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Recent advances in conditional  
cell immortalization technology

Ivan B Wall, Gerardo Santiago Toledo & Parmjit S Jat

Gene-modified cell therapies are transforming medicine. Over the last 
18 months, notable clinical successes using antigen-targeting cellular 
immunotherapies have been achieved. However, another kind of gene 
modification has significant potential for the cell therapy industry. The 
development of fully controllable transgenes has enabled the creation of 
conditionally immortalized cells that can be expanded to clinical quanti-
ties in a stable and consistent fashion, yet can be returned to a normal, 
non-dividing state for therapeutic delivery to the patient.  In this article, 
we discuss some of the key technologies that have been used to create 
conditionally immortalized cells for clinical development.
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The pressure and need to devel-
opm stable cell lines as biomedical 
research tools has triggered numer-
ous approaches to produce stable, 
well-characterized cells. Big Phar-
ma in particular relies on stable cell 
lines for drug screening and toxi-
cology studies. Whilst embryonic 
stem cells and induced pluripotent 
stem cells invoke some powerful ar-
guments for their utility, due to the 
large numbers of cells that can be 
generated and, in case of the latter,  

the ability to create patient- or dis-
ease-specific attributes to be stud-
ied, there are also some limitations 
with respect to consistent and reli-
able differentiation into target cells 
of interest. To this end, production 
of cell lines using primary cells from 
a more advanced stage of develop-
ment than those of the early em-
bryo, coupled with inducible trans-
gene technologies that can impart 
regulatory control over cell division, 
offer an alternative strategy. 

Conditional immortalization uses 
inducible transgene technology to 
create a cells that can be expand-
ed in a consistent fashion when the 
transgene is active. If the transgene 
was permanently activated then the 
cells would, in theory, continuously 
divide. However, it is critical for con-
ditional immortalization technology 
that the transgene is operator control-
lable so when desired clinical quanti-
ties of cell material are achieved, the 
transgene can be de-activated by the 
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operator, returning the cells to a nor-
mal, post-mitotic state. This ensures 
that the cell formulation delivered to 
the patient is safe and carries negli-
gible risk of cancer, overcoming the 
major concern for constitutively im-
mortalized cells; cells with an infinite 
proliferative potential could become 
cancerous if they acquire oncogenic 
mutations. 

Conditional immortalization 
involves inserting a modified gene 
that can be regulated by a defined 
reagent, controlled by the operator. 
In one set of conditions where the 
reagent is present, the transgene is 
active and the cells divide cease-
lessly. In a second set of conditions 
where the reagent is removed, the 
cells are no longer immortal but 
have the potential to behave as 
would be expected under normal 
conditions such as undergoing dif-
ferentiation (Figure 1).

A natural progression from utility 
as biomedical research tools has been 
to develop conditionally immortal-
ized cells as therapeutics. Although 
still in early development with few 
cell lines developed, some of these 
candidate therapies are already be-
ing utilized in pre-clinical and clin-
ical studies with notable success. An 
overview of technologies, methods 
and associated patents is presented in 
Tables 1–3 & Figure 2. Notable prog-
ress includes Phase 2 trials of con-
ditionally immortalized cells for the 
treatment of ischemic stroke [1] and 
data so far indicates safe and effective 
outcomes in patients [2]. Building 
on this success more broadly across 
the industry and demonstrating that 
conditional immortalization tools 
are safe via complete inactivation of 
the transgene prior to delivery to pa-
tients, will be critical for building a 
successful healthcare tool for the in-
dustry and the patient.

IMMORTALIZATION IS 
INDUCED BY MULTIPLE 
MECHANISMS
Normal human somatic cells under-
go a finite number of cell divisions 
before they enter into a non-divid-
ing state called senescence [3,4]. This 
natural process acts as an intrinsic 
anti-tumor mechanism. Some cells 
such as fibroblasts can undergo 
50–60 population doublings before 
becoming senescent, whereas other 
cells such as breast luminal epithelial 
cells (the cell type from which most 
breast cancers are derived) only un-
dergo a few divisions in culture. This 
natural process and the variation in 
replicative lifespan across different 
cell types limits the generation of 
new cell lines through simple cul-
ture of normal cells, particularly if 
the commercial agenda is to deliver 
industrial quantities of allogeneic 
cell product. In fact, early cell lines 
developed for research purposes were 
obtained simply from tumors that 
grew readily in culture [5,6].

It wasn’t until the advent of ge-
netic engineering and procedures 
for the delivery of transgenes via 
DNA transfection or by viruses to 
insert desired immortalizing genes 
into the genome that scientists were 
able to create immortalized cells 
that were not derived from tumors. 
There is no single universal method 
to immortalize equally every candi-
date cell type for therapy. The type 
of cell and species from which it is 
obtained are factors that affect this. 
For example, many fundamental 
studies have been conducted in 
mice, but mouse cells have long 
telomeres so it is suggested that 
they do not undergo replicative 
senescence as human cells do, but 
stress-induced senescence. Even 
though stress activation of the p53 
and pRB pathways are common 
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causes, growing mouse cells in 
perfect conditions (e.g., optimal 
media and oxygen) would prevent 
the stress that leads to activation of 
these pathways. Perfect conditions 
are extremely challenging to define 
and so further genetic modifica-
tions are required. Human cells, 
in addition to silencing of p53 and 
pRB, also require telomere mainte-
nance, for example via telomerase 
reconstitution. Therefore immor-
talizing cells is a complex process 
since not all cells can be immor-
talized using a single genetic tool. 
Moreover, simply immortalizing 
cells would generate large quanti-
ties of cells for drug screening but 
this cell material would not be suit-
able for implantation into patients 
due to the lack of cell cycle regu-
latory controls and the inability to 
turn off the genetic modification 
driving cell division. 

CONDITIONAL 
IMMORTALIZATION 
Genetic tools can be created that in 
addition to immortalizing cells, offer 
regulatory control via elements acti-
vated by external factors that switch 
on and off cell proliferation in a way 
that is controlled by the operator. 
This provides the basis for continu-
ous cell culture with cell prolifera-
tion that can yield high cell numbers 
of consistent quality in a way that is 
scalable and cost-effective (Figure 3). 
These are highly desirable qualities 
for allogeneic cells in clinical devel-
opment, where lot sizes are initially 
small for early-stage clinical trials, 
yet need to increase substantially 
without loss of quality or compro-
mise to safety as the product moves 
towards market. Molecular tools 
that underpin conditional immor-
talization technology include the in-
corporation of viral oncogenes such 

 f FIGURE 1
Principles of conditional immortalization for generating cell banks to derive drug product.
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 f FIGURE 2
Overview of conditional immortalization technologies.
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Conditional immortalization technologies that have been utilized to create stable, controllable cell lines. c-MycERTAM uses a combination of growth factors 
and 4-OHT to activate the c-MycER transgene. When activated cells divide. In the absence of 4-OHT, c-MycER is inactivated and the cells revert to a normal 
phenotype. tsA58 is a temperature sensitive switch that is permissive for cell division at 33°C but inactivated at 39°C. Cre/Lox technology involves engineering 
a transgene flanked by LoxP sites. The transgene is active until Cre recombinase is added, at which point the flanked DNA is excised. hTERT catalyses the 
addition of telomeric repeats to the end of the telomeres, preventing telomere-dependent senescence. Tet on/off systems utilize tetracycline responsive 
elements (TRE) that comprise a tet Operator and minimal promoter. The activation of the transgene and hence cell division is dependent on tetracycline or 
doxycycline as a cue for activation (tet on) or inactivation (tet off).  rtTA: Reverse tetracycline transactivator, tTA: Tetracycline transactivator; tetO: tet operator; 
4-OHT: 4- hydroxytamoxifen, hTERT: human telomerase reverse transcriptase.
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as the Simian Virus 40 (SV40) large 
T antigen, the E7 protein of human 
papilloma virus type 16 (HPV16), 
Myc (both retrovirus-derived v-myc 
and the cellular homolog c-myc) and 
the catalytic subunit of human telo-
merase (human telomerase reverse 
transcriptase; hTERT) [6,9–12].

Myc activation

c-myc, along with the viral homo-
log v-myc, exerts regulatory control 
over a range of cell functions, but 
in particular it drives cell cycle en-
try and cell division. This makes it 
an attractive target for creating sta-
ble cell lines and in fact c-myc is one 
of the four Yamanaka factors used 
to create induced pluripotent stem 
cells [13]. Mutations in the myc gene 
that result in it being constitutively 
expressed are associated with onco-
genic transformation, resulting in 
cancer. Therefore, controlled expres-
sion of c-myc is desired, and pref-
erably under full operator control. 
The conditional immortalization 
technology c-MycERTAM consists of 
a fusion gene that encodes a chime-
ric protein, composed of c-myc and 
an N-terminal truncated hormone 
binding domain of a mutant murine 
estrogen receptor (G525R), which 
can no longer bind to 17β-estradi-
ol and estrogen, but is responsive 
to activation by the presence of the 
synthetic estrogen-like agonist 4-hy-
droxytamoxifen (4-OHT) [14,15]. 

In contrast with its wild-type ver-
sion, the hormone binding domain 
of the mutant G525R has 1,000-fold 
lower binding affinity to estradiol, 
but retains its affinity to 4-OHT due 
to an amino acid change from gly-
cine to arginine in the position 525 
[15]. This means that culturing cells 
in the presence of 4-OHT promotes 
c-myc activity and subsequent cell 
division, whereas in the absence of 

4-OHT, the cells revert to a non-ac-
tivated state and can undergo matu-
ration as normal cells do.

Before the development of c-My-
cERTAM, the application of wild-type 
hormone receptors for fusion pro-
tein generation with viral antigens 
presented significant challenges. 
These included concern about in-
adequate control of activation due 
to presence of estrogens in serum 
and weak agonists in basal culture 
media. Moreover, circulating hor-
mones could activate the c-MycER-
TAM in vivo and drive continued pro-
liferation, posing a safety risk [14]. 

The synthesis of c-MycERTAM 

does not affect the phenotype of the 
cells, and this conditional immor-
talization technology has been used 
for the development of human stem 
cell lines from cortical neuroepithe-
lium, which have been investigated 
in pre-clinical animal studies for 
ischemic stroke [11,16–19], limb 
ischemia [20] and are currently be-
ing investigated in clinical trials as a 
treatment for stroke disability (Phase 
1 and 2) and in Phase 1 trial for clini-
cal limb ischemia (Table 2). Results of 
Phase 1 for ischemic stroke revealed 
that intracerebral doses of CTX0E03 
(from 2 to 20 million cells) in 11 male 
patients did not cause adverse effects, 
and therapy showed improvement in 
function [2]. Therefore, c-mycERTAM 
has significant clinical potential with 
clinical trials so far displaying favor-
able results. However, c-mycERTAM 

is just one of a number of molecular 
tools that can impart regulatory con-
trol over cell division for potentially 
generating cells for patients.

Among myc oncogenes, the avian 
viral homolog v-myc has also prov-
en to effectively immortalize human 
neural stem cells (hNSCs) [21–24]. 
Similarly to its cellular counterpart, 
v-myc transduced hNSC growth and 
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differentiation are dependent on mi-
togenic stimulation by growth fac-
tors. Spontaneous downregulation 
of the avian v-myc after 24–48 hours 
of engraftment in neonatal mice im-
plied a safety precedent for clinical 
applications [22,25,26]. Established 
v-myc hNSC cell lines have shown 
potential as delivery vehicles for se-
lective gene therapy due to their 
tumor-tropic properties [26,27].  
Preclinical studies of a hNSC line 
(HB1.F3.CD) genetically modified 
to express cytosine deaminase, re-
sulted in tumor site conversion of 
5-fluorocytosine to the chemothera-
peutic 5-fluorouracil [28]. Currently, 
a Phase 1 clinical trial is undergoing 
to study doses and side effects of 
this anti-cancer strategy (ID: 13401  
NCI-2013-02346  13401).

Temperature-sensitive large 
tumor antigen of SV40

SV40 is a double-stranded DNA vi-
rus of rhesus monkey origin. SV40 
has a number of antigens, including 
large tumor antigen (Tag), as well 
as several others [29,30]. However, 
it is the large Tag that is significant. 
Tag regulates cell signaling pathways 

that induce cells to enter into S 
phase and undergo a DNA damage 
response that facilitates viral DNA 
replication. Tag also binds to and 
inactivates the p53 and pRB family 
of proteins, powerful tumor suppres-
sors involved in cell cycle progression 
and apoptosis, to create an ideal en-
vironment permissive for viral repli-
cation [8,29,31,32].

Early work with rodent cells 
showed that Tag immortalized these 
cells such that they acquired infinite 
proliferative potential [33]. Inacti-
vation of Tag then subsequently re-
sulted in rapid and irreversible loss 
of proliferative potential in G1 and 
G2 phases of the cell cycle, demon-
strating that Tag is continuously re-
quired to maintain the proliferative 
state [9,34]. These traits made Tag 
an ideal candidate for developing 
controllable cell lines. 

Inactivation of Tag was achieved 
using a temperature-sensitive mu-
tant of the large Tag (SV40 tsA58) 
that had originally been isolated in 
1975 [35] and found to behave as 
wild type at the permissive tem-
perature (33.5°C), but biological-
ly inactive at the non-permissive 
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temperature of 39 ºC [35].  This 
mutant was selected for the devel-
opment of a vector (pZipSVtsA58) 
that included the early region of 
tsA58 for the analysis of the Tag in 
the transformation of primary rat 
cells [9,36]. 

In contrast to rodent cells, over-
riding normal cell cycle checkpoints 
in human cells with Tag results in 
an extension of growth potential 
beyond normal senescence and cells 
then undergo ‘crisis’ where abortive 
or abnormal mitosis occurs and 
leads to cell death [37].

Telomerase

Much work has been carried out to 
define the underlying pathways that 
regulate the finite lifespan of nor-
mal cells and how these are over-
come when cells become immortal, 
particularly in cancer research [38]. 
The process is likely to involve two 
components, a mitotic ‘clock’ that 
counts the number of divisions and 
entry into a post-mitotic state.

In human somatic cells, the pro-
gressive shortening of telomeres, 
short repetitive sequences at the ends 
of chromosomes, with each cell di-
vision has been proposed to be the 
mitotic clock [39]. Human telomeres 
comprise multiple tandem repeats of 
TTTAGG located at chromosome 
ends. They are dependent on the 
enzyme telomerase to maintain their 
length, but as human somatic cells 
do not express telomerase at levels 
sufficient to maintain the telomeres, 
they shorten by around 50 base pairs 
at each cell division [10,40]. Collec-
tively, telomere loss in conjunction 
with the lack of telomerase activity is 
the mitotic clock responsible for lim-
iting the number of divisions before 
senescence [3,7]. 

Although it was originally 
proposed that reconstitution of 

telomerase activity using hTERT 
was sufficient for immortalization 
of primary human cells [3], others 
found that reconstitution of telo-
merase alone could not, and in these 
instances secondary inactivation of 
regulator pathways such as p16 and 
pRB was required [8,41,42]. In addi-
tion, the studies assessed constitu-
tive telomerase activation. However, 
telomerase has, in combination with 
other conditional transgenes, proven 
very successful in supporting condi-
tional immortality.

TEMPERATURE- 
SENSITIVE SV40 VERSUS 
TELOMERASE
Experiments by O’Hare et al. val-
idated earlier observations that 
hTERT alone was insufficient to 
immortalize freshly isolated human 
mammary fibroblast and endothe-
lial cells [10]. The U19 mutant is 
defective for binding SV40 origin 
of replication [43] and when deliv-
ered in a recombinant retrovirus 
encoding a U19 Tag, was more 
efficient at immortalizing rodent 
cells than wild-type Tag [33]. As a 
consequence of this work, a vector 
incorporating both tsA58 and U19 
mutations was constructed to create 
a murine oligodendrocyte precursor 
cell line capable of in vitro differen-
tiation [44]. 

The O’Hare et al. study showed 
that ectopic expression of hTERT or 
U19tsA58 Tag alone was not suffi-
cient for immortalization of freshly 
isolated human cells but a combina-
tion of the genes resulted in efficient 
generation of immortal cells lines 
irrespective of the order in which 
they were introduced. However, the 
order and timing of introducing the 
two genes did influence the genetic 
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stability of the cells, which is a sig-
nificant consideration for generating 
safe cells for therapy. They further 
showed that maintenance of immor-
talization depended on a continued 
expression of functional U19tsA58 
Tag, with hTERT alone unable to 
maintain growth when the U19t-
sA58 Tag was inactivated [10].

U19tsA58 Tag was also capable 
of creating a conditional immor-
tal cell line from rat neonatal optic 
nerve there was capable of differen-
tiating into oligodendrocytes [45]. 
The same group also used U19t-
sA58 Tag to study the heterogeneity 
of candidate regenerative olfactory 
ensheathing cells from olfactory 
bulb and lamina propria [46]. These 
studies in rat using cells that are dif-
ficult to culture and characterize of-
fer promise for human cell line gen-
eration for regenerative purposes. 

COMBINING hTERT & 
U19tsA58 TAG
The demonstration that hTERT 
and U19tsA58 Tag synergized to 
efficiently immortalize human cells 
led to the development of a bicis-
tronic retrovirus, which simultane-
ously expresses hTERT, U19tsA58 
Tag and an antibiotic resistance 
gene. This virus is highly efficient 
for immortalization of human cells. 
From this work, US Patent 6399384 
B1 was assigned to ReNeuron Ltd 
and the Ludwig Institute for Cancer 
Research (Table 3).  

Although this vector is highly 
efficient at immortalizing human 
cells, the resulting cells had a higher 
number of chromosomes than nor-
mal, even though both genes had 
been transduced simultaneously. 
The likely reason for this karyotyp-
ic instability was unmasked using 

a yeast 2-hybrid screen and rodent 
studies. It was found that Tag in-
teracts with the spindle assembly 
checkpoint protein, Bub 1, and this 
makes Tag containing cells ‘leaky’ to 
this checkpoint, which results in the 
two daughter cells acquiring an un-
equal number of chromosomes [47].  
Furthermore, the interaction of Tag 
with Bub1 is not required for im-
mortalization but closely correlates 
with transformation. Further work 
showed that Tag binding to Bub1 
breaches genome integrity leading 
to a DNA damage response, p53 
stabilization and tetraploidy [30].

A potential solution to this prob-
lem of karyotypic instability would be 
to construct an SV40 triple mutant 
that in addition to the U19tsA58 Tag 
double mutant, lacks the Bub1 in-
teraction site (U19dl89-97tsA58). A 
very simple way to facilitate making 
cell lines using such a mutant would 
be to develop a bicistronic vector, as 
described in US Patent 6399384 B1.

CRE-LOXP SYSTEM 
FOR REVERSIBLE 
IMMORTALIZATION
The potential safety concerns 
with temperature sensitive ge-
netic tools for clinical applica-
tion, led to the consideration of 
site-specific recombination sys-
tems to excise the oncogene [48–

50]. The Bacteriophage p1 Cre is 
an enzyme that promotes recom-
bination in specific sites called 
loxP. When two 33 bp loxP se-
quences are oriented, recombina-
tion occurs and consequently the 
intervening sequence is cleaved 
and removed [49,51]. The appli-
cation of reversible immortaliza-
tion by Cre-loxP is promising for 
both autologous and allogeneic 
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cell therapy. Biopsies and prima-
ry cultures can be immortalized 
with a recombinant oncogene 
flanked with loxP sites. Efficient 
transfection with Cre will result 
in the excision of the immortal-
izing genes. After oncogene re-
moval, cells should be identical 
to the primary culture population 
but in increased numbers [50,52]. 
Cre-loxP system has been applied 
from rat adrenal cells to human 
hepatocytes and myogenic cells 
with hTERT and Tag as immor-
talizing genes [48,50,53–58]. The 
cre-lox system is not 100% effi-
cient and therefore there is a re-
quirement to eliminate cells that 
have not deleted the transgene. 
Negative controls for recombi-
nation have included a Herpes 
simplex virus 1-thymidine kinase 
(HSV-TK) suicide gene in order 
to kill the small portion of re-
fractory immortalized cells in the 
presence of ganciclovir (GCV) 
after Cre transfection [53,59,60]. 
However, as the system requires 
an exhaustive selection process, 
tamoxifen-dependent Cre recom-
binases have been incorporated 
in order to achieve a better-con-
trolled excision of the oncogene 
[54,58,60,61]. 

TET-ON & TET-OFF: TRAN-
SCRIPTION REGULATION 
OF IMMORTALIZATION
Conditional immortalization has also 
been achieved by the use of transcrip-
tion-regulated systems. The most 
widely used have been derived using 
the prokaryotic tetra cycline repres-
sion system.  They utilize a tet repres-
sor (tetR) protein, that binds strongly 
to a sequence called the tetracycline 
operator (tetO) in the absence of the 

antibiotic (tet racycline or doxycy-
cline).  When the antibiotic is pres-
ent, it binds to the repressor, thereby 
inhibiting it’s binding to the tetO. 
The first system available was called 
‘Tet-Off’, and was developed in HeLa 
cells [62]. In this system the tet repres-
sor binding site is inserted between 
the promoter and the transcriptional 
start site such that binding of the re-
pressor sterically blocks transcription. 
However the steric hindrance is read-
ily overcome upon addition of small 
amounts of tetracycline and doxycy-
cline that prevent binding of the tetR 
to the tetO, thereby inducing report-
er gene expression.  However, Tet-Off 
systems require constant doses of 
tetracycline to activate transcription 
and also easily lose tet regulation due 
to loss of the tetR.   To circumvent 
this, ‘Tet-On’ systems were gener-
ated [63].   Gossen and Bu jard fused 
the tetR with the C-terminal activa-
tion domain of the virion protein 16 
(VP16) from herpes simplex virus 
(HSV) to generate a hybrid transacti-
vator (tTA) that stimulates promoters 
fused to tetO sequences. A modifica-
tion of four amino acids resulted in 
a reverse tetracycline transactivator 
(rtTA), which binds to tetO only in 
the presence of tet racycline or doxy-
cycline. Oncogenes (c-Myc and Tag) 
and telomerase (hTERT) were initial-
ly tested in Tet-based immortalization 
systems for mouse embryo fibroblasts 
(MEFs), murine kidney cells (293T), 
mouse embryonic stem cells and hu-
man endothelial cells [64–67]. 

More recently, mesenchymal 
stromal cells (MSCs) have been 
immortalized with tetracycline in-
ducible systems. Tetracycline-in-
ducible hTERT-expressing MSC 
cell lines were created by Piper et al. 
[68]. These cell lines retained mul-
tipotency and immortalization was 
dependent on telomere elongation. 



EXPERT INSIGHT 

349Cell & Gene Therapy Insights - ISSN: 2059-7800 

However, additional screening was 
necessary to determine which clones 
showed the lowest levels of hTERT 
basal expression. Leakiness is the 
most criticized drawback of tetracy-
cline-based expression systems. 

A conditionally immortalized 
MSC line was generated by lenti-
viral transfection of Tag-hTERT 
in conjunction with a doxycycline/
tetracycline-induction (Tet-On) 
system [69]. These cells were used to 
study senescence-associated DNA 
methylation (SA-DNAm) changes, 
and could be maintained in cul-
ture for 80 days without any sign 
of senescence. Removal of doxycy-
cline in the media resulted in im-
mediate growth arrest, and further 
expression of senescence-associated 
ß-galactosidase. Telomere length in-
creased significantly when the cells 
were exposed to the antibiotic and 
were not affected with SA-DNAm. 

CONCLUSION
The emerging cell and gene therapy 
industry will grow stronger by having 
access to new and powerful molecular 
tools that enable the creation of con-
ditionally immortal therapeutic cell 
lines from adult cells that have poten-
tial curative or regenerative effects in 
their natural state, but that cannot be 
expanded to consistently high yields 
in this natural state. Immortalization 
on its own carries concerns associated 
with genetic instability and transfor-
mation to a cancer phenotype. The 
conditional step overcomes this by 
utilizing a fully controllable mecha-
nism that removes or permanently si-
lences the immortalization gene prior 
to delivery.

There are a range of different 
molecular biology tools that can 
be used to create conditionally 

immortalized cells that are operator 
controllable, via manipulation of 
reagents and environment, which 
offer potential solutions to the in-
dustrial scale generation of cells for 
patients. 

Clearly there is commercial value 
in the creation of conditionally im-
mortalized cell lines for therapeutic 
application. There are challenges to 
be addressed for other technologies, 
such as ensuring that the transgene 
is completely silenced prior to deliv-
ering cells to the patient. The lessons 
from early prominent successes like 
ReNeuron’s will hopefully unlock de-
velopment opportunities more widely 
across the industry through increased 
understanding of how to generate the 
necessary safety data, navigate regu-
latory pathways and create commer-
cially sustainable manufacturing pro-
cesses that are cost effective and have a 
sound reimbursement model.
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