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Abstract

Transfer in reinforcement learning refers to the notion that generalization should
occur not only within a task but also across tasks. Our focus is on transfer where
the reward functions vary across tasks while the environment’s dynamics remain
the same. The method we propose rests on two key ideas: “successor features,” a
value function representation that decouples the dynamics of the environment from
the rewards, and “generalized policy improvement,” a generalization of dynamic
programming’s policy improvement step that considers a set of policies rather
than a single one. Put together, the two ideas lead to an approach that integrates
seamlessly within the reinforcement learning framework and allows transfer to take
place between tasks without any restriction. The proposed method also provides
performance guarantees for the transferred policy even before any learning has
taken place. We derive two theorems that set our approach in firm theoretical
ground and present experiments that show that it successfully promotes transfer in
practice.

1 Introduction

Reinforcement learning (RL) provides a framework for the development of situated agents that learn
how to behave while interacting with the environment [21]. The basic RL loop is defined in an
abstract way so as to capture only the essential aspects of such an interaction: an agent receives
observations and selects actions to maximize a reward signal. This setup is generic enough to describe
tasks of different levels of complexity that may unroll at distinct time scales. For example, in the task
of driving a car, an action can be to turn the wheel, to make a right turn, or to drive to a given location.

Clearly, from the point of view of the designer it is desirable to describe a task at the highest level of
abstraction possible. However, by doing so one may overlook behavioral patterns and inadvertently
make the task more difficult than it really is. The action of driving to a location clearly encompasses
the action of making a right turn, which in turn encompasses the action of turning the wheel. In
learning how to drive an agent should be able to identify and to exploit such interdependencies. More
generally, the agent should be able to break a task in smaller subtasks and use knowledge accumulated
in any subset of those to speed up learning in related tasks. This process of leveraging knowledge
acquired in one task to improve performance on another task is usually referred to as transfer.
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Transfer in reinforcement learning can be defined in many different ways, but in general it refers to
the notion that generalization should occur not only within a task but also across tasks [23]. In this
paper we look at one specific type of transfer, namely, when the subtasks involved correspond to
different reward functions defined in the same environment. This setup is flexible enough to allow
transfer to happen at different levels. In particular, since rewards are a generic device to define the
agent’s objective, by appropriately defining them one can induce different task decompositions. For
instance, the type of hierarchical decomposition involved in the driving example above can be induced
by changing the frequency at which rewards are delivered to the agent: a positive reinforcement can
be given after each maneuver that is well executed or only at the final destination. It is not difficult to
see that one can also decompose a task in subtasks that are fairly independent of each other or whose
dependency is strictly temporal (that is, when the tasks must be executed in a certain order but no
single task is clearly “contained” within another).

These types of task decomposition potentially allow the agent to tackle more complex problems
than would be possible were the tasks modeled as a single monolithic challenge. However, in order
to exploit this structure to its full extent the agent should have an explicit mechanism to promote
transfer between tasks. Ideally, we want a transfer approach to have two important properties. First,
the flow of information between tasks should not be dictated by a rigid diagram that reflects the
relationship between the tasks themselves, such as hierarchical or temporal dependencies. On the
contrary, information should be exchanged between tasks whenever useful. Second, rather than being
posed as a separate problem, transfer should be integrated into the RL framework as much as possible,
preferably in a way that is almost transparent to the agent.

In this paper we propose an approach to implement transfer that has the two properties above. Our
method builds on two basic ideas that complement each other. The first one is a generalization of
a concept proposed by Dayan [7] called successor representation. As the name suggests, in this
representation scheme each state is described by a prediction about the future occurrence of all other
states under a fixed policy. We present a generalization of Dayan’s idea which extends the original
scheme to continuous spaces and also facilitates the incorporation of function approximation. We call
the resulting scheme successor features. As will be shown, successor features lead to a representation
of the value function that naturally decouples the dynamics of the environment from the rewards,
which makes them particularly suitable for transfer.

In order to actually put transfer into effect with successor features, we present two theoretical results
that provide the foundation of our approach. The first one is a generalization of Bellman’s [4] classic
policy improvement theorem that extends the original result from one to multiple decision policies.
This result shows how knowledge about a set of tasks can be transferred to a new task in a way that
is completely integrated with reinforcement learning. It also provides performance guarantees on
the new task before any learning has taken place. The second theoretical result is a theorem that
formalizes the notion that an agent should be able to perform well on a task if it has seen a similar
task before—something clearly desirable in the context of transfer. Combined, the two results above
not only set our approach in firm ground but also outline the mechanics of how to actually implement
transfer. We build on this knowledge to propose a concrete method and evaluate it in experiments
that illustrate the benefits of transfer in practice.

2 Background and Problem Formulation

We consider the framework of RL outlined in the introduction: an agent interacts with an environment
and selects actions in order to maximize the expected amount of reward received in the long run [21].
As usual, we assume that this interaction can be modeled as a Markov decision process (MDP,
Puterman, [17]). An MDP is defined as a tuple M ≡ (S,A, p, r, γ). The sets S and A are the state
and action spaces, respectively; here we assume that S and A are finite whenever such an assumption
facilitates the presentation, but most of the ideas readily extend to continuous spaces. For each s ∈ S
and a ∈ A the function p(·|s, a) gives the next-state distribution upon taking action a in state s. We
will often refer to p(·|s, a) as the dynamics of the MDP. The reward received at transition s a−→ s′

is given by r(s, a, s′); usually one is interested in the expected reward resulting from the execution
of a in s, which is given by r(s, a) = ES′∼p(·|s,a)[r(s, a, S

′)]. The discount factor γ ∈ [0, 1) gives
smaller weights to rewards received further in the future.
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The goal of the agent in RL is to find a policy π—a mapping from states to actions—that maximizes
the expected discounted sum of rewards, also called the return Rt =

∑∞
i=0 γ

irt+i+1. One way to
address this problem is to use methods derived from dynamic programming (DP), which heavily rely
on the concept of a value function [17]. The action-value function of a policy π is defined as

Qπ(s, a) ≡ Eπ [Rt|St = s,At = a] , (1)

where Eπ[·] denotes expected value when following policy π. Once the action-value function of a
particular policy π is known, we can derive a new policy π′ which is greedy with respect to Qπ(s, a),
that is, π′(s) ∈ argmaxaQ

π(s, a). Policy π′ is guaranteed to be at least as good as (if not better than)
policy π. These two steps, policy evaluation and policy improvement, define the basic mechanics of
RL algorithms based on DP; under certain conditions their successive application leads to an optimal
policy π∗ that maximizes the expected return from every state in S [21].

As mentioned, in this paper we are interested in the problem of transfer. Here we adopt the following
definition: given two sets of tasks T and T ′ such that T ⊂ T ′, after being exposed to T ′ the agent
should perform no worse, and preferably better, than it would had it been exposed to T only. Note
that T can be the empty set. In this paper a task will be a specific reward function r(s, a) for a given
MDP. In Section 4 we will revisit this definition and make it more formal, and we will also clarify the
measure used to compare performance. Before doing that, though, we will present a core concept for
this paper whose interest is not restricted to transfer learning.

3 Successor Features

In this section we present the concept that will serve as a cornerstone for the rest of the paper. We
start by presenting a simple reward model and then show how it naturally leads to a generalization of
Dayan’s [7] successor representation (SR).

Suppose that the one-step expected reward associated with state-action pair (s, a) is given by

r(s, a) = φ(s, a)>w, (2)

where φ(s, a) ∈ Rd are features of (s, a) and w ∈ Rd are weights. Supposing that (2) is true is not
restrictive since we are not making any assumptions about φ(s, a): if we have φi(s, a) = r(s, a) for
some i, for example, we can clearly recover any reward function exactly. To simplify the notation, let
φt = φ(st, at). Then, by simply rewriting the definition of the action-value function in (1) we have

Qπ(s, a) = Eπ
[
rt+1 + γrt+2 + γ2rt+3 + ... |St = s,At = a

]
= Eπ

[
φ>t+1w + γφ>t+2w + γ2φ>t+3w + ... |St = s,At = a

]
= Eπ

[∑∞
i=tγ

i−tφi+1 |St = s,At = a
]>

w = ψπ(s, a)>w. (3)

We call ψπ(s, a) ≡ Eπ[
∞∑
i=t

γi−tφi+1|St = s,At = a] the successor features (SFs) of (s, a) under π.

The ith component of ψπ(s, a) gives the discounted sum of φi when following policy π starting from
(s, a). In the particular case where S andA are finite and φ is a tabular representation of S ×A—that
is, φ(s, a) is a “one-hot” vector in R|S||A|—ψπ(s, a) is the discounted sum of occurrences of each
state-action pair under π. This is essentially the concept of SR extended from the space S to the set
S×A [7]. One of the points here is precisely to generalize SR to be used with function approximation,
but the exercise of deriving the concept as above provides insights already in the tabular case. To see
why this is so, note that in the tabular case the entries of w ∈ R|S||A| are the function r(s, a) and
suppose that r(s, a) 6= 0 in only a small subsetW ⊂ S × A. From (2) and (3), it is clear that the
cardinality ofW , and not of S ×A, is what effectively defines the dimension of the representation
ψπ , since there is is no point in having d > |W|. Although this fact is hinted at in Dayan’s [7] paper,
it becomes much more apparent when we look at SR as a particular case of SFs.

SFs extend Dayan’s [7] SR in two ways. First, the concept readily applies to continuous state and
action spaces without any modification. Second, by explicitly casting (2) and (3) as inner products
involving feature vectors, SFs make it evident how to incorporate function approximation, since these
vectors can clearly be learned from data. For reasons that will become apparent shortly, in this paper
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we are mostly interested in learning w and ψπ(s, a). The extension to the scenario where φ(s, a)
must also be learned should not be difficult, though, and will also be discussed.

The SFs ψπ are a way of summarizing the dynamics induced by π in a given environment. As shown
in (3), this allows for a modular representation of Qπ in which the MDP’s dynamics are decoupled
from its rewards, which are captured by w. One potential benefit of having such a decoupled
representation is that only the relevant module must be relearned when either the dynamics or the
reward changes. We come back to this point after describing how exactly each module can be learned.

The representation in (3) requires two components to be learned, w and ψπ. Since the latter is
the expected discounted sum of φ under π, we either know φ or must learn it as well. Note that
r(s, a) ≈ φ(s, a)>w is a supervised learning problem, so one can resort to one of the many well-
understood techniques from the field to learn w (and potentially φ, too)[8]. As for ψπ, we note
that

ψπ(s, a) = φt+1 + γEπ[ψπ(St+1, π(St+1)) |St = s,At = a], (4)

that is, SFs satisfy a Bellman equation in which φi play the role of rewards—something also noted by
Dayan [7] regarding SR. Therefore, in principle any RL method can be used to compute ψπ [21, 6].1

Now that we have described how to learn ψπ and w, we can resume the discussion on the potential
benefits of doing so. Suppose that we have learned the value function of a given policy π using the
scheme shown in (3). It should be clear that whenever the reward function r(s, a) changes we only
need to learn a new w. Similarly, whenever the dynamics of the MDP p(·|s, a) change we can relearn
ψπ while retaining in w the information that has remained the same. But SFs may be useful even if
we restrict ourselves to the setting usually considered in RL, in which r(s, a) and p(·|s, a) are fixed.
Note that the dynamics that determine Qπ, and thus ψπ, depend on both p(·|s, a) and π. Hence,
even when the former is fixed, the possibility of only relearning ψπ may be advantageous when π
is changing, as is the case in the usual RL loop, since information regarding the reward function
is preserved in w. This helps explain the good performance of SR in Dayan’s [7] experiments and
may also serve as an argument in favor of adopting SFs as a general approximation scheme for RL.
However, in this paper we focus on a scenario where the decoupled value-function approximation
provided by SFs is exploited to its full extent, as we discuss next.

4 Transfer Via Successor Features

In this section we return to our discussion about transfer in RL. As described, we are interested in
the scenario where all components of an MDP are fixed, except for the reward function. One way of
formalizing this model is through (2): if we suppose that φ ∈ Rd is fixed, any w ∈ Rd gives rise to a
new MDP. Based on this observation, we define

Mφ(S,A, p, γ) ≡ {M(S,A, p, r, γ) | r(s, a) = φ(s, a)>w, with w ∈ Rd}, (5)

that is,Mφ is the set of MDPs induced by φ through all possible instantiations of w. Since what
differentiates the MDPs inMφ is essentially the agent’s goal, we will refer to Mi ∈Mφ as a task.
The assumption is that we are interested in solving (a subset of) the tasks in the environmentMφ.

Unlike (2), which is not restrictive at all, supposing that a family of tasks of interest fit in the
definition (5) will in general be a restrictive assumption.2 Despite the fact that similar assumptions
have been made in the literature [1], we now describe some illustrative examples that suggest that our
formulation ofMφ is a natural way of modeling some scenarios of interest.

Perhaps the best way to motivate (5) is to note that some aspects of real environments which we
clearly associate with specific features change their appeal over time. Think for example how much
the desirability of water or food changes depending on whether an animal is thirsty or hungry. One
way to model this type of preference shifting, which should probably occur with some types of

1Yao et al. [25] discuss the properties of (3) when w and ψπ are approximations learned in one specific way.
However, the ideas presented here are not tightly coupled with any formulation of the two learning sub-problems.

2It is not restrictive when d is greater than or equal to the number of MDPs we are interested in or when
d ≥ |S||A|. In the first case we can simply make the ith dimension of φ(s, a) equal to the reward function of
the ith MDP. As for the second case, if we can afford to use SR—that is, if d = |S||A|—Mφ will include all
possible reward functions over S ×A.
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artificial agents as well, is to suppose that the vector w appearing in (2) reflects the taste of the agent
at any given point in time. For a more concrete example, imagine that the agent’s goal is to produce
and sell a combination of goods whose production line is relatively stable but whose prices vary
considerably over time. In this case updating the price of the products corresponds to picking a new
w. Another intuitive example, which we will explore in the experimental section, is to imagine that
the agent is navigating in a fixed environment but the goal location changes from time to time.

In all the examples above it is desirable for the agent to build on previous experience to improve its
performance on a new setup. More concretely, if the agent knows good policies for the set of tasks
M≡ {M1,M2, ...,Mn}, with Mi ∈Mφ, it should be able to leverage this knowledge somehow to
improve its behavior on a new task Mn+1—that is, it should perform better than it would had it been
exposed to only a subset of the original tasks,M′ ⊂M. Here we assess the performance of an agent
on Mn+1 based on the value function of the policy computed by the agent after receiving the new
wn+1 but before any learning has taken place in Mn+1.3 More precisely, suppose that an agent agt
has performed a number of transitions in each one of the tasks Mi ∈M′. Based on this experience
and on the new wn+1, agt computes a policy π′ that will define its initial behavior in Mn+1. Now, if
we repeat the experience replacingM′ withM, the value of the resulting policy π should be such
that Qπ(s, a) ≥ Qπ′(s, a) for all s ∈ S and all a ∈ A.

Now that our setup is clear we can start to describe our solution for the transfer problem described
above. We do so in two stages. First, we present a generalization of DP’s notion of policy improvement
whose interest may go beyond the current work. We then show how SFs can be used to implement
this generalized form of policy improvement in an efficient and elegant way.

4.1 Generalized Policy Improvement

One of the key results in DP is Bellman’s [4] policy improvement theorem. Basically, the theorem
states that acting greedily with respect to a policy’s value function gives rise to another policy whose
performance is no worse than the former’s. This is the driving force behind DP, and any RL algorithm
that uses the notion of a value function is exploiting Bellman’s result in one way or another.

In this section we extend the policy improvement theorem to the scenario where the new policy is to
be computed based on the value functions of a set of policies. We show that this extension can be
done in a very natural way, by simply acting greedily with respect to the maximum over the value
functions available. Our result is summarized in the theorem below.
Theorem 1. (Generalized Policy Improvement) Let π1, π2, ..., πn be n decision policies and let
Q̃π1 , Q̃π2 , ..., Q̃πn be approximations of their respective action-value functions such that

|Qπi(s, a)− Q̃πi(s, a)| ≤ ε for all s ∈ S, a ∈ A, and i ∈ {1, 2, ..., n}. (6)

Define π(s) ∈ argmaxa maxi Q̃
πi(s, a). Then,

Qπ(s, a) ≥ max
i
Qπi(s, a)− 2

1− γ
ε (7)

for any s ∈ S and any a ∈ A, where Qπ is the action-value function of π.

The proofs of our theoretical results are in Appendix A. As one can see, our theorem covers the case in
which the policies’ value functions are not computed exactly, either because function approximation
is used or because some exact algorithm has not be run to completion. This error is captured by
ε in (6), which of course re-appears as a “penalty” term in the lower bound (7). Such a penalty is
inherent to the presence of approximation in RL, and in fact it is identical to the penalty incurred in
the single-policy case (see e.g. Bertsekas and Tsitsiklis’s Proposition 6.1 [5]).

In order to contextualize our result within the broader scenario of DP, suppose for a moment that
ε = 0. In this case Theorem 1 states that π will perform no worse than all of the policies π1, π2, ..., πn.
This is interesting because in general maxiQ

πi—the function used to induce π—is not the value
function of any particular policy. It is not difficult to see that π will be strictly better than all previous
policies if argmaxi maxa Q̃

πi(s, a) ∩ argmaxi maxa Q̃
πi(s′, a) = ∅ for any s, s′ ∈ S , that is, if no

3Of course wn+1 can, and will be, learned, as discussed in Section 4.2 and illustrated in Section 5. Here
though we assume that wn+1 is given to make the definition of our performance criterion as clear as possible.
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single policy dominates all other policies. If one policy does dominate all others, Theorem 1 reduces
to the original policy improvement theorem. Note that this will always be the case if one of the
optimal policies π∗ belongs to the set {π1, π2, ..., πn}.
If we consider the usual DP loop, in which policies of increasing performance are computed in
sequence, our result is not of much use because the most recent policy will always dominate all others.
Another way of putting it is to say that after Theorem 1 is applied once adding the resulting π to the
set {π1, π2, ..., πn} will reduce the next improvement step to standard policy improvement, and thus
the policies π1, π2, ..., πn can be simply discarded.

There are however two situations in which our result may be of interest. One is when we have many
policies πi being evaluated in parallel. In this case Theorem 1 provides a principled strategy for
combining these policies. This could be used for example as an initialization scheme for policy
iteration when it is possible to evaluate many policies simultaneously. This possibility may also be
useful in RL when one consider the multi-agent setting. The other situation in which our result may
be useful is when the underlying MDP changes, as we discuss next.

4.2 Generalized Policy Improvement with Successor Features

We start this section by extending our notation slightly to make it easier to refer to the quantities
involved in transfer learning. Let Mi be a task inMφ defined by wi ∈ Rd. We will use π∗i to refer
to an optimal policy of MDP Mi and use Q

π∗
i
i to refer to its value function. The value function of π∗i

when executed in Mj ∈Mφ will be denoted by Q
π∗
i
j .

Suppose now that an agent agt has computed optimal policies for the tasks M1,M2, ...,Mn ∈Mφ.
Suppose further that when exposed to a new task Mn+1 the agent computes Q

π∗
i
n+1—the value

functions of the policies π∗i under the new reward function induced by wn+1. In this case, applying
Theorem 1 to the newly-computed set of value functions {Qπ

∗
1
n+1, Q

π∗2
n+1, ..., Q

π∗n
n+1} will give rise to

a policy that performs at least as well as a policy computed based on any subset of the set above,
including the empty set (except of course in the unlikely event that one starts with a randomly-
generated policy that performs well). Thus, this strategy satisfies our definition of successful transfer.

There is a caveat, though. Why would one waste time computing the value functions of π∗1 , π
∗
2 , ...,

π∗n, whose performance in Mn+1 may be mediocre, if the same amount of resources can be allocated
to compute a sequence of n policies with increasing performance? This is where SFs come into play.
Suppose that we have learned the functions Qπ∗

i using the approximation scheme shown in (3). Now,
if the reward changes to rn+1(s, a) = φ(s, a)>wn+1, as long as we have wn+1 we can compute
the new value function of π∗i by simply making Q

π∗
i
n+1(s, a) = ψπ∗

i (s, a)>wn+1. This reduces the
computation of all Q

π∗
i
n+1 to the much simpler supervised learning problem of computing wn+1.

Once Q
π∗
i
n+1 have been computed, we can apply Theorem 1 to derive a policy π whose performance

on Mn+1 is no worse than the performance of π∗1 , π
∗
2 , ..., π

∗
n on the same task. A question that arises

in this case is whether we can provide stronger guarantees on the performance of π by exploiting the
structure shared by the tasks inMφ. The following theorem answers this question in the affirmative.

Theorem 2. Let Mi ∈ Mφ and let Q
π∗
j

i be the value function of an optimal policy of Mj ∈ Mφ

when executed in Mi. Given approximations {Q̃π
∗
1
i , Q̃

π∗2
i , ..., Q̃

π∗n
i } such that∣∣∣Qπ∗

j

i (s, a)− Q̃
π∗
j

i (s, a)
∣∣∣ ≤ ε for all s ∈ S, a ∈ A, and j ∈ {1, 2, ..., n}, (8)

let π(s) ∈ argmaxa maxj Q̃
π∗
j

i (s, a). Finally, let φmax = maxs,a ||φ(s, a)||, where || · || is the norm
induced by the inner product adopted. Then,

Q
π∗
i
i (s, a)−Qπi (s, a) ≤ 2

1− γ
(φmax minj ||wi −wj ||+ ε) . (9)

Note that we used “Mi” rather than “Mn+1” in the theorem’s statement to remove any suggestion of
order among the tasks. This also makes it explicit that the result also applies when i ∈ {1, 2, ..., n}.
Theorem 2 is a specialization of Theorem 1 for the case where the set of value functions used to
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compute π are associated with tasks in the form of (5). As such, it provides stronger guarantees
than its precursor: instead of comparing the performance of π with that of the previously-computed
policies πj , Theorem 2 quantifies the loss incurred by following π as opposed to of one of Mi’s
optimal policies.

As shown in (9), the loss Q
π∗
i
i (s, a)−Qπi (s, a) is upper-bounded by two terms. As before, 2ε/(1−γ)

is a “penalty” term that shows up in the bound due to the use of approximations Q̃
π∗
j

i instead of
the true value functions Q

π∗
j

i . The term 2φmaxminj ||wi − wj ||/(1 − γ) is of more interest here
because it reflects the structure ofMφ. This term is a multiple of the distance between wi, the vector
describing the task we are currently interested in, and the closest wj for which we have computed a
policy. This formalizes the intuition that the agent should perform well in task wi if it has solved a
similar task before. More generally, the term in question relates the concept of distance in Rd with
difference in performance inMφ, which allows for interesting extrapolations. For example, if we
assume that the tasks wj are sampled from a distribution over Rd, it might be possible to derive
probabilistic performance guarantees whose probability of failure goes to zero as n→∞.

Although Theorem 2 is inexorably related to the characterization ofMφ in (5), it does not depend
on the definition of SFs in any way. Here SFs are the mechanism used to efficiently apply the
protocol suggested by Theorem 2. When SFs are used the value function approximations are given by
Q̃
π∗
j

i (s, a) = ψ̃
π∗
j (s, a)>w̃i. The modules ψ̃π∗

j are computed and stored when the agent is learning
the tasks Mj ; when faced with a new task Mi the agent computes an approximation of wi, which is a
supervised learning problem, and then uses the policy π defined in Theorem 2 to learn ψ̃π∗

i . Note
that we do not assume that either ψπ∗

j or wi is computed exactly: the effect of errors in ψ̃π∗
j and w̃i

in the approximation of Q
π∗
j

i (s, a) is accounted for by the term ε appearing in (8). As shown in (9), if
ε is small and the agent has seen enough tasks the performance of π on Mi should already be good,
which suggests that it will also speed up the process of learning ψ̃π∗

i . In the next section we verify
empirically how these effects manifest in practice.

5 Experiments

In this section we use experiments to illustrate how the transfer promoted by the combination of
generalized policy iteration and SFs actually takes place in practice. In order to do so we introduce a
generalized version of a classic RL task known as the “puddle world” [20]. The puddle world is a
simple two-dimensional problem with a goal position and two elliptical “puddles,” one vertical and
one horizontal [20]. The four actions available move the agent up, down, left, or right. An action fails
with probability 0.1, in which case an action selected uniformly at random is executed. The objective
is to reach the goal while avoiding the puddles along the way.

We generalized the puddle world task by letting the position of the puddles and of the goal state to
change at arbitrary time steps. More specifically, we implemented the task as a 15 × 15 grid and
restricted the position of the elements to a subset of the cells: the goal is only allowed to be in one of
the four corners and the two puddles are restricted to the set {3, 5, 7, 9, 11} × {3, 5, 7, 9, 11}. This
gives rise to 2500 possible configurations of the task, which is our setMφ. Following (5), the reward
function for the ith task was defined as r(s, a) = φ(s, a)>wi. Here φ(s, a) is a binary vector in
R54 that indicates whether the state that (s, a) most likely leads to corresponds to a puddle or a goal.
Specifically, if the ith entry of φ(s, a) is associated with, say, one of the possible 25 locations of the
horizontal puddle, it will be equal to 1 if and only if (s, a) has as its most likely outcome the state
at that location. The goal and puddles that are present in the ith task are indicated by three nonzero
elements in wi: a +1 entry associated with the goal and a −1 entry associated with each puddle.

We focus on the online RL scenario where the agent must learn while interacting with the environment
Mφ. The task changes at every k transitions, with a new wi selected uniformly at random from the
set described above. We adopted Watkins and Dayan’s [24] Q-learning as our basic algorithm and
combined it with different representation schemes to show their potential for transfer. In particular,
we compared four versions of Q-learning: using a tabular representation (QL), using a tabular
representation that is reinitialized to zero whenever the task changes (QLR), using SR, and using SFs.
All versions of the algorithm used an ε-greedy policy to explore the environment, with ε = 0.15 [21].
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Figure 1: Cumulative return on the moving-puddles task. The parameter k above each plot indicates
how often the reward function changes. Shadowed regions represent one standard error over 30 runs.

The SR and SF agents were implemented in the following way. The action-value function was
represented as Q̃π(s, a) = ψ̃

π

i (s, a)>w̃, where ψ̃
π

i (s, a) is associated with the ith task. Both
ψ̃
π

i and w̃ were learned online. The former was learned using temporal-difference updates to
solve (4) [21], while the latter was learned as a least-squares minimization of the difference between
the two sides of (2). Every time the task changed the current ψ̃

π

i (s, a) was stored, a new ψ̃
π

i+1(s, a)
was created, and w was reinitialized to 0. The agent followed a 0.15-greedy policy with respect
to argmaxa maxj∈{1,2,...,i+1} ψ̃

π

j (s, a)>w̃ (hence the policy π that induces (4) was constantly
changing). In the case of SR, ψ̃

π

i (s, a) were vectors in R|S||A|, as usual (here |S||A| = 900). The SF
agent received with each (s, a) the corresponding vector φ(s, a). So, in this case ψ̃

π

i (s, a) ∈ R54.

The results of our experiments are shown in Figure 1. Several interesting observations can be made
regarding the figure. First, note that QLR is unable to learn the task. If we compare it with QL, the
difference in performance suggests that in this environment starting from an actual value function
Qπ(s, a) leads to better results than starting from a function that is zero everywhere, regardless of the
policy π associated with Qπ(s, a). Also note that there is a clear improvement on the algorithms’
performance as the interval k to change the reward increases, which is not surprising. However,
the most important point to be highlighted here is that both SR and SF significantly outperform the
standard version of Q-learning. This is an illustration of our theoretical results and a demonstration
that the proposed approach is indeed able to successfully transfer knowledge across tasks. Finally,
note that SF outperforms SR by a considerable margin. This is also expected: since the former uses a
vector w that is in R54 rather than in R|S||A|, the nonzero elements of this vector will be updated
whenever the agent encounters a puddle or a goal, regardless of the specific (s, a) pair that lead to
that state. This shows how, unlike its precursor, SFs allows for generalization.

6 Related Work

In this paper we present SFs, a representation scheme for value functions, and show how they provide
a natural framework for implementing transfer in RL. Both representation and transfer are active
areas of research in RL; in what follows we briefly describe the previous work we consider to be more
closely related to ours and take advantage of the relevant connections to point out some interesting
directions for future research.

When it comes to representation, a lot of effort in previous research has been directed towards
the development of methods to automatically compute good features to represent the value func-
tion [14, 10, 16, 15]. Many of these approaches build on the fact that, when S is finite, the
value function of a policy π is given by vπ =

∑∞
i=0(γPπ)irπ, where pπij = p(sj |si, π(si)) and

rπi = r(si, π(si)). The idea is to exploit the structure in the definition of vπ to replace the set of
vectors (γPπ)irπ ∈ R|S|, which is infinite, by a properly defined basis whose cardinality is prefer-
ably smaller than |S|. If we adopt the reward model in (2), we can rewrite the previous expression
as vπ =

∑∞
i=0(γPπ)iΦπw, where Φ is a vector in R|S|×d whose ith row is φ(si, π(si)). If we
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then define Ψπ =
∑∞
i=0(γPπ)iΦπ, it should be clear that the ith row of Ψπ is ψπ(si, π(si)). This

shows that Ψπ arises as a natural basis when (2) is adopted, which is neither very surprising nor very
useful, since Ψπ lives in R|S|×d. What is perhaps more interesting is the observation that, since the
definitions of vπ and Ψπ are very similar, the methods cited above could in principle also be used to
find good features to represent Ψπ itself.

Although the methods above decouple the construction of features from the actual RL problem, it is
also possible to tackle both problems concomitantly, using general nonlinear function approximators
to incrementally learn ψπ(s, a) [12]. Another interesting possibility is the definition of a clear
protocol to also learn φ(s, a), which is closely related to the problem known as “multi-task feature
learning” [1]. Here again the use of nonlinear approximators may be useful, since with them it may be
possible to embed an arbitrary family of MDPs into a modelMφ with the structure shown in (5) [11].

Still on the subject of representation, a scheme that also relates to SFs is Littman et al.’s [9] predictive
state representation (PSR). PSRs are similar to SFs in the sense that they also have a prediction at
the core of their representation. Unlike the latter, though, the former tries to use such predictions to
summarize the dynamics of the entire environment rather than of a single policy π. A scheme that is
perhaps closer to SFs is the value function representation sometimes adopted in inverse RL [13]. The
scenario considered in this case is considerably different, though, since the focus is in finding a w
that induces a predefined policy π.

We now turn our attention to previous work related to the use of SFs for transfer. As mentioned in the
introduction, the problem of transfer has many definitions in the literature [23]. When we focus on
the scenario considered here, in which the agent must perform well on a family of MDPs that differ
only in the reward function, two approaches are possible. One of them is to learn a model of the
MDPs’ dynamics [3]. Another alternative, which is more in-line with our approach, is to summarize
the experience using policies or value functions—which in some sense represent a “partial model” of
the environment. Among these, Schaul et al.’s [18] universal value function approximators (UVFAs)
are particularly relevant to our work. UVFAs extend the notion of value function to also include as
an argument a representation of a goal. We note that the function maxj ψ̃

π∗
j (s, a)>w used in our

generalized policy improvement framework can be seen as a function of s, a, and w—the latter a
generic way of representing a “goal.” Thus, in some sense the approximation scheme proposed here
is a UVFA, in which w corresponds to the learned goal embedding.

As discussed, one possible interpretation of the scenario studied here is that there is one main
task that has been decomposed in many sub-tasks. This view of transfer highlights an interesting
connection between our approach and temporal abstraction. In fact, if we look at ψπ as instances of
Sutton et al.’s [22] options, acting greedily with respect to the maximum over their value functions
corresponds in some sense to planning at a higher level of temporal abstraction. This is the view
adopted by Yao et al. [25], whose universal option model closely resembles our approach in some
aspects. The main difference is that, unlike in our method, in Yao et al.’s [25] approach options are
not used to learn new options.

7 Conclusion

This paper builds on two concepts, both of which are generalizations of previous ideas. The first
one is SFs, a generalization of Dayan’s [7] SR that extends the original definition from discrete
to continuous spaces and also facilitates the incorporation of function approximation. The second
concept is generalized policy improvement, formalized in Theorem 1. As the name suggests, this
result extends Bellman’s [4] classic policy improvement theorem from a single to multiple policies.

Although SFs and generalized policy improvement are of interest on their own, in this paper we
focus on their combination to induce transfer. The resulting framework is an elegant extension of
DP’s basic setting that provides a solid foundation for transfer in RL. We derived a theoretical result,
Theorem 2, that formalizes the intuition that an agent should perform well on a novel task if it has
seen a similar task before. We also illustrated how this effect manifests in practice using experiments.

We believe the ideas presented in this paper lay out a general framework for transfer in RL. By
specializing the basic components presented here one can build on our results to derive agents able to
perform well across a wide variety of tasks, and thus handle environments of considerable complexity.
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A Proofs

Theorem 1. (Generalized Policy Improvement) Let π1, π2, ..., πn be n decision policies and let
Q̃π1 , Q̃π2 , ..., Q̃πn be approximations of their respective action-value functions such that

|Qπi(s, a)− Q̃πi(s, a)| ≤ ε for all s ∈ S, a ∈ A, and i ∈ {1, 2, ..., n}.
Define

π(s) ∈ argmax
a

max
i
Q̃πi(s, a).

Then,

Qπ(s, a) ≥ max
i
Qπi(s, a)− 2

1− γ
ε

for any s ∈ S and any a ∈ A, where Qπ is the action-value function of π.

Proof. To simplify the notation, let
Qmax(s, a) = maxiQ

πi(s, a) and Q̃max(s, a) = maxi Q̃
πi(s, a).

We start by noting that for any s ∈ S and any a ∈ A the following holds:
|Qmax(s, a)− Q̃max(s, a)| = |max

i
Qπi(s, a)−max

i
Q̃πi(s, a)| ≤ max

i
|Qπi(s, a)− Q̃πi(s, a)| ≤ ε.

For all s ∈ S, a ∈ A, and i ∈ {1, 2, ..., n} we have

TπQ̃max(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)Q̃max(s′, π(s′))

= r(s, a) + γ
∑
s′

p(s′|s, a) max
b
Q̃max(s′, b)

≥ r(s, a) + γ
∑
s′

p(s′|s, a) max
b
Qmax(s′, b)− γε

≥ r(s, a) + γ
∑
s′

p(s′|s, a)Qmax(s′, πi(s
′))− γε

≥ r(s, a) + γ
∑
s′

p(s′|s, a)Qπi(s′, πi(s
′))− γε

= TπiQπi(s, a)− γε
= Qπi(s, a)− γε.
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Since TπQ̃max(s, a) ≥ Qπi(s, a)− γε for any i, it must be the case that

TπQ̃max(s, a) ≥ max
i
Qπi(s, a)− γε

= Qmax(s, a)− γε
≥ Q̃max(s, a)− ε− γε.

Let e(s, a) = 1 for all s, a ∈ S × A. It is well known that Tπ(Q̃max(s, a) + ce(s, a)) =

TπQ̃max(s, a) + γc for any c ∈ R. Using this fact together with the monotonicity and contrac-
tion properties of the Bellman operator Tπ , we have

Qπ(s, a) = lim
k→∞

(Tπ)kQ̃max(s, a)

≥ Q̃max(s, a)− 1 + γ

1− γ
ε

≥ Qmax(s, a)− ε− 1 + γ

1− γ
ε.

Lemma 1. Let δij = maxs,a |ri(s, a)− rj(s, a)|. Then,

Q
π∗i
i (s, a)−Qπ

∗
j

i (s, a) ≤ 2δij
1− γ

.

Proof. To simplify the notation, let Qji (s, a) ≡ Qπ
∗
j

i (s, a). Then,

Qii(s, a)−Qji (s, a) = Qii(s, a)−Qjj(s, a) +Qjj(s, a)−Qji (s, a)

≤ |Qii(s, a)−Qjj(s, a)|+ |Qjj(s, a)−Qji (s, a)|. (10)

Our strategy will be to bound |Qii(s, a)−Qjj(s, a)| and |Qjj(s, a)−Qji (s, a)|. Note that |Qii(s, a)−
Qjj(s, a)| is the difference between the value functions of two MDPs with the same transition function
but potentially different rewards. Let ∆ij = maxs,a |Qii(s, a)−Qjj(s, a)|. Then, 4

|Qii(s, a)−Qjj(s, a)| =

∣∣∣∣∣ri(s, a) + γ
∑
s′

p(s′|s, a) max
b
Qii(s

′, b)− rj(s, a)− γ
∑
s′

p(s′|s, a) max
b
Qjj(s

′, b)

∣∣∣∣∣
=

∣∣∣∣∣ri(s, a)− rj(s, a) + γ
∑
s′

p(s′|s, a)

(
max
b
Qii(s

′, b)−max
b
Qjj(s

′, b)

)∣∣∣∣∣
≤ |ri(s, a)− rj(s, a)|+ γ

∑
s′

p(s′|s, a)

∣∣∣∣max
b
Qii(s

′, b)−max
b
Qjj(s

′, b)

∣∣∣∣
≤ |ri(s, a)− rj(s, a)|+ γ

∑
s′

p(s′|s, a) max
b

∣∣∣Qii(s′, b)−Qjj(s′, b)∣∣∣
≤ δij + γ∆ij . (11)

Since (11) is valid for any s, a ∈ S ×A, we have shown that ∆ij ≤ δij + γ∆ij . Solving for ∆ij we
get

∆ij ≤
1

1− γ
δij . (12)

4We follow the steps of Strehl and Littman [19].
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We now turn our attention to |Qjj(s, a) − Qji (s, a)|. Following the previous steps, define ∆′ij =

maxs,a |Qii(s, a)−Qji (s, a)|. Then,

|Qjj(s, a)−Qji (s, a)| =

∣∣∣∣∣rj(s, a) + γ
∑
s′

p(s′|s, a)Qjj(s
′, π∗j (s′))− ri(s, a)− γ

∑
s′

p(s′|s, a)Qji (s
′, π∗j (s′))

∣∣∣∣∣
=

∣∣∣∣∣ri(s, a)− rj(s, a) + γ
∑
s′

p(s′|s, a)
(
Qjj(s

′, π∗j (s′))−Qji (s
′, π∗j (s′))

)∣∣∣∣∣
≤ |ri(s, a)− rj(s, a)|+ γ

∑
s′

p(s′|s, a)
∣∣∣Qjj(s′, π∗j (s′))−Qji (s

′, π∗j (s′))
∣∣∣

≤ δij + γ∆′ij .

Solving for ∆′ij , as above, we get

∆′ij ≤
1

1− γ
δij . (13)

Plugging (12) and (13) back in (10) we get the desired result.

Theorem 2. Let Mi ∈ Mφ and let Q
π∗j
i be the value function of an optimal policy of Mj ∈ Mφ

when executed in Mi. Given the set {Q̃π
∗
1
i , Q̃

π∗2
i , ..., Q̃

π∗n
i } such that∣∣∣Qπ∗ji (s, a)− Q̃π

∗
j

i (s, a)
∣∣∣ ≤ ε for all s ∈ S, a ∈ A, and j ∈ {1, 2, ..., n},

let
π(s) ∈ argmax

a
max
j
Q̃
π∗j
i (s, a).

Finally, let φmax = maxs,a ||φ(s, a)||, where || · || is the norm induced by the inner product adopted.
Then,

Q∗i (s, a)−Qπi (s, a) ≤ 2

1− γ
(φmax minj ||wi −wj ||+ ε) .

Proof. The result is a direct application of Theorem 1 and Lemma 1. For any j ∈ {1, 2, ..., n}, we
have

Q∗i (s, a)−Qπi (s, a) ≤ Q∗i (s, a)−Qπ
∗
j

i (s, a) +
2

1− γ
ε (Theorem 1)

≤ 2

1− γ
maxs,a |ri(s, a)− rj(s, a)|+ 2

1− γ
ε (Lemma 1)

=
2

1− γ
maxs,a |φ(s, a)>wi − φ(s, a)>wj |+

2

1− γ
ε

=
2

1− γ
maxs,a |φ(s, a)>(wi −wj)|+

2

1− γ
ε

≤ 2

1− γ
maxs,a ||φ(s, a)|| ||wi −wj ||+

2

1− γ
ε (Cauchy-Schwarz’s inequality)

=
2φmax

1− γ
||wi −wj ||+

2

1− γ
ε.
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