loss of its catalytic activity (Murai et al, 2012).
In support of this premise, the PARP catalytic inhibitory activities
of the three PARP inhibitors, niraparib, olaparib, and veliparib, do
not correlate strongly with respect to cytotoxic and trapping
potency; niraparib and olaparib have greater cytotoxic and
trapping activity than veliparib (Table 1; Murai et al, 2012). This
may be the result of the differences in drug allosteric binding to the
NAD™ site, with the bulky inhibitors, niraparib and olaparib,
possessing greater potency to produce PARP-DNA ‘trapped’
complexes compared with veliparib (Murai et al, 2012). Preclinical
studies have also suggested that differences in the catalytic
inhibitory and trapping activities of various PARP inhibitors may
explain differences in synergism when combined with selected
chemotherapeutic agents (Murai et al, 2012). For example, because
temozolomide forms PARP-DNA complexes at SSBs, combining it
with PARP inhibitors with higher PARP-trapping properties, such
as niraparib or olaparib, may be a more efficacious option than a
combination with an agent expressing less potent trapping activity,
such as veliparib (Murai et al, 2012). Preclinical studies have also
shown that stereospecific PARP trapping is more pronounced for
talazoparib when compared to olaparib or rucaparib (Murai et al,
2014). These differences in catalytic and trapping activities may be
important when combining PARP inhibitors with chemothera-
peutic agents. One example is the observation that talazoparib
demonstrates greater cytotoxicity than other PARP inhibitors in
combination with the DNA alkylating agents methyl methane
sulfonate or temozolomide (Murai et al, 2014; Hopkins et al, 2015).

Defective BRCAI recruitment. BRCA1 is recruited to damaged
DNA via several steps. BRCALI is recruited through its binding to
BARDI, which binds pADPr at the damage site. BRCA1 also binds
with y-H2AX a histone that is modified in response to damaged
DNA (De Lorenzo et al, 2013) (Figure 1). If a specific mutation in
BRCA1 disrupts the y-H2AX interaction, the binding of the
BRCAI-BARDI complex becomes critical for HR. The ability of
PARP inhibitors to reduce recruitment of the BARD1-BRCA1
complex to damaged DNA may result in cell death in the setting of
a BRCA mutation where the interaction with 7y-H2AX is
diminished (Li and Yu, 2013). However, this model does not

explain PARP inhibitor effects in cells that do not carry mutations
in BRCA1, which disrupt BRCA1/ y-H2AX complex formation
(Scott et al, 2015).

Activation of non-homologous end joining. Another proposed
mechanism for PARP inhibitor activity is based on the role of
PARPI in suppression of the microhomology-mediated end
joining and error-prone NHE] repair pathways (Figure 1). Several
proteins including Ku70, Ku80, and DNA-PKcs are pADPr
binding proteins (Scott et al, 2015). PARP inhibitors prevent the
binding of Ku proteins to free DNA ends (the first step to initate
NHE]J) and thus inhibit NHE]J (Lieber, 2010; Patel et al, 2011)
resulting in mutations, chromosomal rearrangements, and cell
death (Figure 1).

BRCAness: proposed PARP inhibitor efficacy. Certain sporadic
OCs display a BRCA-like phenotype; therefore, it was proposed that
PARP inhibitors may also demonstrate efficacy in such cancers. Data
from The Cancer Genome Atlas suggest that approximately 50% of
high-grade serous OC (HGSOC) cases display a BRCA-like phenotype
(Cancer Genome Atlas Research Network, 2011). Such BRCAness may
occur as a result of epigenetic silencing of BRCA genes or inactivation
of other HR-associated genes, including ATM, RAD51, or members of
the FANC family of genes (Yap et al, 2011; O’Sullivan et al, 2014).
Deficiencies in HR are associated with gene copy number changes that
can be described as genomic instability. Recent studies suggest that it
may be possible to capture this genomic instability by measuring allelic
imbalance or loss of heterozygosity. The burden and pattern of allelic
imbalance may distinguish subtypes of OC, and genomic signatures
might predict response to treatment with PARP inhibitors (Haluska
et al, 2014; Matulonis et al, 2014; Swisher et al, 2014).

CLINICAL APPLICATION

Multiple PARP inhibitors, including olaparib, veliparib, niraparib,
rucaparib, and talazoparib, are currently being evaluated in clinical
trials (Table 2). The most common PARP inhibitor chemistry is
that of reversible NAD mimetics. The drugs differ in bioavail-
ability, molar equivalence of PARP enzyme inhibition, and PARP
trapping capability (Table 1). The loss of DNA repair in the
presence of these molecules has led to the evaluation of these drugs
as single agents and as potential enhancers of cytotoxic agents that
provoke DNA damage, such as alkylating agents and radiation
therapy (Lee et al, 2014). Several of these agents have been and
are being investigated in patients with gBRCAI/2-associated
and sporadic platinum-sensitive and/or platinum-resistant OC
(Liu et al, 2014). In addition, PARP inhibitors are being
investigated in combination with other targeted agents, such as
in PI3-kinase or angiogenesis inhibitors. The VEGF monoclonal
antibody (mAb) bevacizumab has been shown to induce hypoxia in
the tumour microenvironment which may contribute to genomic
instability and in doing so is thought to increase the sensitivity of
cells to PARP inhibitors (Bindra et al, 2004, 2005; Chan et al, 2010;
Sehouli et al, 2016).

Of note, iniparib, which was originally thought to be a PARP
inhibitor, failed to demonstrate clinical activity in a randomised
phase IIT study in patients with BRCA mutation-positive breast
cancer. Following further preclinical studies iniparib is no longer
classified as a PARP inhibitor as it failed to exhibit characteristic
properties of PARP inhibitors. Therefore, results of iniparib studies
should have no bearing on clinical decisions regarding PARP
inhibitors (Patel et al, 2012).

Olaparib. Olaparib was the first PARP inhibitor to gain US FDA
approval, based in-part on data from a single-arm trial that
included 137 advanced OC patients with gBRCA mutations who were
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Table 1. PARP inhibitors under development

PARP catalyitic In vitro In vitro
inhibition (ICsq) Cytotoxicity PARP trapping
(Murai et al, (Murai et al, (Murai et al,
PARP inhibitor Route 2012, 2014) 2012, 2014) 2012, 2014) Treatment Cancer types
Olaparib Oral 1.2nmol |~ ++ ++ eMonotherapy #BRCA1/2MUT + associated
(AZD-2281) eCombination with oBrCa/OvCa
(AstraZeneca) cytotoxic chemotherapy | eBRCA-like tumours
eCombination with eAdvanced hematologic
targeted agents malignancies and solid
tumours
eCombination with RTs eMaintenance study following
remission in platinum sensitive
OvCa
Veliparib (ABT-888) | Oral 10.5nmol | =" + + eMonotherapy eBRCA1/2MUT + associated
(Abbvie) BrCa/OvCa
eCombinations with oBRCA-like tumours,
cytotoxic chemotherapy | eAdvanced hematologic
malignancies and solid
tumours
eCombinations with
targeted agents
eCombinations with RT
Talazoparib Oral 4nmol |~ 4+ 4+ + + 4+ 4+ + + eMonotherapy eAdvanced hematologic
(BMN 673) malignancies and solid
(Pfizer) tumours
Rucaparib (Clovis) Oral 21nmol |~ + + + + eMonotherapy eAdvanced solid tumours
eCombinations eRecurrent OvCa,
(carboplatin) eBRCA1/2MUT + associated
BrCa/OvCa
Niraparib (MK-4827) | Oral 50.5nmol =’ ++ + + 4+ + eMonotherapy eAdvanced hematologic
(TesaroBio) malignancies and solid
tumours
eCombinations eBRCA1/2MUT + associated
(temozolomide) and HER2 negative BrCa,
eMaintenance study following
remission in platinum sensitive
eOvCa
Abbreviations: BrCa = breast cancer; OvCa = ovarian cancer; RT =radiation therapy.

previously treated with three or more lines of chemotherapy. In this
study, patients received olaparib 400 mg twice daily; the objective
response rate (ORR) was 34% (46/137), of those, 32% (44/137) had
partial response (PR) and 2% (2/137) demonstrated a complete
response (CR). The median duration of response (DoR) was 7.9
months (Domchek et al, 2016). The approval was also based on
supportive efficacy outcomes derived from other clinical trials in
which olaparib had been previously assessed (Fong et al, 2009, 2010;
Audeh et al, 2010; Gelmon et al, 2011; Kaye et al, 2012).

In an initial phase I trial, antitumour activity of olaparib was
observed in patients with gBRCA-mutated advanced OC and the
maximum tolerated dose (MTD) was determined to be 400 mg
twice daily (Fong et al, 2009). A phase II trial confirmed durable
antitumour responses with olaparib in advanced OC patients with
BRCA1/2 mutations. The ORR was 33% for 33 patients who
received olaparib 400 mg twice daily and 13% for 24 patients who
received 100 mg twice daily (Audeh et al, 2010). In an expanded
cohort of the phase I trial, patients with ovarian, primary
peritoneal, or fallopian tube cancer were treated with 200 mg
olaparib twice daily and 20 of 50 patients(40%) had an objective
and/or tumour marker response. Median DoR was 7 months.
The clinical benefit rate correlated with platinum sensitivity
(69% in platinum-sensitive, 46% in platinum-resistant, and 23%
in platinum-refractory disease) (Fong et al, 2010).

A phase II open-label, randomised, controlled trial compared
olaparib and pegylated liposomal doxorubicin (PLD) in patients
with gBRCA-mutated advanced OC; olaparib demonstrated

efficacy consistent with previous studies. No significant differences
were observed between treatments in overall response rate (ORR)
or progression-free survival (PFS). The ORR was 25%, 31%, and
18% for olaparib 200 mg twice daily, olaparib 400 mg twice daily,
and PLD, respectively. Median PFS was 6.5 months for olaparib
200 mg twice daily, 8.8 months for olaparib 400 mg twice daily, and
7.1 months for PLD (Kaye ef al, 2012).

In addition, a phase II open-label, nonrandomised, single-arm
study was the first to demonstrate antitumour activity of a PARP
inhibitor in sporadic HGSOC. Confirmed PRs were seen in 24%
(11/46) of patients without gBRCA mutations and in 41% (7/17) of
patients with gBRCA mutations (Gelmon et al, 2011).

A large, randomised phase II maintenance therapy trial of
olaparib demonstrated efficacy among patients with platinum-
sensitive (CR or PR), relapsed OC (Ledermann et al, 2012, 2014).
Results of this randomised, double-blind, placebo-controlled study
revealed a significant improvement in PES in patients treated with
olaparib maintenance therapy 400mg twice daily (n=136)
compared with placebo (n=129; 8.4 vs 4.8 months for placebo,
hazard ratio=10.35 (95% CI, 0.25-0.49); P<0.001; Ledermann
et al, 2012). Subset analyses showed that among patients with a
germline or tumour BRCA mutation median PFS was significantly
longer in the olaparib group (n=74) than in the placebo group
(n=62; 11.2 vs 4.3 months, hazard ratio=0.18 (95% CI, 0.10-
0.31); P<0.0001). Significant improvements in PFS were also
noted for patients without a BRCA mutation (n=57) compared
with placebo (n=61); however, the difference was less robust (7.4
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Table 2. Most common AEs (any grade and grade > 3) with olaparib treatment based on data from 2 large olaparib clinical trials.

Shown are any grade AEs reported in at least 15% of patients or grade >3 AEs reported in at least 5% of patients

‘ Kaufman et al (2015) I Ledermann et al (2012) ‘
Olaparib N=193 Olaparib N=136 Placebo N=128

Any grade Grade >3 Any grade Grade >3 Any grade Grade >3

number (%) number (%) number (%) number (%) number (%) number (%)
Fatigue 116 (60.1) 12 (6.2) 66 (48.5) 9 (6.6) 48 (37.5) 4 (3.7
Nausea 119 (61.7) 1(0.5) 93 (68.4) 2.2) 5 (35.2) 0 (0)
Vomiting 75 (38.9) 5(2.6) 43 (31.6) 3(2.2) 8 (14.1) 1(0.8)
Anemia 62 (32.1) 36 (18.7) 23 (16.9) 7 (5.1) 6 (4.7) 1(0.8)
Diarrhea 56 (29.0) 3(1.6) 31 (22.8) 3(2.2) 9 (22.7) 3(2.3)
Abdominal pain 58 (30.1) 14 (7.3) 24 (17.6) 2 (1.5) 3 (25.8) 4 (3.1)
Decreased appetite 6 (18.7) 1(0.5) 25 (18.4) 0(0) 7 (13.3) 0(0)
Dyspepsia 38 (19.7) 0 (0) 22 (16.2) 0 (0) 1(8.6) 0 (0)
Headache 2 (16.6) 0 (0) 25 (18.4) 0(0) 15 (11.7) 1(0.8)
Dysgeusia 39 (20.2) 0 (0) 19 (14.0) 0(0) 8 (6.3) 0(0)
30ne patient in the placebo group inadvertently received olaparib at a dose of 400mg twice daily for approximately 2 weeks. The exact dates and duration are unknown. It is not known
whether the patient was receiving olaparib or placebo when the adverse event (AE) occurred. This AE was counted in the safety analysis for placebo, but the possibility that it was attributable to
olaparib cannot be excluded.

ys 5.5 months, hazard ratio=0.54 (95% CI, 0.34-0.85);
P=0.0075). At a second interim analysis of OS (58% maturity),
OS for patients with germline or tumour BRCA mutations did
not significantly differ between the groups (hazard ratio=0.88
(95% CI, 0.64-1.21); P=0.44; Ledermann et al, 2014). In an
updated analysis olaparib significantly improved times to first and
second subsequent therapy (Ledermann et al, 2016). Moreover,
maintenance olaparib gave patients a survival advantage, however,
analyses suggest that these results may have been driven by the
BRCAm group (5-year survival was 29.2% and 20.4% in the
olaparib and placebo arms, respectively, and 36.9% and 24.3% in
BRCAm patients; Ledermann et al, 2016).

Although most studies have assessed olaparib in patients with
platinum-sensitive OC, results of the recent single-arm, phase II
study showed encouraging results in patients with platinum-
resistant OC (Kaufman et al, 2015). The study included 298
patients with confirmed germline BRCA1 or BRCA2 mutation and
advanced solid tumours. Among the cohort of 193 patients with
platinum-resistant OC, 31% (60/193) achieved a response and 40%
(78/193) had stable disease for >8 weeks. Median PFS and OS
were 7 months and 16.6 months, respectively.

Across trials, olaparib has shown a consistent adverse event
(AE) profile. The most common treatment-related AEs were
fatigue, gastrointestinal symptoms (nausea, vomiting, diarrhea),
and anemia, most of which were grade 1/2. The reported major
toxicities of the two largest clinical trials with olaparib are shown in
Table 2 (Ledermann et al, 2012; Kaufman et al, 2015). Although
most AEs were mild-to-moderate, consideration must be given to
the development of serious, potentially fatal conditions, such as
myelodysplastic syndrome/acute myeloid leukemia (MDS/AML)
and pneumonitis, which have occurred rarely with olaparib
treatment. MDS/AML was confirmed in 2% (3/136) of treated
patients in a randomised placebo-controlled trial and in 2% (6/298)
of treated patients in a single-arm monotherapy trial (Lynparza
prescribing information, 2014). Across all reported olaparib
studies, MDS/AML was reported in <1% (22/2,618) of patients
and pneumonitis, including fatal cases, occurred in <1% of
patients. MDS/AML likely result from PARP inhibitor-related
disruption in DNA repair, as altered DNA repair mechanisms can
lead to the development of genomic instability that in itself may
promote carcinogenesis (Bhatia, 2013).

Additional phase III maintenance trials for olaparib following
chemotherapy are underway (Table 3). These trials use the new
tablet formulation of olaparib developed to facilitate olaparib
dosing. Current approval of olaparib is based on completed clinical
studies where the dose of olaparib was 400 mg twice daily using a
capsule formulation; each capsule was 50 mg, equaling a total pill
count of 16 capsules per day. Clinical studies have now been
completed which compare the bioavailability and match the
efficacy and tolerability of the tablet to that of the capsule (Mateo
et al, 2016). As a result, the 300-mg tablet formulation (2 x 150 mg
tablets twice daily) was chosen as the most suitable dose for all
phase III studies. The phase III SOLO1 study, conducted in
collaboration with the Gynecologic Oncology Group, will provide
information on the role of maintenance olaparib after frontline
chemotherapy for OC patients with gBRCA mutations. SOLO2, in
collaboration with the European Network of Gynaecological
Oncological Trial Groups, will evaluate the role of maintenance
olaparib after >2 lines of chemotherapy for OC patients with
gBRCA mutations. Both trials are randomised, double-blind,
placebo-controlled studies that utilise the new tablet formulation
of olaparib at a dose of 300 mg twice daily (Moore et al, 2014).
In addition, SOLO3 is a randomised, phase III trial in patients with
gBRCA mutated, recurrent OC in which single-agent olaparib will
be compared with standard-of-care chemotherapy in patients who
failed >2 lines of prior chemotherapy for recurrent disease
(Table 3).

Olaparib is also under investigation in combination with
chemotherapeutic agents. In a randomised, open-label, phase II
study, patients with platinum-sensitive, recurrent OC received
either olaparib (200 mg twice daily, days 1-10 of each 21-day
treatment cycle) plus paclitaxel (175 mgm ~ 2, intravenously, day 1
of each cycle) and carboplatin (area under the curve (AUC) 4
according to the Calvert formula, intravenously, day 1 of each
cycle) followed by olaparib monotherapy (400mg twice daily,
continuously), or paclitaxel (175 mgm ~ 2, day 1 of each cycle) and
carboplatin (AUC 6, day 1 of each cycle) followed by no further
treatment in the maintenance phase. PFS was significantly
improved for the olaparib plus paclitaxel/carboplatin group versus
chemotherapy alone (12.2 vs 9.6 months, respectively (hazard
ratio=0.51, 95% CI, 0.34-0.77; P=0.0012)); the toxicity profile
for the olaparib group was manageable (Oza et al, 2015). In a phase
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high-grade serous OC;

human epidermal growth factor receptor 2; HGSOC

= germline BRCA mutation; HER2

duration of response; gBRCAm

dose-limiting toxicities; DoR =

distant disease-free survival; DLT =

clinical benefit rate; DDFS

homologous recombination deficiency; IDFS

pharmacodynamic; PFS

Abbreviations: CBR

HRD
PD

TTP

poly(ADP-ribose) polymerase;

overall survival; PARP=
recommended phase Il dose; TNBC

overall response rate; OS
quality of life; RP2D

maximum tolerated dose; ORR

intraperitoneal; IV=intravenous; MTD=

invasive disease-free survival; P

progression-free survival; PK

triple-negative breast cancer;

patient-reported outcomes; QoL

pegylated liposomal doxorubicin; PRO

pharmacokinetic; PLD =

time to progression. Source: clinicaltrials.gov.

I, open-label, dose-finding study, olaparib (100, 200, or 400 mg
twice daily) was administered intermittently (7 days) or con-
tinuously (28-day treatment cycle) in combination with liposomal
doxorubicin (40mgm ~? every 28 days). The MTD was not
reached with olaparib 400 mg twice daily. The combination was
active and generally well-tolerated (Del Conte et al, 2014).

Pooled data from the previously mentioned six olaparib trials
(two Phase I trials and four Phase II studies; Fong et al, 2009,
2010; Audeh et al, 2010; Gelmon et al, 2011; Kaye et al, 2012;
Mateo et al, 2013; Kaufman et al, 2015) that recruited women
with relapsed ovarian, fallopian tube, or peritoneal cancer were
used to explore the activity of olaparib in relation to the number
of prior treatment lines in patients with gBRCAm ovarian cancer
(Matulonis et al, 2016). All patients received 400 mg of olaparib
twice per day. In the pooled population with measurable disease
at baseline (n =273), the ORR was 36% with a 7.4 month median
DoR. For patients who had received >3 lines of prior
chemotherapy (n=205), the ORR was 31% and median DoR
was 7.8 months. The ORR declined as the number of lines
increased from 50% for patients who had received one prior
regimen to 24% for patients who had received >6 prior
regimens. Grade >3 adverse events were reported in 50% of
the pooled population and 54% of the population who had >3
lines of prior chemotherapy. The findings of the study indicated
that olaparib was associated with durable response in patients
with relapsed gBRCA-mutated ovarian cancer and who had been
administered >3 lines of prior chemotherapy.

Combination studies with a number of other agents are also
being assessed. Olaparib was studied in combination with the
antiangiogenic multikinase inhibitor, cediranib. The rationale
behind this combination is based on the observation that vascular
endothelial growth factor receptor (VEGFR) inhibition may lead to
increased DNA damage through downregulation of DNA repair
proteins, including ERCC1 and XRCCl (Yadav et al, 2011).
Stemming from supportive preclinical data (Pyriochou et al, 2008),
a phase II trial of olaparib in combination with the VEGF
multikinase inhibitor, cediranib, was recently completed (Liu et al,
2014). Patients received 30-mg cediranib daily and olaparib 200 mg
twice daily. Median PFS was 17.7 months for women treated with
cediranib plus olaparib (n=44) compared with 9.0 months for
those treated with olaparib monotherapy (n=46; hazard
ratio=0.42; P=0.005). OS data were not mature; OS at 24
months was 81% (95% CI, 60-91) in the combination group
compared with 65% (95% CI, 42-81) in the olaparib-monotherapy
group. Treatment-related AEs were more common in patients
treated with cediranib plus olaparib than with monotherapy. These
included grade 1/2 AEs of hypertension (17 vs 0 patients,
respectively), diarrhea (31 wvs 1), fatigue (26 vs 21), headache
(17 vs 4), hypothyroidism (7 vs 1), and decrease in white blood cell
(5 vs 4) and platelet counts (6 vs 3), as well as grade 3/4 AEs
including fatigue (12 vs 5 patients), diarrhea (10 vs 0), and
hypertension (18 vs 0; Liu et al, 2014).

Most recently, results of phase I studies of olaparib in
combination with the PI3K inhibitor BKM120 and the AKT
inhibitor AZD5363 have been reported with evidence of activity
in OC (Matulonis et al, 2015; Michalarea et al, 2015).
The rationale for these studies was based on preclinical data in
breast cancer models showing that inhibition of the PI3/AKT
pathway can result in BRCA1/2 downregulation, HR impairment,
and sensitivity to PARP inhibition (Ibrahim et al, 2012;
Juvekar et al, 2012).

Veliparib. Veliparib has been evaluated in phase I studies as single
agent and in combination with chemotherapeutic agents.
Advanced-phase trials are currently ongoing. A phase II study is
investigating veliparib monotherapy in patients with gBRCA
mutations and recurrent OC (Table 3). Preliminary results
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reported an ORR of 26% (13/50 patients). Responses were observed
in both platinum-sensitive and platinum-resistant patients and
median PFS was 8.1 months. Gastrointestinal symptoms, fatigue,
and anemia were the most common AEs (Coleman et al, 2015).

A phase I trial of veliparib with cyclophosphamide observed
antitumour responses in patients (N = 35) with OC, breast cancer,
urothelial or lymphoid malignancies. The MTD was found to be
veliparib 60 mg once daily plus cyclophosphamide 50 mg once
daily (Kummar et al, 2012). Seven patients had PR; an additional
6 patients had disease stabilisation for at least six cycles. Based on
preclinical data supporting the interaction between inihibition of
PARP and the VEGF signalling pathway (Pyriochou et al, 2008;
Yadav et al, 2011), a phase I study was conducted to evaluate
veliparib in combination with a platinum/taxane regimen plus
bevacizumab in epithelial ovarian fallopian or primary peritoneal
cancer (N=189) (Bell-McGuinn ef al, 2015). An ongoing GOG
phase IIT study is currently evaluating carboplatin/paclitaxel with
or without concurrent and continuation maintenance veliparib in
patients with previously untreated stages III or IV high-grade
serous epithelial ovarian, fallopian, or primary peritoneal cancer
(NCT02470585).

Niraparib. Niraparib is under investigation in patients with and
without BRCA-mutated cancer (Sandhu et al, 2013). In a phase I/Ib
study, 100 patients with advanced solid tumours were enrolled and
300 mg daily was established as the MTD. A PR was confirmed in
8 of 20 (40%) BRCA-mutation carriers with OC or primary
peritoneal cancer, with more responses in platinum-sensitive (50%)
than platinum-resistant (33%) disease. Durable PRs were also
observed in sporadic HGSOC in 2 of 3 patients with platinum-
sensitive disease and 3 of 19 (16%) patients with platinum-resistant
disease. Fatigue, GI symptoms, and hematologic toxicity (anemia,
thrombocytopenia, and neutropenia) were the most commonly
reported drug-related toxicities. Niraparib was also evaluated in the
recently completed phase III maintenance study, NOVA
(NCT01847274), in patients with recurrent platinum sensitive
HGSOC (Table 3). The NOVA trial successfully achieved its
primary endpoint of PFS in patients with germline BRCA
mutations (21.0 vs 5.5 months HR 0.27, P<0.0001) and in patients
who were not germline BRCA mutation carriers but whose tumours
were determined to be HR-deficiency positive (12.9 vs 3.8 months
HR 0.38, P<0.0001). http://www.globenewswire.com/NewsRoom/
AttachmentNg/6ea284b2-a663-4aeb-96c1-22ac847b460f. A phase
I/l study is exploring the efficacy of niraparib and/or the
combination of niraparib plus bevacizumab compared with
bevacizumab alone (Table 3). In addition, the QUADRA
(NCT02354586) phase II study is evaluating the safety and efficacy
of niraparib in patients who have received at least three previous
chemotherapy regimens (Table 3). Finally, the PRIMA study
(NCT02655016) is assessing the efficacy of niraparib maintenance
treatment following first-line platinum-based chemotherapy in
patients with advanced primary ovarian cancer that demonstrates
HR DNA repair deficiency.

Rucaparib. Rucaparib has demonstrated favorable preclinical and
clinical activity in patients with gBRCA-mutated OC and sporadic,
platinum-sensitive OC. A phase I study of rucaparib in patients
with advanced solid tumours including gBRCA-mutated ovarian,
breast, and pancreatic cancer determined the recommended dose
to be 600 mg twice daily based on maximum exposure, manageable
toxicity and promising clinical activity (Kristeleit et al, 2014;
Shapiro et al, 2013). Durable antitumour responses were observed
in a subgroup of platinum-sensitive and platinum-resistant ovarian
and primary peritoneal cancer patients. Of 14 patients with a
gBRCA mutation, 13 had CR, PR, or stable disease at 12 weeks
(Kristeleit et al, 2014). Part 2b of the original dose-finding study
(Study 10, NCT01482715) is investigating the efficacy of rucaparib

600 mg twice daily in heavily pre-treated high-grade serous,
BRCAm OC (Drew et al, 2016).

Next to gBRCAI/2 mutations, there are other possible causes of
deficient DSB repair that may likewise be associated with
responsiveness to PARP inhibitor. Both Foundation Medicine
and Myriad Genetics are aiming to identify a genomic signature for
BRCA-like OCs. Myriad Genetics has selected a combination of
three slightly variable algorithms that are indicative of defective
DNA DSB repair in cancer cells and will soon be incorporating the
MyChoice HR deficiency assay into ovarian cancer clinical trials
(Timms et al, 2014, 2015). Foundation Medicine has partnered
with Clovis, who is conducting the phase II and phase III rucaparib
trials, ARIEL2 and ARIEL3, in platinum-sensitive, recurrent OC, to
prospectively validate an HR deficiency score in the tumours of
patients using a next generation DNA sequencing test which
determines the degree of loss of heterozygosity (LOH) as a marker
of genomic instability for predicting response to rucaparib (Swisher
et al, 2014). Preliminary data from 135 patients using a
prespecified genomic LOH cut-off have shown response to
rucaparib in patients with BRCA mutations (ORR 69%) and in
patients with a BRCA-like LOH high signature (ORR 39%), which
is in contrast to patients without a BRCA mutation or without a
BRCA-like signature (ORR 11%) (McNeish et al, 2015). Refine-
ment of the genomic LOH cutoff improves selection of patients
with a BRCA-like LOH high signature more likely to benefit from
rucaparib. Updated data from 204 patients using the refined cut off
have shown response to rucaparib in patients with BRCA
mutations (ORR 80%) and in patients with a BRCA-like LOH
high signature (ORR 39%), which is in contrast to patients without
a BRCA mutation or without a BRCA-like signature (ORR 14%)
(Coleman et al, 2016).

The main treatment-related AEs for rucaparib, most of which
were of grade 1/2 severity, have been nausea, vomiting, fatigue,
elevated aspartate aminotransferase/alanine aminotransferase,
dysgeusia, decreased appetite, anemia, and constipation.
Full results of the ARIEL2 trial will inform the pivotal phase IIT
maintenance trial, ARIEL3. ARIEL3 has enrolled subjects and will
evaluate rucaparib in patients with platinum-sensitive relapsed
ovarian cancer. ARIEL3, will also prospectively validate the
predictive power of an HR deficiency assay/score in patients with
platinum sensitive ovarian cancer (Table 3) (Swisher et al, 2013).

Talazoparib. Talazoparib, formerly known as BMN673, is an oral
PARP inhibitor that is under investigation in patients with
advanced or recurrent solid tumours (Shen et al, 2013). In
preclinical experiments, talazoparib exhibited selective antitumour
cytotoxicity at much lower concentrations than olaparib, rucaparib,
and veliparib (Table 1; Shen et al, 2013). Preclinical studies have
shown that talazoparib, olaparib, rucaparib, and veliparib inhibit
PARP catalytic activity similarly; however, talazoparib is more
potent at trapping PARP-DNA complexes (Table 1; Shen et al,
2013). Whether the observed increased preclinical potency
translates into improved clinical efficacy will need to be shown
in clinical studies. A phase I dose-escalation trial determined the
MTD of talazoparib to be 1000ug once daily and revealed
promising clinical activity. Eleven of 17 patients with gBRCA-
associated OC or primary peritoneal cancer had an objective
response to talazoparib (De Bono et al, 2013). In a phase I dose
escalation study, patients with advanced malignancies, including
OC, were treated with talazoparib plus temozolomide chemother-
apy. The results demonstrated efficacy and established an MTD
using the standard dose of the PARP inhibitor in combination with
a reduced dose of the sensitising chemotherapeutic agent
(Wainberg et al, 2015, 2016). Although nearly all of the previously
mentioned PARP inhibitors (olaparib, velaparib, niraparib) have
been combined with chemotherapeutic agents in early phase I
clinical trials, the majority of these early combination studies had
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to be closed prematurely due to increased toxicities or the PARP
inhibitor doses needed to be reduced to subtherapeutic dose levels.
Of note, in all of these earlier studies the chemotherapy doses were
given at or near standard dosing levels and the PARP inhibitor
concentrations were gradually increased. In contrast, in the present
phase I trial that combined talazoparib with temozolomide, the
PARP inhibitor dose was kept high from the onset at a dose with
proven single agent activity, and the temozolomide dose was
started at a low dose and carefully escalated until an MTD was
reached. Based on promising clinical activity seen in the ovarian
cancer patients, talazoparib will now be further studied either alone
or in combination with temozolomide in patients with recurrent
HR-deficient ovarian cancer that has progressed after/or failed
prior PARP inhibitor treatment or have not yet been exposed to a
PARP inhibitor. This trial will provide us with valuable insights as
to whether talazoparib, which has unique PARP trapping
capability, will have activity as a second line PARP-inhibitor
treatment either as single agent or in combination with low dose
chemotherapy.

CLINICAL CHALLENGES

The presence of a gBRCA mutations appears to be positively
correlated with increased survival and responsiveness to che-
motherapy (Chetrit et al, 2008; Alsop et al, 2012; Bolton et al,
2012). Because of this, it is expected that patients with gBRCA-
associated OC will be exposed to multiple lines of various
chemotherapeutic agents during their treatment. Therefore,
treatment-free intervals may be of particular importance to this
patient population, as they allow adequate recovery from
cumulative adverse reactions in preparation for additional treat-
ment regimens. Future studies to assess survival and quality of life
are needed to clarify whether the optimal treatment strategy will be
treatment at disease recurrence or use of PARP inhibitors as
maintenance therapy following response to a platinum-based
chemotherapy.

Despite durable antitumour activity reported in patients with
gBRCA mutations to date, the lack of validated biomarkers to
predict patients with sporadic OC who may respond to PARP
inhibitors remains an important clinical challenge. The attempt to
capture genomic instability by identification of ‘genomic scarring’
or BRCAness (identifying tumours that share molecular features of
BRCA mutant tumours) may be accomplished by determining the
overall degree of allelic imbalance (loss of heterozygosity; Abkevich
et al, 2012), telomeric specific allelic imbalance (Birkbak et al,
2012), and/or large-scale transitions in tumour DNA (Popova et al,
2012). As mentioned above, the approach being pursued by
Foundation Medicine and Myriad Genetics is to assess patterns of
increased genomic instability as biomarkers for defective HR DNA
repair. The resulting genomic signature may indicate an HR
deficiency sufficient to predict patients whose cancers are more
likely to respond to PARP-inhibitor therapy. However, further
studies, both preclinical and clinical, will be needed to define and
validate algorithms and cut-offs that are currently being developed
to predict response to a PARP inhibitor in ovarian cancer.

Inherent or acquired resistance to PARP-inhibitor therapy also
confers a significant clinical challenge. A potential mechanism of
acquired resistance to PARP inhibition is the restoration of normal
BRCA1/2 protein function by secondary intragenic mutations
(Konstantinopoulos et al, 2015). This can occur by mutations that
cancel the frameshift of the original mutation and restore an open
reading frame or by a genetic reversion of the original mutation
resulting in the expression of a functional protein (Edwards et al,
2008; Konstantinopoulos et al, 2015). The actual clinical relevance
of secondary mutations that restore BRCA function is, however,

currently a matter of debate and requires further study.
A retrospective study was conducted in a cohort of 89 patients
with relapsed epithelial ovarian cancer and gBRCA 1/2 mutations
who demonstrated disease progression on olaparib 200 mg twice-
daily and subsequently retreated with platinum-based chemother-
apy. Secondary BRCA1/2 mutations were not detected in 6 of the
patients with evidence of disease progression, suggesting that other
mechanisms may play a role in PARP inhibitor resistance.
(Ang et al, 2013). Somatic mutations of TP53BPI, which encodes
p53BP1, might also result in partial restoration of HR and DNA
repair (Jaspers et al, 2013). In addition, increased drug efflux,
mediated by MDR1, might limit exposure of the cancer cells to the
effects of a PARP inhibitor (Rottenberg et al, 2008). Importantly,
evidence suggests a lack of significant clinical cross-resistance
between PARP inhibition and platinum-based chemotherapy,
which has important implications for sequencing therapy
(Ang et al, 2013).

Long term safety issues are a significant concern, especially if
PARP inhibitors are adopted in the frontline treatment of OC.
PARP inhibitors, as single-agent therapy, are associated with
predominantly mild-to-moderate (grade 1/2) toxicities; however,
rarer, more severe toxicities demand special consideration in an
adjuvant setting. A small number of cases of MDS/AML or severe
pneumonitis have been reported after olaparib therapy, with an
overall incidence of <1% for each toxicity across all reported
studies (Lynparza prescribing information, 2014). However, most
of these patients had previously received multiple lines of DNA-
damaging, platinum-containing chemotherapies, which may have
contributed to these AEs. Future studies will need to capture these
AEs, especially in the adjuvant setting.

Although the importance of gBRCA1/2 mutations in managing
women with ovarian cancer is well understood, the number of
patients who are currently being tested for germline mutations is
still limited (Schmid and Oehler, 2014). More widespread genetic
testing of patients diagnosed with ovarian cancer including the
adoption of multi-gene panels (that capture rare germline
mutations in high risk genes next to BRCAI/2 mutations) will
provide clinicians valuable additional stratification tools to help
integrate PARP inhibitors into the treatment of all patients
diagnosed with familial ovarian cancer. Moreover, the development
of assays that capture deficiencies in HR will extend these advances
to a larger group of patients diagnosed with sporadic ovarian
cancer.

Finally, cost considerations are a further challenge relevant to
PARP inhibitors. Cost-effectiveness studies are needed that take
quality of life assessments into consideration to allow a
comprehensive value-based assessment of PARP inhibitors in
ovarian cancer care. (Sfakianos and Havrilesky, 2011).

FUTURE DIRECTIONS

Future development of PARP inhibitors will need further clinical
studies to better understand: (a) when and how to sequence
therapy, (b) which combination treatment strategies potentiate
PARP inhibitor antitumour activity, and (c) long-term toxicities
(Liu and Matulonis, 2014). High clinical research priorities should
be aimed to better understand whether PARP inhibitors are best
used (a) as actual treatment of recurrent disease or as maintenance
therapy, (b) before or after platinum-based therapy, (c) as single
agents or in combination with chemotherapeutic or novel targeted
agents. Furthermore, accurate definition of molecular features that
reliably identify BRCAness will allow clinicians to extend the use of
PARP inhibitors to non-BRCA-mutated OC. Novel combinations
that warrant further clinical exploration include, but are not
limited to, PI3-kinase inhibitors, angiogenesis inhibitors or ATM
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and cell cycle inhibitors (Weel inhibitor). A recent preclinical
study showed that talazoparib exhibited immunoregulatory effects
in a murine model providing a rational to evaluate a combination
with an immune check point inhibitor (Huang et al, 2015).
This rationale is further supported by the fact that HR deficiency is
associated with genomic instability, and may therefore, also be
associated with an increase in the expression of neoantigens and
immunogenicity warranting the use of an immune check point
inhibitor. Finally, comparative studies are needed to examine
whether the preclinical differences in potency or mechanism of
action among PARP inhibitor will have clinical implications. With
completion of these ongoing efforts, PARP inhibitors are poised to
help improve clinical outcomes for patients with BRCA-associated
and sporadic OC.
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