
Real-Time Risk Management: An AAD-PDE Approach

Luca Capriotti†‡, Yupeng Jiang‡, Andrea Macrina‡ ?∗

‡ Quantitative Strategies, Investment Banking Division, Credit Suisse Group,

One Cabot Square, London E14 4QJ, United Kingdom

‡ Department of Mathematics, University College London,

London WC1E 6BT, United Kingdom

? Department of Actuarial Science, University of Cape Town,

Rondebosch 7701, South Africa

November 24, 2015

We apply adjoint algorithmic differentiation (AAD) to the risk management of se-

curities when their price dynamics are given by partial differential equations (PDE).

We show how AAD can be applied to forward and backward PDEs in a straightforward

manner. In the context of one-factor models for interest rates or default intensities, we

show how price sensitivities are computed reliably and orders of magnitude faster than

with a standard finite-difference approach. This significantly increased efficiency is

obtained by combining (i) the adjoint forward PDE for calibrating model parameters,

(ii) the adjoint backward PDE for derivatives pricing, and (iii) the implicit function

theorem to avoid iterating the calibration procedure.

Keywords: Adjoint algorithmic differentiation, option pricing by PDE, model cal-

ibration, parameter sensitivities, risk management

∗Corresponding author: a.macrina@ucl.ac.uk

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/79541426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Risk management of derivatives securities comes with a high computational burden and

technology cost. This has become especially true in the aftermath of the financial crisis

because of the renewed emphasis in sound risk management practices and the introduction of

a large number of valuation adjustments, collectively known as XVA, see Crépey et al. (2014).

These adjustments aim at capturing counterparty risk and other funding and capital costs

that, while not accounted for in classical pricing theory, significantly affect the profitability

of trading operations. XVAs are computationally expensive to obtain because they typically

involve the simultaneous valuation of large sets of trades.

Standard approaches for the calculation of risk require repeated portfolio valuation under

hundreds of market scenarios. As a result, in order to complete risk calculations in practical

time spans, financial firms employ vast computational resources bearing high infrastructure

costs. Since the total cost of “through-the-life” risk management can determine whether it

is profitable to execute a new trade, solving such technological challenge is of paramount

importance for a securities firm to remain competitive.

In this backdrop, a computational technique known as “Adjoint Algorithmic Differenti-

ation” was recently introduced in Capriotti (2011). It has been proven to be effective for

speeding up the calculation of sensitivities, especially for Monte Carlo applications. This

powerful technique allows for fast computation of first-order sensitivities without repeating

several times the portfolio valuation as in traditional finite-difference approaches.

“Algorithmic Differentiation” (AD), see Griewank (2000), is a scheme for the efficient

calculation of derivatives of functions, which are implemented as computer programs. What

makes AD particularly attractive, when compared to standard finite-difference methods for

the calculation of derivatives, is its computational efficiency. AD exploits the information

on the structure of the computer code in order to optimise the calculation. In particular,

when derivatives of a small number of outputs with respect to a large number of inputs are

required, the calculation can be optimised by applying the standard chain rule of calculus

2

through the instructions of the programme in opposite order with respect to their original

evaluation. This gives rise to the Adjoint (mode of) Algorithmic Differentiation (AAD).

Most of the applications considered in the financial literature so far have focused on

Monte Carlo simulations. In that context, AAD can be used to implement efficiently the so-

called Pathwise Derivative Method, see Broadie and Glasserman (1996), for the calculation

of sensitivities. In this paper, we extend this research area and demonstrate how AAD can

be extremely effective for applications with partial differential equations (PDE). We show

how AAD can be utilised to speed up the calculation of the sensitivities in situations where

the pricing of the derivative and the calibration of the underlying stochastic model rely

on solving PDEs, multiple times. We further show how one can compute price sensitivities

more reliably and orders of magnitude faster than with standard finite-difference approaches.

This is achieved with a judicious combination of the adjoint version of the numerical schemes

for forward and backward PDEs, see Andersen and Piterbarg (2010), and by the so-called

implicit function theorem. We provide step-by-step instructions for the AAD-PDE scheme

to facilitate its ready implementation in “real-time” financial risk management.

This paper is organised as follows: In the next section we begin by recalling the standard

formalism for the valuation of securities prices by means of PDEs. As an example, we

shall focus our discussion on one-factor short-rate models, which are ubiquitous in financial

practice for the pricing and risk management of interest rate and credit derivatives. We

recall the standard numerical approach for the numerical solution of backward PDEs, and

in Section 3 we review the equivalent forward PDE approach and its use for the efficient

implementation of calibration algorithms. Section 4 presents the general principles of AAD

and their application to the numerical solution of the forward and backward PDEs. The

results of numerical experiments are found in Section 5. We conclude with Section 6 where

we summarise the main contributions of this work.

3

2 Option prices and backward PDEs

Option pricing problems can be often formulated in terms of a linear parabolic partial dif-

ferential equation of second order of the form

∂V

∂t
+ µ(x, t; θ)

∂V

∂x
+

1

2
σ2(x, t; θ)

∂2V

∂x2
− ν(x, t; θ)V = 0, (1)

where

Vt(θ) = V (xt, t; θ) ≡ E
[
exp

(
−
∫ T

t

ν(xu, u; θ)du

)
P (xT ; θ)

∣∣∣xt] (2)

is the value of a derivative contract at time t; see, e.g., Wilmott (2007). The expectation

is taken under a suitable probability measure, depending on the financial context, given the

value of a state variable xt at time t ≥ 0. At the maturity date T > t, the value P (xT ; θ) of

the financial derivative depends on the realisation of the risk factor {xt}0≤t that satisfies

dxt = µ(xt, t; θ)dt+ σ(xt, t; θ)dWt (3)

where µ(x, t; θ) and σ(x, t; θ) are the drift and the volatility functions, and {Wt}0≤t is a

one-dimensional Brownian motion. Here and in the following, θ = (θ1, . . . , θNθ) represents

the vector of Nθ parameters the model is dependent on. By supplying appropriate spatial

boundary conditions, see Iserles (2009) and Wilmott (2007), and the terminal condition

V (x, T ; θ) = P (x; θ) at maturity T , Equation (1) can be solved backwards in time for the

value V (x, t; θ) of the derivative security at any time t ≤ T .

The Black-Scholes PDE for the price of European-style claims is of the form (1) where

µ(x, t; θ) = (r(t)− δ(t))x, σ(x, t; θ) = σ(t)x and ν(x, t; θ) = r(t). Here r(t) and δ(t) denote

the (deterministic) risk-free interest rate and dividend yield, respectively.

One-factor short-rate models for applications to interest-rate derivatives pricing, such as

the models by Hull and White (1996), Cox et al. (1985), or by Black and Karasinski (1991)

can also be described in terms of a random driver that satisfies a diffusion of the form (3).

4

For example, the Black-Karasinski (BK) model can be expressed by setting the (stochastic)

instantaneous rate of interest to rt ≡ r(xt) = exp(xt) where {xt}0≤t satisfies

dxt = κ(t) (µ(t)− xt) dt+ σ(t)dWt, (4)

and where κ(t) and µ(t) are the mean-reversion speed and level, respectively. In the context

of short-rate models, the value of a derivative security with expiry value P (rT ; θ) can be

expressed as in (2) with ν(xu, u; θ) = r(xu) where the expectation is taken under the risk-

neutral measure. In this case the components of the vector θ are typically the coefficients

used to parameterise the mean-reversion speed and level, and the volatility of the process.

Since the BK-model is a positive stochastic process, it can be applied for the modelling

of stochastic default intensity, which is known as Cox process, see O’Kane (2011). In this

context, xt = ln(ht) in Equation (4) is the logarithm of the hazard rate {ht}0≤t, which

represents the (risk-neutral) default probability per unit of time of a reference (financial)

entity between times t and t + dt, conditional on survival up to time t. By modelling the

default event of an obligor as the first arrival time τ of a Poisson process, the conditional

(risk-neutral) probability of the obligor surviving up to time T is given by

Q(ht, t, T) = E
[
exp

(
−
∫ T

t

hu du

) ∣∣∣ht, τ > t

]
. (5)

Any credit derivative of which payoff at time T is a function of the hazard rate hT , such

as defaultable bonds, credit default swaps (CDS), bond options and CDS options, can be

priced with the backward PDE (1).

5

2.1 Numerical solutions by finite-difference discretisation for back-

ward PDEs

The solution Vt0(θ) = V (xt0 , t0; θ) of the PDE (1) can be found numerically by discretisation

on the rectangular domain (t, x) ∈ [t0, T] × [xmin, xmax] where xmin and xmax (such that

xmin < xt0 < xmax) are constants obtained by means of probabilistic considerations, see

Wilmott (2007). In particular, by denoting (i) the points on the time axis by tm = t0 +m∆t

where m = 0, . . . ,M and ∆t = (T − t0)/M , and (ii) the points on the spatial axis by

xj = xmin + j∆x, where j = 0, . . . , N + 1 and ∆x = (xmax−xmin)/(N + 1), one can discretise

the PDE (1) with finite-difference approximations for the first and second derivatives. A

standard discretisation scheme, see Andersen and Piterbarg (2010) and Wilmott (2007),

results in a matrix iteration of the form

LB(tm, φ; θ)V m(θ) = RB(tm, φ; θ)V m+1(θ) + β(tm+1; θ) (6)

where V m(θ) = (V (x1, tm; θ), . . . , V (xN , tm; θ))> and V (tm, xj; θ) indicate the finite-difference

approximation to the solution of the PDE (1)1. We introduce the N×N tri-diagonal matrices

LB(tm, φ; θ) = I− φ∆tD(t̃m(φ); θ), (7)

RB(tm, φ; θ) = I + (1− φ)∆tD(t̃m(φ); θ), (8)

where t̃m(φ) = (1 − φ)tm + φ tm. Both expressions are defined in terms of the tri-diagonal

matrix D(t; θ) given by

[D(t; θ)]j,j = cj(t; θ), [D(t; θ)]j,j+1 = uj(t; θ), [D(t; θ)]j+1,j = lj+1(t; θ), (9)

1To keep the notation as light as possible, we denote the exact solution of the PDE (1) and its finite-
difference approximation with the same symbol.

6

where j = 1, . . . , N in the first equation and j = 1, . . . , N − 1 for the second and third. The

coefficients

cj(t; θ) = −σ(xj, t; θ)
2∆x−2 − ν(xj, t; θ), uj(t; θ) =

1

2
µ(xj, t; θ)∆x

−1 +
1

2
σ(xj, t; θ)

2∆x−2,

lj(t; θ) = −1

2
µ(xj, t; θ)∆x

−1 +
1

2
σ(xj, t; θ)

2∆x−2, (10)

are defined in terms of the functions µ(x,t; θ), σ(x,t; θ) and ν(xj, t; θ) in the PDE (1). More-

over, β(tm+1; (θ)) is an N -dimensional vector encoding suitable spatial boundary conditions

which cannot be included in the matrix D(t; θ). The parameter φ is bounded between φ = 0,

corresponding to the fully explicit scheme, and φ = 1, corresponding to the fully implicit

scheme. Both schemes are characterised by an accuracy O(∆x2,∆t). The case φ = 1/2

corresponds to the Cranck-Nicholson (CN) method, see Crank and Nicolson (1947), which is

generally the method of choice in financial applications because it is characterised by an ac-

curacy O(∆x2,∆t2) as well as it being unconditionally stable. However, in some situations,

e.g., for discontinuous payoff functions, combining the CN method with fully-implict itera-

tions (as in the so-called “Rannacher stepping”) has been shown to improve the accuracy of

the numerical solution, see Pooley et al. (2003).

Given the value of the derivative at maturity V M
j (θ) = P (xj; θ), Equation (6) can

be recursively solved, by utilising standard tri-diagonal solvers (e.g., based on the LU-

decomposition found in Wilmott (2007)) for m = M − 1, . . . , 0, in order to find the vector

V 0
j (θ). From this, the value of the derivative Vt0 = V (xt0 , t0; θ), corresponding to the state

variable xt0 observed at time t0, can be computed by means of, e.g., linear interpolation,

Vt0 = V 0
j? +

V 0
j?+1 − V 0

j?

xj?+1 − xj?
(xt0 − xj?), (11)

with j? such that xj? ≤ xt0 < xj?+1. The associated algorithm is given as follows:

7

(S1) Initialise the value vector on the final time slice V M
j (θ) = P (xj; θ) with j = 0, . . . , N :

V M = PAYOFF(θ). (12)

(S2) For m = M − 1, . . . , 0 execute the following steps:

a) Compute the coefficient vectors cm(θ) ≡ c(t̃m(φ); θ), um(θ) ≡ u(t̃m(φ); θ), and

lm(θ) ≡ l(t̃m(φ); θ) in Equations (10): (cm, um, lm) = COMPUTECOEFFM(θ).

b) Compute the matrices LmB (θ) ≡ LB(tm, φ; θ) and Rm
B (θ) ≡ RB(tm, φ; θ) in Equa-

tions (7) and (8) from the coefficients vectors cm(θ), um(θ), and lm(θ):

(LmB , R
m
B) = COMPUTELRB(cm, um, lm). (13)

c) Compute the boundary condition vector βm+1(θ) ≡ β(tm; θ) by

βm+1 = COMPUTEBC(θ). (14)

d) Given V m+1, solve Equation (6) for V m by calling a suitable tri-diagonal solver

such as

V m = TRIDIAGSOLVER(LmB , R
m
B , β

m+1, V m+1), (15)

which we can represent mathematically as the following sequence of operations:

Um+1 = Rm
BV

m+1, Wm+1 = Um+1 + βm+1, V m = Wm+1/LmB , (16)

where we adopte the notation “B/A” to represent finding the solution X of the

linear system AX = B.

(S3) Compute Vt0 = V (xt0 , t0; θ) with a suitable interpolation scheme, e.g., the scheme of

(11), by calling a method of the kind Vt0 = COMPUTESPOTVALUE(V 0),

8

Since the matrix (9) is tri-diagonal, the cost of a single iteration of Equation (6) is O(N).

As a result, the overall computation complexity of the algorithm above is O(NM).

2.2 Intermediate cashflows

Incorporating intermediate cash flows, which for instance may arise from coupon payments,

in the finite-difference scheme is immediate and results in the following modification of the

second step (S2) in the previous section:

e) Initialise any additional payoff that might be necessary for the valuation of intermediate

cash-flows C(t, xt; θ), when their value is not available in closed form, by Cm+1
m+1 =

AUXILIARYPAYOFF(θ). Here Cmk is the value vector at time tm of a set of auxiliary

securities with expiry tk.

f) For k = m+ 1, . . . ,M execute the tri-diagonal solver

Cmk = TRIDIAGSOLVER
(
LmB , R

m
B , β

m+1, Cm+1
k

)
.

g) Compute the intermediate cash-flow at time tm and update the value vector

Cm = COMPUTECASHFLOW({Cmk }k=m+1,...,M , θ), V m +=Cm, (17)

where Cm
j = C(tm, xj; θ). We make use of the notation += for the standard “addition

assignment” operator.

In the most common situations, when the backward PDE (1) is used to value an interest

rate (resp. credit derivative), the auxiliary value vectors Cmk in the steps above represent the

value of the conditional discount factors

Cmk = Z(rtm , tm, tk) ≡ E
[
exp

(
−
∫ tk

tm

ru du

) ∣∣∣ rtm] ,

9

with rt = r(xt); respectively the value of the conditional survival probabilities Q(htm , tm, tk)

in Equation (5).

2.3 American-style options

The numerical algorithm described in the previous section can be extended to handle the

pricing of securities with early exercise features, like Bermudan-style and American-style

options, see Wilmott (2007), provided that the exercise value can be expressed in terms of a

deterministic function of the form E(xt, t; θ). Indeed, on each exercise date Te, the Bellman

principle, see Bellman (1952), can be expressed as a simple jump condition

V (x, Te; θ) = max
(
V (x, T+

e ; θ), E(x, T+
e ; θ)

)
. (18)

By indicating with Te the set of early exercise dates (assumed for simplicity to be a subset

of the discretisation dates tm, m = 0, . . . ,M), early exercise can be incorporated into the

finite-difference scheme of the previous section as the following modification of (S2):

e) Initialise any additional payoff that might be necessary for the valuation of the exercise

function E(xt, t; θ), or the valuation of the intermediate cash-flow C(t, xt; θ) (if any),

when their expressions are not available in closed form by Cm+1
m+1 = AUXILIARYPAYOFF(θ).

Here, as in Section 2.2, Cmk is the value vector at time tm of a set of auxiliary securities

with expiry tk.

f) As in Section 2.2.

g) As in Section 2.2.

h) If tm ∈ Te, execute the instructions Em = COMPUTEEXERCISEVALUE({Cmk }k=m+1,...,M , θ),

Hm = V m, and V m = EARLYEXCERCISE(Hm, Em), where (i) the first function computes

the early exercise function E(xtm , tm; θ), possibly using the auxiliary information Cmk ,

k = m+1, . . . ,M , (ii) the second instruction assigns V (xtm , t
+
m; θ) to the so-called “hold

10

value” Hm, and (iii) EARLYEXCERCISE applies the Bellman condition (18) to determine

V (xtm , tm; θ).

If the financial option may be exercised continuously in a given time interval, e.g., as for

American-style options, then the set Te contains all the dates of the finite-difference grid in

the time interval in which early option exercise is contractually allowed. This algorithm is

generally accurate to first order in the time step, even when the CN scheme is employed,

although a number of schemes are available to restore the second order convergence, see

Wilmott (2007).

3 Arrow-Debreu prices and forward PDEs

An alternative approach to derivatives pricing is to solve the backward PDE (1) by the

Arrow-Debreu price density, e.g., Karatzas and Shreve (1998), which is also known as Green’s

function. In the present setting, the Arrow-Debreu price density reads:

ψ(y, T |xt, t) = E
[
δ(y − xT) exp

(
−
∫ T

t

ν(xu, u; θ)du

) ∣∣∣xt] , (19)

where δ(·) denotes the standard Dirac delta distribution. In the context of interest rate

derivatives and short-rate models introduced in Section 2, the price Vt0(θ) at time t0 of a

European-style option with maturity date T and payoff function P (rT ; θ) is given by

Vt0(θ) = V (xt0 , t0; θ) = E
[
exp

(
−
∫ T

t0

rudu

)
P (rT ; θ)

∣∣∣xt0] ,
where rt = r(xt) is the instantaneous short rate. The option price can be computed by

integrating the product of the payoff function and the Arrow-Debreu price density over all

the possible values the short rate may take at time T , that is

Vt0(θ) =

∫
R
ψ(x, T |xt0 , t0)P (x; θ)dx. (20)

11

The integration is performed over the range of the function x = r−1(rT). In particular, the

price Z(rt0 , t0, T) at time t0 of a discount bond with maturity T , can be obtained as a special

case by setting P (x; θ) = 1:

Z(rt0 , t0, T) =

∫
R
ψ(x, T |xt0 , t0)dx, (21)

where rt0 = r(xt0). In the context of default intensity models, the conditional probability

(5) can be expressed similarly to Equation (21).

It is well known, see e.g., Karatzas and Shreve (1998), that the Arrow-Debreu price

density (19) satisfies the following conjugate forward PDE:

∂tψ(x, t |xt0 , t0) =
(
− ν(x, t; θ)− ∂xµ(x, t; θ) +

1

2
∂2xσ

2(x, t; θ)
)
ψ(x, t |xt0 , t0), (22)

where the initial condition is given by ψ(x, t0 |xt0 , t0) = δ(xt0 − x). The Arrow-Debreu price

density ψ(xt, t |xt0 , t0) can be determined for every t > 0 by solving Equation (22) forward

in time.

3.1 Numerical solutions by finite-difference discretisation for for-

ward PDE

The conjugate forward PDE (22) can be discretised by following similar steps to the ones

illustrated in Section 2.1 for the backward PDE. For instance, by approximating the Arrow-

Debreu price density ψ(x, t0 |xt0 , t0) = δ(xt0 − x) at time t0 with its discretised counterpart

ψ0 ≡ ψ(xj, t0 |xt0 , t0) = ∆x−1δj,j? , where δj,j? is Kronecker’s delta and xj? is the closest spa-

tial grid point to xt0 , and by setting for the spatial boundary conditions ψ(xmin, tm |xt0 , t0) =

ψ(xmax, tm |xt0 , t0) = 0, one can compute the vector ψm(θ) = (ψ(x1, tm |xt0 , t0), . . . , ψ(xN , tm |xt0 , t0))>

12

for m = 0, . . . ,M by iterating the matrix recursion

LF (tm, φ; θ)ψm+1(θ) = RF (tm, φ; θ)ψm(θ), (23)

for m = 0, . . . ,M − 1, where

LF (tm, φ; θ) = I + (1− φ)∆tDT (t̃m(φ); θ), (24)

RF (tm, φ; θ) = I− φ∆tDT (t̃m(φ); θ). (25)

The matrix D(t; θ) is determined by Equation (9). The algorithm to solve numerically the

forward PDE (22) can be described therefore by:

(S1) Initialise the value vector on the initial time slice ψ0(θ) = ∆x−1δj,j? with j = 0, . . . , N

by ψ0 = DELTA(), which has, in our setup, no dependence on θ 2.

(S2) For m = 0, . . . ,M − 1, execute

ψm+1 = PROPAGATEADPRICE(ψm; θ), (26)

consisting of the following steps:

a) Compute the coeffiecients cm(θ) ≡ c(t̃m(φ); θ) , um(θ) ≡ u(t̃m(φ); θ), and lm(θ) ≡

l(t̃m(φ); θ) in Equations (10) by (cm, um, lm) = COMPUTECOEFFM(θ).

b) Compute the matrices LmF (θ) ≡ LF (tm, φ; θ) and Rm
F (θ) ≡ RF (tm, φ; θ) in Equa-

tions (24) and (25) from the vectors of coefficients cm(θ), um(θ) and lm(θ) by

(LmF , R
m
F) = COMPUTELRF(cm, um, lm). (27)

2The generalisation to the more general situation is straightforward.

13

c) Given ψm, solve Equation (23) for ψm+1 by calling a suitable tri-diagonal solver

ψm+1 = TRIDIAGSOLVER(LmF , R
m
F , 0, ψ

m), (28)

executing Wm+1 = Rm
F ψ

m and ψm+1 = Wm+1/LmF .

Here we make use of the notation introduced at the end of Section 2.1. In order to compute

the value Vt0(θ) of a derivative asset, one needs to compute the integral (20) numerically,

e.g., by means of Gaussian quadrature.

(S3) Given the payoff vector P = P (x; θ), execute Vt0 = INTEGRATE(P, ψM), where Pj =

P (xj; θ), which performs the numerical integration corresponding to Equation (20).

As for the backward PDE, the overall computational complexity of the algorithm above is

of order O(NM).

3.2 Forward PDEs and calibration

The valuation of a derivative security can be split in two distinct steps, a calibration and a

pricing step. In the calibration step,

θ = CALIBRATION(M), (29)

the parameters of the model θ = (θ1, . . . , θNθ), are calibrated in order to reprice simple and

liquidly-traded financial instruments. We denote the price of such instruments with the

market parameter vector M = (M1, . . . ,MNM). For instance, for the BK-model (4), in

the context of interest rate models (resp. credit models), the mean-reversion level µ(t) is

calibrated to the prices of the instruments used to build a yield curve or, equivalently, a set

of discount bond rates (resp. a set of prices of CDS or also par spreads, see O’Kane (2011)).

Similarly, the volatility function, or a combination of the volatility and the mean-reversion

speed function, can be calibrated to swaptions prices or implied volatilities, see Andersen

14

and Piterbarg (2010). In the pricing step, the parameters θ are mapped to the values of the

derivative security, or portfolio of NV securities:

V = PRICING(θ), (30)

so that the concatenation of the calibration of the calibration and the pricing step can be

seen as a map of the form M→ θ → V .

The calibration step (29) typically involves an iterative routine, e.g., performing a numer-

ical root search or least-square minimisation. Forward PDEs and combinations of forward

and backward PDEs are usually used to implement efficiently the calibration step. In the

following we will assume that the mean-reversion level µ(t), the mean-reversion speed κ(t)

and the volatility function σ(t) in Equation (4) are all (left-continuous) piecewise constant

on the time line T1 < . . . < TL (assumed uniform for simplicity in the following), which is

a subset of the discretisation time axis tm, m = 0, . . . ,M , with, e.g., T1 > t0 and TL = tM ,

and we indicate with η(i) the map such that Ti = tη(i), for i = 1, . . . , L and η(0) = 0. The

model parameter θ can therefore be expressed in terms of the levels of such functions in

each piece-wise interval, namely θ = (µ1, . . . , µL, κ1, . . . , κL, σ1, . . . , σL), where µi = µ(Ti),

κi = κ(Ti) and σi = σ(Ti), for i = 1, . . . , L.

In the credit context, the first goal of the calibration is to match the survival proba-

bilities in Equation (5), Q(ht0 , t0, Ti), i = 1, . . . , L, with their market-implied counterparts

Qmkt(t0, Ti), implied in turn via a standard bootstrap procedure (see O’Kane (2011)) from

a set of CDS quotes observed in the market. Here ht0 = exp(xt0) is a free parameter of the

model that for simplicity we assume fixed at some reasonable value.

The algorithm for the calibration of the mean-reversion level function can be described

as follows. Initialise ψ0 with (S1) of Section 3.1 and for i = 1, . . . , L, proceed as follows.

(S1) Make a choice for µi.

(S2) Perform the instructions in (26) for m = η(i− 1), . . . , η(i)− 1 and determine ψη(i).

15

(S3) Determine the numerical approximation of the survival probability in Equation (5)

given byQ(ht0 , t0, Ti) = INTEGRATE
(
1, ψη(i)

)
, where 1 is theN -dimensional unit vector.

(S4) If the computed value Q(ht0 , t0, Ti) equals what is quoted in the market, then stop,

otherwise go back to (S1) above.

The cost of the algorithm above is O(MNNav) where Nav is the average number of root

search iterations of (S1)-(S3) above, and it is O(N) more efficient than what can be achieved

with a backward PDE approach, see Andersen and Piterbarg (2010).

The calibration of the volatilities parameters to, e.g., a collection of K CDS options with

expiry dates T ei , i = 1, . . . K (assumed for simplicity to be a subset of {Ti}Li=1) and with

underlying CDS maturity at time TL, can be implemented efficiently with a combination of

the forward and backward algorithms. Here we assume, for simplicity, a stylised payoff for

a CDS (payer) option with expiry date T ei and underlying maturity TL of the form

P swpt
(
hT ei , T

e
i , TL

)
=
(
s
(
hT ei
)
− c
)+A (hT ei , T ei , TL) , (31)

where c is the running coupon of the CDS at which the option can be exercised, and

A(hT ei , T
e
i , TL) and s(hT ei) are respectively, the credit-risky annuity and the par-spread for a

TL maturity CDS contract starting at time T ei . The price at time T ei of a credit-risky annu-

ity is given by A(hT ei , T
e
i , TL) =

∑
tm∈C(T ei ,TL)

∆tc Z(T ei , tm)Q(hT ei , T
e
i , tm), where C(T ei , TL) is

the set of discretisation dates tm corresponding to the coupon dates3 for a CDS starting at

time T ei and maturing at TL. The interval ∆tc is the length of the coupon period (assumed

uniform and commensurate with the spacing of the time grid T1, . . . , TL for simplicity), and

Z(t, tm) = exp

(
−
∫ tm

t

rudu

)

is the deterministic discount factor. The CDS par-spread is defined by

3We can assume for simplicity that the coupon dates are a subset of the discretization dates tm, m =
1, . . . ,M .

16

s(hT ei) = L(hT ei , T
e
i , TL)/A(hT ei , T

e
i , TL)

where L(hT ei , T
e
i , TL) is the (discounted expected) loss

L(hT ei , T
e
i , TL) = (1−R)

∫ TL

T ei

Z(T ei , u)

(
−

dQ(hT ei , T
e
i , u)

du

)
du,

and R is the expected recovery rate (assumed independent of the default time). In a discre-

tised setting, the expected loss is generally approximated by

L(hT ei , T
e
i , TL) = (1−R)

∑
tm∈C(T ei ,TL)

Z (T ei , tm)
(
Q(hT ei , T

e
i , tm −∆tc)−Q(hT ei , T

e
i , tm)

)
,

so that the payoff in Equation (31) can be computed, provided the conditional survival

probabilities Q(hT ei , T
e
i , tm), with tm ∈ C(T ei , TL) and i = 1, . . . , K can be calculated. The

calculation of the price of a swaption with expiry T ei , i = 1 . . . , K, and underlying CDS-

maturity TL,

V swpt
t0 (T ei , TL) = Z (t0, T

e
i)E

[
P swpt

(
hT ei , T

e
i , TL

)
|xt0

]
,

given a set of volatilities σ1, . . . , σL, can be implemented as follows:

(S1′) By applying the forward induction above, calibrate µl, l = 1, . . . , L. Save the Arrow-

Debreu prices ψ
η(l)
j = ψ(xj, Tl |xt0 , t0) where l = 1, . . . , L.

(S2′) Execute (S2) of the backward induction algorithm in Section 2.1 equipped with the

steps e) and f) of Section 2.2. The auxiliary securities are chosen such that they provide

a unit cash-flow at each coupon date of the CDS underlying the options, namely Cmm = 1

for tm ∈ C(T ei , TL), and zero otherwise. As a result, [Cmk]j represents the conditional

survival probability Q(xj, tm, tk).

(S3′) Given the survival probabilities Q(xj, T
e
i , tm), for tm ∈ C(T ei , TL), computed in (S2′)

a) create the CDS option payoff in Equation (31), and

17

b) integrate the payoff against ψ(xj, T
e
i |xt0 , t0) by numerical quadrature, as in Equa-

tion (20). Then produce the value V swpt
t0 (T ei , TL) of the swaption at time t0.

For processes characterised by a weak dependence of swaption prices on instantaneous volatil-

ity after the expiry, the calibration of the volatilities σ1, . . . , σL can be performed with the

following bootstrap procedure, see e.g., Andersen and Piterbarg (2010): Starting from the

first option expiry date T e1 , one can vary all the knot points of the instantaneous volatilities

at times before T e1 while keeping the others constant until the value V swpt
t0 (T e1 , TL) of the

swaption is matched. Similarly, for the subsequent dates T ei , one can simultaneously vary

all the knot points of the instantaneous volatilities at the times between (and including)

T ei−1 and T ei until the value V swpt
t0 (T ei , TL) of the swaption is matched. On the last expiry

date T eK , one can vary all the knot points of the instantaneous volatilities at T eK−1 and after

until the value V swpt
t0 (T eK , TL) of the swaption is matched. Since a swaption price has a weak

dependence on all the volatilities past its expiry dates, the bootstrap procedure above needs

to be repeated a few times until convergence is achieved. Conversely, when swaption prices

have a strong dependence on volatility after expiry, one cannot apply the bootstrap proce-

dure above and the recourse to a multidimensional solver is necessary. This is the case for

instance for the BK model in Equation (4).

4 AAD and PDEs

4.1 Adjoint algorithmic differentiation

The main idea underlying algorithmic differentiation, see e.g. Griewank (2000), is that any

computer implemented function – no matter how complicated – can be interpreted as a

composition of basic arithmetic and intrinsic operations that are easy to differentiate. In

particular, when one requires the derivatives of a small number of outputs with respect to a

large number of inputs, the calculation can be optimised by applying the chain rule through

18

the instructions of the program in opposite order with respect to their original evaluation.

This gives rise to Adjoint Algorithmic Differentiation (AAD). The book by Griewank (2000)

contains a detailed discussion of the computational cost of AAD. In this section, we will only

recall the main results in order to clarify how this technique can be beneficial for financial

computations and implementations. The reader can find in Capriotti and Giles (2010) several

simple examples illustrating the intuition behind these results.

We now consider a function

Y = FUNCTION(X) (32)

that maps a vector X ∈ Rn to a vector Y ∈ Rm through a sequence of steps X → . . . →

U → V → . . . → Y . The real vectors U and V represent intermediate variables in the

calculation, and each step can be a distinct high-level function or even a specific instruction.

The adjoint mode of algorithmic differentiation results from propagating the derivatives of

the final output with respect to all the intermediate variables—the so called adjoints—until

the derivatives with respect to the independent variables are formed. Using the standard

AD notation, the adjoint of any intermediate variable Vk is defined by

V̄k =
m∑
j=1

Ȳj
∂Yj
∂Vk

,

where Ȳ is a vector in Rm. For each variable Ui, by applying the chain rule, we get

Ūi =
m∑
j=1

Ȳj
∂Yj
∂Ui

=
m∑
j=1

Ȳj
∑
k

∂Yj
∂Vk

∂Vk
∂Ui

,

which corresponds to the adjoint mode equation for the intermediate step represented by

the function V = V (U). We thus have a function of the form Ū = V̄ (U, V̄) where

Ūi =
∑
k

V̄k
∂Vk
∂Ui

.

19

Working from the right to the left, X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ , we apply this

rule to each step in the calculation until we obtain X̄. In other words, until one obtains the

linear combination of the rows of the Jacobian of the function X → Y , that is

X̄i =
m∑
j=1

Ȳj
∂Yj
∂Xi

(i = 1, . . . , n). (33)

In the adjoint mode, the cost does not increase with the number of inputs, but it is linear

in the number of (linear combinations of the) rows of the Jacobian that need to be evaluated

independently. If the full Jacobian is required, one needs to repeat the adjoint calculation

m times, setting the vector Ȳ equal to each of the elements of the canonical basis in Rm.

One important theoretical result is that given a computer program performing some high-

level function (32), the execution time of its adjoint counterpart X̄ = FUNCTION b(X, Ȳ)

(with suffix b for “backward” or “bar”) that computes the linear combination (33), is

bounded by three to four times the cost of execution of the original one. That is,

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA (34)

where ωA ∈ [3, 4], see Griewank (2000).

4.2 AAD and backward PDEs

The evaluation of the numerical solution of the PDE (1) by means of the algorithm described

in Section 2.1 can be seen as a computer-implemented function mapping θ → Vt0(θ). By

following the principles of AAD, it is possible to design its adjoint counterpart (θ, V̄t0) →

(Vt0 , θ̄) which gives (for V̄t0 = 1) the sensitivities

θ̄k =
∂V (θ)

∂θk
, (35)

20

for k = 1, . . . , Nθ. The adjoint of the solution of the backward PDE in Section 2.1 consists

therefore of Steps 1-3 followed by their corresponding adjoint, executed in reverse order:

(S̄3) Set V̄t0 = 1, and execute V̄ 0 = COMPUTESPOTVALUE b(V 0, V̄t0) to compute

V̄ 0
j = V̄t0

∂Vt0
∂V 0

j

for j = 1, . . . , N , according to rule (11) .

(S̄2) For m = 0, . . . ,M − 1, in opposite order than in (S2) of Section 2.1, execute

d̄) Given V̄ m, execute the adjoint of function (15), namely (L̄mB , R̄
m
B , β̄

m+1, V̄ m+1) =

TRIDIAGSOLVER b(LmB , R
m
B , β

m+1, V m+1, V̄ m), which computes

[L̄mB]j,l =
N∑
r=1

V̄ m
r

∂V m
r

∂[LmB]j,l
, [R̄m

B]j,l =
N∑
r=1

V̄ m
r

∂V m
r

∂[Rm
B]j,l

,

β̄m+1
j =

N∑
r=1

V̄ m
r

∂V m
r

∂βm+1
j

, V̄ m+1
j =

N∑
r=1

V̄ m
r

∂V m
r

∂V m+1
j

,

for j = 1, . . . , N and l = 1, . . . , N .

c̄) Compute the adjoint of (14), namely θ̄ = COMPUTEBC b(θ, β̄m+1), which gives

θ̄k =
N∑
r=1

β̄r
∂βmr
∂θk

.

This provides the initialisation of the vector of sensitivities θ̄.

b̄) Compute the adjoint of the function (13), that is

(c̄m, ūm, l̄m) = COMPUTELRB b(cm, um, lm, L̄mB , R̄
m
B), which produces the adjoint of

21

the coefficient vectors

c̄mj = [L̄mB]j,j
∂[LmB]j,j
∂cmj

+ [R̄m
B]j,j

∂[Rm
B]j,j

∂cmj
,

ūmj = [L̄mB]j,j+1
∂[LmB]j,j+1

∂umj
+ [R̄m

B]j,j+1
∂[Rm

B]j,j+1

∂umj
,

l̄mj+1 = [L̄mB]j+1,j
∂[LmB]j+1,j

∂lmj+1

+ [R̄m
B]j+1,j

∂[Rm
B]j+1,j

∂lmj+1

,

where j = 1, . . . , N in the first equation and j = 1, . . . , N − 1 in the second and

third. Here we have used the fact that each component of the vectors cm, um and

lm appears only in one element of the tree main diagonals of the matrices LmB and

Rm
B . By Equations (7) and (8) it is immediate to verify that

∂[LmB]j,j
∂cmj

=
∂[LmB]j,j+1

∂umj
=
∂[LmB]j+1,j

∂lmj+1

= −φ,

∂[Rm
B]j,j

∂cmj
=
∂[Rm

B]j,j+1

∂umj
=
∂[Rm

B]j+1,j

∂lmj+1

= 1− φ,

for 0 < φ < 1. For the fully explicit, φ = 0, (resp. the fully explicit case, φ = 1),

LmB (resp. Rm
B) is the identity matrix and L̄mB (resp. R̄m

B) is identically zero.

ā) Compute the adjoints of the coefficients (10),

θ̄+= COMPUTECOEFFM b(θ, c̄m, ūm, l̄m). (36)

This produces the following contribution of the adjoint of the θ̄ vector

θ̄k +=
N∑
j=1

[
c̄mj
∂cmj (θ)

∂θk
+ ūmj

∂umj (θ)

∂θk
+ l̄mj

∂lmj (θ)

∂θk

]

for k = 1, . . . , Nθ, with umN ≡ 0 and lm1 ≡ 0.

(S̄1) Compute the adjoint of the vector V M in (12) by executing θ̄+= PAYOFF b(θ, V̄ M).

22

This gives the vector elements

θ̄k +=
N∑
j=1

V̄ M
j

∂P (xj; θ)

∂θk
,

for k = 1, . . . , Nθ, associated with the explicit dependence of the payoff on the model

parameters θ (if any).

One can verify that the execution of the steps above produces the sensitivities (35) of the

option value with respect to the parameters θ. According to the general result of AAD (34),

the cost to compute all the components of the adjoint vector θ̄ is a small multiplier of order

four times the cost of computing (S1) to (S4), therefore resulting in an overall computation

complexity of O(NM).

We note that obtaining the adjoint COMPUTESPOT b of the linear scheme in Equation (11)

is straightforward. The procedure consists of setting V̄ 0
j = 0 for j /∈ {j?, j? + 1}, and

allocating V̄ 0
j? and V̄ 0

j?+1 with their coefficients in Equation (11), namely

V̄ 0
j? = V̄t0

(
1− xt0 − xj?

xj?+1 − xj?
)
, V̄ 0

j?+1 = V̄t0
xt0 − xj?
xj?+1 − xj?

.

The adjoint function TRIADIAGSOLVER b, which gives the adjoint of (16), is produced by

W̄m+1 = [LmB]−T V̄ m, [LmB]−1 = V̄ m
[
Wm+1

]T
, L̄mB = − [LmB]−T [LmB]−1 [Lm]−TB ,

Ūm+1 = W̄m+1, β̄m+1 = W̄m+1, R̄m
B = Ūm+1

[
V m+1

]T
, V̄ m+1 = [Rm

B]T Ūm+1. (37)

Here we have used the fact that the adjoint of the linear operation y = Bx is given by

x̄ = BT ȳ and B̄ = ȳxT , and the identity Ā = −A−TA−1A−T , which holds for any invertible

matrix A, see Giles (2008). The computational cost of the instructions above is O(N2). In

order to reduce the computational cost to O(N), as in the original sequence (16), one needs

to avoid the matrix inversion in the first instruction of (37). This is obtained by utilising the

solution of a linear system and then by combining the first three instructions of Equation

23

(37) and the third of Equation (16). We thus have:

L̄mB = − [LmB]−T V̄ m
[
Wm+1

]T
[Lm]−TB = −W̄m+1

[
[Lm]−1B Wm+1

]T
= −W̄m+1 [V m]T .

Then, the resulting algorithm is given by

W̄m+1 = V̄ m/ [LmB]T , L̄mB = −W̄m+1 [V m]T , Ūm+1 = W̄m+1,

β̄m+1 = W̄m+1, R̄m
B = Ūm+1

[
V m+1

]T
, V̄ m+1 = [Rm

B]T Ūm+1. (38)

We emphasise that only the elements on the three main diagonals of L̄mB and R̄m
B contribute

to the sensitivities, so that only 3N multiplications are required for their computation in the

second and fourth instruction of Equation (38). The overall computational cost of the adjoint

tri-diagonal solver is O(N), exactly as for the forward counterpart (16), and as expected from

the general result (34).

The execution of the adjoint instructions (38) requires the vector V m. This is a manifes-

tation of the general feature of the adjoint implementation which require (i) the execution

of the original code, (ii) the storage of the intermediate results and final outputs before the

execution of its adjoint counterpart. In this case, TRIADIAGSOLVER b needs to contain a

forward sweep replicating the instructions (16) in order to compute V m. Alternatively, if

the values Vm were to be stored during the calculation in the forward sweep of (S1)-(S3),

then one could use the stored values directly as inputs in TRIADIAGSOLVER b. This scheme

is more efficient as it avoids repeating the forward sweep. The first implementation comes

with a reduced memory consumption as it does not store the vectors V m for m = 0, . . . ,M

and is an example of the technique “checkpointing”, see Capriotti and Giles (2010).

Finally, the adjoint of the function COMPUTECOEFFM b in Equation (36) can be imple-

24

mented by the adjoint of Equations (10), namely

σ̄mj = −c̄mj 2σ(xj, t̃m; θ)∆x−2 + ūmj σ(xj, t̃m; θ)∆x−2 + l̄mj σ(xj, t̃m; θ)∆x−2,

ν̄mj = −c̄mj , µ̄mj = ūmj
1
2
∆x−1 − l̄mj 1

2
∆x−1,

for j = 1, . . . , N , and

θ̄+= σ̄(xj, t̃m; θ, σ̄mj), θ̄+= µ̄(xj, t̃m; θ, µ̄mj), θ̄+= ν̄(xj, t̃m; θ, ν̄mj), (39)

adding the contributions to the sensitivities

θ̄k += σ̄mj
∂σ(xj, t̃m; θ)

∂θk
, θ̄k += µ̄mj

∂µ(xj, t̃m; θ)

∂θk
, θ̄k += ν̄mj

∂ν(xj, t̃m; θ)

∂θk
,

for k = 1, . . . , Nθ. The implementation of the adjoint functions in Equation (39) depends on

the particular model considered.

4.2.1 Intermediate cashflows and American-style options

The adjoint algorithm presented in the previous section can be extended to include early-

exercise contracts described in Sections 2.2 and 2.3 by the following modification of (S̄2):

h̄) For tm ∈ Te, set {C̄mk }k=m+1,...,M = 0 and execute the following instructions:

(H̄m, Ēm) = EARLYEXCERCISE b(Hm, Em, V̄ m), V̄ m = Hm,

({C̄mk }k=m+1,...,M , θ̄)+ = COMPUTEEXERCISEVALUE b({Cmk }k=m+1,...,M , θ, Ē
m).

It is important to note that the application of the AAD rules in Capriotti and Giles

(2010) require the adjoint V̄ m be overridden rather than incremented.

ḡ) Execute the adjoint of Equation (17), that is, C̄m = V̄ m and

({C̄mk }k=m+1,...,M , θ̄) += COMPUTECASHFLOW b({Cmk }k=m+1,...,M , θ, C̄
m).

25

f̄) For k = M, . . . ,m+ 1, call the adjoint tri-diagonal solver

(L̄mB , R̄
m
B , β̄

m+1, C̄m+1
k) += TRIDIAGSOLVER b(LmB , R

m
B , β

m+1, Cm+1
k , Āmk).

ē) Then execute θ̄+= AUXILIARYPAYOFF b(θ, C̄m+1
m+1), which gives the contribution to the

sensitivities arising from the intermediate cashflows and the early-exercise optionality.

4.3 AAD and forward PDEs

Analogous to what is discussed in Section 4.2 for the backward PDE, the adjoint of the

numerical solution of the forward PDE of Section 3.1 consists of (S1)-(S3) followed by their

corresponding adjoint operations executed in reverse order. That is:

(S̄3) Set V̄t0 = 1, execute (P̄ , ψ̄M) = INTEGRATE b(P, ψM , V̄t0) and compute, according to

the rule (11), the gradients

ψ̄Mj = V̄t0
∂Vt0
∂ψMj

, P̄j = V̄t0
∂Vt0
∂Pj

,

for j = 1, . . . , N . For an example in which a Gaussian quadrature scheme is applied,

we refer to Capriotti and Lee (2014). The contribution to the sensitivities arising from

the functional form of the payoff (if any) is then computed by

θ̄k =
N∑
j=1

P̄j
∂Pj
∂θj

(k = 1, . . . , Nθ).

(S̄2) For m = M − 1, . . . , 0 continue with:

c̄) Given ψ̄m+1, execute the adjoint of the function in Equation (28), namely

(L̄mF , R̄
m
F , ψ̄

m) = TRIDIAGSOLVER b(LmF , R
m
F , 0, ψ

m, ψ̄m+1).

b̄) Compute the adjoint of the function in Equation (27), namely

(c̄m, ūm, l̄m) = COMPUTELRF b(cm, um, lm, L̄mF , R̄
m
F).

26

ā) Compute the adjoints of the coefficients (10), θ̄+= COMPUTECOEFFM b(θ, c̄m, ūm, l̄m),

with the same adjoint functions as described in Section 4.2.

(S̄1) This step is void since the initialisation function DELTA() has no dependency on θ.

One can verify that the execution of the steps above produces the sensitivities of the

option value with respect to the parameters θ, see Equation (35). As before, the general

AAD result (34) guarantees that the cost to compute all the components of the adjoint

vector θ̄ is a maximum of four times the cost of computing (S1)-(S4) in Section 3.2, therefore

resulting in an overall computational complexity of order O(NM).

4.4 Calibration algorithm: AAD and the implicit function theo-

rem

As recalled in Section 3.2, the valuation of a derivative security can be generally separated in

two distinct steps, a calibration and a pricing step. While the calculation of the sensitivities

with respect to the internal model parameters ∂V/∂θ obtained by the adjoint of the pricing

step (30), θ̄ = PRICING b(θ, V̄), which computes

θ̄k =

NV∑
i=1

V̄i
∂Vi
∂θk

,

for k = 1, . . . , Nθ, is sometimes useful, what is required for the risk management of the

portfolio of the derivative securities are the sensitivities ∂V/∂M with respect to the liquid

market prices because they define the size of the hedges. These can be obtained, according

to the general principles of AAD, by reversing the order of computations so the adjoint of

the algorithm consists of the adjoint pricing step, combined with the adjoint calibration step

M̄ = CALIBRATION b(M, θ̄), (40)

27

giving

M̄m =

Nθ∑
k=1

θ̄k
∂θk
∂Mm

,

for m = 1, . . . , NM. The overall adjoint algorithm can be seen therefore as a map of the

form V̄ → θ̄ → M̄.

The adjoint calibration step (29) can be implemented according to the general rules of

AAD (Section 4.1), paying attention to its iterative nature. However, following the work

by Christianson (1998) and Henrard (2013), a much better performance can be obtained by

exploiting the so-called implicit function theorem (IFT), as described below. Here we consider

the case in which the calibration algorithm in Equation (40) consists of the numerical solution

of a system of equations of the form

Gi(M, θ) = 0 (41)

where M∈ RNM , θ ∈ RNθ , and i = 1, . . . , Nθ. The function Gi(M, θ) is often of the form

Gi(M, θ) = Ti(M)− Vi(θ) (42)

where Vi(θ) is the price of the i-th calibration instrument as produced by the model to

be calibrated, and Ti(M) are the prices of the target instruments, possibly generated by a

simpler model utilised as a quoting mechanism.

As noted above, the adjoint calibration can be implemented in terms of the adjoint of

the numerical scheme solving (41). The associated computational cost is expected to be a

few times the cost of solving the numerical system (41) (but approximately less than 4 times

the cost, according to the general result of AAD). Better performance can be obtained by

the IFT. Under mild regularity conditions, the IFT says that if there is a solution (M0, θ0)

to the root finding problem (41), such that Gi(M0, θ0) = 0, and the matrix of derivatives

[∂G/∂θ]ij = ∂Gi(M0, θ0)/∂θj is invertible, then one can define in the vicinity of M0 an

28

implicit function θ = θ(M) such that

Gi(M, θ(M)) = 0. (43)

The derivatives ∂θ/∂M of such function can be expressed in terms of the derivatives of the

objective function G. Indeed, by differentiating (43) with respect to M, one obtains

∂Gi

∂Mm

+

Nθ∑
j=1

∂Gi

∂θj

∂θj
∂Mm

= 0

for m = 1, . . . , NM, or equivalently

∂θk
∂Mm

= −

[(
∂G

∂θ

)−1
∂G

∂M

]
km

,

with [∂G/∂M]ij = ∂Gi/∂Mj. This relation allows the computation of the sensitivities of

the function θ(M), locally defined in an implicit manner by Equation (41), in terms of the

sensitivities of the function G(M, θ). These can be computed by the corresponding adjoint

function (M̄, θ̄) = Ḡ(M, θ, Ḡ) giving, according to the general rule (Section 4.1),

M̄m =

Nθ∑
i=1

Ḡi
∂Gi

∂Mm

, θ̄k =

Nθ∑
i=1

Ḡi
∂Gi

∂θk
.

This method is more efficient and stable than calculating the derivatives of the implicit

functions M→ θ(M) by differentiating directly the calibration step either by bumping or

by applying AAD. This is because G(M, θ) in (42) are explicit functions of the market and

model parameters, which are easy to compute and differentiate. Moreover, by avoiding the

numerical noise produced by the finite difference approximation to the calibration procedure,

the accuracy of the sensitivities is improved when compared with the bumping scheme.

29

5 Numerical results

In this section, we present the numerical results arising from the pricing and the calibration

of the BK model (4) for the stochastic instantaneous hazard rate ht = exp(xt) that satis-

fies d ln(ht) = κ(t) (µ(t)− ln(ht)) dt + σ(t)dWt. We fix the mean-reversion rate κ = 0.01

and assume µ(t) and σ(t) to be left-continuous, piecewise constant functions. As shown

in Section 3.2, we calibrate µ(t) and σ(t) to a set of survival probabilities implied from

liquid CDS prices and a set of (co-terminal) CDS option prices. As it is market practice,

we compute the survival probabilities in terms of a piecewise constant hazard rate function

λmkt(t) with L knot points (λmkt
1 , . . . , λmkt

L) at times (T1, . . . , TL). These are determined, for

convenience, on the same time grid, with equally-spaced intervals ∆T = Ti+1− Ti = 0.5, for

i = 1, . . . , L−1, as utilised for the mean-reversion level and volatility functions. The market

survival probabilities, as seen at t0 = 0, are then given by

Qmkt(t0, Ti) = exp

[
−
∫ Ti

t0

λmkt(u)du

]
=

i∏
j=1

exp
[
−λmkt

j ∆T
]
.

In these numerical examples, we choose the knot points of the hazard rate function to be

the same and equal to λmkt = s/(1 − R), where s = 1% is the the so-called par-spread and

R = 40% is the recovery rate, as set by market practice. Similarly, the CDS option prices

are derived using the standard Black formula from a set of market-implied volatilities σmkt
j ,

j = 1, . . . , K, corresponding to option maturities (T e1 , . . . , T
e
K). We have:

V mkt(t0, T
e
j ;TL) =

(
cΦ(−d1)− sΦ(−d2)

)
Amkt(T ej , TL),

Amkt(T ej , TL) =

 ∑
m∈C(T ej ,TL)

Z(t0, tm)Qmkt(t0, tm)∆tc

 ,

d1 =
ln s/c+ (σmkt

j)2(T ej − t0)/2
σmkt
j

√
T ej − t0

, d2 = d1 − σmkt
j

√
T ej − t0,

30

where Φ is the standard normal distribution function, and c is the payment rate by the

protection buyer for the CDS against which the option can be exercised. Here we set c equal

to the par spread s, so as to represent at-the-money option quotes. We assume zero interest

rates and set the implied volatilities to have all the same value, σmkt = 60%. The market

data is given in Table 1 and 2 and the results of the calibration are shown in Fig. 1.

5.1 AAD versus bumping for computation of sensitivities

We consider the pricing of a defaultable discount bond with a five-year maturity and a

unit redemption value. Its value at time t0 = 0 is given by Equation (5), and it can be

determined either by a backward or forward PDE by setting V (T, hT ; θ) = 1. To show the

reliability of the AAD sensitivities calculation in the PDE framework, Table 3 displays the

sensitivities obtained by the AAD algorithms, described in Section 4.2 and 4.3, and by means

of one-sided finite-difference approximation (bumping) with a perturbation (bump) size of

10−5. As expected, the results obtained with both the AAD version of the backward and

forward PDE are consistent with the ones obtained by bumping with minor differences due

to discretisation errors and the finite precision of the finite-difference approach. Similarly,

in Table 5 we compare the sensitivities results for a CDS option and a bond option using

a combination of the forward and backward PDE approach described in Section 3.2. Here

we consider a two-year at-the-money swaption written on a five-year CDS, and a two-year

European-style call option issued on the five-year defaultable bond with a strike of 0.75.

As in the previous example, these results confirm that the AAD approach provides accurate

estimates of the sensitivities when benchmarked with the standard finite-difference approach.

The efficiency of AAD is shown in Fig. 2. We plot the cost of computing the sensitivities

of a defaultable discount bond with respect to the knot points of the mean-reversion level

µi, i = 1, . . . , L and volatility σi, i = 1, . . . , K, relative to the cost of performing a single

valuation. As illustrated in Fig. 2, for both, the AAD version of the backward and the

forward PDE scheme, the calculation of the sensitivities can be performed for about 3.3

31

times the cost of computing the value of the bond, i.e., well within the theoretical bound

(34). In contrast, the cost of bumping is in general (1 + Nθ) times the cost of as single

valuation, i.e., in this case over 20 times the cost of computing the value of the bond.

Similarly, the cost of computing the sensitivities of a bond and CDS option by AAD is also

bounded, but the cost of the bumping scheme is proportional to the number of parameters.

Furthermore, as shown in Fig. 3, the overall cost of running the AAD scheme to obtain all

the sensitivities relative to the cost of computing the option value through a single valuation

of the PDE scheme is independent of the number of sensitivities so that the computational

gains, when compared to the bumping scheme, increase with the number of sensitivities4.

5.2 Calibration and the implicit function theorem

As described in Section 4.4, the sensitivities with respect to the internal model parameter θ

can be converted into the more practically relevant sensitivities with respect to the market

parameters M by combining sensitivities obtained with the AAD version of the forward and

backward PDE executed during the calibration of the model parameters and the so-called

implicit function theorem (IFT). As an illustration, we can again consider the two-year

option on a five-year defaultable bond with strike price 0.6. By making use of the scheme

described in Section 4.4, the sensitivities with respect to the model parameters θ̄ = ∂V/∂θ

can be transformed into the sensitivities with respect to the market observables ∂V/∂M. In

this case, they are the sensitivities with respect to the implied hazard rates and the CDS

options implied volatilities, which are used for the calibration in Fig. 1. Table 6 displays

the bond option market sensitivities obtained by converting the model sensitivities in Table

5 by means of the AAD-IFT approach, and shows the good agreement with those obtained

with the standard finite-difference approach.

The remarkable computational gains that can be achieved with the AAD-IFT scheme

are shown in Fig. 4 (left, yellow column). We plot the ratio of time necessary to convert the

4In this examples we have included the sensitivities with respect to the knot points of the mean-reversion
speed function.

32

model sensitivities into market sensitivities by both, the ADD-IFT approach and standard

finite differences, relative to the cost of performing a single calibration and valuation. For

this application, the time necessary to compute the Jacobian ∂θ/∂M and model parameter

sensitivities ∂V/∂θ by the AAD-IFT approach is just 0.8% the amount of time necessary to

perform a single calibration and valuation, thus resulting in 3 orders of magnitude speed-

up with respect to standard bumping. This staggering difference in efficiency is due in

part to the computationally intensive calibration procedure of the BK model involving, as

described in Section 3.2, a multidimensional root-search over the instantaneous volatilities.

However, even for models for which the more efficient bootstrap procedure can be used, the

computational gains of the AAD-IFT scheme are still substantial. This is shown in the right

panel of Fig. 4 displaying analogous results for the model by Hull and White (1996).

6 Conclusions

Adjoint Algorithmic Differentiation (AAD) can be applied to efficiently compute price sensi-

tivities of generic financial securities as numerical solutions of PDEs. AAD is of great benefit

for computing the sensitivities with PDE-based calibration algorithms. With an example

of practical relevance, we show how by combining the adjoint versions of the algorithms

for the numerical solution of backward and forward PDEs, along with the implicit function

theorem (IFT), one can avoid repeating the calibration algorithm or the AAD-version of

the calibration routine. This allows for the calculation of all price sensitivities for an addi-

tional computational cost that is a fraction of the cost of computing the portfolio P&L, thus

typically resulting in procedures orders of magnitude faster than standard finite-difference

approaches. We expect the insights presented in this work to be of significant importance

for the efficient implementation of pricing and hedging approaches in a real-world set-up,

and thus be appealing in particular to financial engineering and the industry by and large.

33

Acknowledgments

The opinions and views expressed in this paper are uniquely those of the authors, and do not

necessarily represent those of Credit Suisse Group. The authors thank C. A. Garcia Trillos

for useful comments.

References

Andersen, L. and Piterbarg, V. (2010). Interest Rate Modeling, Volume I: Foundations and

Vanilla Models. Atlantic Financial Press.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National

Academy of Sciences of the United States of America, 38(8), 716.

Black, F. and Karasinski, P. (1991). Bond and option pricing when short rates are lognormal.

Financial Analysts Journal, 47(4), 52-59.

Broadie, M. and Glasserman, P. (1996). Estimating security price derivatives using simula-

tion. Management Science, 42, 269-285.

Capriotti, L. (2011). Fast greeks by algorithmic differentiation. Journal of Computational

Finance, 3, 3-35.

Capriotti, L. and Giles, M. (2010). Algorithmic differentiation: Adjoint greeks made easy.

Risk, 25, 92-98.

Capriotti, L. and Lee, J. (2014). Adjoint credit risk management. Risk, 27, 90-96.

Christianson, B. (1998). Reverse accumulation and implicit functions. Optimization Methods

and Software, 9(4), 307-322.

Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). An equilibrium characterization theory

of the term structure. Econometrica, 53, 385-407.

34

Crank, J. and Nicolson, P. (1947). A practical method for numerical evaluation of solutions

of partial differential equations of the heat-conduction type. In Mathematical Proceedings

of the Cambridge Philosophical Society, volume 43, 50-67. CPU.

Crépey, S., Bielecki, T. R., and Brigo, D. (2014). Counterparty Risk and Funding–A Tale of

Two Puzzles. Chapman and Hall/CRC Financial Mathematics Series.

Giles, M. B. (2008). Collected matrix derivative results for forward and reverse mode algo-

rithmic differentiation. In Advances in Automatic Differentiation, 35-44. Springer.

Griewank, A. (2000). Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation. Frontiers in Applied Mathematics, Philadelphia.

Henrard, M. (2013). Calibration in Finance: Very Fast Greeks through Algorithmic Differ-

entiation and Implicit Function. Procedia Computer Science, 18, 1145-1154.

Hull, J. C. and White, A. D. (1996). Using Hull-White interest rate trees. Journal of

Derivatives, 3(3), 26-36.

Iserles, A. (2009). A First Course in the Numerical Analysis of Differential Equations,

volume 44. Cambridge University Press.

Karatzas, I. and Shreve, S. E. (1998). Methods of Mathematical Finance, volume 39. Springer

Science & Business Media.

O’Kane, D. (2011). Modelling Single-name and Multi-name Credit Derivatives, volume 573.

John Wiley & Sons.

Pooley, D. M., Vetzal, K. R., and Forsyth, P. A. (2003). Convergence remedies for non-

smooth payoffs in option pricing. Journal of Computational Finance, 6(4), 25-40.

Wilmott, P. (2007). Paul Wilmott Introduces Quantitative Finance. John Wiley & Sons.

35

Table 1

Time 0.25 0.5 0.75 1 1.5 2
SP 0.996 0.992 0.988 0.983 0.975 0.967

Time 2.5 3 3.5 4 4.5 5
SP 0.959 0.951 0.943 0.935 0.928 0.920

Survival probabilities utilised for the calibration of the parameters θ.

Table 2

Expiry 0.25 0.5 1 1.5 2 2.5 3 4
Price (10−2) 0.570 0.719 0.894 0.947 0.926 0.853 0.739 0.417

Prices of option written on a five-year CDS utilised for the calibration of the parameters θ.

Table 3

Bwd PDE (AAD) Fwd PDE (AAD) Bwd PDE (FD) Fwd PDE (FD)
µ1 -1.8e-4 -1.8e-4 -1.8e-4 -1.8e-4
µ2 -1.7e-4 -1.6e-4 -1.7e-4 -1.6e-4
µ3 -1.6e-4 -1.6e-4 -1.6e-4 -1.6e-4
µ4 -1.5e-4 -1.5e-4 -1.5e-4 -1.5e-4
µ5 -2.7e-4 -2.7e-4 -2.7e-4 -2.7e-4
µ6 -2.3e-4 -2.3e-4 -2.3e-4 -2.3e-4
µ7 -2.0e-4 -2.0e-4 -2.0e-4 -2.0e-4
µ8 -1.6e-4 -1.6e-4 -1.6e-4 -1.6e-4
µ9 -1.3e-4 -1.3e-4 -1.3e-4 -1.3e-4
µ10 -9.1e-5 -9.1e-5 -9.2e-5 -9.1e-5
µ11 -5.6e-5 -5.5e-5 -5.6e-5 -5.5e-5
µ12 -1.8e-5 -1.8e-5 -1.9e-5 -1.8e-5

Parameters sensitivities of a five-year defaultable discount bond computed by the AAD
version of the forward and backward PDEs and by finite-difference (FD) approximations
with a bump size of 10−5.

36

Table 4

Bwd PDE (AAD) Fwd PDE (AAD) Bwd PDE (FD) Fwd PDE (FD)
σ1 -7.8e-3 -7.8e-3 -7.5e-3 -7.8e-3
σ2 -0.011 -0.01 -0.011 -0.01
σ3 -0.016 -0.016 -0.017 -0.016
σ4 -0.015 -0.015 -0.015 -0.015
σ5 -0.013 -0.013 -0.013 -0.013
σ6 -0.012 -0.011 -0.012 -0.011
σ7 -9.9e-3 -9.9e-3 -0.01 -9.9e-3
σ8 -0.019 -0.019 -0.02 -0.019

Parameters sensitivities of a five-year defaultable discount bond computed by the AAD
version of the forward and backward PDEs and by finite-difference (FD) approximations
with a bump size of 10−5.

Table 5

CDS option Bond option
AAD FD AAD FD

µ1 -2.3e-5 -2.3e-5 -1.2e-4 -1.1e-4
µ2 -2.3e-5 -2.3e-5 -1.1e-4 -1.1e-4
µ3 -2.3e-5 -2.3e-5 -1.1e-4 -1.1e-4
µ4 -2.3e-5 -2.3e-5 -1.1e-4 -1.1e-4
µ5 -4.5e-5 -4.5e-5 -2.1e-4 -2.1e-4
µ6 -4.5e-5 -4.4e-5 -2.1e-4 -2.1e-4
µ7 -4.1e-5 -4.0e-5 -1.9e-4 -1.9e-4
µ8 -3.4e-5 -3.3e-5 -1.6e-4 -1.6e-4
µ9 -2.6e-5 -2.6e-5 -1.2e-4 -1.2e-4
µ10 -1.9e-5 -1.9e-5 -8.8e-5 -8.8e-5
µ11 -1.1e-5 -1.2e-5 -5.3e-5 -5.4e-5
µ12 -3.7e-6 -3.9e-6 -1.7e-5 -1.8e-5

CDS option Bond option
AAD FD AAD FD

σ1 3.5e-4 3.5e-4 -4.3e-3 -4.1e-3
σ2 5.0e-4 5.0e-4 -6.0e-3 -6.0e-3
σ3 8.3e-4 8.3e-4 -0.01 -0.01
σ4 8.3e-4 8.3e-4 -0.01 -0.01
σ5 7.6e-4 8.2e-4 -0.01 -0.01
σ6 -2.6e-3 -2.6e-3 -0.011 -0.011
σ7 -2.3e-3 -2.3e-3 -9.7e-3 -9.7e-3
σ8 -4.3e-3 -4.3e-3 -0.019 -0.019

Parameters sensitivities of a CDS option and defaultable discount bond option computed by
means of AAD and by finite-difference (FD) approximations with a bump size of 10−5.

37

Table 6

Market observables IFT FD
λmkt
1 -0.088 -0.078
λmkt
2 -0.083 -0.089
λmkt
3 -0.087 -0.081
λmkt
4 -0.084 -0.086
λmkt
5 -0.172 -0.168
λmkt
6 -0.170 -0.174
λmkt
7 -0.454 -0.453
λmkt
8 -0.454 -0.452
λmkt
9 -0.455 -0.455
λmkt
10 -0.454 -0.453
λmkt
11 -0.455 -0.455
λmkt
12 -0.454 -0.454

Market observables IFT FD
σmkt
1 7.2e-07 7.9e-07
σmkt
2 2.5e-06 2.8e-06
σmkt
3 4.2e-06 -5.1e-06
σmkt
4 -6.4e-06 -5.7e-06
σmkt
5 0.001 0.001
σmkt
6 -2.5e-05 -2.1e-5
σmkt
7 -2.2e-05 -1.9e-05
σmkt
8 -1.5e-05 -1.2e-05

Sensitivities of a defaultable discount bond option with respect to the market observables as
obtained with AAD and by finite-difference (FD) approximations with a bump size of 10−5.

Figure 1

Time
0 1 2 3 4 5

Su
rv

iv
al

 p
rib

ab
ilit

y

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Market data
Numerical

Expiry
0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

S
op

tio
n

pr
ic

es

×10-3

4

5

6

7

8

9

10
Market data
Numerical

Calibration of the Black-Karasinski hazard rate model to a set of market implied survival
probabilities and option prices.

38

Figure 2

Cost of computing the sensitivities for a defaultable discount bond, CDS option and default-
able discount bond option, relative to the cost of a single valuation.

Figure 3

Cost of computing the sensitivities for a defaultable discount bond option, relative to the
cost of a single valuation, as a function of the number of sensitivities.

39

Figure 4

Cost of computing the market parameter sensitivities for a defaultable discount bond option
relative to the cost of a single calibration and valuation for the BK model (left panel) and
the model by Hull and White (1996) (right panel).

40

