
Hierarchical Service Placement for Demanding

Applications

Elisa Maini, Truong Khoa Phan, David Griffin, Miguel Rio

University College London, UK

Email: {e.maini, t.phan, d.griffin, miguel.rio}@ucl.ac.uk

Abstract—The increasing scale of cloud environments requires
more scalable orchestration systems for determining which phys-
ical resources are responsible for processing service requests.
A centralised service placement lacks scalability while a fully
decentralised approach only has a limited view of the system. For
these reasons, this paper investigates a hierarchical approach for
service placement in a distributed environment, which increases
scalability while maintains high service placement quality. First,
we design a polynomial optimisation algorithm to place services
in cloud data centers based on our novel utility function. Then,
we describe a hierarchical model with the need to only know
a small subset of the data required by the global optimisation
formulation. Simulations show that our approach is scalable and
performs well, close to the centralised model.

I. INTRODUCTION AND MOTIVATION

The rapid growth of broadband communications has led

to many new applications such as on-line interactive maps,

social networks, video streaming, cloud computing and CDN

(Content Distribution Network) services. Those services are

provided by application providers which instantiate their repli-

cas in clouds consisting of hundreds of servers distributed over

the Internet. Application providers can instantiate directly their

service replicas or delegate service management functions to

a service orchestrator (SO), whose key role is to undertake

service placement taking into account both computational and

networking factors. To optimise service deployment, the SO

balances application requirements (for instance the service

latency) and costs as well as ensures service availability (in

terms of quality-of-service) for all users.

However, the increasing scale of cloud infrastructures com-

plicates the service orchestration task, leading to scalability

issues of the orchestration system itself. A single centralised

orchestration approach has the advantage of ultimate level of

visibility and control, as the placement algorithm has full visi-

bility of individual users and servers. However, this solution is

prone to scalability issues with millions of users using services

across hundreds or thousands of servers. A centralised service

orchestration is impractical in real deployments, as a single

global orchestrator would be required to collect information

from all servers and networks and also to model predicted

demand from all users.

On the other hand, with a completely decentralised ap-

proach, scalability can be handled more easily. However, this

model implies that service providers need to register, deploy

and manage their services with multiple providers in multiple

locations, making the configuration and management of widely

deployed services more complex.

Hierarchical approaches try to combine the advantage of

both centralised and decentralised solutions. Specifically, hier-

archical approaches scale better compared with the centralised

solutions, maintaining a good overview of the global system.

In addition, at lower levels, the algorithms use only local

information, increasing the scalability. For these reasons, in

this paper we present a hierarchical solution for service

placement.

In brief, the contributions of our work are as follows:

• Using the utility function introduced in our previous work

[15], we design a polynomial centralised optimisation

algorithm that allows service providers to deploy their

services to the best locations. We consider both max-min

fairness policy and maximizing QoS in our model.

• To address scalability issues, we propose a hierarchical

model that allows service providers to run a local version

of the placement algorithm without the need for global

knowledge of all service replicas and network conditions.

This paper is organised as follows: in Section II we present

related work. Section III introduces the terms and concepts

that we will use in the following sections. Section IV presents

the optimisation formulation and is followed by hierarchical

model in Section V. We present simulation results in Section

VI and draw conclusions of the work in Section VII.

II. RELATED WORK

Content replication has been a topic of extensive research.

There exists a large number of works related to service

placement problem and most of the solutions can be divided

into centralised ([17], [10], [9], [3], [4]) and fully distributed

approaches ([1], [18], [11], [12]). In [17] a solution based on

a centralised controller has been proposed to dynamically al-

locate instances according to changes in application demands.

Then, the algorithm has been expanded in [3]. However,

these solutions only work well for small environments, but

do not scale well for large data centers. [10] considers an

optimization problem which models the dynamic placement

of applications. It allows different types of resources to be

managed and aims at maximizing satisfied application demand

while minimizing placement changes compared to the previous

placement. Such algorithm has been modified in [9] in order

to produce application placement that allows application load

to be better balanced across server machines. In this work,

we use the novelty of utility function [15] for the placement

model. In addition, we consider both max-min fairness and

maximizing utility as the multi-objective in the optimization

formulation.

In [18] a gossip-protocol is used to provide a fully cen-

tralised approach. The basic idea is that a node is an individual

entity which manages itself. In addition, it exchanges informa-

tion with others and shifts load between them. [1] introduces

an approach that involves selective update propagation to

achieve a processing load on a node that is independent of

the system size. The basic idea is that a node propagates

further only those updates that cause a modification to its

forwarding table. Other decentralised approaches are proposed

in [11], [12]; however, all those solutions there is no higher-

level overview of the network and are not able to achieve good

placement quality, while still maintaining good scalability. In

addition, hierarchical techniques are used in [8], [13]. In this

work, we use a hierarchical approach with our novel utility

framework to improve scalability for the placement system.

III. DEFINITION OF TERMS

In this section we give brief definitions for the terms that

we will introduce in the next sections.

• An application (service) provider (ASP) represents an

organisation that wish to deploy an application (service)

in data-centers/clouds over the Internet. When deploying

services, they need to consider the trade-off between

deployment cost and QoS for their users.

• Services will be deployed in datacenters/clouds. We use

the term execution zone (EZ) as a logical representation

of physical computational resources in which the services

can be deployed. An ASP can rent a portion of resources

which are then under its control for deploying services.

• A session slot is a unit of measurement representing how

many user sessions can be accommodated simultaneously

by a given service instance. If the number of users is more

than an EZ’s capacity, we will deny (block) some users

to guarantee good QoS for the others.

In this work, instead of using raw latency, we use our

utility framework to evaluate QoS [15]. In general, for some

services, if latency is below a specific value, the improvement

is not perceived by the users of that service. For example,

for interactive voice services, humans can not perceive any

improvement in quality if the latency is reduced below 20
ms [16]. We visualize this in Figure 1 in which the utility

function is defined by three parameters of latency: Tmin,

Tfair and Tmax to rate QoS in term of excellent, good, fair,

poor and no service (or blocked). Note that the utility is not

restricted to only latency. In future work, we will extend

the utility to be a combination of any QoS metrics such

as latency, bandwidth, loss, etc. More details on the utility

characterization are discussed in [15].

IV. SERVICE PLACEMENT OPTIMISATION

In this section, we present a mathematical formulation for

the service placement. Given the key notations in Table I, we

Figure 1. Utility function vs. latency

Table I
KEY NOTATION (IN ALPHABETIC ORDER)

cz unit deployment cost at EZ z

di requested session slot of user i ∀i ∈ I
I set of user groups I = {i}
liz latency between user i and EZ z

Sz capacity at EZ z

ti average perceived latency of user i

Z set of execution zones (EZ) Z = {z}
Ub utility value of a blocked user

ui utility of users i

xiz fraction of user i connects to EZ z

yi variable used to compute the utility

use linear programming to formulate the service placement

problem. In particular, we guarantee max-min fairness between

users and also maximise the total utility of all users. In addi-

tion, we consider a trade-off between the service deployment

cost and the performance (utility) of users. The problem is

described as follows:

• Input: estimated user requests (D); two threshold values

(T i
min and T i

max) to define the utility function for each

user group i; latency between user group i and EZ z is liz;

unit service deployment cost at EZ z (cz); the maximum

budget (COST) and capacity at each EZ (Sz).

• Objective: maximize the performance (total utility) of

users while achieving max-min fairness between users.

The objective also considers the trade-off between the

performance and the service deployment cost.

• Output: xiz ∈ [0, 1]: fraction of user group i connects

to EZ z to get the service. It is noted that, instead of

individual user, we consider i as a group of users. For

example, a user i represents for all individual users of a

city. For that reason, we can use xiz as a real variable to

indicate the percentage of users in the city i to connect

to which EZ.

In this work, we consider a multi-objective optimization model

which achieves max-min fairness for all users as well as

maximizing the total utility. To do this, the algorithm works

in two steps as follows:

• Step A: maximizing the minimum user utility to achieve

max-min fairness between all users.

• Step B: given the max-min fairness in step A as a

constraint, the objective in this step is to maximize the

total utility over all users.

A. Linear Program - Max-min Fairness

Ufairness−min = max (U) (1)

s.t.
∑

z∈Z

xiz = 1 ∀i ∈ I (2)

∑

i∈I

dixiz ≤ Sz z ∈ Z (3)

ti =
∑

z∈Z

lizxiz ≤ T i
max ∀i ∈ I (4)

yi ≥ 0 ∀i ∈ I (5)

yi ≥ ti − T i
min ∀i ∈ I (6)

ui =
T i
max − T i

min − yi

T i
max − T i

min

∀i ∈ I (7)

U ≤ ui ∀i ∈ I (8)
∑

z∈Z

∑

i∈I

czdixiz ≤ COST (9)

xiz ∈ [0, 1], ui ≤ 1 i ∈ I, z ∈ Z (10)

Explanation:

• The objective function (1) is to maximize the minimum

utility U to achieve max-min fairness policy.

• Constraint (2): all the requests of user group i have to be

served.

• Constraint (3) limits physical capacity at an EZ when

deploying service instances.

• Equation (4) is used to compute the average latency ti for

the user group i to get the service. This latency should

be less than the maximum value T i
max.

• Constraint (5) - (6) ensure that yi ≥ 0 if ti ≤ T i
min,

otherwise yi ≥ ti − T i
min.

• Equation (7) is used to model the utility function. If

ti < T i
min, yi is forced to be 0 as in the objective

function we try to maximize the utility U . If ti ≥ T i
min,

the formulation will choose ui =
T i

max
−ti

T i
max

−T i

min

< 1. More

detail of the utility formulation can be found in [15].

• Constraint (9) set a limit of the total budget.

B. Linear Program - Maximizing Utility

max[
∑

(i)∈D

ui] (11)

s.t.

(2) - (10)

U ≥ Umax−min (12)

Explanation: In this step, we add the constraint (12),

where U is the minimum utility of users (constraint (8)) and

Umax−min is the objective value from step A, to ensure that

the solution still achieve the max-min fairness policy. We

keep the same constraints (2) - (10) and change the objective

function as (11) which will find a solution that maximizes

the total utility.

The optimization formulations in both step A and B are

pure linear programming models (there is no integer or binary

variables), therefore it can be solved in polynomial time. The

number of variables xiz in the LP problem is |I|× |Z| where

|I| is the number of user groups and |Z| is the number of EZs.

Since |Z| is much smaller than |I|, the worst case complexity

of the LP problem will be O(|I|3.5) [19].

V. HIERARCHICAL SERVICE PLACEMENT

In the centralised model, the service orchestrator has a

detailed view of all EZs and all forecasted user demands

for a particular service and it optimises the placement of

service instances in the EZs to maximise total utility within

cost constraints set by the application provider. It may be

impractical, for scalability reasons, for a globally centralised

placement algorithm to maintain detailed knowledge of all

users and all EZs and so here we investigate a hierarchical

solution where the overall orchestration domain is split into

geographical sub-domains.

In this model the high-level orchestrator has limited vis-

ibility of EZs and user demands within a sub-domain - it

sees only the aggregate of user demands and the aggregate

of EZ capacities within a particular sub-domain. The high-

level orchestrator places service instances at the coarse granu-

larity of sub-domain only and subsequently each sub-domain

orchestrator undertakes a further placement algorithm with the

scope of that sub-domain only to determine in which specific

EZs what quantity of service instances should be placed to

supply the required number of session slots to meet the specific

detailed demand pattern of user requests within that sub-

domain.

There are many ways of sub-dividing an overall orches-

tration domain into sub-domains. One option is to map sub-

domains onto the same geographical area covered by res-

olution domains: the entity responsible for resolving user

requests to EZs with available session slots. Equating sub-

domains for orchestration and service placement purposes with

resolution domains is not essential as other coarser or finer

grained sub-domains could be considered. However, in the rest

of this section we assume that the lower-level orchestration

domains have been mapped onto resolution domains and the

term resolution domain is used to mean the lower-level sub-

domain for orchestration and service placement. Note that is

also possible to consider multiple hierarchical levels of service

orchestration and placement; however, we only model two

levels in the analysis described in this section.

In summary, as each lower-level domain is treated as a

black box with respect to the high-level orchestrator the overall

service placement problem can be divided into smaller units –

one at the high level working at coarse granularity and several

(one per sub-domain) operating at a lower level with more

detailed information but with limited geographical scope. In

this way the optimisation algorithms can be executed with

reduced quantities of information, increasing scalability.

Table II
KEY NOTATION (IN ALPHABETIC ORDER)

Dk set of user requests of Mk

dki requested session slot of user i for Mk

K number of most populated cities in each region

Mk kth resolution domain

mk the centroid of the resolution domain Mk

N number of resolution domains

Szk
available session slots at EZ zk

Sz available session slots for the resolution domain Mk

Zk set of EZs Zk = {zk} of the resolution domain Mk

A. Dataset description

Here we present the dataset used in our model in order

to analyse and evaluate the performance of our framework.

We use a dataset with 2048 data centers distributed in 525

cities all over the world [6]. Since data centers in a city are

geographically close to each others, we group them as one

execution zone. The capacity of one EZ is proportionally to

the number of data centers in that city. Then, we split the

whole world into eleven geographical regions and each EZ

belongs to one specific region according to its geographical

location. The regions are based on the continents, but with

larger continents split into two or three regions to make the

population of each region roughly the same. In the end, the

resulting regions are: Western Europe (EUW), Eastern Europe

(EUE), Central Asia (ASC), Southern Asia (ASS), Pacific Asia

(ASP), Africa (AFR), Northern North America (NAN), South-

ern North America (NAS), Eastern South America (SAE),

Western South America (SAW) and Oceania (OCE). In fact,

using smaller regions can speed-up the optimization algorithm

but we will lose details on the dataset and would end-up with

more local optimal solutions.

B. Problem description and methodology

In our modelling approach, we further sub-divide each

region into N low-level orchestration sub-domains, which

are termed resolution domains (RDs) in the remainder of

this section, but it should be born in mind that although

the low-level orchestration sub-domains have been mapped

to resolution domains here this is not the only granularity

of orchestration sub-domain that can be considered. For our

simulation models we select the K most populated cities in

each region which become the centroids mk of the resolution

domains Mk in that region. Users and EZs are mapped to

their geographically closest centroid, and are said to belong

to that resolution domain. Each resolution domain (low-level

orchestration sub-domain) consists of a number of EZs and

users at specific locations. But, from the perspective of the

high-level orchestrator the capacities of the EZs are aggregated

into a single logical EZ (termed high-level EZ) located at the

centroid of the resolution domain (Eq. 14) and the individual

users are modelled as a single group of users (termed high-

level user), also located at the centroid (Eq. 13).

dki =
∑

i∈Mk

di ∀i ∈ Dk ⊆ D (13)

Sz =
∑

zk∈Zk

Szk ∀zk ∈ Zk ⊆ Z (14)

As an example, we split the Western Europe (EUW) in three

resolution domains (RD1, RD2, and RD3). The individual EZs

and users are grouped into their high-level counterparts, which

are located at the resolution domains centroid.

The high-level orchestration algorithm only sees the set

of high-level EZs and high-level users, located at the cen-

troids of the lower level sub-domains. It runs the centralised

optimization which is solved to find high-level EZs should

deploy what quantity of service instances to meet the predicted

demand of the high-level users. Fig. 2 shows an example of

the placement decision made by the high-level orchestrator.

In each resolution domain some service demand is allocated

to the local high-level EZ (local-to-local requests), i.e. the

high-level orchestrator has matched local demand to local EZs,

some are allocated to a remote EZ (local-to-remote requests)

or come from a remote user (remote-to-local requests). When

there are not enough resources in terms of EZ capacity to

match user requests to EZs within the maximum utility for

the service or if the cost of the solution would exceed the cost

constraints, user requests are blocked.

Figure 2. Solution of the centralised optimisation algorithm

C. Post-processing phase

Using the hierarchical approach, the optimisation problem

has been split into a number of sub-problems, each of which

can be undertaken with a smaller quantity of information,

reducing the time to find a feasible solution. Since the high-

level orchestrator does not know detailed information for each

sub-domain in terms of the individual EZs and individual users

belonging to each domain it is unable to determine the precise

quantity of session slots to be allocated to EZs and which of

these will be allocated to which individual users. Hence the

first task of the low-level optimisation algorithms is to map

the output of the high-level placement into a more detailed

input for the low-level placement optimisation function.

A post-processing phase is locally used in each low-level

orchestrator to attribute the total local-to-local, local-to-remote

and blocked demand to individual low-level users within that

sub-domain and how the total remote-to-local requests are

allocated to individual low-level EZs in that sub-domain. In

particular, local-to-local requests and blocked requests are sim-

ply allocated proportionally to the initial quantity of individual

user demand. For instance, consider RD2 where the total

blocked requests are 161; after allocating these proportionally

144 requests from user4 are blocked and 17 from user5.

Similarly, the total local-to-remote requests are 38 (the sum of

those to RD1 and RD3), these are split between the low-level

users such that 35 are from user4 and 3 from user5. After

having attributed the blocked requests and the local-to-remote

requests to each low-level user, the remaining service requests

are 34 for user4 and 4 for user5, which are the total local-to-

local requests for RD2. Local-to-remote request for the RD2
are remote-to-local requests for other resolution domains; in

particular, 3 remote-to-local requests for RD1 and 35 for RD3.

Such requests must be allocated to the EZs belonging to RD1
and RD3, respectively. We choose to allocate proportionally,

for instance for RD3 we consider a remote user with 35
requests from RD2 and for RD1 a remote user with 3 requests

from RD2. Local-to-local service requests are then allocated

using the placement optimization algorithm running in each

low-level sub-domain (Fig. 3).

Figure 3. Requests and available session slots after post-processing phase

Now that the aggregate local-to-remote and remote-to-local

demands which had previously been determined by the high-

level placement algorithm have been allocated to individual

EZs and users by each low-level optimisation algorithm, this

is used as input to the full placement optimisation algorithm

running in each sub-domain.

VI. SIMULATION RESULTS

We solve the linear program model using the IBM CPLEX

solver [5]. All computations were carried out on a computer

equipped with a 3 GHz CPU and 8 GB RAM. For the data set

presented in section V-A, it takes less than 1 minute to find

an optimal solution of the LP formulations.

The data deployment cost is based on the Amazon EC2

charging model. The user demand is modeled as a Poisson

process and is proportional to the population of each city [7].

The latency between users and execution zones are collected

based on Haversine distance, the shortest distance between two

points around the planet’s surface [2]. For the utility function,

we use the three latency thresholds which work for voice

services [15]: Tmin = 20 ms, Tfair = 100 ms, Tmax = 150
ms. We consider to minimize the number of blocked user

requests by setting small negative value of Ub = −100. We

show in Fig. 4 a comparison between the CDF latency of

the hierarchical and the centralised algorithms with different

mismatch levels between supply and demand (“X% rand.”). In

particular, we first run the centralised model but without the

capacity to find a perfect placement solution assume that we do

not have any resources’ constraints. Next, we create different

levels of mismatch between supply and demand by varying a

parameter “X% rand.”. This is for each EZ, we remove the X%
of its session slots from the perfect placement configuration.

Then, we mix the removed session slots of all EZs and scatter

them uniformly in all EZs. This guarantee that the total session

slots of EZs in all cases (perfect placement and “X% rand.”)

are the same. “0% rand.” is equivalent to the perfect placement

while in “100% rand.” there is a uniform distribution of session

slots between all EZs. The reason we vary “X% rand.” is to

test how the algorithms adapt with different configurations.

X = 0% (Fig. 4 (a)) corresponds to the “easy” case for the

placement algorithms as it aligns with the perfect placement

solution. On the other hand, X = 100% (Fig. 4 (c)) is the

“hard” configuration for finding a good placement solution. As

shown in Fig. 4, we see that the gap between the hierarchical

and the centralised algorithms increases when we increase

X%. However, in general, the hierarchical algorithm performs

well, close to the centralised one.

In Fig. 5 we show evaluating results for the hierarchical

algorithm in terms of latency and utility with different value

of “X% rand.”. As mentioned before, increasing “X% rand.”

would result in worse QoS in term of latency and utility which

can be seen clear in Fig. 5. However, as our model try to

maximize the total utility, the gap between the two cases X =
0% and X = 40% is small meaning that we still can find

good solution even with 40% of mismatch configuration. In

case, X = 100%, we do not have enough resource at EZs but

the algorithm is successful to minimize the number of blocked

user requests.

We show in Fig. 6 the benefit of max-min fairness policy

over all users. We test with different cost budget in the model.

We first consider a minimum cost value that can find a feasible

placement solution (constraint (9)), then increase this budget

by the “budget multiplication faction” shown in the x-axis of

Fig. 6. For each test, we check the latency of the worst user -

the one that has the maximum latency over all users. As shown

in Fig. 6, with the max-min fairness constraint, the worst user

still can get a good QoS (latency is less than 25 ms) while

without max-min fairness, some users suffer from high latency

(but it is always less than Tmax). This confirms that with the

max-min fairness, all users will have a better fair share of the

resources at EZs.

VII. CONCLUSION

This paper present a hierarchical service placement ap-

proach for cloud environments. Our method to implement

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

latency (ms)

0

20

40

60

80

100

%
 o

f
s
e
s
s
io

n
 s

lo
ts

centralised

hierarchical

(a) X = 0%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

latency (ms)

0

20

40

60

80

100

%
 o

f
s
e
s
s
io

n
 s

lo
ts

centralised

hierarchical

(b) X = 40%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

latency (ms)

0

20

40

60

80

100

%
 o

f
s
e
s
s
io

n
 s

lo
ts

centralised

hierarchical

(c) X = 100%

Figure 4. CDF latency for the centralised and the hierarchical placements

(a) Latency (b) Utility

Figure 5. Latency and utility results for hierarchical placement under different mismatch levels

Figure 6. Latency of the worst user with and without max-min fairness

service placement allows for trading-off user QoS with de-

ployment costs. Compared with the existing approach, our

formulation is simpler while maintains good utility for users.

Compared with the centralised approach, the hierarchical

method performs well, close to the centralised one.

ACKNOWLEDGMENT

This research has received founding from the 7th Frame-

work Programme (FP7/2007-2013) of the European Union,

through the FUSION (grant agreement 318205) projects.

REFERENCES

[1] C. Adam and R. Stadler, Service Middleware for Self-Managing Large-

Scale Systems, in IEEE Transactions on Network and Service Manage-
ment, 2007.

[2] G.V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical

Trigonometry. Princeton Uni. Press, 2013.

[3] D. Carrera, M. Steinder, I. Whalley, J. Torres and E. Ayguade, Utility-

based Placement of Dynamic Web Applications with Fairness Goals, in
Network Operations and Management Symposium (NOMS), 2008.

[4] S. Clayman, E. Maini, A. Galis, A. Manzalini, N. Mazzocca, The dynamic

placement of virtual network functions, in NOMS, 2014.

[5] www-01.ibm.com/software/commerce/optimization/cplex-optimizer
[6] http://www.datacentermap.com/

[7] http://github.com/richardclegg/multiuservideostream

[8] B. Hudzia, M.T. Kechadi and A. Ottewill, TreeP: A Tree Based P2P

Network Architecture, in CLUSTER, 2005.
[9] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviri-

denko and A. Tantawi, Dynamic Placement for Clustered Web Applica-

tions, in World Wide Web (WWW), 2006.

[10] T. Kimbrel, M. Steinder, M. Sviridenko and A. Tantawi, Dynamic Appli-

cation Placement under Service and Memory Constraints, in Workshop
on Experimental and Efficient Algorithms (WEA), 2005.

[11] Y. Li, F.H. Chen, X. Sun, M.H. Zhou, W.P. Jiao, D.G. Cao and H. Mei,
Self-Adaptive Resource Management for Large-Scale Shared Clusters, in
Journal of Computer Science and Technology, 2010.

[12] C. Low, Decentralised Application Placement, in Future Generation
Computer Systems, 2005.

[13] H. Moens, J. Famaey, S. Latre , B. Dhoedt and F. De Turck, Hierarchical

Network-Aware Placement of Service Oriented Applications in Clouds, in
NOMS, 2014.

[14] J. Nielsen, Usability Engineering: Response Times: The Three Important

Limits, 1993.

[15] T.K. Phan, D. Griffin, E. Maini, M. Rio, Utility-maximizing Server

Selection, in IFIP Networking, 2016.

[16] M.A. Stone, B.C. Moore, Tolerable Hearing Aid Delays. Est. of Limits

Imposed by the Auditory Path Alone using Simulated Hearing Losses, in
Ear and Hearing, 1999.

[17] C. Tang, M. Steinder, M. Spreitzer and G. Pacifici, A Scalable Applica-

tion Placement Controller for Enterprise Data Centers, in World Wide
Web (WWW), 2007.

[18] F. Wuhib, R. Stadler and M. Spreitzer, Gossip-based Resource Manage-

ment for Cloud Environments, in CNSM, 2010.
[19] Z. Zhang, Y. Hu, M.Zhang, R.Mahajan, A. Greeberg, B. Christian,

Optimizing Cost and Performance Online Service Provider Networks, in
NSDI, 2010.

