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Over recent years, a number of authors have increasingly explored the possible physiological 

basis of the photoparoxysmal response (PPR) in humans. A PPR consists of specific 

electroencephalographic (EEG) signature such as spikes, spike-waves and intermittent slow 

waves recorded from occipito-frontal regions in response to intermittent photic stimulation (IPS) 

(Fisher et al. , 2005). Although PPR may be present in asymptomatic healthy subjects as an 

isolated EEG response, more commonly the PPR elicits focal or generalized myoclonus leading 

to isolated or recurrent seizures in specific epileptic syndromes (Rubboli et al. , 1999 and Koepp 

et al. , 2016). There is a robust amount of experimental evidence in animal models (Fischer-

Williams et al. , 1968 and Ostrach et al. , 1984) and in humans (Naquet et al. , 1960 and Guerrini 

et al. , 1998) indicating that an abnormal primary visual cortex (V1) excitability plays a crucial 

role in the pathophysiology of PPR. Specifically, it has been suggested that a breakdown of 

inhibitory γ-aminobutyric acid (GABA)-ergic neurotransmission in V1 might contribute to the 

PPR (Porciatti et al. , 2000 and Parra et al. , 2003).  

 The present issue of Clinical Neurophysiology includes a recent study of Bocci et al. (2016) 

who investigated the excitability of V1 with transcranial magnetic stimulation (TMS), in a cohort 

of patients with PPR. Following the hypothesis that PPR reflects decreased contrast gain control in 

visual cortical areas (Porciatti et al. , 2000), the authors investigated whether an inhibitory form of 

low-frequency repetitive TMS (rTMS), applied over the occipital pole, is able to restore contrast 

gain control of high-contrast stimuli, in patients with PPR (Bocci et al. , 2016). In a previous study, 

Bocci et al. (2011) showed that the same protocol of low-frequency rTMS (600 pulses at supra-

threshold intensity, at 0.5 Hz, 20 minutes of stimulation) is able to dampen V1 excitability through 

mechanisms of long-term depression (LTD)-like phenomena. Given that in PPR, visual cortex 

hyperexcitability may arise from impaired transcallosal inhibition, in this study the authors also 

investigated the excitability of the V1 contralateral to that targeted by rTMS. The authors found 

increased-amplitude early components of visual evoked potential (VEP) in patients compared to 

controls. Following rTMS, VEPs decreased in amplitude in the target V1 in both patients and 



controls. However, the amount of VEP inhibition differed in the two study groups being greater in 

controls than in patients. In addition, after rTMS, VEP amplitude recovery occurred earlier in 

patients with PPR than in controls. The authors interpreted these findings as a result of decreased 

rTMS-induced LTD-like phenomena in V1 in PPR. In the contralateral V1, VEPs increased in 

amplitude in patients as well as in controls possibly due to rTMS-induced inhibition of 

transcallosal inhibitory connections. However, in the contralateral V1, the facilitation of VEPs 

lasted longer in patients compared to controls pointing to decreased transcallosal inhibition in PPR. 

The authors concluded that impaired LTD-like phenomena in V1 and decreased transcallosal 

inhibition both contribute to the pathophysiology of PPR.  

 The study of Bocci et al. (2016) is interesting and provides new insights into the 

pathophysiology of PPR. A positive methodological aspect of the study is that patients were all 

drug-naive at the time of the experiments. It is known that a number of anti-epileptic drugs (AEDs) 

including valproate, levetiracetam, lamotrigine and carbamazepine may affect cortical excitability 

(Ziemann et al. , 2015). When interpreting the results however, several points should be taken into 

account. The study cohort is not homogeneous in terms of clinical features since some of the 

patients studied are affected by Juvenile Myoclonic Epilepsy and others by a rare epileptic 

syndrome, called Familial Cortical Myoclonic Tremor with Epilepsy (FCMTE) (Suppa et al. , 

2009). The authors did not report the reversal of VEP components, achieved by hemifield 

stimulation, across the two hemispheres, a factor possibly reflecting the specific electrode montage 

used (Suppa et al. , 2015a). When considering the neural pathway responsible for the observed 

findings, it should be noted that pathways other than the corpus callosum may have contributed to 

the present results including the thalamo-cortical pathways. Finally, as stated by the authors, the 

lack of a control group with patients with idiopathic generalized epilepsy without PPR does not 

allow to clarify whether the present findings are specific or not for the photosensitive trait. 

Notwithstanding several methodological limitations, the study of Bocci and coworkers (2016) 

provides important information into the role of LTD-like plasticity in V1 and interhemispheric 



interaction in visual cortical areas in PPR. In conclusion, it is important to state that in addition to 

V1 hyperexcitability and reduced transcallosal inhibition, recent studies have demonstrated 

mechanisms of abnormal early visuo-motor integration in PPR (Suppa et al. , 2015a and Suppa et 

al. , 2015b). Experimental evidence supports the pathophysiological role of abnormal activation in 

frontal cortical areas, including the primary motor cortex (M1) in patients with PPR (Varotto et al. , 

2012, Suppa et al. , 2015b and Strigaro et al. , 2015). Hence, the pathophysiology of PPR should be 

investigated further taking into account recent advances in this research field. The PPR should be 

framed into the concept of “System Epilepsy”, which refers to functionally coupled networks 

characterized by large scale neuronal populations with enduring propensity to generate seizures 

(Laufs, 2012 and Suppa et al. , 2015b).  
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