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We present a mathematical study of two-dimensional
electrostatic and electromagnetic shielding by a cage
of conducting wires (the so-called ‘Faraday cage
effect’). Taking the limit as the number of wires in
the cage tends to infinity, we use the asymptotic
method of multiple scales to derive continuum
models for the shielding, involving homogenized
boundary conditions on an effective cage boundary.
We show how the resulting models depend on key
cage parameters such as the size and shape of
the wires, and, in the electromagnetic case, on the
frequency and polarization of the incident field. In
the electromagnetic case, there are resonance effects,
whereby at frequencies close to the natural frequencies
of the equivalent solid shell, the presence of the
cage actually amplifies the incident field, rather
than shielding it. By appropriately modifying the
continuum model, we calculate the modified resonant
frequencies, and their associated peak amplitudes.
We discuss applications to radiation containment
in microwave ovens and acoustic scattering by
perforated shells.

1. Introduction
The Faraday cage effect is the phenomenon whereby
electric fields and electromagnetic waves can be blocked
by a wire mesh. The effect was demonstrated experimen-
tally by Faraday in 1836 [1], was familiar to Maxwell [2],
and its practical application in isolating electrical
systems and circuits is well known to modern-day
engineers and physicists alike. However, somewhat
surprisingly there does not seem to be a widely known
mathematical analysis quantifying the effectiveness of
the shielding as a function of the basic cage properties
(e.g. the geometry of the cage, and the thickness, shape
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and spacing of the wires in the mesh from which it is constructed). The recent publication [3]
provided such an analysis for the two-dimensional electrostatic problem where the cage is a ring
of M equally spaced circular wires of small radius r � L/M (here L is a typical macro-lengthscale
of the cage, e.g. the circumference of the ring of wires) held at a common constant potential,
which can be formulated as a Dirichlet problem for the Laplace equation. It was found in [3] that
the shielding effect of such a Faraday cage is surprisingly weak: as the number of wires M tends
to infinity the magnitude of the field inside the cage in general decays at best only inverse linearly
in M, rather than exponentially, as one might infer from certain treatments of the Faraday cage
effect in the physics literature (e.g. [4, §7-5]).

One of the key tools used by Chapman et al. [3] to study the Faraday cage effect in the regime
of large M was a continuum model, in which the shielding effect of the discrete wires is replaced
by a homogenized boundary condition on an infinitesimally thin interface between the ‘inside’
and ‘outside’ of the cage. Such boundary conditions can be derived by matching asymptotic
expansions of the field away from the mesh with expansions in a boundary layer close to the
mesh, where a multiple scales approximation can be applied (cf. [3, §5 and appendix C], and the
closely related work in [5–8]).

This paper extends the analysis of Chapman et al. [3] in a number of significant ways. Firstly,
we explain how the homogenized boundary condition of Chapman et al. [3] generalizes to
arbitrary wire shapes (not necessarily circular). Secondly, we investigate the ‘thick-wire’ regime in
which r =O(L/M) (the model proposed in [3] is valid only for r � L/M and is in general ill-posed
for r =O(L/M).) Thirdly, we consider the analogous Neumann problem, where the interesting
regime is not that of small wires, but rather small gaps between wires. Finally, and perhaps most
significantly, we undertake a detailed study of the two-dimensional electromagnetic problem in
which an external time-harmonic wave field (a solution of the Helmholtz equation) is incident
on the cage. We show that, under appropriate assumptions on the wavelength (specifically,
the wavelength should be long compared with the inter-wire spacing), the leading-order wave
field satisfies the same homogenized boundary conditions as in the Laplace case. However, in
the wave problem there is the possibility of resonance, where the presence of the cage actually
amplifies the incident field, rather than shielding it. For the Dirichlet problem, such resonance
effects are the strongest in the ‘thick-wire’ regime in which r =O(L/M), and when the wavelength
is close to (but not in general equal to) a resonant wavelength of the idealized cage in which
the wire mesh is replaced by a solid shell. We show how to modify the continuum model to
deal with such resonances, and use our modified model to calculate precisely the wavelength at
which the maximum amplification is observed, and the associated peak amplitude, validating our
predictions against numerical simulations.

We conclude this introduction with some comments on related literature. Firstly, we
acknowledge that there is already a substantial literature concerning the rigorous analysis
of homogenization procedures for potential and scattering problems involving thin, rapidly
varying interfaces. While we do not attempt a comprehensive review, we note in particular
the works [5–7,9–16], which consider problems closely related (but different) to those studied
here. Many of these studies adopt a similar multiple scale-based approaches to ours, albeit from
a slightly more rigorous point of view, and some (e.g. [10]) derive higher order asymptotic
approximations than those considered here. What sets our work apart from this literature is
that we are concerned less with formulating high-order approximations and proving rigorous
error estimates and more with understanding the qualitative and quantitative behaviour of
the leading-order homogenized approximations—in particular, their shielding performance—
something which to date does not appear to have been studied systematically. Secondly, we
note that the two-dimensional cage problems we consider can be attacked by direct numerical
simulation, at least for M relatively small—indeed we shall compare our asymptotic results with
two different numerical methods in §4. In the small wire regime, one can obtain approximate
numerical solutions particularly efficiently, if the wires are modelled as simple point sources. Such
an approach to the electrostatic problem is described in [3, §6], where the associated amplitudes
of the point sources are found by an energy minimization procedure. We also mention [17], which
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treats the wave problem for a circular cage of small equally spaced wires using the so-called
‘Foldy method’ from multiple scattering theory, in which the geometrical assumptions permit a
semi-analytical solution for the associated point source amplitudes in terms of the discrete Fourier
transform. This method appears to be closely related to the lowest-order version of the Mikhlin-
type numerical method used by Chapman et al. [3], higher order versions of which shall be our
main source of numerical approximations for the circular wire case. The analysis of Martin [17]
does not cover the regime r =O(1/M) and does not treat resonance effects.

2. Problem formulation
Let Ω− be a bounded simply connected open subset of the plane with smooth boundary Γ =
∂Ω− and let Ω+ := R

2 \ Ω̄− denote the complementary exterior domain. For convenience, we
will routinely identify the (x, y)-plane with the complex z-plane, z = x + iy. We consider a ‘cage’
of M non-intersecting wires {Kj}M

j=1 (compact subsets of the plane, defined in more detail shortly)

centred at points {zj}M
j=1 along Γ with constant separation1 (measured with respect to arc length

along Γ )

ε= |Γ |
M

,

where |Γ | is the total length of Γ ; for an illustration, see figure 1a. We set D := R
2 \ (

⋃M
j=1 Kj).

The electrostatic problem is formulated as follows. Given a compactly supported source
function f , we seek a real-valued potential φ(z) satisfying

∇2φ = f in D, (2.1)

φ = 0 on ∂Kj, j = 1, . . . , M, (2.2)

and φ(z) ∼
(

1
2π

∫
D

f
)

log(|z|) + O(1) as z → ∞. (2.3)

Condition (2.2) models the fact that the wires are electrically connected, e.g. at infinity in the
third dimension. Condition (2.3) ensures that the cage possesses zero net charge. We note that
the formulation (2.1)–(2.3) is different (but equivalent) to that in [3], where the constant term at
infinity in (2.3) was zero, with φ taking an unknown (and in general non-zero) constant value on
the wires. For completeness, we also consider the Neumann problem in which (2.2) is replaced by

∂φ

∂ν
= 0 on ∂Kj, j = 1, . . . , M, (2.4)

where ν denotes a unit normal vector on ∂Kj, and O(1) is replaced by o(1) in (2.3). While not having
any obvious electrostatic application, this could represent a model for inviscid incompressible
fluid flow due to a source in the presence of a cage of impermeable wires.

The time-harmonic electromagnetic problem can be formulated in terms of two complex-
valued scalar fields, representing the out-of-plane components of the electric and magnetic fields,
respectively, both of which satisfy the Helmholtz equation

(∇2 + k2)φ = f in D, (2.5)

for appropriate source functions f , where k> 0 is the (non-dimensional) wavenumber. (Incident
plane waves can also be considered.) The out-of-plane component of the electric field (TE mode)
satisfies the Dirichlet boundary condition (2.2) and the out-of-plane component of the magnetic
field (TM mode) satisfies the Neumann boundary condition (2.4). At infinity, both fields are
assumed to satisfy an outgoing radiation condition. These two problems also model the analogous
acoustic scattering problems with sound-soft and sound-hard boundary conditions, respectively.

The goal of this paper is to determine the leading-order asymptotic solution behaviour of the
above problems as the number of wires M tends to infinity, equivalently, as the wire separation ε
tends to zero. For the wave problem we shall assume throughout that k =O(1) as ε→ 0, so that

1We assume that lengths have been non-dimensionalized relative to a suitable macro-lengthscale (e.g. the radius of the
smallest circle containing Γ ) so that ε is a non-dimensional parameter.
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Figure 1. (a) Faraday cage geometry and the outer coordinates (x, y) and (n, s), with the curve Γ on which the wires are
centred shown as a dashed line. The dotted lines either side of the wire Kj are curves of constant s= sj ± ε/2, corresponding
to the lines S= ± 1

2 in the boundary layer coordinates. (b) The cell problem geometry and the boundary layer coordinates
(N, S)= (n/ε, s/ε), showing the scaled wire shapeK (solid boundary; Model 2) and the perturbationKε (dashed boundary;
Model 1). (c) The reference wire shape K and the inner coordinates (ξ , η).

the wavelength is comparable to the macro-dimensions of the cage and much longer than the
inter-wire separation. We also need to specify how the wire size, shape and orientation should
vary as ε→ 0. In particular, in order that the wires remain disjoint as ε→ 0 (so that the wires form
a ‘cage’ and not a solid shell), the wire radii must in general decrease in proportion to ε (or faster).

We consider two different models, defining a reference wire shape either in local Cartesian
coordinates aligned with Γ , or in local curvilinear coordinates that conform to Γ . Since Γ is
smooth there is no difference between these models at leading order, but the distinction affects
higher order corrections (due to the curvature of Γ ) that will enter some of our calculations. To
make the definitions specific, we must introduce some further notation.

Close to Γ we can change from Cartesian coordinates (x, y) to orthogonal curvilinear
coordinates (n, s), such that n is the distance from (x, y) to the closest point on Γ (positive/negative
n representing points inside Ω+ and Ω−, respectively), and s is arc length along Γ to this closest
point measured counterclockwise from some reference point on Γ . Given a reference point zj on Γ
with curvilinear coordinates (0, sj), we define local curvilinear coordinates (ñ, s̃) by ñ = n, s̃ = s − sj,
and local Cartesian coordinates (x̃, ỹ) such that the positive x̃-axis is aligned to the positive ñ-axis
at zj. Explicitly, x̃ + iỹ = e−iθj (z − zj), where θj is the counter-clockwise angle from the positive
x-axis to the outward normal vector to Γ at zj. To convert between these coordinate systems, there
exists a diffeomorphism Fj : (−nj, nj) × (−ε/2, ε/2) → Uj, where Uj is an open neighbourhood of zj
and nj > 0 is a constant, such that (x̃, ỹ) = Fj(ñ, s̃) (see appendix A).

We are now ready to specify the wire geometries and their dependence on ε. For both models,
we assume a fixed reference wire shape K; a compact subset of the plane for which the smallest
closed disc containing K has radius one and is centred at the origin (figure 1c).

In Model 1, we define a wire Kj of radius r> 0 centred at zj by the formula Kj = rK in the (x̃, ỹ)
coordinate system, which in the original z-coordinates gives

Kj = zj + eiθj (rK). (2.6)

In Model 2, we use the same formula Kj = rK but interpreted in the (ñ, s̃) coordinate system, which
in the original z-coordinates gives

Kj = zj + eiθj Fj(rK). (2.7)

Examples are illustrated in figure 2. The rationale for considering both wire models is that
Model 1 is the more natural from a physical point of view as the wire shape is independent of
r in the original Cartesian coordinate system, whereas Model 2 is simpler from a mathematical
point of view as the wire shape is independent of r in the curvilinear coordinates in which we
derive our homogenized boundary conditions (see §3). In many aspects of our analysis, the two
models produce the same results. But for some problems requiring higher order boundary layer
expansions, they may produce different results.
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Figure 2. Faraday cage geometries forΓ a circle. (a) The referencewire shape K is a closed disc, (b) it is the line segment [−1, 1]
and (c) it is the line segment [−i, i]. Model 1 is used in (a) (the wires would be slightly deformed discs under Model 2), there
is no difference between the two wire models in (b), and Model 2 is used in (c) (the wires would be tangential line segments
under Model 1, rather than circular arcs).

In order that the wires remain disjoint as ε→ 0, we assume that the wire radius r satisfies

r = δε,

where 0< δ = δ(ε)< δmax and δmax =O(1) is the critical scaling that gives rise to touching wires in
the limit as ε→ 0. For example, δmax = 1

2 for both the case of circular wires, when K is the unit disc
(cf. figure 2a) and the case of tangential line segments (cf. figure 2c). An exceptional case where
no such δmax exists is that of line-segment wires perpendicular to Γ , when K is the interval [−1, 1]
(cf. figure 2b). Note in particular that a fixed value for δ corresponds to the wires taking up a fixed
total fraction of the length of Γ , as the number of wires is increased.

Our aim is to describe both qualitatively and quantitatively how the asymptotic solution
behaviour of the boundary value problems as ε→ 0 depends on the reference wire shape K, the
scaling parameter δ and in the electromagnetic case the wavenumber k. In doing so, we generalize
the analysis of Chapman et al. [3], which considered only the electrostatic case, with circular wires
and the small wire regime δ� 1.

3. Homogenized boundary conditions
In the limit ε→ 0, we look for outer approximations in Ω± of the form

φ(x, y) = φ±
0 (x, y) + εφ±

1 (x, y) + O(ε2) in Ω±, (3.1)

where, assuming that both f and k are O(1), the functions φ±
0 satisfy either (2.1) or (2.5) (as

appropriate) inΩ±, with φ±
1 satisfying the homogeneous version of the same equation. Our aim is

to derive homogenized boundary conditions for these functions on the interface Γ , by matching
with an appropriate boundary layer solution in a region of width O(ε) around Γ in which a
multiple scales approximation can be applied.

We first note that in the curvilinear coordinates (n, s) the Laplacian is [18, (6.2.4)]

∇2 = 1
1 + κn

∂

∂s

[
1

1 + κn
∂

∂s

]
+ κ

1 + κn
∂

∂n
+ ∂2

∂n2 , (3.2)

where κ = κ(s) is the local (signed) curvature of Γ at the point (0, s), defined with respect to
a counterclockwise parametrization. We introduce boundary layer variables (N, S) via (n, s) =
(εN, εS). The inner limits of the outer solutions correct to O(ε) are found by rewriting (3.1) with n
replaced by εN and re-expanding, giving

φ±
0 (0, s) + ε

(
N
∂φ±

0
∂n

(0, s) + φ±
1 (0, s)

)
+ O(ε2), (3.3)

with the + and − signs for the cases N> 0 and N< 0, respectively.
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In the boundary layer, we look for a solution in multiple-scales form

φ(n, s) =Φ(N, S; s), (3.4)

where Φ(N, S; s) is assumed to be 1-periodic in the fast tangential variable S. To determine the
equation satisfied by Φ(N, S; s), we replace ∂/∂n by ε−1∂/∂N and ∂/∂s by ε−1∂/∂S + ∂/∂s in (3.2)
and expand. The leading-order result, for both the electrostatic and the wave problems (assuming
k =O(1)), and for both wire Models 1 and 2, is

∂2Φ

∂N2 + ∂2Φ

∂S2 + O(ε) = 0 in B, (3.5)

where B = {(N, S) : |S|< 1
2 } \ K, and K = δK (figure 1b). Periodicity requires

∂Φ

∂S
= 0 on S = ±1

2
, (3.6)

and the conditions on ∂K are homogeneous Dirichlet or Neumann conditions, as appropriate. The
solution is required to match with the outer solution in (3.3) as N → ±∞.

A more detailed derivation of this boundary-layer problem is given in appendix A, where we
also continue the expansion to O(ε). The analysis of the O(ε) terms is more involved for Model 1
than for Model 2, because we have to account for the curvature of Γ and its distorting effect on the
wire shape in the (N, S) coordinates (shown by Kε in figure 1b). This distortion can be neglected
in the leading-order problem above (and does not arise in Model 2); consequently, we leave these
awkward details to the appendices.

(a) Dirichlet boundary conditions
In the case of Dirichlet boundary conditions, the leading-order behaviour of the boundary layer
solution Φ(N, S; s) with linear behaviour as N → ±∞ (required for matching with (3.3)) can be
written as

Φ(N, S; s) = ε(A+(s)Φ+(N, S) + A−(s)Φ−(N, S)) + O(ε2), (3.7)

where the functions Φ±(N, S) satisfy the following canonical cell problems (cf. figure 1b):

∂2Φ±

∂N2 + ∂2Φ±

∂S2 = 0 in B, (3.8)

∂Φ±

∂S
= 0 on S = ±1

2
, (3.9)

Φ± = 0 on ∂K (3.10)

and Φ+(N, S) ∼
{

N + σ+, N → ∞,

τ+, N → −∞,
Φ−(N, S) ∼

{
τ−, N → ∞,

−N + σ−, N → −∞.
(3.11)

For any given reference wire shape K and scaled radius δ, one must solve (3.8)–(3.11), either
analytically or numerically, to determine the far-field constants σ± and τ±; some specific examples
are studied in appendix B. We note that if K is symmetric in ξ (so that the scaled wire K is
symmetric in N, cf. figure 1) then

Φ−(N, S) =Φ+(−N, S), σ+ = σ− and τ+ = τ−. (3.12)

Furthermore, we note that if δ� 1 the scaled wire K effectively acts as a point sink in the
cell domain, and a generalization of the argument in [3, §C] proves that, outside an O(δ)
neighbourhood of K,

Φ+(N, S) ∼ 1
2π

�
{
πZ + log(2 sinhπZ) + log

1
2πδ

+ a0

}
, Z = N + iS, (3.13)

where the K-dependent constant a0 satisfies a0 = lim�→∞(ψ − log �), where ψ is the unique
solution of Laplace’s equation in R

2 \ K such that ψ = 0 on ∂K and ψ ∼ log � + O(1) as �→ ∞,
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where �=
√
ξ2 + η2. This constant is related to the logarithmic capacity of K, c(K), by a0 =

− log c(K) [19]. For K the unit disc, a0 = 0; for K a line segment of length 2, a0 = log 2 (for details,
see appendix B). From (3.13), it follows that

σ±, τ± ∼ 1
2π

(
log

1
2πδ

+ a0

)
+ O(δ), δ→ 0. (3.14)

Having extracted the far-field constants σ±, τ± from the solutions of (3.8)–(3.11), matching the
linear behaviour of (3.7) with that of (3.3) gives

A+(s) = ∂φ+
0

∂n
(0, s) and A−(s) = −∂φ

−
0

∂n
(0, s), (3.15)

and matching constant terms then requires

εσ+
∂φ+

0
∂n

− ετ−
∂φ−

0
∂n

= φ+
0 + εφ+

1 on Γ (3.16)

and

ετ+
∂φ+

0
∂n

− εσ−
∂φ−

0
∂n

= φ−
0 + εφ−

1 on Γ . (3.17)

To proceed further, we must consider the magnitude of the parameters σ±, τ±, which depend on
the size of δ (e.g. figure 9). There are essentially three different regimes to consider.

(i) Thick wires (δ =O(1))

If δ is strictly O(1), then σ±, τ± are O(1). Hence, at O(1) in (3.16) and (3.17),

φ+
0 = φ−

0 = 0 on Γ , (3.18)

so the leading-order solution is that for a perfectly reflecting (Dirichlet) boundary at Γ . At O(ε),

φ+
1 = σ+

∂φ+
0

∂n
− τ−

∂φ−
0

∂n
on Γ (3.19)

and

φ−
1 = τ+

∂φ+
0

∂n
− σ−

∂φ−
0

∂n
on Γ . (3.20)

(ii) Thin wires (δ� 1)

If δ� 1 then σ±, τ± � 1 (cf. (3.14)). In particular, there is a distinguished scaling in which σ±, τ± =
O(1/ε), which requires δ to be exponentially small with respect to 1/ε, i.e. δ =O(e−c/ε) for some
c> 0. (This is essentially the same scaling as that considered in [9,11,12] in a related context.)
Suppose that we are in this regime, with σ±, τ± ∼ ã1/ε + ã0 for some ã1, ã0. (e.g. if δ ∼ Ae−c/ε , then
ã1 = c/(2π ) and ã0 = (log(1/(2πA)) + a0)/(2π ).) Then at O(1) in (3.16) and (3.17), we find that φ0 is
continuous across Γ (i.e. φ+

0 = φ−
0 ) and satisfies

[
∂φ0

∂n

]
= α̃φ0 on Γ , (3.21)

where [∂φ0/∂n] = ∂φ+
0 /∂n − ∂φ−

0 /∂n and α̃ = 1/ã1. Higher order matching not detailed here
(requiring higher order expansion of the boundary layer problem as in appendix A) reveals that
the two-term approximation φ0 + εφ1 is also continuous across Γ and satisfies a similar condition[

∂φ0

∂n
+ ε

∂φ1

∂n

]
= α(φ0 + εφ1) on Γ , (3.22)
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where α= 1/(ã1 + εã0). Recalling (3.14), we can express α in terms of δ as

α= 2π
ε(log 1/(2πδ) + a0)

, (3.23)

which, in the special case of circular wires (for which a0 = 0) agrees with the effective boundary
condition derived in [3, §C]. Note that (3.22) is valid for the two-term approximation φ0 + εφ1;
hence in this distinguished scaling, the boundary condition derived in [3, §C] gives the solution
correct to O(ε), not just to O(1). This explains the excellent agreement observed in [3] between
numerical solutions of the electrostatic problem and solutions of the outer problem subject
to (3.22), even when δ is not particularly small. We also note, however, that as δ increases, there
may (depending on the value of a0) come a point at which α blows up to infinity; precisely, this
occurs at the critical value δ∞ = e−a0/(2π ) (for circular wires δ∞ = 1/(2π ) ≈ 0.16< δmax = 1

2 ). For
δ > δ∞, α is negative and the resulting outer problem may be ill-posed (see later). But of course
for such large values of δ we are outside of this ‘thin-wire’ regime and the conditions (3.18)–(3.20)
should be used instead of (3.22).

(iii) Very thin wires (δ�O(e−c/ε))

If δ�O(e−c/ε) for every c> 0, then σ±, τ± � 1/ε and α� 1, so that the leading-order outer
solution φ0 is just the free field solution of (2.1) or (2.5), i.e. that which would exist without the
presence of the cage, and there is no shielding.

(b) Neumann boundary conditions
In the case of Neumann boundary conditions, the requirement of linearity as N → ±∞ means that
the leading-order boundary layer solution can be expressed as

Φ(N, S; s) = A0(s) + ε(A1(s) + B1(s)Ψ (N, S)) + O(ε2), (3.24)

where Ψ (N, S) satisfies the canonical cell problem

∂2Ψ

∂N2 + ∂2Ψ

∂S2 = 0 in B, (3.25)

∂Ψ

∂S
= 0 on S = ±1

2
, (3.26)

∂Ψ

∂ν
= 0 on ∂K (3.27)

and Ψ (N, S) ∼ N ± λ, N → ±∞, (3.28)

in which the constant λ is determined as part of the solution. This problem also appears elsewhere
in acoustics and fluid flow; it is sometimes referred to as a ‘blockage problem’, and the constant λ
as a ‘blockage coefficient’ [20–22]. Example solutions for Ψ (N, S) and λ are given in appendix B.

Matching linear terms between (3.3) and (3.24) gives that

B1(s) = ∂φ+
0

∂n
= ∂φ−

0
∂n

on Γ , (3.29)

so the gradient of the outer problem is continuous across Γ . Matching constant terms then gives

A0(s) + εA1(s) ± λε
∂φ0

∂n
= φ±

0 + εφ±
1 on Γ . (3.30)

As in the Dirichlet case, to interpret (3.30) we must consider the magnitude of λ, which
depends on both K and δ. The interesting limit in which λ is large is now not δ→ 0, but rather
δ→ δmax, where δmax is the critical value of δ for which ∂K touches the cell walls S = ± 1

2 . (Recall
that δmax = 1

2 for K a disc.) When δmax − δ� 1 we have λ� 1. We consider separately the cases
λ=O(1), λ=O(1/ε) and λ� 1/ε.
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(i) Large gaps (δmax − δ =O(1))

In this case λ=O(1), and (3.30) implies that

A0(s) = φ+
0 = φ−

0 on Γ , (3.31)

so that, recalling (3.29), both φ0 and its normal derivative are continuous across Γ . Hence the
leading-order outer solution is just the free field solution of (2.1) or (2.5), and there is no shielding.

(ii) Small gaps (δmax − δ� 1)

In this case λ� 1. We first consider the case λ=O(1/ε) and suppose λ∼ b̃1/ε + b̃0. For the case
of circular wires, this would occur if 1

2 − δ =O(ε2); for line segments it would require 1
2 − δ =

O(e−c/ε) for some c> 0 (see appendix B). Matching the constant terms then gives

A0(s) ± b̃1B1(s) = φ±
0 on Γ , (3.32)

which together with (3.29), and defining β̃ = 2b̃1 and [φ0] = φ+
0 − φ−

0 , implies

[φ0] = β̃
∂φ0

∂n
on Γ . (3.33)

A similar boundary condition was derived for a related problem in [16].
For completeness, we quote the higher order matching conditions, obtained using the results

in appendix A [
∂φ1

∂n

]
= 2κ(μ̃− μ̌)

∂φ0

∂n
+ 2μ̂

∂2φ0

∂n∂s
− 2μ̌

∂2φ0

∂n2 on Γ (3.34)

and

[φ1] = 2b̃0
∂φ0

∂n
+ b̃1

(
∂φ+

1
∂n

+ ∂φ−
1

∂n

)
on Γ , (3.35)

where μ̃, μ̂ and μ̌ are constants determined from the higher order boundary-layer solutions. These
depend on the precise shape of the wires.

Rather than embarking on a detailed study of different cases, we concentrate on the case that
is perhaps of most interest for this small-gap situation; namely, when the wires form a perforated
shell around Γ (cf. figure 2c). This corresponds to tangential line segments (i.e. K = [−i, i]) under
Model 2, for which we find μ̃= μ̌= μ̂= 0, and λ∼ −(1/π )(logπ ( 1

2 − δ)) (appendix B). In this
case, (3.34) and (3.35) combine with (3.33) to give

[φ0 + εφ1] = β

(
∂φ0

∂n
+ ε

∂φ1

∂n

)
on Γ , (3.36)

where β = 2(b̃1 + εb̃0). If δ = 1
2 − Ae−c/ε , then β = 2c/π − 2ε log(πA)/π . There is a duality

between (3.36) and condition (3.22) that holds in the Dirichlet case, although we note that for
more general wire shapes (3.36) may become more complicated.

(iii) Very small gaps (δmax − δ� 1)

In the case that λ�O(1/ε), matching constant terms in (3.30) simply indicates that B1(s) = 0.
Thus, (3.29) gives

∂φ+
0

∂n
= ∂φ−

0
∂n

= 0, on Γ , (3.37)

so that the leading-order solution is that for a perfectly reflecting (Neumann) boundary at Γ .
Continuing the expansion for the perforated shell, and supposing λ∼ b̃2/ε

2 + · · · , the next-order
matching requires

∂φ±
1

∂n
= 1

2b̃2
[φ0] on Γ . (3.38)
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4. Shielding performance of Faraday cages
Having derived homogenized boundary conditions for the leading-order outer approximations,
we now consider their shielding performance in the context of the boundary-value problems
introduced in §2, concentrating on the case when the source function f is compactly supported
outside of the cage, in D ∩Ω+. For the Laplace problems, the measure of good shielding is that
∇φ should be small inside the cage interior Ω− (since the physical field of interest is the gradient
of the potential). For the Helmholtz problems, we require φ itself to be small in Ω−.

We shall illustrate our general results using explicit solutions for the special case where Γ
is the unit circle and the external forcing is due to a point source of unit strength located at
a point z0 outside the cage (|z0|> 1). Explicitly, f = −δz0 , where δz0 represents a delta function
supported at z0. For this example, we express solutions in standard polar coordinates (ρ, θ )
centred at the cage centre, with θ = 0 corresponding to the direction of the source. We compare
the homogenized solutions with numerical solutions to the full problem in the case of disc-
shaped or line-segment wires (using Model 1 to define the wire geometry). For disc-shaped wires,
these are computed using the same method as [3, appendix A]; the solution is expressed as a
truncated sum of radially symmetric solutions to the Laplace or Helmholtz equation centred
on the wire centres zj; the coefficients in the expansion are determined by a least-squares fit
to the boundary conditions at discrete points on the wires. For Laplace problems, solutions for
line-segment wires can be computed using a similar method (by conformal mapping; cf. [23]),
although our results for this case are computed with a boundary integral equation method using
SingularIntegralEquations.jl, a Julia package for solving singular integral equations
implementing the spectral method of [24].

(a) Laplace equation with Dirichlet boundary conditions on wires
In the case of thin wires (δ� 1), the O(1) outer solutions satisfy

∇2φ+
0 = f in Ω+, ∇2φ−

0 = 0 in Ω− (4.1)

and

φ+
0 = φ−

0 on Γ ,
[
∂φ0

∂n

]
= αφ0 on Γ , (4.2)

with φ+
0 also satisfying (2.3) at infinity. As mentioned previously, this problem is well posed for

0<α <∞, i.e. 0< δ < e−a0/2π .
For Γ the unit circle and f = −δz0 , the leading-order solution inside the cage is

φ− ∼ φ−
0 = 1

π

∞∑
m=1

ρm cos mθ
(α + 2m)|z0|m

in Ω− (4.3)

and in particular

|∇φ−(0)| ∼ 1
(α + 2)π |z0|

. (4.4)

For shielding, we need α� 1, in which case |∇φ−(0)| ∼ 1/(απ |z0|). Recalling the definition of α
in (3.23), the field inside the cage scales inverse linearly in M and logarithmically in r, as discussed
in [3].

In the case of thick wires (δ =O(1)), the O(1) outer solutions satisfy (4.1) but now with

φ±
0 = 0 on Γ , (4.5)

with φ+
0 also satisfying (2.3) at infinity. Hence the interior and exterior problems decouple, and in

particular since Γ is a closed curve one deduces that

φ−
0 = 0 in Ω−. (4.6)
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Figure 3. Magnitude of potential gradient at the origin for the electrostatic problem for Γ the unit circle with a source at
z0 = 2, for (a) circular wires, (b) perpendicular line segments and (c) tangential line segments, for varying scaledwire radius δ.
Results are shown forM= 20 (ε= 0.314; upper curves), andM= 40 (ε= 0.157). Black lines/circles show numerical result,
dashed blue lines show the ‘thin-wire’ asymptotic result valid for δ =O(e−c/ε), and dotted-dashed green lines show the
‘thick-wire’ asymptotic result valid for δ=O(1). (Online version in colour.)

Hence the leading-order solution inΩ− is the O(ε) term, which by (3.20) (noting that ∂φ−
0 /∂n = 0)

satisfies the inhomogeneous Dirichlet boundary condition

φ−
1 = τ+

∂φ+
0

∂n
on Γ . (4.7)

Note that only τ+ (not σ+, σ− or τ−) appears in this condition for the leading-order interior
solution. The field in Ω− is therefore O(τ+ε) as ε→ 0.

For Γ the unit circle and f = −δz0 , the leading-order solution inside the cage is

φ− ∼ εφ−
1 = τ+ε

π

∞∑
m=1

ρm cos mθ
|z0|m

in Ω− (4.8)

and in particular

|∇φ−(0)| ∼ |τ+|ε
π |z0|

. (4.9)

In figure 3, we show the excellent agreement between these approximations and the result of
numerical calculations. Note that (4.4) and (4.9) are consistent, since τ+ ∼ 1/εα as δ→ 0.

(b) Helmholtz equation with Dirichlet boundary conditions on wires
In the thin wire case, the analysis is similar to that for the Laplace case, with φ±

0 satisfying

(∇2 + k2)φ+
0 = f in Ω+ and (∇2 + k2)φ−

0 = 0 in Ω−, (4.10)

the boundary conditions (4.2), and an outgoing radiation condition on φ+
0 .

For Γ the unit circle and f = −δz0 , the leading-order solution inside the cage is

φ− ∼ φ−
0 =

∞∑
m=0

emJm(kρ) cos mθ

1 + (α/k)(J′m(k)/Jm(k) − H(1)
m

′
(k)/H(1)

m (k))−1
in Ω−, (4.11)

where e0 = (i/4)H(1)
0 (k|z0|) and em = (i/2)H(1)

m (k|z0|), m ∈ N. In particular,

φ−(0) ∼ (i/4)H(1)
0 (k|z0|)

1 + (α/k)(H(1)
1 (k)/H(1)

0 (k) − J1(k)/J0(k))−1
. (4.12)

As in the Laplace case, the field strength is O(1/α) when α� 1.
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Figure 4. Amplitudes at z = 0 for the wave problem for disc-shaped wires arranged around the unit circle, for varying
wavenumber k. Corresponding field plots for particular wavenumbers are shown in figure 5. Parameters are M= 30, z0 = 2
and (a) δ= 0.01, (b) δ = 0.1. Solid black lines show the numerical solution and dashed blue lines show the ‘thin-wire’
asymptotic result (in (a) this is indistinguishable from the numerical solution), dotted-dashed green lines show the ‘thick-wire’
asymptotic result (without correcting for resonance), and dotted black lines shows the unshielded (free-field) solution. Vertical
lines indicate the unperturbed resonances for the unit circle corresponding to axisymmetric modes (two asymmetric modes are
also excited in this wavenumber range, but have zero amplitude at the origin). Insets in the lower panel show enlargements
around the peaks. (Online version in colour.)

In the thick wire case, at first glance the analysis appears similar to the Laplace case, with
the O(1) outer solutions satisfying (4.10) and (4.5). But now we must take care over the correct
interpretation of (4.5). This is because there exist resonant wavenumbers, i.e. values of k for
which k2 is a Dirichlet eigenvalue of −∇2 on Ω−, at which one cannot infer from (4.5) that φ−

0 is
identically zero. We shall study such resonant cases in detail in the next section. Here we simply
record that, if we ignore resonance effects and assert that φ−

0 = 0, the leading-order solution inΩ−
is again provided by the O(ε) term, which satisfies (4.7), just as in the Laplace case.

For Γ the unit circle and f = −δz0 , the leading-order non-resonant solution inside the cage is

φ− ∼ εφ−
1 = kετ+

∞∑
m=0

em

(
J′m(k)
Jm(k)

− H(1)
m

′
(k)

H(1)
m (k)

)
Jm(kρ) cos mθ in Ω−, (4.13)

where em are as above. In particular,

φ−(0) ∼ kετ+
i
4

H(1)
0 (k|z0|)

(
H(1)

1 (k)

H(1)
0 (k)

− J1(k)
J0(k)

)
. (4.14)

When one compares the approximations (4.12) and (4.14) with numerical simulations for fixed
k away from resonance, one observes similar behaviour to that in figure 3, i.e. (4.12) is accurate for
small δ and (4.14) for larger δ. However, interesting new behaviour become apparent when one
fixes δ and varies the wavenumber k. Two plots of this type are presented in figure 4. One finds
that close to resonant wavenumbers the numerical solution is strongly peaked, and the amplitude
|φ(0)| can actually exceed that of the free-field solution; that is, the cage amplifies the field rather
than shielding from it. This amplification is clear in the near-resonant field plots in figure 5.
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Figure 5. (a–d) Numerical solutions to the wave problem for disc-shaped wires arranged around the unit circle, for four
different wavenumbers k, showing �(φ(z)). Parameters are M= 30, δ = 0.1 and z0 = 2. (b–d) represent near-resonant
cases: in (b,c) the relevant resonant mode is J0(k|z|), k ≈ 2.405, and in (d) it is J1(k|z|) cos(arg(z)), k ≈ 3.382. (e–h) ‘Thick-
wire’ asymptotic solutions for the same problems; in (e), this is the non-resonant solution (4.13), and in (f–h), we plot the
leading-order resonance-corrected solution from §4c, i.e.φ+

0 inΩ+ andφ−
−1 inΩ−. (Online version in colour.)

Returning to figure 4, we note that the position of the peak amplitude is in general slightly
shifted from the exact resonance. For sufficiently small δ (cf. figure 4a), the peaks are captured
correctly by the ‘thin-wire’ asymptotic result. But for larger δ, the position and height of the peak
are not predicted correctly (cf. figure 4b). Unfortunately, the ‘thick-wire’ approximation (4.13)
cannot capture the peaks either—the O(ε) term φ−

1 blows up to infinity at the exact resonances,
as is obvious from (4.13), and our asymptotic solution breaks down. In the next section, we show
how the ‘thick-wire’ approximation (4.14) can be modified to correctly predict the near-resonant
behaviour for larger values of δ.

(c) Resonance effects
Close to resonant wavenumbers, our thick-wire (δ =O(1)) solution (4.13) breaks down, as the
assertion that φ−

0 = 0 is invalid. Instead, we expect a near-resonant response in which the leading-
order interior solution is a non-trivial linear combination of the corresponding eigenmodes.

To examine the behaviour close to resonance, let k = k∗ + εk̃, where k∗ > 0 is a resonant
wavenumber with real-valued eigenmode ψ satisfying (∇2 + k2∗)ψ = 0 inΩ− and ψ = 0 on Γ , and
k̃ =O(1). (For simplicity, we shall always assume that there is only one eigenmode corresponding
to k∗; more generally, we would have a superposition of eigenmodes). Expanding (2.5) with
φ = φ±

0 + εφ±
1 + O(ε2) as in (3.1), the leading-order interior solution satisfies

(∇2 + k2
∗)φ−

0 = 0 in Ω− (4.15)

and

φ−
0 = 0 on Γ , (4.16)

whence

φ−
0 = C0ψ , (4.17)

for some amplitude C0 to be determined. By (3.20), the next-order interior problem is

(∇2 + k2
∗)φ−

1 = −2k∗k̃C0ψ in Ω− (4.18)
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and

φ−
1 = τ+

∂φ+
0

∂n
− σ−C0

∂ψ

∂n
on Γ , (4.19)

where the inhomogeneous term on the right-hand side of (4.18) arises from the perturbation of
the eigenvalue from k∗. Since the associated homogeneous problem has a non-zero solution, ψ ,
there is a solvability condition to be satisfied, following from the identity

∫
Ω−
ψ((∇2 + k2

∗)φ−
1 ) dS = −

∫
Γ

φ−
1
∂ψ

∂n
ds, (4.20)

which can be obtained using Green’s second identity. Defining

I1 =
∫
Ω−
ψ2 dS, I2 =

∫
Γ

(
∂ψ

∂n

)2
ds and I3 =

∫
Γ

κ

(
∂ψ

∂n

)2
ds, (4.21)

(I3 is for later use), the solvability condition arising from (4.20) is that

(2k∗I1k̃ + σ−I2)C0 = τ+
∫
Γ

∂φ+
0

∂n
∂ψ

∂n
ds. (4.22)

This determines the amplitude C0 of the O(1) interior solution (4.17), except when

k̃ = k̃∗ := − σ−I2

2k∗I1
, (4.23)

where C0 blows up to infinity. This represents a shift in the position of the apparent resonance
from the original value k∗ to the perturbed value k∗ + εk̃∗. We note that the shift k̃∗ depends both
on the wire shape K (through σ−) and on the cage geometry Γ (through I1 and I2). Furthermore,
we note that the sign of the shift is given by the sign of −σ−. For line segment wires parallel to
Γ , σ− is positive for all 0< δ < 1

2 , so the shift is always negative. But in general there may exist a
critical value of δ at which σ− (and hence the shift) changes sign. For circular wires, this occurs at
δ ≈ 0.12 (cf. figure 9).

The true solution is not actually infinite at the shifted value k = k∗ + εk̃∗; rather there is a
narrow region of O(ε2) around this value in which the amplitude of the interior solution is large.

To capture this behaviour, we write k = k∗ + εk̃∗ + ε2 ˜̃k, where k̃∗ is as in (4.23) and ˜̃k =O(1), and
introduce an extra leading term in the expansion of the interior solution,

φ−(x, y) = 1
ε
φ−

−1(x, y) + φ−
0 (x, y) + εφ−

1 (x, y) + O(ε2) in Ω−. (4.24)

As a result, we require an additional O(1) term in the boundary-layer solution, which becomes

Φ(N, S, s) = ∂φ−
−1

∂n
(s)Φ−(N, S) + εκ(s)

∂φ−
−1

∂n
(s)Φ̃−(N, S) + ε

∂2φ−
−1

∂n∂s
(s)Φ̂−(N, S)

+ ε
∂φ+

0
∂n

(s)Φ+(N, S) + ε
∂φ−

0
∂n

(s)Φ−(N, S) + O(ε2), (4.25)

where the functions Φ̂± and Φ̃± are defined in appendix A. This solution is obtained from the
general solution to the boundary-layer problem given in appendix A, choosing the constants in
that solution to match the gradients of the interior and exterior outer expansions. If φ−

−1 = 0, it
reduces to the solution given earlier. The resulting matching conditions for the outer solutions,
analogous to (3.16) and (3.17), are

− (τ− − εκτ̃−)
∂φ−

−1

∂n
+ ετ̂−

∂2φ−
−1

∂n∂s
+ εσ+

∂φ+
0

∂n
− ετ−

∂φ−
0

∂n
= φ+

0 + εφ+
1 on Γ (4.26)

and

− (σ− − εκσ̃−)
∂φ−

−1

∂n
+ εσ̂−

∂2φ−
−1

∂n∂s
+ ετ+

∂φ+
0

∂n
− εσ−

∂φ−
0

∂n
= 1
ε
φ−

−1 + φ−
0 + εφ−

1 on Γ , (4.27)
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where σ̂±, τ̂±, σ̃± and τ̃± are far field constants in the expansions of Φ̂± and Φ̃± (these constants
may depend on the choice of wire model; see appendix A).

The leading-order interior problem for φ−
−1 is identical to the earlier problem (4.15) and (4.16),

with solution
φ−

−1 = C−1ψ , (4.28)

where C−1 is to be determined. This large interior solution causes a change to the leading-order
exterior problem, for which the boundary condition (from (4.26)) becomes

φ+
0 = −τ−C−1

∂ψ

∂n
on Γ . (4.29)

We split φ+
0 into two components: one due to the source, and one forced by the boundary

condition (4.29), writing
φ+

0 = φ̂+
0 + τ−C−1φ̃

+
0 , (4.30)

where (∇2 + k2∗)φ̂+
0 = f in Ω+ with φ̂+

0 = 0 on Γ and (2.3) at infinity, and (∇2 + k2∗)φ̃+
0 = 0 in Ω+

with φ̃+
0 = −∂ψ/∂n on Γ and φ̃+

0 =O(1) at infinity.
The O(1) interior problem is

(∇2 + k2
∗)φ−

0 = −2k∗k̃∗C−1ψ in Ω− (4.31)

and

φ−
0 = −σ−C−1

∂ψ

∂n
on Γ . (4.32)

The solvability condition is the same as (4.22) but with zero right-hand side and C0 replaced with
C−1. This holds identically, given the definition of k̃∗ (cf. (4.23)), so the amplitude C−1 remains
undetermined at this order. Writing the solution to (4.31) and (4.32) as

φ−
0 = σ−C−1φ̃

−
0 + C0ψ , (4.33)

where φ̃−
0 is a particular solution of (∇2 + k2∗)φ̃−

0 = (I2/I1)ψ in Ω+ with φ̃−
0 = −∂ψ/∂n on Γ , and

C0 is arbitrary, the O(ε) interior problem becomes

(∇2 + k2
∗)φ−

1 = −2k∗k̃∗C0ψ − C−1(2k∗k̃∗σ−φ̃−
0 + (k̃2

∗ + 2k∗ ˜̃k)ψ) in Ω− (4.34)

and

φ−
1 = τ+

∂φ̂+
0

∂n
− σ−C0

∂ψ

∂n
+ C−1

(
τ+τ−

∂φ̃+
0

∂n
− σ 2

−
∂φ̃−

0
∂n

+ κσ̃−
∂ψ

∂n
− σ̂−

∂2ψ

∂n∂s

)
on Γ . (4.35)

Note that the right-hand sides now contains terms due to the exterior field, as well as lower order
components of the interior field. The solvability condition is

((k̃2
∗ + 2k∗ ˜̃k)I1 − σ̃−I3 − τ+τ−I4 + σ 2

−I5 + 2k∗k̃∗σ−I6)C−1 = τ+I7, (4.36)

where

I4 =
∫
Γ

∂φ̃+
0

∂n
∂ψ

∂n
ds, I5 =

∫
Γ

∂φ̃−
0

∂n
∂ψ

∂n
, ds, I6 =

∫
Ω−
φ̃−

0 ψ dS and I7 =
∫
Γ

∂φ̂+
0

∂n
∂ψ

∂n
ds. (4.37)

In deriving (4.36) from (4.34), the C0 terms cancel due to (4.23), and the term proportional to σ̂−
integrates to zero since Γ is a closed loop. Noting that I4 and I7 are in general complex, whereas
I1, I3, I5 and I6 are real, the condition (4.36) determines C−1 with

|C−1| = |A|a(( ˜̃k − ˜̃k∗)2 + a2)−1/2, (4.38)

where

A = I7

τ−�(I4)
, a = τ+τ−�(I4)

2I1k∗
, ˜̃k∗ = − I1k̃2∗ − σ̃−I3 − τ+τ−�(I4) + σ 2−I5 + 2k∗k̃∗σ−I6

2I1k∗
. (4.39)
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Figure 6. Amplitudes at z = 0 and z = 0.5 for the wave problem for disc-shaped wires arranged around the unit circle,
for varying wavenumber k. Parameters are M= 30, δ= 0.1 and z0 = 2. Insets show enlargements of the regions close to
resonance. Solid black lines show the numerical solution, dashed blue lines show the ‘thin-wire’ asymptotic result, dashed-
dotted green lines show the non-resonant ‘thick-wire’ asymptotic result, and dotted red lines show the resonant thick-wire
result. Vertical lines indicate the unperturbed resonances for the unit circle. (Online version in colour.)
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Figure 7. (a) Wavenumbers givingmaximum amplitude close to the first resonance for disc-shapedwires arranged around the
unit circle, for varying ε (number of wires) and for different scaled wire radius δ, together with (b) the amplitude (at z = 0)
for that wavenumber. Solid black lines/dots show maxima from the numerical solutions, dashed blue lines show the maxima
from the ‘thin-wire’ asymptotic solution, and dotted red lines show the ‘thick-wire’ resonant asymptotic result. The thin-wire
result is not shown for δ= 0.2 sinceα < 0 in that case, so that approximation is invalid; for δ = 0.01, the thin-wire result is
indistinguishable from the numerical solution in this plot. (Online version in colour.)

From (4.38), it follows that the maximum of |C−1| is |A| at ˜̃k = ˜̃k∗. So, to conclude, the near-resonant

response occurs in a range of wavenumbers of width O(τ+τ−ε2) around k = k∗ + εk̃∗ + ε2 ˜̃k∗, and
the maximum amplitude is O(1/(τ−ε)). The exterior field remains O(1).

The good agreement between these predictions and the result of numerical calculations is
shown in figures 5–7. The insets in figure 6 demonstrates that the shape of the amplitude variation
with wavenumber near the resonance is well captured, and figure 7 demonstrates how the
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position and amplitude at the peak vary with ε. We emphasize that as the number of wires
increases, the resonant response occurs closer to the unperturbed resonant modes of Ω−, over
an increasingly narrow band of wavenumbers, but with an increasingly large amplitude.

(d) Neumann solutions and resonance effects
For the equivalent problems satisfying Neumann conditions on the wires, we have seen in §3
that there is in general much weaker shielding than for Dirichlet conditions. Unless the gaps
between the wires are small, the leading-order homogenized solution does not notice the wires
at all, and even for small gaps the homogenized wires provide a jump condition on Γ that does
not necessarily lead to a weak field inside the cage. Only in the case of ‘very small gaps’ is there a
significant shielding effect. Although this is not the main focus of our study (requiring very small
gaps largely defeats the idea of a Faraday cage), we touch briefly on this very small gap case
because of its analogy to the Dirichlet problems above. In particular, we focus on the perforated
shell introduced in §3, for which the homogenized boundary conditions are (3.37) and (3.38),
which depend on b̃2 ∼ ε2λ as determined from the solution to the boundary-layer cell problem.

For the Laplace problem, the O(1) solutions satisfy ∇2φ−
0 = 0 subject to the homogeneous

Neumann conditions (3.37) on Γ . The interior solution φ−
0 is therefore a constant, which is

determined from the solvability condition on the next-order problem: ∇2φ−
1 = 0 with (3.38) on

Γ . This determines the constant φ−
0 to be the average of the exterior solution, φ+

0 , around Γ . The
correction, which controls the size of |∇φ(0)|, is O(1/(ελ)).

For the Helmholtz problem, the O(1) solutions satisfy (4.10) subject to homogeneous Neumann
conditions (3.19) on Γ . Away from resonance, the interior solution is φ−

0 = 0, and the correction
is again O(1/(ελ)). As for the Dirichlet problem, however, this solution breaks down if k is
close to a resonant wavenumber k∗ for which there is a non-zero solution ψ to (∇2 + k2∗)ψ = 0
in Ω− with ∂ψ/∂n = 0 on Γ . The resonant case can be analysed in an equivalent fashion to
the Dirichlet problem. Without giving the details, we find that the wavenumber is shifted to
k = k∗ + (1/ελ) I2/4k∗I1 + O(1/(ελ)2), where I1 and I2 are as defined in (4.21) for the relevant
eigenfunction, while the peak amplitude at the origin is O(ελ). Recall that in terms of the
scaled gap size 1

2 − δ, we have ελ∼ (ε/π ) log(1/(π ( 1
2 − δ))), so this resonant amplitude grows

logarithmically as the size of the gaps is reduced.

5. Discussion and conclusion
We have derived homogenized boundary conditions for various instances of the two-dimensional
Faraday cage problem, helping to quantify the effect of a wire mesh on electrostatic and
electromagnetic shielding in the limit as the number of wires tends to infinity. We have given an
overview in §3 of the different leading-order behaviour that can occur depending on the scaled
wire size δ, extending previous results for the ‘thin-wire’ regime δ� 1, and incorporating the
effects of finite wire size that in general allow for better shielding. The homogenized conditions
help to clarify how the wire geometry affects the shielding behaviour, through the solution of cell
problems and extraction of far-field constants. This allows us to make some general comments on
the shielding efficiency of different wires. For brevity, we focus our discussion mainly on the case
of Dirichlet boundary conditions.

In the Dirichlet case, we showed that when the exterior wave field is O(1), the interior field
is generally O(τ+ε), where ε= |Γ |/M and τ+ encodes the wire geometry. For thin wires, we
established the approximation (3.14) for τ+, which indicates that the logarithmic capacity of the
wires (controlled by their size and shape) is the key property governing shielding. For thicker
wires, the orientation of the wires also becomes important, and the parameter τ+ can become
small when the gap between wires is small. In this regime, the relationship between the gap
thickness (expressed as a fraction of the length of Γ ) and the size of τ+ is strongly dependent on
the wire shape. For example, τ+ = 0.01 is achieved with a gap thickness of approximately 0.22
for tangential line segments, but as much as 0.54 for circular wires, and 0.61 for square wires.
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Figure 8. Solutions for the wave problem for disc-shaped wires arranged around the unit square with source at z0 = −0.5.
(a) Numerically calculated amplitudes of the wave field at z = 2 for varying wavenumber k, with parameters M= 32 (ε=
0.125), δ = 0.1. Vertical grey solid lines indicate the unperturbed resonances for the unit square, and vertical red dashed lines
show the shifted resonances calculated using theO(ε) perturbation from (4.23). (b) Wavenumber givingmaximum amplitude
close to the first resonance for varying ε, together with (c) the maximum amplitude (at z = 0) for that wavenumber. Solid
black lines/dots showmaxima from the numerical solutions, and dotted red lines show the asymptotic solutions for k∗ + εk̃∗
from (4.23) and for I8/(τ−τ+ε2�(I4)) from (4.39) with the modification in (5.1). (d–e) Example numerical solutions showing
�(φ(z)), away from resonance, and close to one of the resonant wavenumbers. (Online version in colour.)

(For perpendicular line segments, the gap thickness is always 1, but a wire length of 2δ ≈ 1.12 is
required to achieve a correspondingly small value of τ+).

We also derived a model for resonance effects in Faraday cages, showing how the incident
exterior wave field can be amplified by the presence of the cage in a narrow range of
wavenumbers close to (but not centred on) the resonant wavenumbers for the corresponding solid
shell. The analysis showed that at its peak this resonance gives rise to a wave field O(1/(τ−ε))
larger than the incident field, and that this occurs over a range of wavenumbers of width
O(τ−τ+ε2).

A similar analysis applies for a source inside the cage, when it is desired to shield the exterior
region (as for a microwave oven, for example). In that case, for the ‘thick-wire’ regime, away
from resonance the interior solution is O(1) and the exterior field is O(τ−ε). Resonance occurs at
the same shifted eigenvalues as for the exterior source problem, but the peak amplitude is now
O(1/(τ−τ+ε2)), and the corresponding radiated field outside the cage is O(1/(τ+ε)). (The relative
change in field strength from the non-resonant case is the same as in the case of an exterior source).
Essentially, the same analysis as in §4c can be followed, with the same result except that (4.38)
gives the amplitude of the O(1/ε2) interior solution, and the forcing term τ+I7 in (4.39) is replaced
with

I8 =
∫
Ω−

fψ dS. (5.1)

Although our homogenized boundary conditions were derived for smooth cages Γ , applying
the resulting models to non-smooth geometries appears to give reasonable results, at least in
terms of computing resonance shifts and amplitudes. As an example of both this, and the interior
source, we consider a cage of circular wires arranged on a unit square, with a point source located
inside the cage at z = −0.5. Numerical solutions illustrating the resonance effects are shown in
figure 8.
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The unperturbed resonances for this problem are k∗ = (π/2)(l2 + m2)1/2, l, n ∈ N, for which

I1 = 1 and I2 = π

2
(l2 + m2)1/2. (5.2)

To calculate amplitude and corrections, we need to solve for I4 and I8. For the first resonance
(l = m = 1), numerical solution of the relevant exterior problem for φ̃+

0 (performed using the
MPSpack software package, which implements the non-polynomial finite-element method of
Barnett & Betcke [25]) gives I4 ≈ 3.00 − 16.02i, while I8 = 1/

√
2. As figure 8 shows, the analysis

appears to capture the O(ε) resonance shift correctly, as well as the O(1/ε2) variation of the peak
amplitude. To gain more accuracy in the resonance shift, we expect it would be necessary to
consider local approximations in the vicinity of the corners (which were neglected in our analysis)
and match these to the boundary layer and outer expansions, following the procedure outlined
in [13–15].

Our analysis of the Neumann problem shows that, as one might expect, Neumann wires shield
much less effectively than Dirichlet wires of the same size and shape. For the acoustic problem,
this implies that it is very difficult to shield noise using a mesh-like structure made of sound-
hard material unless the gaps are very small. The implication for the electromagnetic problem
is that a cage of parallel wires may provide reasonable shielding of waves whose electric field
is polarized parallel to the wire axes, but will not shield waves whose electric field is polarized
perpendicular to the wires axes. This effect is the basis of many polarizing filters, and explains,
at least intuitively, why the mesh in the doors of microwave ovens is made of a criss-cross wire
pattern or a perforated sheet, rather than from parallel wires aligned in a single direction. In
principle, homogenized boundary conditions for cage problems in the full three-dimensional
electromagnetic case could be derived using the techniques used in this paper, but we leave this
for future work.
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Appendix A. Higher order boundary-layer expansions
In this section, we outline the derivation of the two-term boundary-layer expansion

Φ(N, S; s) =Φ0(N, S; s) + εΦ1(N, S; s) + O(ε2), (A 1)

extending the leading-order analysis given in §3. The higher order expansion is required for our
analysis of near-resonance effects in the Dirichlet case, and the ‘small gap’ regime in the Neumann
case. We begin by noting that the two-term boundary-layer equation generalizing (3.5) is

∂2Φ

∂N2 + ∂2Φ

∂S2 + εκ

(
∂Φ

∂N
− 2N

∂2Φ

∂S2

)
+ 2ε

∂2Φ

∂S∂s
+ O(ε2) = 0. (A 2)

and the periodicity condition remains (3.6). The cell domain on which (A 2) is to hold is different
for the two wire models. For Model 2, when the wire shape is defined in the curvilinear
coordinates, it is simply B = {(N, S) : |S|< 1

2 } \ K, where K = δK, and homogeneous Dirichlet or
Neumann boundary conditions (as appropriate) are imposed on the scaled wire boundary ∂K.

For Model 1, the curvature of Γ complicates matters somewhat. A priori the domain is
Bε = {(N, S) : |S|< 1

2 } \ Kε , where Kε is the scaled wire described in (N, S) coordinates, and the
boundary conditions are to be imposed on Kε . As illustrated in figure 1, Kε is in general perturbed
from K, depending on ε and the local curvature of Γ . This is undesirable, and it is preferable to
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solve cell problems on the fixed cell domain B = {(N, S) : |S|< 1
2 } \ K, as for Model 2. If we only

desire the leading-order approximation of Φ(N, S; s), as in the main text, the change from Bε to
B incurs no loss of asymptotic accuracy. But when higher order terms are required, one needs to
expand the boundary conditions carefully so as to compensate for the geometric deformation.

To do this, note that the relationship (x̃, ỹ) = Fj(ñ, s̃) between the local curvilinear and Cartesian
coordinates, introduced in §2, can be written in terms of the boundary-layer coordinates (N, S) as

x̃
ε

= N − 1
2
εκS2 + O(ε2) and

ỹ
ε

= S + εκNS + O(ε2), (A 3)

as ε→ 0, where κ = κ(s) is the local curvature of Γ . We suppose for definiteness that the boundary
of the reference wire shape, ∂K, is smooth and is given by W(ξ , η) = 0 in Cartesian coordinates
(ξ , η) (cf. figure 1c). The boundary ∂K is then given by W(N/δ, S/δ) = 0 (this is the actual wire
boundary under Model 2), while ∂Kε is given by W(x̃/δε, ỹ/δε) = 0. Expanding this expression
using (A 3) shows that the Dirichlet condition Φ(N, S) = 0 on ∂Kε can be replaced by

Φ(N, S) + εκ d
∂Φ

∂ν
(N, S) + O(ε2) = 0 on ∂K, (A 4)

where κ(s) d(N, S) is the normal perturbation of ∂Kε from ∂K, with

d(N, S) = ( 1
2 S2, −NS) · ν, (A 5)

where ν = (νN , νS) = ∇W/|∇W| is the outward unit normal to ∂K.
A more involved calculation shows that the Neumann condition ∂Φ/∂ν(N, S) = 0 on ∂Kε can

be replaced by

∂Φ

∂ν
(N, S) + εκ

(
d
∂2Φ

∂ν2 (N, S) + d̃
∂Φ

∂ν⊥ (N, S)

)
+ O(ε2) = 0 on ∂K, (A 6)

with

d̃(N, S) = −S + NνNνS − κ∂K(N, S)( 1
2 S2, −NS) · ν⊥, (A 7)

where ν⊥ = (−νS, νN) is the (counterclockwise) unit tangent vector on ∂K, and κ∂K(N, S) is the
curvature of ∂K at the point (N, S). (The normal to ∂Kε is given by ν + εκ d̃(N, S)ν⊥ + O(ε2).)

As a concrete example, consider the circular disc, when W(ξ , η) = ξ2 + η2 − 1. Parametrizing
∂K by (N, S) = δ(cosϑ , sinϑ) for ϑ ∈ [0, 2π ) gives ν = (cosϑ , sinϑ), κ∂K = 1/δ, d = − 1

2 δ
2 cosϑ sin2 ϑ

and d̃= δ sinϑ(1 − 3
2 sin2 ϑ).

To summarize, the boundary-layer problems for Model 1 are given by (A 2) with periodic
boundary conditions (3.6), one of (A 4) or (A 6), and matching conditions as N → ±∞. The
problems for Model 2 are the same except that the geometric correction terms involving d and
d̃ in (A 4) and (A 6) are ignored. We proceed with the analysis for Model 1, but note that the
corresponding solutions for Model 2 can be obtained simply by setting d = d̃= 0 in the following.

(a) Dirichlet problem
For the Dirichlet problem, the leading-order solution has the general form

Φ0(N, S; s) = A+
0 (s)Φ+(N, S) + A−

0 (s)Φ−(N, S), (A 8)

where Φ+ and Φ− are the canonical solutions defined earlier in (3.8)–(3.11).
The O(ε) solution can be written as

Φ1(N, S; s) = A+
1 (s)Φ+ + A−

1 (s)Φ− + κ(s)A+
0 Φ̃

+ + κ(s)A−
0 Φ̃

− + ∂A+
0

∂s
Φ̂+ + ∂A−

0
∂s

Φ̂−, (A 9)
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where Φ̃± and Φ̂± satisfy canonical problems defined in terms of Φ±. The problem for Φ̃± is

∂2Φ̃±

∂N2 + ∂2Φ̃±

∂S2 = −2N
∂2Φ±

∂N2 − ∂Φ±

∂N
in B, (A 10)

∂Φ̃±

∂S
= 0 on S = ±1

2
, (A 11)

Φ̃± = −d(N, S)
∂Φ±

∂ν
on ∂K (A 12)

and Φ̃+(N, S) ∼
{

− 1
2 N2 + σ̃+, N → ∞,

τ̃+, N → −∞,
Φ̃−(N, S) ∼

{
−τ̃−, N → ∞,
1
2 N2 − σ̃−, N → −∞,

(A 13)

where the constants σ̃± and τ̃± are determined as part of the solution. If the wire shape K is
symmetric in ξ , then from (3.12) it follows that Φ̃+(N, S) = −Φ̃−(−N, S), so τ̃− = τ̃+, σ̃− = σ̃+.

The problem for Φ̂± is

∂2Φ̂±

∂N2 + ∂2Φ̂±

∂S2 = −2
∂Φ±

∂S
in B, (A 14)

∂Φ̂±

∂S
= 0 on S = ±1

2
, (A 15)

Φ̂± = 0 on ∂K (A 16)

and Φ̂+(N, S) ∼
{
σ̂+, N → ∞,

τ̂+, N → −∞,
Φ̂−(N, S) ∼

{
τ̂−, N → ∞,

σ̂−, N → −∞,
(A 17)

where the constants σ̂± and τ̂± are again determined as part of the solution. If K is symmetric in
ξ , then Φ̂+(N, S) = Φ̂−(−N, S), so τ̂− = τ̂+ and σ̂− = σ̂+.

The far-field behaviour as N → ±∞ of the two-term solution (A 1), required for matching, is
then

Φ ∼ ∓1
2
εκA±

0 N2 ± (A±
0 + εA±

1 )N + A±
0 σ± + A∓

0 τ∓

+ εA±
1 σ± + εA∓

1 τ∓ ± εκA±
0 σ̃± ± εκA∓

0 τ̃∓ + ε
∂A±

0
∂s

σ̂± + ε
∂A∓

0
∂s

τ̂∓ + O(ε2). (A 18)

(b) Neumann problem
For the Neumann problem, the O(ε) solution can be written as

Φ0(N, S; s) + εΦ1(N, S; s) = A0(s) + ε(A1(s) + B1(s)Ψ (N, S)), (A 19)

where Ψ is the solution of the canonical problem defined in (3.25)–(3.28).
The O(ε2) solution can be written as

Φ2(N, S; s) = A2(s) + B2(s)Ψ + κ(s)B1Ψ̃ + ∂B1

∂s
Ψ̂ +

(
∂2A0

∂s2 + k2A0

)
Ψ̌ , (A 20)

where Ψ̃ (N, S) and Ψ̂ (N, S) satisfy canonical problems involving Ψ (N, S), and Ψ̌ (N, S) satisfies a
canonical correction problem arising from the constant solution. The problem for Ψ̃ (N, S) is

∂2Ψ̃

∂N2 + ∂2Ψ̃

∂S2 = −2N
∂2Ψ

∂N2 − ∂Ψ

∂N
in B (A 21)

∂Ψ̃

∂S
= 0 on S = ±1

2
, (A 22)
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∂Ψ̃

∂ν
= −d(N, S)

∂2Ψ

∂ν2 − d̃(N, S)
∂Ψ

∂ν⊥ on ∂K (A 23)

and Ψ̃ (N, S) ∼ −1
2

N2 ± μ̃N ± λ̃, N → ±∞, (A 24)

where the constants μ̃ and λ̃ are determined as part of the solution. If K is symmetric in ξ , then
Ψ (N, S) = −Ψ (−N, S), so that Ψ̃ (N, S) = Ψ̃ (−N, S) and λ̃= 0.

The constant μ̃ arising here can be evaluated directly from Ψ , by integrating (A 21) over B
and using the divergence theorem, which yields, after application of the boundary and matching
conditions, the formula

μ̃= λ− 1
2

∫
∂K

[(
Ψ − 2N

∂Ψ

∂N

)
νN + d(N, S)

∂2Ψ

∂ν2 + d̃(N, S)
∂Ψ

∂ν⊥

]
dν⊥. (A 25)

The problem for Ψ̂ (N, S) is

∂2Ψ̂

∂N2 + ∂2Ψ̂

∂S2 = −2
∂Ψ

∂S
in B, (A 26)

∂Ψ̂

∂S
= 0 on S = ±1

2
, (A 27)

∂Ψ̂

∂ν
= 0 on ∂K (A 28)

and Ψ̂ (N, S) ∼ ±μ̂N ± λ̂, N → ±∞, (A 29)

where, again, the constants μ̂ and λ̂ are determined as part of the solution. If K is symmetric in ξ
then Ψ̂ (N, S) = −Ψ̂ (−N, S) and μ̂= 0.

Finally, the problem for Ψ̌ (N, S) is

∂2Ψ̌

∂N2 + ∂2Ψ̌

∂S2 = −1 in B, (A 30)

∂Ψ̌

∂S
= 0 on S = ±1

2
, (A 31)

∂Ψ̌

∂ν
= 0 on ∂K (A 32)

and Ψ̌ (N, S) ∼ −1
2

N2 ± μ̌N ± λ̌, N → ±∞, (A 33)

If K is symmetric in ξ then Ψ̌ (N, S) = Ψ̌ (−N, S) and λ̌= 0. Integrating (A 30) over B, as before,
yields the formula μ̌= 1

2 Area(K) [26].
The far-field behaviour as N → ±∞ of (A 1) is then

Φ ∼ −1
2
ε2κB1N2 − 1

2
ε2

(
∂2A0

∂s2 + k2A0

)
N2

+
(
εB1 + ε2B2 ± ε2κμ̃B1 ± ε2 ∂B1

∂s
μ̂± ε2

(
∂2A0

∂s2 + k2A0

)
μ̌

)
N

+ A0 + εA1 ± εB1λ+ ε2A2 ± ε2B2λ± ε2κλ̃B1 ± ε2 ∂B1

∂s
λ̂± ε2

(
∂2A0

∂s2 + k2A0

)
λ̌+ O(ε3).

(A 34)

Appendix B. Cell problem solutions
In this section, we present numerical and analytical solutions to the leading-order boundary layer
cell problems for disc-shaped, perpendicular/tangential line segments and square wires.
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Figure 9. Solutions to the Dirichlet cell problem (3.8)–(3.11) for (a) disc-shaped wires with radius δ, (b) infinitely thin
perpendicular line segments with length 2δ, and (c) square wires with side length

√
2δ. Panels (a(i),b(i),c(i)) show contours of

Φ+(N, S) for δ = 0.2. Panels (a(ii),b(ii),c(ii)) show the constantsσ and τ in the far field expansion, as a function of δ. Dashed
lines show asymptotic behaviour of σ and τ as δ approaches 0 and 1

2 (or δ→ ∞ in (b) here the asymptotic and numerical
curves are almost indistinguishable). In (a), the higher order correction σ̃ from (A 13) is also shown, for Model 1 (solid) and
Model 2 (dashed), and in (c) the upper magenta curve shows σ = τ for a tangential line segment of length 2δ, from (B 4).
(Online version in colour.)

(a) Dirichlet problems
Example solutions for the Dirichlet cell problem (3.8)–(3.11) are shown in figure 9, along with
plots of the corresponding far-field constants σ = σ± and τ = τ±.

The solutions for circular wires in figure 9a are calculated numerically using linear finite
elements, with the constants σ and τ found from a linear fit of the far-field behaviour. For small
wires, δ→ 0, we recall the asymptotic behaviour (3.13) and (3.14). For δ = δmax = 1

2 , the circle takes
up the whole width of the cell domain andΦ+ = 0 for X< 0 (so τ = 0), while a numerical solution
gives σ ≈ −0.44 for the constant as X → ∞. As δ→ 1

2 , the asymptotic behaviour of σ can be found
by solving a perturbation problem numerically, from which we obtain σ ∼ −0.44 + 1.07( 1

2 − δ),
while τ is exponentially small. The solutions for the square wire in figure 9c were also computed
numerically; we note that in this case δmax = 1/

√
2.

Solutions for the two arrangements of line segments can be found analytically by conformal
mapping. For the wires arranged perpendicular to Γ , we obtain

Φ+(N, S) = �
{

1
2π

log
[

e−πδ + ζ

e−πδ − ζ

]}
, ζ =

[
sinhπ (Z − δ)
sinhπ (Z + δ)

]1/2
, Z = N + iS, (B 1)

from which we find

σ = − 1
2π

log
(

sinh 2πδ
2

)
and τ = − 1

2π
log (tanhπδ) . (B 2)

These have limiting behaviour σ ∼ τ ∼ −( 1
2π ) log(πδ) as δ→ 0 (so that in particular a0 = log 2),

and σ ∼ −δ + (1/π ) log 2, τ ∼ (1/π )e−2πδ as δ→ ∞, as shown in figure 9b.
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Figure 10. Solutions to the Neumann cell problem (3.25)–(3.28) for (a) disc-shaped wires with radius δ, (b) infinitely thin
line segments with length 2δ, and (c) square wires with side length

√
2δ. Panels (a(i),b(i),c(i)) show contours ofΨ (N, S) for

δ = 0.3. Panels (a(ii),b(ii),c(ii)) show the constantλ in the far field expansion, as a function of δ. The dashed lines in (a) show
the approximations λ∼ πδ2 and λ∼ πδ2/(1 − (πδ)2/3) [22], and in (b) show the behaviour as δ approaches 0 and 1

2
(here the asymptotic and numerical curves are almost indistinguishable). (Online version in colour.)

For the wires arranged tangentially along Γ , we obtain

Φ+(N, S) = �
{

1
2π

log

[
eiπδ + ζ

e−iπδ − ζ

]}
and ζ =

[
sinπ (iZ + δ)
sinπ (iZ − δ)

]1/2
, Z = N + iS, (B 3)

from which we find

σ = τ = − 1
2π

log(sinπδ). (B 4)

This again has σ ∼ τ − ( 1
2π ) log(πδ) as δ→ 0 (so a0 = log 2), while σ ∼ τ ∼ 1

4π ( 1
2 − δ)2 as δ→ 1

2 .

(b) Neumann problems
Example solutions for the Neumann cell problem (3.25)–(3.28) are shown in figure 10.

The circular wire case is again calculated numerically, although the asymptotic behaviour for
small and large circles provides a good fit over the whole range of δ. For δ→ 0, the solution away
from the wire can be written approximately as

Ψ (N, S) ∼ �
{

Z + δ2π

tanhπZ

}
, Z = N + iS, (B 5)

which gives λ∼ πδ2 as δ→ 0. (The strength of the singularity here is again determined by
matching to an inner region close to the wire, as in [3, §B], where Ψ ∼ �{Z + δ2/Z}). We remark
that the analysis in [22] provides a more refined approximation λ∼ (πδ2)/(1 − (πδ)2/3), which is
also plotted in figure 10. For δ→ 1

2π , one can show that λ∼ 1
4π ( 1

2 − δ)−1/2.
For line segments arranged perpendicular to Γ , the wire has no impact on the solution, which

is simply Ψ (N, S) = N, so λ= 0. For line segments arranged tangentially along Γ , conformal
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mapping yields

Ψ (N, S) = �
{

1
2π

log

[
(eiπδ − ζ )(e−iπδ + ζ )
(e−iπδ − ζ )(eiπδ + ζ )

]}
, ζ =

[
sinπ (iZ + δ)
sinπ (iZ − δ)

]1/2
, Z = N + iS, (B 6)

from which we find

λ= − 1
π

log(cosπδ). (B 7)

This has limiting behaviour λ∼ 1
2πδ

2 as δ→ 0, and λ∼ −(1/π ) logπ ( 1
2 − δ) as δ→ 1

2 . Using (A 6)
in (A 25), for Model 2, we find that μ̃= 0, along with μ̂= 0 (by symmetry) and μ̌= 0.
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