
710 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 3, NO. 4, DECEMBER 2017

Acoustic Wave Field Reconstruction From
Compressed Measurements With Application in

Photoacoustic Tomography
Marta M. Betcke , Ben T. Cox, Nam Huynh, Edward Z. Zhang, Paul C. Beard, and Simon R. Arridge

Abstract—We present a method for the recovery of com-
pressively sensed acoustic fields using patterned, instead of
point-by-point, detection. From a limited number of such com-
pressed measurements, we propose to reconstruct the field on the
sensor plane in each time step independently assuming its sparsity
in a Curvelet frame. A modification of the Curvelet frame is pro-
posed to account for the smoothing effects of data acquisition and
motivated by a frequency domain model for photoacoustic tomog-
raphy. An ADMM type algorithm, split augmented Lagrangian
shrinkage algorithm, is used to recover the pointwise data in
each individual time step from the patterned measurements. For
photoacoustic applications, the photoacoustic image of the initial
pressure is reconstructed using time reversal in k-Wave Toolbox.

Index Terms—ADMM methods, compressed sensing, curvelet
frame, L1 minimization, photoacoustic tomography.

I. INTRODUCTION

COMPRESSED SENSING (CS) is a new measurement
paradigm, which allows for the reconstruction of sparse

signals sampled at sub-Nyquist rates. Nowadays, it is common
understanding that many digital signals and images admit an
adequate representation with far fewer coefficients than their
actual length. This phenomena is known as compressibility and
it has been a driving force in many image processing applica-
tions, most notably the image compression algorithms JPEG
and its successor JPEG 2000. CS emerged from the realization
that the signals could in fact be acquired directly in their com-
pressed form instead of sampling the signal at Nyquist rate and
then compressing it and while doing so discarding most of the
laboriously obtained coefficients.

Since the seminal works by Donoho [1] and Càndes, Romberg
and Tao [2], [3], there has been an explosion of results in the
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field and many applications have been suggested starting with
the prototype single pixel camera [4].

Here we propose a new application of CS in acoustic wave
field sensing. In [5] the authors proved that the acoustic field is
almost optimally sparse in Curvelet frame. As the Curvelets
essentially describe the wave front sets their propagation is
well approximated through geometrical optics (high frequency
asymptotic solution to the wave equation). The wave front sets,
and hence the Curvelets, propagate along the geometrical rays
which are projections on Rd of phase space solutions of the cor-
responding Hamilton-Jacobi equation resulting from the high
frequency asymptotic. Motivated by this result we investigate
the Curvelet representation of the cross-section of the wave
field by the planar ultrasound sensor. While the arguments in
[5] do not directly apply to this situation, the planar cross-section
through the acoustic wave front constitutes a singularity along
a smooth curve for which Curvelets have been demonstrated to
be a nearly optimal representation [6].

A. Contribution

In this paper we focus on the reconstruction problem via data
recovery for a novel way of interrogating the high resolution
ultrasound sensor using patterns instead of the more conven-
tional sequential point-by-point interrogation. An example of
such a system using a Single-Pixel Optical Camera (SPOC) was
presented in [7]. The theory of CS predicts that substantially
fewer such measurements, of the order k log n, need to be taken
in order to capture a signal of length n and sparsity k leading
to a substantial reduction of the acquisition time. We propose
from such measurements to recover the pressure at the detector
at each time step independently using CS recovery algorithms.
We discuss the motivation for using a Curvelet tranform as the
sparsifying transformation for the acoustic field at the detector
and we propose its modification: a low-frequency Curvelet tran-
form tailored to the frequency range of the acoustic field on the
detector. We investigate the appropriate choice of interrogation
patterns and recovery algorithm for this problem. The proposed
techniques can be used in various applications ranging from
ultrasonic field mapping to photoacoustic tomography (PAT).
In this work we focus on the latter to illustrate our method.

For PAT applications, the immediate benefit of recovering
data independently at each time step is the decoupling of the
CS reconstruction from the acoustic inversion, allowing for the
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recovered time series to be input into any reconstruction algo-
rithm for PAT for which software is readily available.

B. Related Work

For photoacoustic image reconstruction from compressed or
subsampled measurements, one and two step approaches have
been investigated in the literature. In one step approaches the
initial pressure is directly recovered from the compressed mea-
surements. In [8] the authors propose such an approach for a
2D problem with measurements limited in angle and frequency.
It was numerically investigated using an analytic approximate
inversion formula and a number of sparse representations includ-
ing Wavelets and Curvelets. An approach for 3D imaging using
a translatable circular detection array and Wavelets as a sparse
representation was presented in [9]. A generic variational ap-
proach for 2D and 3D PAT reconstruction based on an algebraic
adjoint was first discussed in [10]. Two variational approaches
based on the analytical adjoint were recently proposed, one in a
FEM-BEM setting [11] and the other in a k-space setting with
an efficient k-Wave implementation [12], [13].

In contrast, in the context of PAT, the present paper is about a
two step method. We propose to first recover the photoacoustic
data in every time step independently from pattern measure-
ments using sparsity of the data in Curvelet basis, and sub-
sequently to reconstruct it using standard PAT reconstruction
methods. Recently, another two stage approach has been sug-
gested in [14], where the authors explore the temporal sparsity
of the data by means of a custom made transform in time.
From the sparse pressure data subsequently the initial pres-
sure is reconstructed with the universal back-projection formula
[15], [16].

C. Outline

The remainder of this paper is organized as follows. In
Section II we introduce the forward and inverse problem for
PAT and methods for their solution. Section III briefly recapit-
ulates the theory of compressed sensing. An appropriate mul-
tiscale representation of the time series PAT data is considered
in Section IV, where we derive the frequency model of sen-
sor data and propose a modified version of Curvelet transform
tailored to the range of frequencies of the acoustic field. In
Section V we discuss specific issues arising when compressively
sensing photoacoustic data using patterned interrogation of op-
tical ultrasound detector. We briefly describe the Single-Pixel
Optical Camera based PAT scanner. We consider the challenges
for Curvelet transforms for approximation of sensor data over
the time series. We discuss choice of the interrogation patterns
and the algorithm for recovery of the sensor data. In Section VI
we present recovery results for the optical sensor data and the
final PAT image reconstruction from both simulated and real
data.

II. PHOTOACOUSTIC TOMOGRAPHY

Photoacoustic tomography (PAT) is an example of a wider
range of hybrid imaging techniques, in which contrast induced

by one type of wave is read out by another wave. In this way,
both high contrast and high resolution can be simultaneously
achieved, which is often difficult with conventional imaging
techniques that usually provide either one or the other, but
not both. PAT is an emerging biomedical imaging modality
with both pre-clinical and clinical applications that can provide
complementary information to established imaging techniques
[17]–[21]

Many PAT applications require a high resolution, three di-
mensional image e.g. an image of capillaries of a few tens of
microns diameter in a cm sized imaging region. Such highly
resolved imaging requires an ultrasound sensor array of tens of
thousands of pixels. In one such PAT system [22], the sensor is
a Fabry Perot (FP) interferometer interrogated by a laser whose
focus is moved to form a raster scan of the desired resolution.
For sequential sampling, such as this, the ultimate limit to the
data acquisition rate (the rate at which time series are collected)
is the propagation time for sound to cross the specimen, e.g. it
would take 10 μs for the signal to reach the detector from 15 mm
depth, resulting in 100 kHz acquisition rate (not to be confused
with the sampling rate, which might be as high as 100 MHz). No
sequential scanner is close to approaching this limit, making a
sequential acquisition a major practical limitation for high reso-
lution 3D PAT. For in vivo applications the required acquisition
times at currently achievable rates are typically a few minutes,
not only resulting in motion artefacts, but limiting studies to
phenomena on such long timescales.

The principle involved in PAT is to send a short (ns) pulse
of near-infrared or visible light into tissue, whereupon absorp-
tion of the photons e.g. by haemoglobin molecules, generates
a small local increase in pressure which propagates to the sur-
face as a broadband, ultrasonic pulse. If the amplitude of this
signal is recorded over an array of sensors at the tissue surface,
an image reconstruction algorithm can be used to estimate the
original 3D pressure increase due to optical absorption; this is
the photoacoustic image, p0 .

Mathematically, under an assumption of free space propaga-
tion the photoacoustic forward problem is modelled as an initial
value problem for the wave equation [23]

1
c2(x)

∂2p(x, t)
∂t2

= ρ0(x)∇ ·
(

1
ρ0(x)

∇
)

p(x, t),

x ∈ Rd , t ∈ (0, T ), (1a)

p(x, 0) = p0(x), (1b)

∂

∂t
p(x, 0) = 0, (1c)

where p(x, t) denotes the time dependent acoustic pressure in
Rd × (0, T ), d = 2, 3, p0(x) its initial value and c(x) and ρ0(x)
are the ambient speed of sound and density, respectively.

The photoacoustic inverse problem is to recover this initial
pressure p0(x),x ∈ Ω compactly supported in the region of in-
terest Ω from a time series measurement g(x, t) = p(x, t),x ∈
S, t ∈ (0, T ) on the surface S (e.g. boundary of Ω) and it
amounts to a solution of the following initial value problem
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with surface data [24]

1
c2
0(x)

∂2p(x, t)
∂t2

= ρ0(x)∇ ·
(

1
ρ0(x)

∇
)

p(x, t),

x ∈ Rd , t ∈ (0, T ), (2a)

p(x, 0) = 0, (2b)

∂

∂t
p(x, 0) = 0, (2c)

p(x, t) = g(x, T − t), x ∈ S, t ∈ (0, T ), (2d)

with PAT data fed backwards in time as surface values (also
referred to as time reversal). The formulation (2) holds exactly
in 3D for non-trapping smooth sound speed c(x) if T has been
chosen large enough so that g(xS , t) = 0, t ≥ T and the wave
has left the domain Ω. Furthermore, assuming that the measure-
ment surface S surrounds the region of interest Ω containing
the support of the initial pressure p0 , problem (2) has a unique
solution. The condition on S to surround p0 can be relaxed
under additional assumptions on S and Ω and smoothess of
initial pressure p0 ∈ H1

0 (Ω); see Theorem 10 in [25] and the
citations within. The reconstruction problem is stable (meaning
that small errors in the data cause small errors in the reconstruc-
tion) for closed surface S surrounding the region of interest
Ω and non-trapping sound speeds, see e.g. [25]. If S does not
fully surround Ω or the sound speed is trapping, some singu-
larities may become invisible in the data leading to the lost of
Hölder stability in any Sobolev space [26]. All visible singular-
ities can be reconstructed with Lipschitz stability in appropriate
spaces [27].

In a real experiment, we can only acquire a discrete (both
in time and space) subset of time series measurements, and
frequently it is not possible to acquire measurements on a sur-
face S surrounding the object. An example of a popular sen-
sor violating this assumption is a planar sensor. In practice,
such sensor will have finite size, resulting in invisibility of
some interfaces and in turn in artefacts in the reconstructed
image.

We should mention that other approaches to image recon-
struction exist. An overview of methods for the case when S is
a surface surrounding Ω can be found e.g. in [25]. In this paper
we directly solve the time-reversal problem (2) using the pseu-
dospectral method implemented in the k-Wave Toolbox [28],
which is an efficient numerical scheme for solving the wave
equation in domains with heterogeneous acoustic properties,
and is exact in the case of homogeneous media. Furthermore,
the methodology proposed here is tailored to high resolution
detectors which are planar and so we assume S to be a finite
rectangular section of the xy-plane

S = {(x, y, z) : |x| ≤ xd/2, |y| ≤ yd/2, z = 0}

and solve the resulting initial value problem (2) with data on a
finite sensor S. The rectangular planar detector shape allows us
to use any sparsifying transform derived for natural images.

III. COMPRESSED SENSING

Let Ψ be an isometric sparsifying transform

Ψ : Rn → RN ,

resulting in possibly an overdetermined representation N ≥ n
and Ψ† = ΨT denote its left inverse, where the equality is due
to isometry. With f ∈ RN we denote the transformation of the
original signal g ∈ Rn ,

f = Ψg. (3)

In compressed sensing the signal g ∈ Rn is projected on a se-
ries of sensing vectors φi ∈ Rn , i ∈ 1, . . . ,m, where m � n,
yielding a vector b ∈ Rm of compressive measurements

b = Φg + e with Φ = [φ1 , φ2 , . . . , φm ]T , (4)

where e is the measurement noise, ‖e‖2 ≤ ε. The following
recovery result guarantees that the original signal g, can be
robustly recovered from compressed measurements (4) via so-
lution of the minimization problem for f [3]

min
f∈RN

‖f‖1 , s.t. ‖ΦΨ†f − b‖ ≤ ε. (5)

Theorem RR Robust recovery [29], [30]: Let δk be the
isometry constant of ΦΨ† defined as a smallest positive number
such that

(1 − δk )‖f‖2
2 ≤ ‖ΦΨ†f‖2

2 ≤ (1 + δk )‖f‖2
2 (6)

holds for all k-sparse vectors f i.e. vectors with at most k non-
zero elements.

If δ2k <
√

2 − 1 (relaxed to δ2k < 2
3+

√
7/4

in [30]) then the

error of the solution of (5), f ∗, is bounded as follows

‖f − f ∗‖2 ≤ C1ε + C2
‖f − fk‖1√

k
, (7)

where fk denotes best k-term approximation, obtained from f
selecting its k largest in magnitude coefficients, and C1 , C2 are
constants dependent only on δ2k .

The robust recovery Theorem RR holds for any vector f ,
however the error norm ‖f − fk‖1 of the k-term approximation
is only small for k-sparse or compressible vector f (i.e. with fast
enough decaying magnitude of the coefficients). Furthermore,
for k-sparse vectors we have ‖f − fk‖1/

√
k ≤ ‖f − fk‖2 and

hence the the bound can be expressed in L2 norm

‖f − f ∗‖2 ≤ C1ε + C2‖f − fk‖2 .

IV. MULTISCALE REPRESENTATION OF TIME SERIES DATA

A. Frequency Model of Sensor Data

For constant sound speed and density c(x) = c0 , ρ(x) = ρ0 ,
the wave equation (1) becomes homogeneous and it admits an
analytic solution in Fourier domain [31]

p(k, t) = cos(c0 |k|t)p0(k), (8)
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where k is the frequency domain wave vector. Equation (8)
formally allows us to calculate the PAT data time series

p(xS , t) = F−1(p(k, t))
∣∣
x=xS

= F−1 (cos(c0 |k|t)p0(k))
∣∣
x=xS

= 2
∫ ∞

0
F−1

‖ (cos(c0 |k|t)p0(k)) dk⊥, (9)

where we used the tensor decomposition F = F‖F⊥ of the 3D
Fourier transform in, and orthogonal to, the sensor plane, and
the fact that for xS we have z = 0 and hence eik⊥z = 1.

Since p0(x) is a real valued function, p0(k) and consequently
p(k, t) are symplectic in k i.e. p0(k) = p0(−k)∗. Furthermore,
p(k, t) as given by (8) is even in t. As our domain Ω is positioned
in z ≥ 0 to restore uniqueness we assume p0(x) to be even
w.r.t. z = 0 plane. Consequently, the Fourier transform in the z
as well as the t direction is equal to the cosine transform and
can be calculated integrating from 0 to ∞; thus in what follows
the two are used interchangeably.

In experiments however, p(xS , t) is available to us only in-
directly, through measurements. To account for limitations of
physical equipment, we introduce a degradation operator, D.
Note, that here D is not a measurement operator, but it mod-
els the effect of the finite size and temporal response of the
measurement system which reads the acoustic time series. In
other words, g(xS , t) = Dp(xS , t) describes the filtering of the
acoustic pressure p(xS , t) by the physical presence of the sen-
sor before the sensing vector, φi is applied to it to collect the
compressive measurement, bi .

In this work we assume that D is a band limiting spatial
and temporal filtering operator acting on the time dependent
pressure on optical sensor, which for simplicity we describe in
the frequency domain

D[p](kS , ω) = wt(ω)w‖(kS)p(kS , ω), (10)

where w‖(kS) and wt(ω) are some frequency window functions
on the sensor and in time.

Taking Fourier transform of (9) in both variables we obtain

p(kS , ω) = Ft
(
F‖ (p(xS , t))

)

= Ft

(
2
∫ ∞

0
F‖

(
F−1

‖ (cos(c0 |k|t)p0(k))
)

dk⊥

)

= Ft

(
2
∫ ∞

0

ω/c2
0 cos(ωt)√

(ω/c0)2 − |kS|2

p0(kS ,
√

(ω/c0)2 − |kS|2)dω
)

=
ω/c2

0√
(ω/c0)2 − |kS|2

p0(kS ,
√

(ω/c0)2 − |k2
S|),

(11)

where changing the integration variable to ω, ω/c > |kS|, in the
third line allowed us to interpret the integral as inverse cosine
transform in ω. Equation (11) connects the Fourier transform of
the pressure time series on the detector with the Fourier trans-
form of initial pressure and is the basis of the reconstruction

formula derived in [32], [33]. From (11) it is obvious that appli-
cation of D[p](kS , ω) corresponds to the application of a filter
window wt(c0 |k|)w‖(kS) to p0(k)

D[p](kS , ω) = wt (ω )w ‖(kS )ω/c2
0√

(ω/c0 )2 −|kS |2
p0(kS ,

√
(ω/c0)2 − |kS|2)

= wt(c0 |k|)w‖(kS) |k|
|k⊥|c0

p0(k) =: DΩ[p0 ](k)

for scalar k⊥ > 0. Thus only a smoothed initial pressure can
be recovered from the data. Conversely, when simulating PAT
data, the initial pressure can be smoothed with wt(c0 |k|)w‖(kS)
before forward propagation instead of smoothing the sensor data
with D, which can be useful to eliminate Gibbs phenomena in
k-space methods; see also [34], [35] where a Blackman window
was applied to p0 .

B. Curvelets

In this work we suggest using Curvelets to represent each of
the measured time series data g(xS , t). For the planar sensor
S this corresponds to a planar cross-section of the wave field
p(x, t) at a given time t (which we observe over a finite section
of the plane, S). Due to PAT forward problem being an initial
value problem, the corresponding wave field p(x, t) is essen-
tially smooth away from the p0-shaped (with corners smoothed)
wave front and the same holds for their planar cross-sections.
As the time evolves p(x, t) develops overlapping wave fronts.
Those however can be treated as superposition and hence we
only need to be able to represent an individual wave front.

In what follows we assume g(xS , t) to be sampled on an n1 ×
n2 grid on the sensor with some steps h1 ≤ xd/n1 , h2 ≤ yd/n2 ,
resulting in an image gt [i1 , i2 ], i1 = 1, . . . , n1 i2 = 1, . . . , n2 ,
where (·) denotes function evaluation and [·] array indexing.

Curvelets [6], [36] are a multiscale pyramid with many di-
rections and positions at each scale. Curvelets obey parabolic
scaling, meaning that at scale 2−j Curvelet has an envelope
which aligns along a ridge of length 2−j/2 and width 2−j , re-
sulting in a location, direction and scale dependent frequency
plain tiling. Curvelets have been shown to be nearly optimal
representation of functions smooth away from (piecewise) C2

singularities [37], [38] and hence the error of the k-term Curvelet
approximation (corresponding to taking the k largest magnitude
coefficients) in continuous setting asympotically with k → ∞
behaves as [6]

‖g − gk‖2
2 ≤ C · (log k)3 · k−2 . (12)

Computation of Curvelets at the finest scale, 2−J , is not
straight forward because in order to capture the direction of
the wave it is necessary that the Curvelet is sampled more finely
than the maximal frequency in the image. As a result the fre-
quency domain support of a Curvelet at the finest scale J with
the direction θ	 , ŨJ,	 , does not fit into the fundamental cell
[−n1/2, n1/2 − 1] × [−n2/2, n2/2 − 1]. One solution given in
[36] is to wrap the Fourier transform back onto the fundamental
cell which effectively periodizes it

ŨJ,	 [
(
i1 + n1

2

)
mod n1 − n1

2 ,
(
i2 + n2

2

)
mod n2 − n2

2 ]

= ŨJ,	(2πi1 , 2πi2),
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where the indices i1,2 are chosen in the support of ŨJ,	(·, ·). The
periodization in Fourier domain corresponds to undersampling
in space, which in turn causes aliasing. In [36] this effect was
shown to account for less than 10% of the squared norm of the
coefficients.

After periodization, the Fourier transform of the signal is
multiplied by a sampled representation of a C∞ partition of unity
window i.e. a window which weights the original frequency and
its periodic extension such that the sum of their squares is equal
to 1. This acts to preserve the norm of the signal throughout
periodization thereby guaranteeing that the computed transform
is a numerical isometry. The C∞ window used in [36] is a tensor
product of the following one dimensional C∞ windows

w[i] =

⎧⎪⎨
⎪⎩

a(xi)h∞(1 − xi), i = 1, . . . ,m1 ,

1, i = m1 + 1, . . . , 3m1 + 1,

a(xi)h∞(xi−3m−1), i = 3m1 + 2, . . . , 4m1 + 1,
(13)

where xi = (i − 1)/(m1 − 1), i = 1, . . . m1 , m1 = n1/3�,
h∞ is a C∞ monotonically decreasing function and

a(x) = (h∞(1 − x)2 + h∞(x)2)−1/2 (14)

is a normalizing factor. Expression (13) assumes n1 mod 3 = 0,
and hence m1 = n1/3 resulting in a window of length 4m1 +
1, while corresponding windows can be derived in the cases
n1 mod 3 = 1, 2.

C. Low-Frequency Curvelets

The sampled time series data, gt , is band limited with the
high frequencies roll off (see Section IV-A for the discussion of
the smoothing effect of the physical measurement process) in
contrast to standard images which are “sharp” i.e. high frequen-
cies are not damped. As the Curvelet transform acts on localized
regions in frequency space, this raises the question if we should
represent those rolling off frequencies in the same way as the
undamped frequencies, as the standard Curvelets would do at a
cost which scales with size n = n1n2 as n log n.

As a compromise, we propose here to use a low-frequency
Curvelet representation for the high resolution image gt , i.e. to
compute Curvelets corresponding to a subset of the frequen-
cies [−nLF

1 /2, nLF
1 /2 − 1] × [−nLF

2 /2, nLF
2 /2 − 1], nLF

l <
nl, l = 1, 2, excluding the Cartesian annulus of the highest
frequencies

(
[−n1/2,−nLF

1 /2 − 1] ∪ [nLF
1 /2, n1/2 − 1]

)
×(

[−n2/2,−nLF
2 /2 − 1] ∪ [nLF

2 /2, n2/2 − 1]
)
. These highest

frequencies in the excluded annulus are however present in
the high resolution image gt , therefore they can be used to
fill up the frequency range needed for computation of the low-
frequency Curvelets at the finest scale, instead of having to
periodize. In this way, we avoid undersampling of the low-
frequency Curvelets at the finest scale (note, that by construc-
tion the finnest scale of low-frequency Curvelets contains lower
frequencies than the finest scale or standard Curvelets). We are
going to concentrate on the implementation via wrapping be-
cause in this case the original Curvelet transform for the full set
of frequencies results in a numerical isometry.

In what follows, we are going to denote the standard Curvelet
transform for an n1 × n2 image with J scales as Cn1 ,n2

J and the
low-frequency Curvelet transform corresponding to frequencies
up to nLF

1 /2 × nLF
2 /2 (we will use such simplified notation

to denote both the negative and positive frequencies), nLF
l <

nl, l = 1, 2 for the same image with Cn1 ,n2

J,nL F
1 ,nL F

2
.

Let ŨLF
J,	 = [−NLF

1 /2, NLF
1 /2 − 1] × [−NLF

2 /2, NLF
2 /

2 − 1] with NLF
l = 22mLF

l � + 1, mLF
l = nLF

l /3, l = 1, 2
denote the frequency domain support of the finest scale
low-frequency Curvelet. In general we have two cases:

1) NLF
l /2 ≤ nl/2, l = 1, 2: the frequency support of the

finest scale low-frequency Curvelet ŨLF
J,	 is con-

tained in the fundamental cell [−n1/2, n1/2 − 1] ×
[−n2/2, n2/2 − 1];

2) NLF
l /2 > nl/2, l = 1, 2: the finest scale low-frequency

Curvelet support ŨLF
J,	 extends to frequencies outside of

the fundamental cell.
In the first case, to compute the standard Curvelets corre-

sponding to image with maximal frequency nLF
1 /2 × nLF

2 /2,

CnL F
1 ,nL F

2
J , one would compute the Fourier transform of gt , re-

strict it to frequencies up to nLF
1 /2 × nLF

2 /2 and subsequently
periodize it while weighting with the C∞ window (13). In-
stead, to compute the low-frequency Curvelets, Cn1 ,n2

J,nL F
1 ,nL F

2
, we

apply to the full Fourier transform of gt (with frequencies up
to n1/2 × n2/2) a rectangular low-pass window with a cut-
off frequency NLF

l /2, l = 1, 2 being the highest frequency in
the support ŨLF

J,	 . Then we proceed as for standard Curvelets

CnL F
1 ,nL F

2
J to compute the finest scale coefficients.
In the second case, to compute the low-frequency

Curvelets, Cn1 ,n2

J,nL F
1 ,nL F

2
, we still need to use periodization

to fill up the support ŨLF
J,	 . However, we only periodi-

cally extend the Fourier transform of gt beyond the range
of available frequencies, here n1/2 × n2/2, rather then
nLF

1 /2 × nLF
2 /2 as would be done using standard Curvelets,

CnL F
1 ,nL F

2
J . This results in a C∞ window with shorter (and

steeper) flanks as we only need to fill in the frequen-
cies in the range [−NLF

1 /2,−n1/2 − 1] ∪ [n1/2, NLF
1 /2 −

1] × [−NLF
2 /2,−n2/2 − 1] ∪ [n2/2, NLF

2 /2 − 1]. The corre-
sponding window is a tensor product of the following one di-
mensional C∞ windows

wLF [i] =

⎧⎪⎨
⎪⎩

a(xi)h∞(1 − xi), i = 1, . . . , NLF
1 − n1 ,

1, i = NLF
1 − n1 + 1, . . . , n1 ,

a(xi)h∞(xi−n1 ), i = n1 + 1, . . . , NLF ,
(15)

where xi = (i − 1)/(NLF
1 − n1 − 1), i = 1, . . . , NLF

1 − n1 ,
and a and h∞ are as before.

Subsequently, all the lower scales of low-frequency Curvelets

can be computed exactly as for the standard CurveletsCnL F
1 ,nL F

2
J .

The construction of low-frequency Curvelets above results in
a numerical isometry on the restriction to frequency range
up to min{NLF

1 /2, n1/2} × min{NLF
2 /2, n2/2}. Thus low-

frequency Curvelet transform is a different transformation to
the original Curvelet transform which however for a choice



BETCKE et al.: ACOUSTIC WAVE FIELD RECONSTRUCTION FROM COMPRESSED MEASUREMENTS 715

Fig. 1. Zoomed in image of (a) standard Curvelet C256 ,256
3 , (b) low-frequency

Curvelet C256 ,256
3 ,192 ,192 , at the finest level 3. (c), (d) Surface plot of log amplitude

of (a), (b).

of nLF
l /2 such that NLF

l /2 ≥ nl/2, l = 1, 2, is also an isom-
etry on [−n1/2, n1/2 − 1] × [−n2/2, n2/2 − 1] as the stan-
dard Curvelets Cn1 ,n2

J . Fig. 1(a) and (b) shows the finest scale
Curvelet and low-frequency Curvelet, respectively. The plots of
the logarithm of the amplitude in Fig. 1(c) and (d) illustrate that
the decay of the low-frequency Curvelets along the wavefront
direction is slower than that of the standard Curvelets, which
is due to the frequencies higher then nLF

l /2, l = 1, 2 used in
computation of Curvelets at the finest scale.

Recapitulating, there are two major benefits of such low-
frequency Curvelet transform. First, is the super linear reduction
in computation cost of the transform, which is particularly bene-
ficial for solution of the CS recovery problem (5) which involves
repeated application of ΦΨT and its adjoint ΨΦT . Second, is the
ability to effectively represent realistic PAT data, in which due
to measurement process the high frequencies are damped as in
the model derived in Section IV-A. This results in amplitudes of
low-frequency Curvelet coefficients being higher and exhibiting
a quicker decay than those of the standard Curvelet coefficients
(see Fig. 2 and the accompanying discussion in Section VI-A),
and consequently in higher robustness to noise and imperfect
compressibility.

V. COMPRESSED SENSING OF OPTICAL

ULTRASOUND DETECTOR

A. Single-Pixel Optical Camera

In a series of publications [7], [39], [40] we introduced a
single-pixel optical camera (SPOC) for ultrasonic and photoa-
coustic imaging. With the SPOC, instead of recording the pres-
sure on the detector point-by-point, the entire active area of
the optical ultrasound sensor is illuminated, and using a digital
micro-mirror device (DMD) a pattern φj is applied to the wide
field light reflected from the sensor resulting in a compressed

Fig. 2. Clock phantom. The decay of log amplitude of Curvelet coefficients of
g(xS , ti ) at time steps (a) t100 , (b) t230 ; the colors correspond to coefficients
at different scales. (c), (d) The corresponding compression error in log scale.

Fig. 3. Single CPU time for data reconstruction plotted in each time step.

Fig. 4. Single-pixel optical camera.

measurement

bj = φT
j g(xS , ti), ti ∈ (0, T ). (16)

Fig. 4 shows a sketch of the operational principle of SPOC while
for technical details of the system we refer to [7].

B. Sparse Representation of the Sensor Data

In PAT the entire time series for one point or pattern is ac-
quired with one excitation, φT

j g(x, ti), x ∈ S, ti ∈ (0, T ). This
has the consequence that we acquire the same number of com-
pressed/point measurements of the wave field at each time step
ti . Furthermore, due to the rate at which the DMD can change
patterns, at least at present, we are limited to use of only one
pattern throughout the acoustic propagation.
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However, as the wave propagates, the complexity of the sensor
data varies with time. After a wave front reaches the detector,
its cross-section with the detector plane expands and more wave
fronts, corresponding to features farther away, reach the detector.
As a result, in general the complexity of the wave field at the
sensor over time first increases and at some point it starts to
decrease again corresponding to the tail of the wave field. If
the complexity is reflected by the sparsity, the second term
in the error bound in the robust recovery Theorem RR varies
throughout the time series and with it the actual recovery error.

Furthermore, due the sound intensity, which is ∝ p(x, t)2 ,
obeying the inverse square law, p(x, t) decays as inverse distance
of x to the source. This means that as with increasing t, p(xS , t)
encodes information about p0 further away from the sensor,
the recorded pressure amplitudes decrease linearly for the same
initial pressure amplitude value, resulting in a lower point wise
signal to noise ratio for longer propagation times and ultimately
larger recovery error (‖f‖/ε decreases in Theorem RR).

Thus the error of the PAT data recovery is inhomogeneous
across the time series as a consequence of the measurement
setup.

C. Sensing Patterns

In our experiments we used scrambled Hadamard patterns

Hs
j = PrHjPc, (17)

where Hj is the 2j × 2j Hadamard matrix and Pc, Pr ∈
{0, 1}2j ×2j

denote permutation matrices for columns and
rows, respectively. For compressed sensing we only select first
m � n = 2j rows of Hs

j . The application of Hs
j to a vec-

tor Hs
j v = PrHjPcv amounts to application of the permuta-

tion matrix Pc to v, performing Hadamard transform on the
permuted vector Pcv, and subsequently permuting the rows.
Thus the scrambled Hadamard transform can be computed at
essentially the same cost as the fast Hadamard transform, while
scrambled Hadamard matrices have recovery properties similar
to those of random Bernoulli matrices see e.g. [41].

In practice using the DMD, it was only possible to apply bi-
nary patterns. In order to make use of properties of Hadamard
transform such as othogonality and self inversion, the experi-
mental Hadamard matrix H

(0,1)
j needs to be transformed into

the Hadamard matrix Hj using the simple relation

Hj =
(
2H

(0,1)
j − 11T

)
/
√

2j , (18)

and correspondingly the measured data w = H
(0,1)
j g into

Hjg =
1√
2j

(
2H

(0,1)
j − 11T

)
g =

1√
2j

(2w − 1w(1)) .

(19)
Here, we used that w(1) = 1Tg corresponds to the measure-
ment acquired with ‘all-1s’ pattern, which is the first row of
H(0,1) . It is immediately clear that the same transformation
(18), (19) holds for scrambled Hadamard matrices (17) (with
the index 1 in w(1) replaced by the ‘all-1s’ row number after
row permutation).

Algorithm 1: Split Augmented Lagrangian Shrinkage
Algorithm (SALSA), [42].

1: Choose μ > 0, v0 and d0 and tolerance ε
2: i := 0
3: repeat
4: fi+1 = arg minf ‖ΦΨTf − b‖2

2 + μ‖f − vi − di‖2
2

5: vi+1 = arg minv τ‖v‖1 + μ/2‖fi+1 − v − di‖2
2

6: di+1 = di − (fi+1 − vi+1)
7: i = i + 1
8: until |ζ(fi+1) − ζ(fi)|/ζ(fi) < ε

The light reflected from the DMD is integrated by a photo-
diode. In order to best utilize the dynamic range of the photo
diode, it is necessary to keep the optical power incident on the
photodiode in the same range for each pattern. All but the ‘all-1s’
pattern are composed of an equal number of 0s and 1s. There-
fore, the ‘all-1s’ pattern was replaced with a vector which first
half entries are 0 and the second half 1. As the negative of this
vector (0 becomes 1 and vice versa) is exactly the (2j /2 + 1)th
row of H

(0,1)
j , the data corresponding to the ‘all-1s’ pattern can

be constructed by adding the data from the modified first row
pattern and (2j /2 + 1)th row pattern. Again, this construction
is not affected by scrambling.

D. Recovery of the Sensor Data

The sampled PAT data at each time step, g(xS , t), can be
recovered by solving the optimization problem (5). The sensing
matrix Φ in (5) is set to be the first m rows of the scrambled
Hadamard matrix Hs

log2 (n) , n = n1n2 ,

Φ = SHs
log2 (n) = SPrHlog2 (n)Pc, (20)

where S ∈ {0, 1}m×n is a binary subsamplig matrix such that
STS is an n × n diagonal matrix with ones at positions cor-
responding to the chosen and zeros to the omitted rows, re-
spectively, while SST = Im×m is an m × m identity matrix.
Consequently, we have ΦΦT = Im×m .

The vector of measurements, b, is computed from experi-
mental measurements using (19). The sparsifying transform Ψ
is chosen as an orthonormal low-frequency or standard Curvelet
transform on the n1 × n2 optical sensor S and ft is the (sparse)
vector of sought for coefficients, ft = Ψgt .

To take advantage of the described structure of the problem
we solve (5) using the Split Augmented Lagrangian Shrinkage
Algorithm (SALSA) proposed in [42]. SALSA is an ADMM
scheme which solves the unconstrained problem

min
f

ζ(f) :=
1
2
‖ΦΨTf − b‖2

2 + τ‖f‖1 . (21)

A version used in this work is summarized in Algorithm 1.
The quadratic minimization problem in line 4 leads to the

linear system

fi+1 = (ΨΦTΦΨT + μI)−1(ΨΦTb + μ(vi + di)), (22)
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Fig. 5. Clock phantom.

where using Sherman Morrison Woodbury formula the inverse
can be expressed in terms of application of ΦΨT and its adjoint

(ΨΦTΦΨT + μI)−1 =
1
μ

(
I − 1

μ + 1
ΨΦTΦΨT

)
. (23)

The proximal operator in line 5 amounts to point wise soft
thresholding

Tτ /μ(x) = sign(x)(|x| − τ/μ)+ . (24)

VI. PAT RECONSTRUCTION WITH THE RECOVERED

SENSOR DATA

We present reconstruction results for three photoacoustic im-
age reconstruction problems, reconstruction from: simulated
pattern data, synthesized pattern data from a point-by-point
scanner data, and data acquired with the SPOC (Section V-A).
After the PAT data has been recovered using the proposed
method for acoustic field reconstruction, the PAT images are
reconstructed using time reversal via first order method in k-
Wave Toolbox. All the computations were carried out on a desk-
top workstation with 12 Intel Xeon X5690 cores @3.47 GHz
with 12MB cache using Matlab 2013a.

A. Simulated Data: Clock Phantom

In our first example we simulate the PAT data for initial
pressure distribution p0 depicted in Fig. 5. The “clock phantom”
is a collection of balls which give rise to spherical wave forms
expanding uniformly in all directions. This is naturally a difficult
case for a directional basis like Curvelets which represents each
direction independently resulting in potentially not the most
economical representation.

We consider a volume of 256 × 256 × 92 voxels of size
0.05 mm3 and the sensor of matching resolution, 256 × 256,
placed at z = 0. We assume homogeneous ambient speed of
sound and density of 1500 m/s and 1000 kg/m3, respectively.
The pressure at the sensor is sampled every 10 ns. Both, the
forward and inverse PAT problems are solved with first order
method from k-Wave Toolbox. Before the PAT time series is
simulated, p0 is smoothed with the 3D Blackman window.

Fig. 6. MSE of the compressed PAT data ĝ(xS , t) versus the reconstructed
PAT data g̃(xS , t) over time, for (a) standard Curvelet transform, C256 ,256

3 ;

(b) low-frequency Curvelet transform, C256 ,256
3 ,192 ,192 .

We attempt to recover the PAT data from 18% of noise-
less compressed measurements obtained with binary scram-
bled Hadamard patterns. We solve the recovery problem
in each time step using SALSA with the data dependent
regularization parameter τ = 0.01max(|ΨΦTbt |) and μ =
5max(|ΨΦTbt |)/‖bt‖2 . We stop the algorithm if the rela-
tive change in the objective function ζ(f) (21) drops below
ε = 5 · 10−4 or after 100 iterations.

We start by examining the utility of the Curvelet transform
as a sparsifying transform for PAT data recovery problem. In
particular we compare the standard Curvelet transform C256,256

3
with the low-frequency Curvelet transform C256,256

3,192,192 , the low-
est resolution transform which is still an isometry on the full
frequency range (up to 256/2 × 256/2).

First, we consider the approximation properties of the stan-
dard Curvelet and low-frequency Curvelet transforms. Fig. 2(a)
and (b) shows the decay of the amplitudes of Curvelet co-
efficients for standard Curvelets C256,256

3 and low-frequency
Curvelets C256,256

3,192,192 of the photoacoustic field at time steps ti =
100, 230 corresponding to the fields depicted in Figs. 7(a) and
9(a). For the largest amplitude coefficients the low-frequency
Curvelets consistently exhibit a quicker decay and correspond-
ingly lower approximation error shown in Fig. 2(c) and (d).
While in the early time steps ti = 100 the decay rate differ-
ence is most pronounced for later time steps the difference gets
smaller but is distributed over more coefficients. In all cases
eventually the approximation error of standard Curvelet trans-
form falls below that of the low-frequency Curvelet transform
but this is only after all the significant coefficients have been
captured.

Next, we compare the compression with 3% of coefficients
to recovery from 18% of measurements which corresponds to
6 times the assumed sparsity, an empirically chosen factor for bi-
nary scrambled Hadamard patterns of size 2562 . Fig. 6 shows the
mean square error (MSE) of the compressed versus recovered
PAT data for both transforms. While the MSEs of the recon-
structed data are almost identical, for the data compressed with
the low-frequency Curvelets, after some initial time steps the
MSE becomes lower than for the standard Curvelets, and most
importantly it matches closer the MSE of the reconstructed
data. This demonstrates that the low-frequency Curvelets are
an adequate (while cheaper) representation of the PAT data.
The series of Figs. 7–10 shows the PAT data g(xS , t), its com-
pression ĝ(xS , t) and reconstruction g̃(xS , t) at different time
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Fig. 7. Clock phantom. PAT data at time step t100 , (a) simulated full data
g(xS , t), (b) compressed ĝ(xS , t) and (c) reconstructed g̃(xS , t) data with
standard Curvelet transform, C256 ,256

3 . The colorbar applies to the entire
row. The corresponding Curvelet coefficients (d-f) and (g) compression error
ĝ(xS , t) − g(xS , t), (h) recovery error g̃(xS , t) − g(xS , t).

Fig. 8. Clock phantom. PAT data at time step t100 , (a) simulated full data
g(xS , t), (b) compressed ĝ(xS , t) and (c) reconstructed g̃(xS , t) data with
low-frequency Curvelet transform, C256 ,256

3 ,192 ,192 . The colorbar applies to the entire
row. The corresponding Curvelet coefficients (d-f) and (g) compression error
ĝ(xS , t) − g(xS , t), (h) recovery error g̃(xS , t) − g(xS , t).

Fig. 9. Clock phantom. PAT data at time step t230 , (a) simulated full data
g(xS , t), (b) compressed ĝ(xS , t) and (c) reconstructed g̃(xS , t) data with
standard Curvelet transform, C256 ,256

3 . The colorbar applies to the entire row.
(d) Compression error ĝ(xS , t) − g(xS , t), (e) recovery error g̃(xS , t) −
g(xS , t).

Fig. 10. Clock phantom. PAT data at time step t230 , (a) simulated full data
g(xS , t), (b) compressed ĝ(xS , t) and (c) reconstructed g̃(xS , t) data with low-
frequency Curvelet transform, C256 ,256

3 ,192 ,192 . The colorbar applies to the entire
row. (d) Compression error ĝ(xS , t) − g(xS , t), (e) recovery error g̃(xS , t) −
g(xS , t).

steps. Consistently, we observe that the higher scale coefficients
are eliminated by compression while they partially reappear in
the reconstruction hinting that the factor 6 maybe somewhat
pessimistic. This is also evident in the higher frequency ap-
pearance of the error of the reconstruction in comparison to the
compression.

The PAT image reconstruction from the recovered PAT data
for both transforms is depicted in Fig. 11, which are visually very
similar with MSE of 4.4243 · 10−4 for the standard Curvelets
and 4.6885 · 10−4 for the low-frequency Curvelets, where the
reconstruction from full data has been used as the ground truth
in MSE calculations.

The reconstruction of the entire time series data with stan-
dard Curvelets takes 710.6 min on a single CPU as opposed
to 571 min when low frequency Curvelets are used. Fig. 3
shows the respective single CPU reconstruction times over all
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Fig. 11. Clock phantom. Central slice through reconstructed PAT image p̃0
from (a) full data g(xS , t), (b) data reconstructed with standard Curvelet trans-
form C256 ,256

3 , (c) data reconstructed with low-frequency Curvelet transform

C256 ,256
3 ,192 ,192 . The colorbar applies to the entire row. The corresponding error (d),

(e).

time steps. Note that each iteration of SALSA has the same
complexity (but dependent on the choice of Curvelets), which
for the standard Curvelets on average takes 0.8607 s while for
the low frequency Curvelets only 0.582 s of a single CPU time.
The qualitative behaviour is the same in both cases. The first
phase up to the first peak corresponds to a very small pressure
which is an artefact of k-space propagation method – we see
the tail of the band limited interpolant. The phase up to the next
peak corresponds to the pressure on the FP sensor gradually
becoming more “complex” due to multiple arrivals, until the
complexity of the pressure is higher than it can be fully cap-
tured by the k-term approximation resulting from the choice
of the regularization parameter manifesting as a plateau. The
following decrease corresponds to the wavefront leaving the de-
tector, which then peaks again for the tail when the amplitude
values are so small that the data fitting is ineffective. We would
like to point out that the iteration numbers are dependent of the
choice of the stoping criteria (here the relative change of the
objective function). This criterium leads us to take to many iter-
ations when the pressure magnitude is very small. Thus the final
number of iterations could be further reduced using stopping
criteria carefully tailored to the problem. As all the time steps
can be reconstructed independently, the problem admits trivial
parallelization and the single CPU time can be effectively di-
vided by the number of available CPUs, in our case 12 resulting
in approximately 59.2 min and 47.6 min for standard and low
frequency Curvelets, respectively.

B. Synthesized Pattern Data: Knotted Tubes Filled
With Ink

Next, we present reconstruction from compressed measure-
ments synthesized from the point-by-point FP sensor mea-
surements. The purpose of such data is to demonstrate the
reconstruction with realistic noise but good signal to noise ratio,
which at present is a limiting factor for SPOC.

Two polythene tubes were filled with 10% and 100% ink and
tied into a knot, see Fig. 12(a). The tubes were immersed in a 1%

Fig. 12. (a) Knotted ink tubes phantom on the FP sensor. (b) Photo of the
artificial hair phantom.

Fig. 13. Knotted tubes. MSE of the compressed PAT data ĝ(xS , t) versus the
reconstructed PAT data g̃(xS , t) over time for low-frequency Curvelet transform
C128 ,128

3 ,96 ,96 .

intralipid solution. The wavelength of the excitation laser was
1064 nm delivering energy of approximately 20 mJ. A full scan
data consists of 128 × 128 locations corresponding to spatial
resolution of 150 μm × 150 μm, sampled at 625 time points
corresponding to time resolution of 12 ns. The excitation laser
rate was 20 Hz, which resulted in an acquisition time of 14 min
for the fully sampled point data set. There was no averaging of
the data.

For the chosen subsampling ratio of 25%, Fig. 13 shows
good agreement between the MSEs of the compressed and re-
constructed PAT data using low-frequency Curvelets. As a gold
standard we take the reconstruction from a full point-by-point
data set shown in Fig. 14(a). The linear reconstruction from
25% of patterns obtained by setting the missing Hadamard
pattern measurements to 0 is shown in Fig. 14(b) while the
nonlinear reconstruction with SALSA (with parameters τ =
0.01max(|ΨΦTbt |), μ = 5max(|ΨΦTbt |)/‖bt‖2 and stopping
tolerance ε = 5 · 10−4 or after 100 iterations) in Fig. 14(c). The
nonlinear reconstruction effectively restores the contrast lost in
the linear 0-padded reconstruction. The MSE with respect to the
full data reconstruction is 6.7582 · 10−3 for the linear 0-padded
reconstruction and 2.0824 · 10−3 for the nonlinear reconstruc-
tion. The single CPU time for the nonlinear reconstruction of the
entire time series data was 94 min with a total of 28591 SALSA
iterations (average time per iteration 0.1973 s). Our computa-
tion was carried out on 12 cores simultaneously resulting in an
actual real computing time of 470 s.

C. Experimental Pattern Data: Hair Knot

Our last example is a synthetic hair knot phantom of diameter
∼150 μm, immersed in 1% intralipid solution and positioned
approximately 2 mm above the sensor and 3 mm deep below
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Fig. 14. Knotted tubes. Maximum intensity projection of reconstructed PAT
image p̃0 from (a) full data g(xS , t), (b) linearly reconstructed data g̃l in (xS , t)
(here plotted scaled by a factor 3.77), (c) nonlinearly reconstructed data g̃(xS , t)
with low-frequency Curvelet transform C256 ,256

3 ,192 ,192 (the colorbar applies to the
entire row), and (d), (e) the corresponding error.

Fig. 15. Hair knot. Maximum intensity projection of reconstructed PAT image
p̃0 from (a) full data g(xS , t), (b) linearly reconstructed data g̃l in (xS , t) (here
plotted scaled by a factor 4.12), (c) nonlinearly reconstructed data g̃(xS , t)
with low-frequency Curvelet transform C128 ,128

3 ,96 ,96 . The colorbar applies to the
entire row.

the intralipid surface. The photo of the phantom is shown in
Fig. 12(b). The area of DMD corresponding to 640 × 640 mi-
cromirrors grouped in 5 × 5 was used to form 128 × 128 pixels.
Due to the angle of the optical path, each such pixel corresponds
to an area of 62.12 μm × 68 μm on the FP sensor. The time se-
ries was sampled every 20 ns, resulting in 81 time steps. In the
actual experiment, we collected the entire set of 1282 patterns.
The repetition rate of the excitation laser was 20 Hz. The mea-
surement was averaged over four excitations resulting in a total
acquisition time of 54 min for the complete 4-times averaged
pattern set. If only 18% of the data was collected this would
correspond to acquisition time of 9 min and 43 s. Please note
that this is not indicative of the actual frame rates achievable by
the system, as a slow excitation laser was used in this proof of
concept experiment. The speed of sound used for time reversal
was 1490 m/s.

Fig. 15(a) shows the PAT image reconstruction obtained
from the full set of scrambled binary Hadamard 1282 pat-
terns (the full point data was computed inverting scrambled
Hadamard transform). The ∼4.12 amplified linear reconstruc-
tion from 0-padded 18% measurements is shown in Fig. 15(b)
and the nonlinear reconstruction obtained with SALSA (τ =

0.05max(ΨΦTbt), μ = 0.75max(ΨΦTbt)/‖bt‖2 and the stop-
ping tolerance ε = 5 · 10−3 or maximum 100 iterations) is illus-
trated in Fig. 15(c).

The single CPU time for the entire time series data reconstruc-
tion was 372.5 s with total 1566 SALSA iterations (average time
per iteration 0.2379 s). The computation was carried out on 12
cores in parallel, resulting in actual real computing time of 31 s.

VII. CONCLUSIONS AND DISCUSSION

We presented a method for acoustic field reconstruction from
a limited number of patterned measurements from an optical ul-
trasound detector. When compressively sensing photoacoustic
signals, our method recovered the pressure field on the sensor
(the PAT data) at each time step independently using the spar-
sity of the data in a low-frequency Curvelet frame, which is a
modification of the standard Curvelets tailored to account for
the smoothing of the wave front during optical acquisition. The
major advantage of such a scheme is that the series of problems
to solve are standard (2D) CS recovery problems and as they are
independent they can be solved in parallel. Furthermore, decou-
pling the CS and acoustic reconstruction affords more flexibility
in PAT modeling, for instance including absorption or nonlin-
ear effects, and allows for the use of highly optimized readily
available software for photoacoustic image reconstruction.

One of the major challenges for compressed sensing of pho-
toacoustic signals is that the same number of interrogation pat-
terns is applied in each time step. As the sparsity of the wave
field on the detector varies, in the proposed scheme this in-
evitably results in different quality reconstruction in different
time steps. In particular, we first lose the “sharpness” of the
wave front, because this is reflected in the coefficients at the
highest scale which magnitude is generally smaller. This ef-
fect is partially counterweight by the proposed low-frequency
Curvelet representation which is tailored to frequency range of
photoacoustic data and hence boosts those coefficients. Further-
more, in our experiments we observed that the data recovery
errors were partially alleviated during the acoustic inversion.
As the initial pressure p0 is mapped to the entire time series, the
entire time series carries the information about the wave front
and the acoustic inversion acts to average out data errors. In [12],
[13] this problem was tackled utilizing the sparsity directly in
the photoacoustic image p0 , rather than in the data. There we
solve one large (3D) CS recovery problem where the CS sensing
operator is a composition of the acoustic propagation and pat-
tern measurements. Such forward operator is significantly more
expensive to apply and its incoherence properties have to be
analyzed. Finally, nonlinear effects such as acoustic absorption
are out of scope of the standard linear CS framework.

In future work, we intend to extend the here proposed acous-
tic field reconstruction method to efficiently handle dynamic
problems.
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