
remote sensing  

Article

Evaluation of the Use of Sub-Pixel Offset Tracking
Techniques to Monitor Landslides in Densely
Vegetated Steeply Sloped Areas

Luyi Sun * and Jan-Peter Muller

University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Surrey RH5 6NT, UK;
muller@ucl.ac.uk
* Correspondence: luyi.sun.12@ucl.ac.uk; Tel.: +44-1483-204-167; Fax: +44-1483-278-312

Academic Editors: Zhenhong Li, Roberto Tomas, Zhong Lu, Richard Gloaguen and Prasad S. Thenkabail
Received: 1 June 2016; Accepted: 10 August 2016; Published: 17 August 2016

Abstract: Sub-Pixel Offset Tracking (sPOT) is applied to derive high-resolution centimetre-level
landslide rates in the Three Gorges Region of China using TerraSAR-X Hi-resolution Spotlight
(TSX HS) space-borne SAR images. These results contrast sharply with previous use of conventional
differential Interferometric Synthetic Aperture Radar (DInSAR) techniques in areas with steep
slopes, dense vegetation and large variability in water vapour which indicated around 12% phase
coherent coverage. By contrast, sPOT is capable of measuring two dimensional deformation of large
gradient over steeply sloped areas covered in dense vegetation. Previous applications of sPOT in this
region relies on corner reflectors (CRs), (high coherence features) to obtain reliable measurements.
However, CRs are expensive and difficult to install, especially in remote areas; and other potential
high coherence features comparable with CRs are very few and outside the landslide boundary.
The resultant sub-pixel level deformation field can be statistically analysed to yield multi-modal
maps of deformation regions. This approach is shown to have a significant impact when compared
with previous offset tracking measurements of landslide deformation, as it is demonstrated that sPOT
can be applied even in densely vegetated terrain without relying on high-contrast surface features or
requiring any de-noising process.

Keywords: landslide monitoring; sub-Pixel Offset Tracking (sPOT); TerraSAR-X High-resolution
Spotlight data; Corner Reflectors vs. natural scatterers; densely vegetated terrain

1. Introduction

Remote sensing, especially in the microwave region, has become the most convenient and feasible
tool widely applied in deformation mapping. In the Three Gorges Region (TGR), due to the often
limited access to Global Positioning System (GPS) measurements, the high costs of skilled labour and
instrumentation required, it is difficult to obtain sufficient local geodetic measurements [1]. The usage
of satellite remote sensing data for landslide studies in the TGR can be traced back to the 1980s [2].
Due to the high humidity caused by the monsoon climate of this region, optical sensors are often
limited in obtaining an effective time series of measurements. A Synthetic Aperture Radar (SAR),
which is able to work both day and night during all weather conditions and which repeatedly acquires
time series of high-resolution images covering large areas, has been recognized as an effective and
powerful sensor for landslide monitoring [1,3].

The differential Interferometric SAR (DInSAR), which is capable of detecting surface deformation
over a large area in the direction of the satellite Line of Sight (LOS) with a centimetre-to-millimetre
precision, has been extensively applied to monitor volcanic activities, earthquakes, mining
deformations, glacier movement, subsidence and landslides [4–13]. Time series algorithms have

Remote Sens. 2016, 8, 659; doi:10.3390/rs8080659 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 659 2 of 25

been developed to extend the use of DInSAR for temporal evolution of ground deformation, which
can be essentially divided into two broad categories: the Persistent Scatterer (PS) InSAR [14–16] and
Small Baseline Subset (SBAS) [17,18].

However, the applications of DInSAR/time series DInSAR in the Three Gorges Region are limited
by the difficulties arising from steep slopes, dense vegetation cover and high humidity. The experiment
using PS-InSAR with ENVISAT data to measure deformation in the TGR area did not find sufficient PS
points [19], which lead to the failure of phase unwrapping [3]. The attempt of using PS-InSAR with
ASAR images to monitor the Shuping landslide failed for the same reason [1]. Experiments applying
the SBAS method on TerraSAR-X (TSX) data in the Three Gorge Region did not find significant
dependence upon the perpendicular baseline or dramatic increase of reliable scatterers over time,
suggesting the use of SBAS method has limited benefit in this case [20].

In addition, DInSAR measurements on the Shuping landslide yielded varied results in previous
studies. Fu et al. obtained DInSAR measurements on 12 corner reflectors (CRs) (−1–11 cm in 140 days)
of the Shuping landslide using five ENVISAT ASAR images spanning from September 2005 to March
2006. The investigated period missed the most active period of the Shuping landslide [21]. Xia et al.
used the same 12 CRs to derive linear displacement rates of 1–11 cm/year from September 2005
to June 2007 [22], in contradiction with the results of [21] with a different deformation rate but an
overlapping observation period between September 2005 and March 2006. For the period between
September 2005 and June 2007, extensometer measurements show 50–70 cm/year displacement with a
dramatic increase from May to August 2007 [23], which is different from the linear trend monitored
by PS-InSAR.

It should be noted there is a limitation of DInSAR with regard to the maximum detectable
displacement. If no prior knowledge of the deformation is provided, which is usually the case,
the implementation of phase unwrapping relies on an assumption that the phase difference between
any two neighbouring pixels does not exceed ±π. This implies the maximum detectable deformation
per pixel is half wavelength. In addition, phase gradients larger than 0.5 fringes may cause large-scale
unwrapping errors, which means the displacement gradient between two neighbouring pixels is
limited to 1/4 wavelength [24]. Thus, the maximum detectable displacement gradient (DDG) of InSAR
measurements is

D = λ/4µ (1)

where D denotes the maximum DDG, λ is the wavelength of the SAR sensor and µ is the pixel size of
the SAR images for classical interferometry, or distance between persistent scatterers for PS techniques.
The value of D depends on the satellite. For example, in the case of TerraSAR-X Hi-resolution Spotlight
(with wavelength 0.031 m, pixel size 0.456 m) data, the maximum DDG is 0.0059 using a small
multi-looking factor of 2. This means that over a ground distance of 1 m (about 1 pixel in the case of
TSX Hi Res data), a displacement of 0.59 cm in one revisit cycle (11 days) will be underestimated even
when given very high phase coherence. In a real scenario, the coherence is usually lower, especially
in densely vegetated areas. The theoretical limit will drop with the coherence leading to further
underestimation, which is the case in our study. Many slow-moving landslides (~1.6 m/year as
defined in [25,26] and cases reported in [27,28]) can exceed this threshold of displacement gradient,
especially near the landslide boundary.

The sub-pixel Offset Tracking (sPOT) technique (sometimes referred to as Pixel Offset Mapping)
has previously been applied to monitor glacier movements, volcanic activities and co-seismic tears
in the solid earth resulting from severe earthquakes to address the technical defects and limitations
of conventional DInSAR techniques, particularly their sparse coverage and the impact of dense
vegetative cover [29]. In the past, studies on offset tracking techniques to measure slope movements
are dominated by using optically sensed imagery from spaceborne or airborne platforms [30–35].

For SAR sensors, initially medium resolution SAR imagery were employed in offset tracking
for measurements of very large deformation (metres to tens of metres) [36–38]. Intensity Tracking
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(based on Normalized Cross Correlation) was proposed and implemented on a set of ERS-1/2 SAR
data acquired from March 1992 to February 1996 in order to estimate the motion of Monacobreen in
Northern Svalbard [36]. It indicated that in the case of various SAR missions (RADARSAT, ERS-2,
ENVISAT, ALOS) with a more than 24 day revisit interval, intensity based tracking is the only technique
able to correctly measure glacier movement. The work by [37] proposed a PO-SBAS approach using
ENVISAT data to measure large displacements (several metres) occurring in the inner part of the Sierra
Negra caldera due to the October 2005 eruption. This PO-SBAS approach attempted to minimize
the perpendicular baseline via small baseline combinations of offset pairs. However, the TSX data
employed in our study consistently has short baselines ranging from 12 m to 220 m, so the benefit of
creating a SBAS network is limited. With the availability of higher resolution SAR data, Manconi et al.
obtained post-event deformation maps for emergency evaluation of a large, rapidly-moving (10–20 m)
landslide [39–41]. The same PO-SBAS approach was applied to ascending and descending pairs of
COSMO-SkyMed images to retrieve 3D deformation of the Montescaglioso landslide (Italy) of which
the main movement occurred over 15–20 min with an average velocity of about 0.5–1 m per minute.

Sub-Pixel Offset Tracking has recently been employed to derive centimetre-level landslide rates
in the Three Gorges Region using 1–3 m resolution space-borne SAR images. Li et al. [42] used
four pairs of TSX HS images to derive 2D (azimuth and slant range) landslide displacement in the
Three Gorges Region. The results indicate May–August 2009 was the most active period of the Shuping
landslide. However, due to the impact of dense seasonal vegetation cover, some results still show
false deformation features in the slant range direction. Singleton et al. [20] conducted further analysis
focusing on the 540,000 m2 area centred on the landslide blocks. This work focused on the use of
previously installed Corner Reflectors (CRs) with offset tracking, to derive a deformation magnitude
for each CR in order to plot time series deformation curves, confirming a dramatic increase in landslide
rates from May to August in 2009. However, it was pointed out that the errors associated with the
corner reflector measurements are an order of magnitude lower than those calculated from densely
vegetated terrain. Also, it was pointed out in [43] using ground-based SAR (GB-SAR) data to measure
the displacement from artificial CRss, the main constraint of the offset tracking technique is the need of
CRs. This raises a large question for the vast majority of regions where no CRs are available especially
in densely vegetated terrain. The question arises: are sPOT techniques able to correctly measure
landslide rates? This is the starting point of this study.

As the main objective of this study, the potential of using natural scatterers is assessed on
deformation measurements using an offset tracking approach by combining sub-pixel cross-correlation
with a time series statistical analysis, which makes a significant difference in that it does not
rely on high contrast surface features (e.g., Corner Reflectors). Unlike the scenario of a very
large deformation [36–38,44], this study aims to exploit the use of offset tracking with time series
high-resolution SAR data covering two years, to derive the temporal evolution and spatial distribution
of a slow-moving landslide with an active period of months and accumulative displacement of
up to 1 m per year. The study area is characterized by dense vegetation cover on steep slopes,
which causes rapid decrease of temporal correlation/low coherence of DInSAR on natural scatterers.
Given the deformation velocity, the offsets caused by seasonal changes of vegetation cannot be ignored,
which increases the challenge of the use of natural scatterers.

In this paper, sub-Pixel Offset Tracking is applied in monitoring ground deformation in densely
vegetated terrain and concentrating on the evaluation of its general application in the vast majority
of regions where CRs are not available. Firstly, the landslide displacement rates in the field site,
Shuping landslide area, were measured from artificial CRs using the fully available 2 year time series
TerraSAR-X (TSX) Hi-resolution Spotlight data acquired from February 2009–April 2010 and January
2012–February 2013. Secondly, the correlation between the landslide displacements and water level
variations of the Three Gorges Reservoir were then analysed to infer a possible failure mechanism
for the Shuping landslide. Finally, as a key part of this study, the capability of sPOT techniques for
measuring ground displacements in densely vegetated areas was assessed by a statistical analysis
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of deformation magnitudes derived from natural scatterers on the whole landslide body. Based on
the above analysis, an approach is proposed to extend the applications of sPOT to densely vegetated
terrain without requiring artificial CRs.

2. Study Site

The Three Gorges Region (TGR) of China, which is located between latitude 28◦32′N–31◦44′N
and longitude 105◦44′E–111◦39′E, is the region directly or indirectly involved in the submersion of
the water storage of the Three Gorges Project (TGP). It stretches along the Yangtze River including
16 county-level divisions of the Chongqing municipality and 4 divisions of the Hubei province.
The Three Gorges Dam (TGD), located at Sandouping Town to the west of the city of Yichang, China,
is one of the world’s largest civil engineering structures, which blocks water to form a 660 km long
and ≈1.1 km wide reservoir. The water level of the Yangtze River in the TGD rose from 66 m to
135 m, 156 m and eventually 175 m above sea level during the three impoundments in 2003, 2006
and 2009. The Three Gorges Project (TGP) does a remarkable job of generating a huge amount of
electric power as well as controlling floods and improving the shipping capacity of the Yangtze River.
However, the construction and operation of Three Gorges Dam resulted in a significant land use
change, which altered energy and water budgets, affected the regional weather and climate patterns,
and is linked to the dramatically increased geological hazards dominated by landslide activities in the
Three Gorges Region [45–47]. Numerous landslide activities have occurred in residential areas with
high population density, causing a lot of wasted resources and loss of property.

As the construction and operation of the Three Gorges Dam raised major concerns about its
environmental impacts, a number of studies have been carried out on several topics, including
terrestrial ecosystems, sedimentation, pollution, river discharges, regional climate and induced
geological hazards dominated by landslides [48–53].

Most of the landslides which occurred in the Three Gorges Region are identified as being triggered
by water, with the variations of reservoir water level and seasonal heavy rainfall being the two main
factors [23,54].

The field site, Shuping landslide area, is located on the south bank of the Yangtze River near
Shazhenxi Town, Zigui County with centre coordinates of 30.996◦N, 110.609◦E as indicated in Figure 1a.
The Shuping landslide was identified as an ancient landslide during the field investigations before
the construction of Three Gorges Dam [55]. This area is underlaid by muddy sandstone and sandy
mudstone of the Triassic Badong formation. The landslide is composed of two blocks as marked in
Figure 1b facing the North, with a width of about 650 m, elevation ranging from 65 to 400 m, thickness
of 40–70 m, volume of about 20 million m3 and average slope varying from 22◦ on the upper part to
35◦ on the lower part [54]. The landslide area is characterised by terraced slopes densely covered with
orange trees. The landscape photos of the Shuping landslide area in Figure 2 show cracks on the local
infrastructure and one photo of one of the CRs is shown.

The Shuping landslide is a typical slope accumulation landslide where deformation has increased
since the water impoundment of the Three Gorges Reservoir in 2003. In June 2003, significant
deformation appeared on the slope and it acute from 8 February 2004 on. This serious deformation
posed a significant danger to 580 inhabitants and 163 houses directly in its path and most of
the inhabitants had moved of the landslide area by May 2004. According to GPS measurements,
from January 2004–October 2006, when the reservoir water level varied between 135 and 145 m,
the ground deformation of Shuping landslide area was predominantly a combination of squirm and
uniform deformation. The accumulative displacement reached 300 mm from August 2004 to August
2006, 250 mm from August 2006 to July 2007, 500 mm from August 2007 to February 2009, and 700 mm
from February 2009 to February 2010 according to extensometer measurements along the centre line of
eastern block [23,54]. Following this for every single year, the deformation magnitude periodically
fluctuates with variations in the reservoir water level which also coincides with rainfall periodicity [56].
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Figure 1. (a) Location of the Shuping landslide area; (b) Perspective view of landslide body shown 
in TerraSAR-X Hi-resolution Spotlight amplitude image superimposed in Google Earth with 
landslide blocks marked in red. Data source: TerraSAR-X © DLR <2009>. 

 

Figure 2. (a) Landscape of the landslide area; (b) Cracks on local infrastructure caused by the 
landslide; (c) one of the Corner Reflectors installed in the landslide area. Photos were taken during a 
field campaign in May 2014. 

  

Figure 1. (a) Location of the Shuping landslide area; (b) Perspective view of landslide body shown in
TerraSAR-X Hi-resolution Spotlight amplitude image superimposed in Google Earth with landslide
blocks marked in red. Data source: TerraSAR-X © DLR <2009>.
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Figure 2. (a) Landscape of the landslide area; (b) Cracks on local infrastructure caused by the landslide;
(c) one of the Corner Reflectors installed in the landslide area. Photos were taken during a field
campaign in May 2014.
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3. Data and Methods

3.1. Data

The data employed in this research uses the TerraSAR-X Hi-resolution Spotlight (TSX HS) data.
Fifty-seven archived TSX High-resolution Spotlight (HS) images were acquired from 21 February
2009–15 April 2009 and 2 January 2012–23 February 2013 over the Shuping landslide area in the
Three Gorges Region. The extent of Spotlight data coverage is shown by the rectangle frame in
Figure 1a. The metadata of the two annual time series of TSX HS data is listed in Table 1.

Table 1. Metadata of the two stacks of SAR data using the parameters from the first image of each
stack, as the values remain very close for all subsequent acquisitions.

TerraSAR-X High-Resolution Spotlight Data

Annual time series 2009–2010 2012–2013
First acquisition 21 February 2009 2 January 2012
Last acquisition 15 April 2010 23 February 2013

Satellite orbit heading (◦) 190.552 189.617
Wavelength (m) 0.031 0.031

Incidence angle (◦) 43.690 43.602
Range pixel spacing (m) 0.456 0.455

Azimuth pixel spacing (m) 0.862 0.873
Range resolution (m) 0.851 0.852

Azimuth resolution (m) 1.100 1.100

3.2. Methods: Sub-Pixel Offset Tracking (sPOT) Techniques

An alternative to the use of SAR interferometry is to measure sub-pixel offsets between the SAR
images. This can be achieved by FFT-based correlation (sometimes referred to as phase correlation)
or Normalized Cross Correlation [57]. Due to the high noise level of SAR images, cross-correlation
is more robust (found out in experiments) and therefore chosen for this study. One of the first offset
tracking applications to the Three Gorges Area is shown by Li et al. [58] and more recently in [20].
We refer to these as sub-Pixel offset tracking (sPOT) techniques.

The Normalized Cross Correlation (NCC) derives a set of 2-dimensional (2D) offsets between
pre-event and post-event images. NCC is a traditional method for image registration. It is applied to
the intensity bands of cross event images to detect ground deformation through a measure of similarity
between window pairs extracted from pre-event and post-event images. The similarity, which is
defined as the correlation coefficient, is computed as follows:

NCC =

Nx

∑
m=1

Ny

∑
n=1

[(
i1 (m, n)− i1

)
·
(
i2 (m, n)− i2

)]
√√√√ Nx

∑
m=1

Ny

∑
n=1

(
i1 (m, n)− i1

)2

√√√√ Nx

∑
m=1

Ny

∑
n=1

(
i2 (m, n)− i2

)2

(2)

where i1 and i2 denote pre-event and post-event images with a two-dimensional offset (a, b), which can
be described as i2 (x, y) = i1 (x− a, y− b). Nx × Ny is the correlation window size which can be
modified by the application requirements. i1 and i2 are the mathematical expectation values of the
cross-event image pair:

i1 =
1

Nx × Ny

Nx

∑
m=1

Ny

∑
n=1

i1 (m, n) (3)

i2 =
1

Nx × Ny

Nx

∑
m=1

Ny

∑
n=1

i2 (m, n) (4)
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The NCC method searches for maximum correlation (i.e., maximum similarity) between window
pairs formed by the pre-event and post-event images. Those window pairs for which a maximum
correlation detected, are considered as corresponding pairs. After locating the corresponding pixels
in the master and slave images, the 2D offsets of the slave image w.r.t. the master image can be
obtained. To achieve a sub-pixel accuracy of correlation, two categories of approaches are usually
used: (1) image intensities are oversampled prior to cross-correlation; (2) Without oversampling of the
intensity bands, cross-correlation is done in the original image resolution, correlation peaks are located
by polynomial fitting.

In this paper, all data are processed using the following step-by-step approach:

• For each data stack (2009–2010 and 2012–2013), the first acquisition was used as the master image.
All the slave images were co-registered with respect to the same master to sub-pixel accuracy.
Topographic distortions were modeled using a reference DEM (SRTM 1 arc-second global DEM)
and precise orbital data and subtracted before the cross-correlation.

• Images are cropped to the landslide sub-area as inputs to the cross-correlation included within
COSI_Corr [59–61]. At this point, the azimuth and range deformation fields are derived.

• Time series histograms of the range/azimuth deformation fields are plotted for the measurements
derived on the landslide blocks and the measurements on the stable ground respectively.

• To correct the centroid shifts (mainly caused by the impact of vegetation) on every histogram,
the time series histograms of the measurements from stable ground were all fitted by Gaussian
functions. The centroid location of every Gaussian peak was taken as a reference to correct the
centroid offsets for the corresponding histograms of range/azimuth offsets of the landslide area.

• From the change in histograms, the temporal evolution of the landslide is shown and the active
period of the landslide can be identified, as well as the deformation scale.

• Using a correlation coefficient of 0.25 as the threshold, all pixels with correlation above this value
are plotted to show the spatial distribution of azimuth and slant range offsets occurred in February
2009–April 2010 and January 2012–February 2013. The two maps can be plotted for each salve
acquisition date in the data stack.

4. Results

4.1. Time Series Landslide Rates Derived from Corner Reflectors (CRs) Using Sub-Pixel Offset Tracking

Subsets of landslide sub-areas were cropped from 35 pairs of TerraSAR-X Hi-resolution Spotlight
(TSX HS) images acquired from 21 February 2009–15 April 2010 and 20 pairs from 2 January 2012–23
February 2013. The sPOT method was applied to every co-registered subset pair using 20090221 and
20120102 images, respectively, as the common master image for each annual time series (i.e., 2009–2010
and 2012–2013, respectively), to retrieve deformations along the range (satellite line-of-sight) and
the azimuth (along-track) direction. The acquisition dates and estimated baselines of employed data
(in brackets) are listed in Tables 2 and 3 with each image named after the acquisition date in the format
“yyyymmdd”.
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Table 2. TSX HS data employed in 2009–2010 time series analysis.

Common Master Slave (Perpendicular Baseline)

20090221

20090304 (192 m) 20090315 (125 m) 20090326 (040 m)
20090406 (028 m) 20090417 (080 m) 20090428 (050 m)
20090509 (040 m) 20090520 (041 m) 20090531 (051 m)
20090611 (052 m) 20090622 (125 m) 20090703 (074 m)
20090714 (072 m) 20090725 (137 m) 20090805 (071 m)
20090816 (120 m) 20090827 (074 m) 20090907 (040 m)
20090918 (156 m) 20090929 (180 m) 20091010 (046 m)
20091112 (085 m) 20091123 (017 m) 20091204 (089 m)
20091215 (043 m) 20091226 (066 m) 20100106 (105 m)
20100117 (145 m) 20100128 (033 m) 20100219 (150 m)
20100304 (097 m) 20100313 (220 m) 20100324 (102 m)
20100404 (111 m) 20100415 (123 m)

Table 3. TSX HS data employed in 2012–2013 time series analysis.

Common Master Slave (Perpendicular Baseline)

20120102

20120113 (035 m) 20120124 (012 m) 20120204 (094 m)
20120215 (074 m) 20120226 (055 m) 20120308 (021 m)
20120319 (081 m) 20120330 (029 m) 20120421 (058 m)
20120524 (064 m) 20120615 (191 m) 20120820 (183 m)
20120922 (083 m) 20121025 (002 m) 20121127 (082 m)
20130110 (025 m) 20130121 (040 m) 20130201 (160 m)
20130212 (017 m) 20130223 (029 m)

There have been artificial CRs installed in the Three Gorges Region since 2000 [62]. Seventeen
CRs are identified in the Shuping landslide area from the TSX Hi-resolution Spotlight image as shown
in Figure 3.
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The correlation coefficients of all CRs are examined prior to the time series analysis. As shown
in Figure 4, the correlation coefficient of CR3 is very low (around 0.2) throughout the 2012–2013
stack, which will lead to inconclusive cross-correlation. CR5 shows inconsistencies in the correlation
coefficient, because it is missing from the SAR amplitude images during 15 June 2012–10 January 2013
possibly due to reinstallation or orientation adjustment. Thus, CR3 and CR5 were both excluded from
the analysis of the two annual time series.

1 

 

 

Figure 4. Correlation coefficients of CRs derived by sub-pixel offset tracking in the Shuping landslide
area. Acquisition date is displayed in the format of ‘yyyymmdd’.

The deformation magnitudes of the remaining 14 CRs (as shown in Figure 3) were extracted
to plot time series landslide rates. No de-noising or filtering steps were applied. As all data was
acquired with right looking SAR in the descending mode, the negative magnitude of the azimuth
deformation corresponds to the reverse along-track direction (predominantly to the North) and the
positive magnitude of range deformation represents the movement away from the sensor.

The topographic distortions of the range offsets were modeled by using a reference DEM and
precise orbital data and subtracted before cross-correlation. To reduce the background noise, CR1 was
taken as a reference point for all the other CRs as it is identified as located on the stable ground.

The two annual time series of landslide rates derived from CRs are shown in Figures 5 and 6.
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Figure 5. A 2009–2010 time series deformation measured from Corner Reflectors: (a) Azimuth
deformation; (b) Slant range deformation. Acquisition date is displayed in the format of ‘yyyymmdd’.
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4.2. The Correlation Between the Landslide Deformation and Water Level Variations

To study the relationship between the landslide displacements and the operation of the
Three Gorges Dam, the derived landslide rates of CR9 and CR15 (taken as examples due to the
typical deformation patterns) were plotted against water level measurements of the Three Gorges
Reservoir for the same time periods, from February 2009–April 2010 and January 2012–February
2013. The water level measurements can be accessed from the Three Gorges Corporation website:
http://www.ctg.com.cn/inc/sqsk.php.

As shown in Figures 7 and 8, the water level measurements over the same time period show a
consistent seasonal pattern with a lower level in the flood season and normal levels in other seasons.
This is strongly correlated with the active period of the Shuping landslide. There is no correlation
between the displacements and the big rise in water levels in September, this will be addressed in the
Discussion Section 5.4.
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Figure 8. (a) Azimuth displacements of CR9 versus water level measurements of Three Gorges
Reservoir from January 2012 to February 2013; (b) Azimuth displacements of CR15 versus water level
measurements of Three Gorges Reservoir from January 2012 to February 2013. Acquisition date is
displayed in the format of ‘yyyymmdd’.

4.3. Assessment of Using Natural Scatterers with sPOT Techniques to Monitor Landslide Movement in
Densely Vegetated Terrain

Artificial CRs are not widely available along the banks of Yangtze River due to the large number
and scale of landslides in the Three Gorges Area and the high costs of the associated building works as
well as the huge difficulties in physical access [63–65]. In order to assess the use of sPOT techniques in
densely vegetated terrain without relying on CRs, statistics of deformation measurements derived
from natural scatterers were compared to those derived from CRs. The analysis was conducted in the
540,000 m2 area covering the two landslide blocks. All contributions from CRs were masked out from
the original azimuth/range deformation output. No de-noising or filtering steps were applied. Results
are shown in Figure 9.
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Figure 9. (a) Histograms of azimuth deformation derived from 21 February 2009–15 April 2010
image pair from natural scatterers vs. CRs inside the landslide boundary; (b) Histograms of range
deformation derived from the 21 February 2009–15 April 2010 image pair from natural scatterers vs.
CRs inside the landslide boundary; (c) Histograms of azimuth deformation derived from 2 January
2012–23 February 2013 image pair from natural scatterers vs. CRs inside the landslide boundary;
(d) Histograms of range deformation derived from the 2 January 2012–23 February 2013 image pair
from natural scatterers vs. CRs inside the landslide boundary. Modified from [66].
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From the comparisons of displacement histograms shown in Figure 9, we can observe that
measurements from natural scatterers show the same range of deformation magnitudes as those
derived from CRs.

4.4. Statistical Analysis Combined with sPOT for General Use in Landslide Monitoring in Densely
Vegetated Areas

The histograms of azimuth/range deformation measured from the natural scatterers of the
landslide blocks and adjacent stable ground are compared in Figure 10.
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Following on from the above analysis, a new approach combining sub-pixel cross-correlation 
and statistical processing is proposed to monitor landslides in such challenging areas for general 
use when high-contrast surface features are very few or not available. 

The processing flow of the new sPOT approach is shown in Figure 11. Firstly, using the annual 
time series data acquired from 21 February 2009–15 April 2010 with the image of 21 February 2009 
as the master image and all the others as slave images; and the other annual time series data 
acquired from 2 January 2012–23 February 2013 with the image of 2 January 2012 as the master 
image and all the others as slave images, co-registration was carefully applied to achieve 1/100–1/10 
pixel accuracy. Secondly, sub-pixel Cross Correlation was applied to the co-registered time series to 
derive range/azimuth deformation fields of the Shuping landslide.  

Figure 10. Comparison of azimuth/range deformation histograms of natural scatterers derived
from stable ground and landslide blocks; (a) azimuth displacement derived from 2 January 2012–13
January 2012 image pair; (b) range displacement derived from 2 January 2012–13 January 2012 image
pair; (c) azimuth displacement derived from 2 January 2012–23 February 2013 image pair; (d) range
displacement derived from 2 January 2012–23 February 2013 image pair.

In Figure 10a,b, before the occurrence of the landslide the histograms of the 2D deformation
measured from landslide blocks and stable ground have very similar distributions with only
one main lobe centred on a zero offset. After the displacements as shown in Figure 10c,d the histogram
of the stable ground still retains a single, main lobe centred on the zero offset with increased side lobes
(probably due to the vegetation impacts during the over one year interval). The histogram of landslide
blocks has a dramatic impact in changing the distribution, with a secondary lobe centred on positive
value for range displacement and negative value for azimuth displacement, in addition to very similar
side lobes found in the histogram of the stable ground.

Following on from the above analysis, a new approach combining sub-pixel cross-correlation and
statistical processing is proposed to monitor landslides in such challenging areas for general use when
high-contrast surface features are very few or not available.

The processing flow of the new sPOT approach is shown in Figure 11. Firstly, using the annual
time series data acquired from 21 February 2009–15 April 2010 with the image of 21 February 2009 as
the master image and all the others as slave images; and the other annual time series data acquired
from 2 January 2012–23 February 2013 with the image of 2 January 2012 as the master image and
all the others as slave images, co-registration was carefully applied to achieve 1/100–1/10 pixel
accuracy. Secondly, sub-pixel Cross Correlation was applied to the co-registered time series to derive
range/azimuth deformation fields of the Shuping landslide.
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Figure 11. Workflow of the approach combining sPOT and statistical analysis. 
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Figure 11. Workflow of the approach combining sPOT and statistical analysis.

To distinguish the measurements of CRs from natural scatterers and demonstrate the effectiveness
of the proposed approach, all contributions from CRs in the range/azimuth deformation fields were
masked out beforehand.

This approach applies statistical analysis to the derived deformation fields, by plotting histograms
of range/azimuth time series offsets derived from landslide blocks. The constant offsets, showing as
centroid shifts in the histograms of the stable area, were corrected by Gaussian fitting to the time series
histograms of the range/azimuth offsets derived from the stable ground.

The Gaussian model to fit is given by

y =
n

∑
i=1

aiexp

[
−
(

x− bi
ci

)2
]

, 1 ≤ n ≤ 8 (5)

The number of Gaussian functions was increased one by one until the fit computation converged
or reached the maximum number of fitting functions. Examples of the fitted Gaussian functions are
plotted against the original histograms in Figure 12, showing the main lobes and secondary lobes are
all fitted.
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The centroid offsets of the Gaussian fitted deformation histograms derived from the 2009–2010
and 2012–2013 annual time series on the stable ground are shown in Figure 13.
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offsets for corresponding histograms of range/azimuth offsets derived from the landslide blocks. 
After correction, the histograms (referred to as “calibrated histograms” in this paper) of the 2D 
deformation fields derived from the stable ground adjacent to the landslide area are shown in 
Figure 14. 

 
Figure 14. Calibrated time series histograms of 2D offsets derived from natural scatterers on the 
stable ground: (a) azimuth offsets derived from 2009–2010 time series of TSX HS data; (b) range 
offsets derived from 2009–2010 time series of TSX HS data; (c) azimuth offsets derived from 2012–
2013 time series of TSX HS data; (d) range offsets derived from 2012–2013 time series of TSX HS data. 
Acquisition date is displayed in the format of ‘yyyymmdd’. 

In Figure 14, the calibrated histograms have the main lobe centered on the coordinate origin 
point with symmetrical small side lobes, indicating the calibration was successful. 

The calibrated time series histograms of the azimuth/range displacement derived from the 
Shuping landslide blocks are shown in Figure 15. 

In Figure 15, we can observe that the envelope of histograms slowly moves backwards 
(azimuth deformation) and forwards (range deformation) with time and the distribution of offsets 
gradually spread out indicating that different scatters have different landslide rates. 

Figure 13. Centroid offsets of deformation histograms derived from natural scatterers on the stable
ground. (a) Results of 2009–2010 time series; (b) Results of 2012–2013 time series. Acquisition date is
displayed in the format of ‘yyyymmdd’.

The centroid location of every Gaussian peak was taken as a reference to correct the centroid
offsets for corresponding histograms of range/azimuth offsets derived from the landslide blocks.
After correction, the histograms (referred to as “calibrated histograms” in this paper) of the 2D
deformation fields derived from the stable ground adjacent to the landslide area are shown in Figure 14.
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Figure 14. Calibrated time series histograms of 2D offsets derived from natural scatterers on the stable
ground: (a) azimuth offsets derived from 2009–2010 time series of TSX HS data; (b) range offsets
derived from 2009–2010 time series of TSX HS data; (c) azimuth offsets derived from 2012–2013 time
series of TSX HS data; (d) range offsets derived from 2012–2013 time series of TSX HS data. Acquisition
date is displayed in the format of ‘yyyymmdd’.

In Figure 14, the calibrated histograms have the main lobe centered on the coordinate origin point
with symmetrical small side lobes, indicating the calibration was successful.

The calibrated time series histograms of the azimuth/range displacement derived from the
Shuping landslide blocks are shown in Figure 15.

In Figure 15, we can observe that the envelope of histograms slowly moves backwards (azimuth
deformation) and forwards (range deformation) with time and the distribution of offsets gradually
spread out indicating that different scatters have different landslide rates.
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Figure 15. Calibrated time series histograms of 2D displacements derived from natural scatterers in 
the landslide area: (a) Azimuth deformation histograms of 2009–2010 time series; (b) Range 
deformation histograms of 2009–2010 time series; (c) Azimuth deformation histograms of 2012–2013 
time series; (d) Range deformation histograms of 2012–2013 time series. Acquisition date is 
displayed in the format of ‘yyyymmdd’. Modified from [66]. 

Using the correlation coefficient of 0.25 as the threshold, all pixels with correlation above this 
value are plotted to present the spatial distribution of azimuth and slant range displacements which 
occurred in February 2009–April 2010 and January 2012–February 2013, as shown in Figures 16 and 
17. Range offsets beyond −1–+1 m and azimuth offsets beyond −2–+2 m are removed for better 
visualization. The two displacement intervals are identified on the histograms. 

 

Figure 16. Spatial distribution of the 2D displacement measured from the whole area. (a,b) 
Azimuth/range offsets of the 21 February 2009–4 March 2009 pair; (c,d) Azimuth/range offsets of the 
21 February 2009–5 August 2009 pair; (e,f) Azimuth/range offsets of the 21 February 2009–15 April 
2010 pair. The arrows marked as ”N, Rg, Az” refer to the North, slant range and azimuth directions. 
All these scatterers have correlation coefficient no less than 0.25. 

Figure 15. Calibrated time series histograms of 2D displacements derived from natural scatterers in the
landslide area: (a) Azimuth deformation histograms of 2009–2010 time series; (b) Range deformation
histograms of 2009–2010 time series; (c) Azimuth deformation histograms of 2012–2013 time series;
(d) Range deformation histograms of 2012–2013 time series. Acquisition date is displayed in the format
of ‘yyyymmdd’. Modified from [66].

Using the correlation coefficient of 0.25 as the threshold, all pixels with correlation above this
value are plotted to present the spatial distribution of azimuth and slant range displacements which
occurred in February 2009–April 2010 and January 2012–February 2013, as shown in Figures 16 and 17.
Range offsets beyond −1–+1 m and azimuth offsets beyond −2–+2 m are removed for better
visualization. The two displacement intervals are identified on the histograms.

Remote Sens. 2016, 8, 659 15 of 25 

 

 
Figure 15. Calibrated time series histograms of 2D displacements derived from natural scatterers in 
the landslide area: (a) Azimuth deformation histograms of 2009–2010 time series; (b) Range 
deformation histograms of 2009–2010 time series; (c) Azimuth deformation histograms of 2012–2013 
time series; (d) Range deformation histograms of 2012–2013 time series. Acquisition date is 
displayed in the format of ‘yyyymmdd’. Modified from [66]. 

Using the correlation coefficient of 0.25 as the threshold, all pixels with correlation above this 
value are plotted to present the spatial distribution of azimuth and slant range displacements which 
occurred in February 2009–April 2010 and January 2012–February 2013, as shown in Figures 16 and 
17. Range offsets beyond −1–+1 m and azimuth offsets beyond −2–+2 m are removed for better 
visualization. The two displacement intervals are identified on the histograms. 

 

Figure 16. Spatial distribution of the 2D displacement measured from the whole area. (a,b) 
Azimuth/range offsets of the 21 February 2009–4 March 2009 pair; (c,d) Azimuth/range offsets of the 
21 February 2009–5 August 2009 pair; (e,f) Azimuth/range offsets of the 21 February 2009–15 April 
2010 pair. The arrows marked as ”N, Rg, Az” refer to the North, slant range and azimuth directions. 
All these scatterers have correlation coefficient no less than 0.25. 

Figure 16. Spatial distribution of the 2D displacement measured from the whole area.
(a,b) Azimuth/range offsets of the 21 February 2009–4 March 2009 pair; (c,d) Azimuth/range offsets of
the 21 February 2009–5 August 2009 pair; (e,f) Azimuth/range offsets of the 21 February 2009–15 April
2010 pair. The arrows marked as ”N, Rg, Az” refer to the North, slant range and azimuth directions.
All these scatterers have correlation coefficient no less than 0.25.
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2 January 2012–20 August 2012 pair; (e,f) Azimuth/range offsets of the 2 January 2012–23 February 
2013 pair. The arrows marked as ”N, Rg, Az” refer to the North, slant range and azimuth directions. 
All these scatterers have correlation coefficient no less than 0.25. 

5. Discussion 

5.1. Performance Assessment of sPOT on Vegetated Surface 

The performance of sPOT in the vegetated areas is assessed by cumulative histograms of 
azimuth and range offsets [20,67] derived from a rectangular area (242,035 m2) on the stable ground 
adjacent to the landslide body. In COSI_Corr, the sub-pixel accuracy is achieved by a quadratic 
polynomial interpolation of the correlation peak instead of oversampling the SAR intensities. 
Therefore, we only alter the correlation window size in the tests. 

Cumulative Distribution Functions (CDFs) of azimuth/range displacements are plotted for 
different correlation window sizes, as shown in Figure 18. 
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Figure 17. Spatial distribution of the 2D displacement measured from the whole area.
(a,b) Azimuth/range offsets of the 2 January 2012–13 January 2012 pair; (c,d) Azimuth/range offsets of
the 2 January 2012–20 August 2012 pair; (e,f) Azimuth/range offsets of the 2 January 2012–23 February
2013 pair. The arrows marked as ”N, Rg, Az” refer to the North, slant range and azimuth directions.
All these scatterers have correlation coefficient no less than 0.25.

5. Discussion

5.1. Performance Assessment of sPOT on Vegetated Surface

The performance of sPOT in the vegetated areas is assessed by cumulative histograms of azimuth
and range offsets [20,67] derived from a rectangular area (242,035 m2) on the stable ground adjacent
to the landslide body. In COSI_Corr, the sub-pixel accuracy is achieved by a quadratic polynomial
interpolation of the correlation peak instead of oversampling the SAR intensities. Therefore, we only
alter the correlation window size in the tests.

Cumulative Distribution Functions (CDFs) of azimuth/range displacements are plotted for
different correlation window sizes, as shown in Figure 18.
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The elapsed time of each parameter setting in a 64 bit Windows 7 system (processor speed:
2.3 GHz, RAM: 8 GB) is listed in Table 4.

Table 4. Processing Time Corresponding to Different Window Sizes of Cross-Correlation, Taking Into
Account the Time Consumption of Image Co-Registration.

Correlation Window Size Processing Time

16 × 16 30 min
32 × 32 39 min
64 × 64 78 min

We can see that using a correlation window size of 32 × 32, in the CDFs of both azimuth and
range displacements, over 75% of pixels are characterised by displacements around zero and within
±1.0 pixel offset range. A larger window size improves the accuracy but dramatically increases the
processing time (detailed in Table 4). Larger window sizes also increase artifacts and reduce the
resolution of the deformation fields [67]. In the above experiments, it is found that a 32× 32 correlation
window size fulfils the research objectives with a reasonable time consumption and is therefore chosen
in the processing for both CRs and vegetated surface.

Slight offsets of the centroid are observed from the CDFs of azimuth/range displacements
(Figure 18), which very likely results from the impact of dense vegetative cover. This is also pointed
out in Section 4.3 via the time series histograms of 2D deformation derived from stable ground,
which can be corrected by the proposed calibration technique. As long as the majority of the pixels
are characterised with deformation around a certain magnitude within a reasonable offset range,
the parameters are considered satisfactory to provide sufficient robustness for sPOT method in the
vegetated terrain.

5.2. Accuracy Assessment of Sub-Pixel Offset Tracking (sPOT)

The applicability of sPOT techniques to monitor landslides is determined by their accuracy,
which consists of image co-registration errors and the uncertainty associated with Cross Correlation.
In theory, the uncertainty of Cross Correlation can be calculated as the standard deviation error of the
determination of the correlation peak [68], expressed as follows:

σ =

√
3

10N

√
2 + 5γ2 − 7γ4

πγ2 (6)

where γ is the cross-correlation coefficient; N is the number of independent samples involved in the
Cross Correlation, referring to the original image resolution element. The correlation peak is then
interpolated using a quadratic polynomial for 1/4 pixel accuracy.

Thus, with a correlation window size of 32 × 32 and a correlation coefficient no less than 0.783
for all CRs, the Cross Correlation has an uncertainty of 0.02 pixels. This is validated by a simulation
of cross-correlation using the same parameters with the image acquired on 21 February 2009 as the
master and the same image shifted by 5 pixels in slant range direction and 8 pixels in inverse azimuth
direction as the slave. The 2D offsets derived by the cross-correlation are analysed and shown in
Table 5. These results are obtained with the correlation coefficients ranging from 0.806 to 0.999, almost
the same correlation coefficients measured from CRs.

From Table 5, we can see that with the correlation coefficients of no less than 0.8,
the cross-correlation measures a mean offset of 5 pixels in the range direction and−8 pixels in the
azimuth direction, exactly the same offsets as the image shifted prior to the simulation. The standard
deviation errors are 0.022 pixels and 0.021 pixels respectively in the range and azimuth directions.
This is in alignment with the theoretical uncertainty calculated for CRs (with a correlation coefficient no
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less than 0.783) using Equation (6). Thus, the calculated uncertainty is believed to be a good estimate
of practical errors of cross-correlation.

Table 5. Statistics of range and azimuth offsets derived from the 20090221 image and the same image
shifted by 5 pixels in range direction and 8 pixels in inverse azimuth direction.

Mean (Pixel) Std (Pixel) Max (Pixel) Min (Pixel)

Range offset 5.000 0.022 5.497 4.503
Azimuth offset −8.000 0.021 −7.503 −8.496

It is worth noting that the coregistration is not perfect. The residual errors from the coregistration
step may lead to uncompensated image offsets which can be mixed in with the investigated
displacements [37]. Thus, the overall errors of offset tracking should consider the coregistration errors
with the standard deviation errors of cross-correlation. Taking into account both of the cross-correlation
uncertainty and the co-registration errors up to 1/10 pixels, the theoretical accuracy of sPOT comes
to 0.12 pixels. Substituting the range pixel spacing of 45.6 cm and azimuth pixel spacing of 86.2 cm
of TSX Spotlight data into Equation (6), the accuracy of offsets measured from CRs is 5.5 cm in the
range direction and 10.3 cm in the azimuth direction. Thus, the offset tracking technique has sufficient
accuracy on CRs to monitor Shuping landslides with regard to the annual displacement rate up to 1 m
in the azimuth direction and up to 0.7 m in the range direction.

The corner reflector measurements were compared with the results of the same period presented
in [20], the differences between slant range/azimuth offsets are shown in Table 6.

Table 6. Comparison between the corner reflector measurements derived in this study and the results
presented in a previous study [20].

Mean Difference (m) Standard Deviation (m) RMS Errors (m)

Range offset 0.006 0.031 0.032
Azimuth offset 0.025 0.084 0.088

As shown in Table 6, the root mean square error (RMSE) of offset measurements is 0.088 m in
azimuth direction and 0.032 m in range direction, both within the expected accuracy of corner reflector
measurements, which reaches a good agreement from a statistical standpoint.

The accuracy of the offsets derived from natural scatterers in the vegetated terrain is assessed
by simulation using the correlation coefficients of 21 February 2009–15 April 2010 image pair as
inputs. The histogram of the correlation coefficients of natural scatterers is plotted in Figure 19.
All contributions from artificial CRs were masked out before analysis.

The accuracy consists of the simulated uncertainties using Equation (6) and co-registration errors
of 1/10 pixel size. The cumulative distributions of the 2D accuracy are shown in Figure 20.

From Figure 20, we can see that over 75% of natural scatterers have improved accuracy rates of
34 cm in the azimuth direction and 18 cm in the range direction. For a typical correlation coefficient of
0.25, the lowest accuracy is 24 cm in the azimuth direction and 13 cm in the range direction. Hence,
the accuracy of the natural scatterers is statistically significant in measuring the Shuping landslides
with regard to the annual displacement rate up to 1 m in the azimuth direction and 0.7 m in the
range direction.
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5.3. Validation of Derived Shuping Landslide Rates

Due to the lack of availability of in-situ measurements of CRs in the Shuping landslide area, the
offset tracking results are verified by the extensometer measurements presented by Wang et al. [23] on
the eastern block of the Shuping landslide (where CR7-11 is located).

The measured range and azimuth deformation represent the components of the actual
displacement projected on the slant range and azimuth directions. The displacement vector measured
by extensometers is along the slope surface and centreline of the eastern block [23], approximately
along the gradient of the elevation model. Slope degrees are derived using 1 arc-second SRTM DEM
for each elevation value. By the decomposition of the extensometer measurements on to the North,
East and Up directions, the azimuth and slant range offsets dr and da can be resolved using the
following Equations [69]:

dr = −ducosθinc + sinθinc
[
dncos

(
αh − 3π

2
)
+ desin

(
αh − 3π

2
)]

= −ducosθinc − dnsinθincsinαh + desinθinccosαh

(7)
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da = dnsin
(
αh − 3π

2
)
− decos

(
αh − 3π

2
)

= dncosαh + desinαh

(8)

where du, dn, de are the Upward, Northward and Eastward displacement, dr and da denote the
range and azimuth displacement derived from SAR images, θinc is the antenna incidence angle, αh
represents the satellite orbit heading (the angle formed between North and azimuth direction).

CR9 in the eastern block is selected for the comparison because its elevation of 277 m is closest to
one of the extensometers “SP1-9” crossing the 275 m contour as presented in [23]. The SP1-9 shows
70 cm increase of displacement from February–August 2009.

With an orientation of 355◦ (measured in Google Earth using the centreline of the eastern block),
slope degrees of 22◦ (derived from the DEM), accumulative displacement of 0.7 m is decomposed and
inversed to the radar geometry using Equations (7) and (8). The inversion obtained−0.62 m of azimuth
displacement and 0.33 m of slant range displacement for the period of 1 February–01 August 2009.
The accumulative displacements derived by offset tracking on CR7 for 21 February–5 August 2009
are −0.6 m in the azimuth direction and 0.44 m in the range direction. We can see that the azimuth
displacement derived by offset tracking is very close to the extensometer measurement with only a
difference of 2 cm, while the range displacement has a difference of 11 cm. This is probably because
the extensometer only measures the displacement projection along the orientation of the block (355◦)
approximately to the North and the decomposed range displacement is only part of the projection
of actual displacement along the slant range. Overall, the extensometer measurements revealed a
consistent pattern of all extensometers with a dramatic increase of the displacement from May to
August 2009, which is in alignment with the pattern detected by offset tracking.

5.4. Landslide Mechanism Inferred From This Study

The landslide rates measured from the two annual time series show a consistent seasonal pattern
of the deformation magnitude of all CRs located in the landslide blocks, whilst the displacements
of CRs on the stable ground fluctuate around zero. The corner reflector measurements inside the
landslide boundary show a dramatic increase over the same time period over both observation years
(i.e., May to August in 2009 and 2012), which implies that the landslide is likely caused by the same
driving factors.

In Figures 7 and 8, the measurements of CR9 and CR15 both show a strong correlation with the
water level variations of Three Gorges Reservoir in 2009–2010 and 2012–2013 time series observation.
It is evident that the landslide active period coincides with the sharp drawdown of the water level of the
Three Gorges Dam Reservoir. This suggests a strong connection between the landslide displacements
and the operation of the Three Gorges Dam. As there is no deformation observed after the big rise
of water level in September, the failure mechanism can be considered as follows: When the reservoir
water level increases, the voids of the soil are gradually filled with water during this process. Then the
water level reaches its highest level (175 m) and remains in this level for a period. The ground water
table gradually reaches a higher elevation and remains in this state. The pressure inside the landslide
body balances with the pressure formed by the 175 m water level, which maintains the slope stability.
When the water level sharply drops, the ground water content within the landslide body does not
drop at the same rate. This results in greater water content inside the landslide body, which forms an
outward pressure, leading to the loss of slope stability. However, as the water level drawdown happens
synchronously with the seasonal rainfall variations (due to the drawdown being enacted to mitigate
against flooding effects form the high seasonal rainfall), a further study is required to differentiate the
impacts of these two factors to fully understand the mechanism of the Shuping landslide.

5.5. Potential and Limitations of sPOT to Monitor Landslides in Densely Vegetated Areas

The sub-Pixel Offset Tracking (sPOT) approach only utilizes intensity bands of the satellite imagery
to retrieve 2D ground deformation. It is less sensitive to Atmospheric phase screening (APS) and
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low phase coherence, not requiring phase unwrapping which leads to most of the failures in DInSAR
time series approaches due to the low density of Persistent Scatter points. Thus, sPOT techniques
potentially has the capability and advantage of measuring the deformation of slope movements with
the speed exceeding the maximum detectable displacement of DInSAR or map mass movements in
challenging areas such as densely vegetated steep terrain.

The sPOT techniques can be applied in measuring surface deformation when the expected
accuracy is sufficient. This is jointly determined by the deformation rates, availability of high-resolution
imagery and surface features in the targeted area. Using hi-resolution SAR imagery, sPOT can be
used for the monitoring of slow-moving landslides and complement other applications of DInSAR,
since sPOT has no limitation on the maximum detectable deformation gradient (DDG) and is still
applicable to deformation measurements in the direction perpendicular to satellite LOS.

The deformation rates of the Shuping landslide show that the maximum displacement assumption
of DInSAR is not valid in this region, suggesting offset tracking is the only viable alternative method
when high resolution imagery is available in order to achieve sufficient accuracy with regard to the
displacement rates. Similar to the PSI and SBAS methods, the displacement derived by offset tracking is
relative to the stable ground. The constant offsets were removed in the step of centroid shift correction.
There can be several sources of the constant offsets, such as the seasonal changes of vegetation cover,
the general change of backscatters due to different view angles between passes, etc.

In addition, when there is a lack of ground truth measurements, the results derived from another
independent dataset can be utilized in the validation. Thus, for potentially unstable slopes, more than
one dataset acquired over the same time period is important for deformation monitoring.

The proposed sPOT approach has been shown of being capable of measuring landslide rates
in densely vegetated terrain. Instead of only measuring the deformation magnitude of sparsely
distributed 17 CRs, this approach provides a synoptic overview of the deformation fields of all pixels in
the landslide area by statistical analysis. From the centroid location changes of every annual time series
histograms, the active period of Shuping landslide can be detected. In Figure 15, for both azimuth
and range displacements, we can see the histogram centroid stays the same during from 21 February
2009–20 April 2009 and 2 January 2012–24 May 2012 and then shows a sudden change from May of
each annual time series as well as a wider and split distribution of histograms. In the periods during
5 August 2009–15 April 2010 and 20 August 2012–23 February 2013 the centroid rarely moves with
slight changes in the envelope shapes. From the statistical analysis, the active period of the Shuping
landslide is identified as May to August annually, whilst after August, the slope tends to be relatively
stable, which shows an accurate correlation with the corner reflector measurements. Offset maps
(Figures 16 and 17) show the spatial distribution of the deformation and a distinguishable pattern
representing the ongoing landslide.

6. Conclusions

Monitoring of landslides using DInSAR in the Three Gorges Region has received extensive
attention over recent years due to the challenges posed in this region. Sub-Pixel Offset Tracking
(sPOT) is here shown as an alternative method to address several issues that DInSAR encountered in
previous research.

In this study, we demonstrated the capability of sub-Pixel Offset Tracking (sPOT) techniques to
monitor relatively fast slope movements in densely vegetated areas with and without the presence
of artificial CRs. Although lower accuracy is expected by using sPOT, as long as the accuracy is
sufficient with regard to the deformation rates in the study area, sPOT has the advantage of measuring
ground displacement perpendicular to the satellite line-of-sight. In addition to DInSAR techniques,
sPOT should also be applied to assess if the assumption of DInSAR can be fulfilled. As only SAR
amplitude is employed in the processing, sPOT is less sensitive to changes of Atmospheric Phase
Screen and low phase coherence. It is not limited by the maximum detectable displacement (MMD) of
DInSAR or time series DInSAR as it is not based on any assumption required by phase unwrapping.
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Artificial CRs can help to achieve higher accuracy for ground deformation measurements made from
sPOT measurements in densely vegetated terrain, whist in the vast majority of regions where such
high-contrast features are not available, the proposed approach is able to independently measure
ground deformation in terms of the detection of the landslide scale, active period and distribution of
deformation magnitude of all the scatterers for the whole landslide area.

In this paper, the statistical analysis of landslide rates derived over vegetated surfaces shows
a dramatic increase of landslide displacement rates in the time period approximately from May to
August in 2009–2010 and 2012–2013. In each annual time series, the landslide active period coincided
with a large drawdown of the reservoir water level in the flood season, suggesting that in Shuping there
is a strong connection between the formation of landslides and the operation of the Three Gorges Dam.
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