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Abstract

This thesis reports on a detailed exploration of the optomechanical interaction between

a tapered optical fibre and a silica microsphere mounted on a cantilever. The amount of

light evanescently coupled from the fibre into the optical whispering gallery mode of the

sphere is exquisitely sensitive to their separation allowing fast measurement of picometer

displacements of both the microsphere-cantilever and the fibre. By exploiting this en-

hanced transduction, strong active feedback damping/cooling of the thermal motion of

both the fibre and microsphere-cantilever have been demonstrated to the noise limit of

the system.

The cavity enhanced optical dipole force between the fibre and the sphere was used to

damp multiple mechanical modes of the tapered fibre, while a piezo-stack at the clamped

end of the microsphere-cantilever allowed for cooling of its centre-of-mass motion and the

second mechanical eigenmode. The effect of noise within the feedback loop was shown to

invert the measured mechanical mode spectrum at high feedback gain as the noise itself is

fed into the resonator. A rich variety of feedback induced spring stiffening and softening

of the mode is measured when time delays are introduced. Cooling of the mechanical

modes of the taper, which are ubiquitous to many WGM experiments and are considered

as unwanted noise, has not been achieved previously. Simultaneous operation of both

feedback schemes was demonstrated for the first time, providing stabilization of the system.

By using the microsphere-cantilever as an inertial test mass, measurement of its dis-

placement induced by acceleration can resolve micro-g accelerations at high bandwidth.
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Chapter 1

Introduction

The field of cavity optomechanics, which studies the interplay between mechanical motion

and an optical field, has undergone rapid progress in the last decade. Experiments within

this area exploit an optical coupling between a mechanical oscillator and the cavity field;

the most prevalent being dispersive coupling, where motion shifts the cavity resonance

frequency. This imprinting of information onto the light field, termed ‘transduction’,

allows for exquisitely sensitive measurements of displacements below the femtometre scale

[1–4], enhanced by the ability to fabricate high optical quality factor cavities, for example,

high reflectivity Fabry-Perot (F-P) cavities [5–8], photonic crystals [9–12], and whispering

gallery mode (WGM) resonators [4, 13–15]. Such displacement sensitivity allows for many

promising near-term real-life applications such as force sensing [16–19], and accelerometry

[12, 20–24].

One fundamental aim of cavity optomechanics is to study the quantum behaviour

of mechanical oscillators when the motion is cooled towards its quantum ground state,

defined by an average phonon occupancy of n̄ < 1. Following inspiration from the atomic-

physics community, who employ sideband cooling of trapped atoms by pumping the red-

detuned mechanically induced sideband, such a feat has been achieved using macroscopic

mechanical oscillators [25–27]. Here, the mechanical motion is optomechanically coupled

to a cavity pumped with red-detuned light, such that viscous damping is obtained using

dynamical backaction from cavity enhanced optical forces e.g. radiation pressure1. Alter-

natively, many groups are advancing towards ground state cooling by utilising optome-

chanical transduction in an active feedback scheme, created by electronically processing

1In contrast to atomic cooling, the internal degrees of freedom are decoupled to the macroscopic motion
e.g. the centre of mass motion of a levitated sphere, and forms the basis for many experiments being
conducted in the field of optomechanics.
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the detected output light of the cavity into a signal proportional to the velocity of the

mechanical oscillator. This feedback signal is used to drive a damping force provided by,

but not limited to, a piezo-stack [28–31], or an optical gradient force [3, 7, 15, 32].

Although the prospect of conducting fundamental quantum experiments using macro-

scopic objects has never been so tangible [33, 34], the most successfully cooled devices

consist of a clamped or tethered mechanical oscillator, such that performing Young’s dou-

ble slit experiment is not feasible, and environmental coupling prevents the creation of a

macroscopic superposition. Nonetheless, on the path towards achieving these goals, the

cooling of mechanical motion can enhance the sensing limits [17, 24, 35, 36]. The ability

to damp thermal motion, which is considered detrimental to the sensitivity, is an impor-

tant prerequisite for resolving displacements with a minimum measurement imprecision

(i.e. noise) without the use of squeezed light, known as the standard quantum limit.

This heralded the ground-breaking discovery of gravitational waves in late 2015 using a

F-P interferometer cavity and a damped mirror [37]. Suppressing thermal motion also

increases the sensing bandwidth, and combined with the use of shot-noise limited light,

has successfully detected the quantum fluctuations of radiation pressure [38, 39], as well

as the zero point fluctuations of a mechanical oscillator [40].

In this thesis, the optomechanical coupling between mechanical motion and an optical

WGM is investigated. The transduction of thermal motion and optical cooling using

WGM transduction of thermal motion, and WGM enhanced optical cooling is realised.

WGMs are morphology dependent resonances which circulate around an equatorial path,

tightly confined to the surface [13]. The ray-optics description of a WGM is shown in

fig. 1.1 for a silica microsphere with refractive index n2 surrounded by air (or vacuum)

with n1 < n2. Total internal reflection (TIR) occurs at the sphere-air interface when

light approaches at an incidence angle θi larger than the critical angle θc = arcsin (n1
n2

),

creating a WGM that undergoes an integral number of reflections. Dependent on the

surface quality, WGM resonators can possess extremely high optical quality factors close

to Qopt = 1010 [41], since very little light is lost at each ‘bounce’. However, Maxwell’s

equations impose boundary conditions that require the continuity of the electromagnetic

(EM) field across the dielectric boundary2, which gives rise to the evanescent field (i.e. a

transmitted wave that extends into air), allowing the WGM to interact and be perturbed

2The ray-optics picture fails to describe this evanescent field since Snell’s law dictates there is no
transmitted light across the interface beyond this critical angle. A thorough description of WGMs using
electromagnetic (EM) theory is presented in this chapter.
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Figure 1.1: A basic ray diagram to show TIR within a sphere of refractive index n2 in
an environment such as air with a refractive index n1. The beam undergoes an integral
number of reflections, returning to its starting position and forms the WGM. It requires
that the incident light approaches the sphere/air boundary at an angle larger than the
critical angle θi > θc, as shown in the inset figure.

by outside influences. This makes WGM devices attractive for enhanced near-field sensing

and amplified optical forces.

Until the last five years, the vast majority of cavity optomechanics relied on F-P

resonators, where one mirror, or an intracavity object is cooled [5–8]. In 2006 an alternative

type of cavity, a WGM resonator in the form of a toroid (disk with a curved edge analogous

to a doughnut, anchored by a pillar) was introduced, and the internal radial breathing

modes of this structure were sideband cooled close to the ground state, aided by the

localisation of the mode with the WGM optical field [4]. An unexplored area is cooling

of the external motion of the WGM resonator (i.e. the cavity). This is advantageous for

making a compact sensor whilst minimising the number of movable components. For this

reason, the optomechanics of a WGM resonator formed by a silica microsphere attached to

a cantilever (a ‘microsphere-cantilever’) is described in this thesis, where the microsphere

is the WGM resonator, and its vibrational motion is cooled.

Unlike a microdisk or toroid, the centre-of-mass (c.o.m.) of the microsphere-cantilever

is explored here, which can be used for inertial sensing. It is also less complicated to

fabricate and model compared to other optomechanics sensors which involve micro-electro-

mechanical system (MEMS) machining [12, 19, 22], complex tailored optical fields [12, 19],

or levitation [18]. In order to excite a WGM in the microsphere, a tapered fibre is used

which acts as both a waveguide and an output channel [42–47]. Overlapping the evanescent

field of both objects allows for efficient light coupling, which is highly sensitive to the

thermal displacement of the microsphere-cantilever (and the tapered fibre) [45]. This

allows for active feedback cooling of the c.o.m. motion of the cavity itself, demonstrated

in this thesis for the first time.
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The mass of the microsphere-cantilever, on the order of micrograms, is larger than

typical optomechanical devices, which makes it an extremely susceptible accelerometer.

Despite one study conducted 15 years ago using a tethered WGM resonator to sense accel-

eration [20], little to no information exists that truly characterises the acceleration sensing

range, drift, and non-linear behaviour. Therefore, the microsphere-cantilever studied in

this Ph.D. is experimentally tested as an accelerometer, providing new specifications es-

sential for further development of a micro-g (g=9.81 ms−2) accelerometer. A common

issue that degrades the sensitivity of high bandwidth sensors (e.g. accelerometers) is noise

in the form of technical noise from apparatus or nearby mechanical modes [12, 48]. In

the classical regime, these extraneous thermal noise peaks pose a fundamental limit for

mechanics-based measurements such as gravitational wave detection [49, 50], atomic force

microscopy [51], and inertial sensing [12, 52]. This is true for the system studied here,

where mechanical modes of the tapered fibre degrade both the sensing capability, and the

cooling of the microsphere-cantilever. Apart from the combined efforts of LIGO, only one

optomechanics system has implemented direct damping of external modes [48]3. In this

thesis, cooling of the thermal noise from mechanical taper modes is demonstrated for the

first time by utilising the WGM cavity enhanced optical dipole force (CEODF).

The structure of this introductory chapter is arranged as follows:

• The motivation for carrying out this work is discussed, including relevant literature.

• The theoretical description of WGMs (i.e. expressions to describe the EM field),

and coupling of light to WGMs is presented.

• The thesis outline.

1.1 Motivation

In terms of originality, the work presented in this thesis is the first optomechanics set-up

using optical WGMs in Prof. Barker’s research group, requiring the design and build of

the experimental set-ups from scratch. It also comprises the first study of the interaction

between WGMs and mechanical motion at UCL, and to the best of our knowledge, is the

only WGM cooling experiment in the UK4.

3The extraneous modes of [48] are from supporting mounts.
4There are many great labs in the UK currently studying optical WGMs for, but not limited to,

biosensing, environmental sensing (i.e. temperature), optomagnonics, and creation of optical devices (i.e.
frequency comb generation).
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The range of WGM resonators used in sensing and cooling experiments is shown in

fig. 1.2. The WGM resonator of interest in this thesis is that of fig. 1.2 d) where a micro-

sphere remains tethered to a stem, and is called a ‘microsphere-cantilever’.

Figure 1.2: A variety of WGM resonators commonly used in experiments comprising of
a) disks with polished sidewalls [15, 32], b) toroids where the edge of a disk is reflowed
[46, 53], c) bottle resonators [54] which can be hollow inside, and d) microspheres that are
attached or unattached to a cantilever/pendulum [13, 20, 45, 55]. The WGM resonator
studied in this thesis is that of d) which is named a microsphere-cantilever.

The microsphere-cantilever is chosen for the ease of fabrication, since toroids and

microdisks require micro-electro-mechanical (MEMS) processes. It should be noted that

a silica microsphere tethered to a stem was one of the first studied WGM resonators in

the 80’s [13]. However, cooling of the c.o.m. motion of the microsphere itself has only

recently been achieved and described in this thesis. The cooling of the mechanical modes

of the tapered fibre with the CEODF is also described for the first time.

1.1.1 Whispering Gallery Mode Sensors

The role of the optical whispering gallery mode for sensing purposes is well established,

and spans across a variety of resonator shapes, such as those in fig. 1.2. The resonance

can respond to perturbations through a change in frequency, linewidth (Q-factor), and

amplitude (via loss or scattering). This has been harnessed within this thesis to measure

changes in temperature (chapter 2), displacement (chapter 3), and acceleration (chap-

ter 6). Other sensing mechanisms that have been explored elsewhere are measurements

of rotation (using the Sagnac effect) [56, 57], pressure [58], water content [59, 60], and

electric fields [61]. More elaborate schemes employ the whispering gallery mode for single

molecule detection and bio-sensing [62–65].

The use of WGMs for measuring displacement has emerged within the optomechanics

community over the past 10 years, spurred on by the successful detection and cooling of

radial breathing modes (these are radial expansions and contractions) of a toroid close to

the ground state [4]. A dispersive coupling between the WGM and the breathing modes

7



exists, such that the motion shifts the WGM resonance frequency, enhanced due to the

high optical quality factor of the WGM (i.e. narrow linewidth). This cavity enhanced

transduction has also been used to detect near-field coupled mechanical motion where the

motion affects the evanescent field of the WGM resonator [1, 3, 9, 10, 15, 25, 40, 66–70].

One of the first demonstrations of measuring displacement to the standard quantum limit,

which is the optimum detection sensitivity using non-squeezed light, utilises near-field

coupling to a toroid [71].

Despite the success of WGM transduction for detecting motion of near-field coupled

oscillators, the detection of the thermal motion of the WGM resonator itself has only

been studied by two groups [20, 45]. Unlike a simple dielectric structure placed in the

WGM evanescent field, the waveguide mediates the coupling of light, requiring a different

theory to describe how changes to the coupling distance are transduced. Here, the thermal

motion of the waveguide (and/or WGM resonator) changes the coupling rate as well as

dispersively shifting the resonance. The theory quantifying this transduction was derived

in 2015 [45]. Not only does the work in this thesis verify the experimental results of [45],

but extends the field of WGM cooling by implementing active feedback cooling of the

WGM resonator itself, and the mechanical modes of the tapered fibre.

1.1.2 Cooling of Macroscopic Objects using Whispering Gallery Modes

Ashkin first demonstrated that the optical gradient force from a focused laser beam can

trap and levitate micro and nano particles [72]. Such an ‘optical tweezer’ is now a common

tool for the manipulation of biological samples within liquids [73–75], and optical trapping

of particles at low gas pressure [8, 76–79]. Waveguides can also strongly confine the optical

field to create a gradient force capable of actuating nanoscale devices [80].

Such forces from light are often weak (i.e. the scattering force is < 10−12N for 1 mW

monochromatic light reflecting from an object with near-perfect reflectivity) unless losses

are reduced (i.e. use high reflectivity), or the laser power is increased to over 100 mW. The

use of an optical cavity can relax this limitation as it resonantly enhances the intracavity

light intensity. Enhancement of the optical force was first demonstrated in the microwave

regime by Braginsky using a F-P cavity [81]. The advent of MEMS techniques allows

tailoring of these forces by fabrication of exotic cavities such as photonic crystal nanobeams

in a ‘zipper cavity’ scheme [9]. With regards to WGM resonators, it was Ashkin again
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who demonstrated cavity enhanced radiation pressure by tuning the wavelength of an

optical tweezer onto the WGMs of a dielectric silica sphere [82]. This resonance dependent

propulsion has been used to investigate size-sorting of spheres [83].

When light is coupled into a WGM, the high intracavity intensity, and the low optical

losses associated with total internal reflection, allows for WGMs to be long lived within the

WGM resonator, confined within a small volume. This enhances optical forces, in particu-

lar, internal radiation pressure (which has been used to cool radial breathing modes), and

the optical dipole force associated with the evanescent field gradient. Near-field cooling

of mechanical objects placed in the WGM evanescent field utilise this CEODF [1, 15, 84].

However, rather than cooling the WGM resonator c.o.m. motion itself, the flapping mo-

tion between two stacked WGM disks [15], and the mechanical modes of a nanostring in

the near-field of a microdisk have been demonstrated [1]. Therefore the combination of

using WGMs to transduce motion (chapter 3), and then applying active feedback using

transduction to cool the thermal motion of the WGM resonator itself and modes of the

coupling waveguide (chapter 4) is a novel goal. Using the CEODF to damp the mechanical

modes of the taper waveguide has not been previously reported, despite mention of these

noise peaks as detrimental for sensing [12].

Performing Quantum Experiments

Based on the rapid progress obtaining ground state cooled mechanical oscillators, it would

seem that quantum mechanics does not explicitly prohibit a macroscopic system from be-

ing in a superposition of two states. Currently, no optomechanics device has truly shown

a superposition of mechanical states. Until this feat is met, many quantum theories that

attempt to correlate mass and size with collapse models remain unproven [34, 85–87]. Ghi-

rardi, Rimini, and Weber [88] have proposed a mechanism that prohibits macroscopic su-

perposition states, which they term spontaneous localization theory. This includes a mod-

ification to the evolution of quantum states (described by the Schrodinger equation) with

the addition of a randomly occurring interaction (i.e. stochastic noise) called ’Gaussian

hits’ that localise the object. Gravitational induced decoherence has also been proposed

by Penrose [89], and Diosi [34]. The decoherence rate for gravitational induced collapse

is determined by the gravitational self-energy of a system, and is predicted to be domi-

nant for superpositions of objects 100 nm in size with a mass equal to the ‘Planck mass’

(approximately 0.02 mg). Experimentally, one could verify decoherence concepts, ideally
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using a levitated ground state cooled microsphere. Stochastic noise that leads to spon-

taneous localisation may be detected, requiring ultralow vacuum pressures < 10−9 mbar

to decouple from the environment. If the trap is switched off such that the microsphere

undergoes free-fall, a modification to gravitational collapse theory may be made if the

wavefunction expands to create a superposition state.

Lastly, quantum mechanical oscillators can be used as quantum networking devices,

since the motion can also couple to spins [90], superconducting qubits [27], microwave

resonators [91], and quantum dots [92]. A quantum optomechanical system could offer

an effective way to convert quantum information from different frequency regimes, for

example, from GHz (superconducting qubits) to optical frequencies (photons). Lehnert

demonstrated coupling between microwaves and an optomechanical vibrating drum (15µm

diameter) that could store quantum information for 25µs [91].

1.2 Whispering Gallery Mode Theory

Morphology dependent resonances were first observed by John William Strutt (Lord

Rayleigh), who analysed the propagation of whispers within the dome of St. Paul’s cathe-

dral in the late 1800’s [93]. He found that the acoustic waves were confined around the

curved structure by undergoing total internal reflection at the surface boundary. This

long lived acoustic wave allows whispers to be heard by a listener at any point around

the dome. Such waves constructively interfere to form standing waves and were termed

‘whispering gallery modes’ (WGMs).

Optical WGMs can also be excited when light waves are confined within spherical

structures such as those in fig. 1.2, as well as within liquid droplets [94, 95]. An evanescent

waveguide (i.e. a tapered optical fibre with sub-micron waist [42–47]) is most commonly

used for coupling light into the WGM, although prisms [41], side polished fibres [96–98],

and free-space coupling [99, 100] have been achieved.

The following sections will briefly cover the theoretical framework of WGMs, allowing

computation of the approximate resonance locations, the decay of the evanescent field,

and the optical properties of the WGM, such as mode volume.

The existence of optical WGM resonances can be seen in the spectrum of light scattered

from small spherical particles, as described in investigations by Gustav Mie in 1908 [101].

The sharp features that occur across specific laser frequencies correspond to resonant
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circulation of optical energy within the sphere, which enhance the scattering co-efficient.

Analytical expressions following the work of Mie and Debye that describes scattering of

a plane wave by a dielectric sphere [102–104] provide a means to calculate the locations

of WGM resonances, dependent only on the dimensions and material properties of the

sphere. The first step is to start with Maxwell’s equations for the electric (E) and magnetic

(B) fields, which can be used to derive the Helmholtz equation for EM radiation in a

homogenous non-conductive dielectric with refractive index n, and wave number k (where

k = nωc inside the sphere):

∇2E + k2 E = 0,

∇2B + k2 B = 0.

(1.1)

A solution ϕ that satisfies the scalar Helmholtz equation is:

∇2ϕ+ k2ϕ = 0, (1.2)

which can be solved by separating ϕ into three differential equations. These lead to

three mode numbers (s, l,m) which can describe the EM field and its distribution without

requiring further manipulation to derive the full solution for the E (B) field. Such rigorous

studies can be found in [104, 105].

Equation 1.2 can be written in spherical coordinates, depicted in fig. 1.3, where r is

the radial distance between the origin, set at the microsphere centre (position O), to a

position of interest on the sphere at P .

Figure 1.3: Spherical co-ordinate representation of the microsphere, where the polar angle
is θ, and the azimuth angle is φ.

The inclination between the zenith direction and the position vector OP is denoted as

the polar angle θ, measured between 0 and π radians, and the azimuth angle φ (measured

between 0 and 2π radians) describe the angular distribution. Solutions to eq. 1.2 fall under
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two classes known as transverse magnetic TM (E= ∇ × (rϕ)) or transverse electric TE

(E= ∇ × ∇(rϕ)) modes. Due to spherical symmetry, TE and TM modes are decoupled

and have zero radial electric and magnetic fields respectively. For TE modes, the electric

field points in the polar direction and the magnetic field in the radial direction (vice versa

for TM modes). In spherical co-ordinates, eq. 1.2 is written as:

1

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
+

1

r2 sin (θ)

∂

∂θ

(
sin (θ)

∂ϕ

∂θ

)
+

1

r2 sin2 (θ)

∂2ϕ

∂φ2
+ k2ϕ = 0, (1.3)

which can be separated into three differential equations to provide eigenfunctions for the

radial, azimuthal and polar fields:

ϕ(r, θ, φ) = ϕr(r)ϕθ (θ)ϕφ(φ), (1.4)

which satisfy the conditions:

r2 d2ϕr(r)

dr2
+ 2r

dϕr(r)

dr
+
(
k2r2 − p2

)
ϕ(r) = 0, (1.5)

1

sin(θ)

d

dθ

(
sin (θ)

dϕθ(θ)

dθ

)
+

(
p2 − q2

sin2 (θ)

)
ϕθ(θ) = 0, (1.6)

d2ϕφ(φ)

dφ2
+ q2 ϕφ(φ) = 0, (1.7)

where the real parameters p and q are separation constants.

The azimuthal eigenfunctions of eq. 1.7, which are periodic, are given by:

ϕφ(φ) = C1e
imφ + C2e

−imφ, (1.8)

where C1, C2 denote complex constants and the separation constant q is replaced by the

azimuthal mode number m.

Solving the polar equation, eq. 1.6, requires a change in variable υ = cos (θ):

(
1− υ2

) d2gθ(υ)

dυ2
− 2υ

dgθ(υ)

dυ
+

(
p2 − m2

1− υ2

)
gθ(υ) = 0, (1.9)

where ϕθ(θ) = gθ(cos (θ)). The solutions to this linear second order differential equation

are known as the hypergeometric functions [106], and have non-zero solutions if p2 =

l(l+ 1), where l ≤ |m|. The parameter l is known as the polar mode number and for each
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l, the allowed azimuthal mode numbers are in the range −l < m < l, leading to a 2l + 1

degeneracy in m. The complete solutions to eq. 1.9 are the associated Legendre functions

Pml (cos (θ)) = Pml (υ). Physically, l is the number of wavelengths in one round trip of the

light within the microsphere (l is therefore an integer). For the case m ≥ 0, gθ(υ) is given

by [104]:

gθ(υ) = Pml (υ) = (−1)m(1− υ2)m/2
dm

dυm
Pl(υ), (1.10)

where Pl(υ) = 1
2ll!

d
dυl

(υ2 − 1)l is the Legendre polynomial of degree l. For m ≤ 0, corre-

sponding to modes propagating in the opposite direction, P−ml (υ) = (−1)m (l−m)!
(l+m)! P

m
l (υ).

Bringing together the product of ϕφ(φ) and ϕθ(θ) gives:

Y m
l (θ, φ) = Cl,m P

m
l (cos (θ)) eimφ − l ≤ m ≤ l, (1.11)

where Y m
l (θ, φ) are known as the spherical surface harmonics5 of degree l and order m

and the normalisation constant is Cl,m =
√

(2l+1)
4π

(l−m)!
(l+m)! .

Lastly, the radial dependency of eq. 1.5 can be written as:

x2 d2gr(x)

dx2
+ 2x

dgr(x)

dx
+ [x2 − l(l + 1)] gr(x) = 0, (1.12)

where p2 = l(l + 1) is used, alongside the substitution gr = ϕr(x/k) where x = kr. There

are two linearly independent solutions to eq. 1.12 for a sphere, known as the spherical

Bessel functions of the first and second kinds, denoted by jl(x) and yl(x) respectively

[106]. The radial function ϕr(r) can therefore be expressed as a linear combination of

these spherical Bessel functions such that:

ϕr(r) = αl jl(kr) + βl yl(kr), (1.13)

where αl, βl are complex constants. One should note that the role of each Bessel function

is dependent on the problem to be solved.

• Bessel functions of the second kind have a singularity at the origin (centre of sphere)

and are unsuitable for describing the EM field within the microsphere. Therefore

TM and TE modes inside the sphere are described by jl(x).

• Near the sphere boundary and beyond, modes are expressed as a linear combination

5The complex conjugate is given as (Y ml )∗(θ, φ) = (−1)mY −ml (θ, φ)
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of the first and second Bessel functions (eq. 1.13), known as the Hankel function,

where the constants are determined by the interface at the sphere boundary.

The radial EM field distribution gives rise to peaks (regions of high intensity), where

the number of peaks equals the quantum number s. The lowest lying state s = 1 is

confined as close as possible to the surface of the sphere and occurs for l ≈ nxwgm, where

n is an integer number, and xwgm is known as the size parameter relating the wavevector

k with the sphere radius, a, and the WGM wavelength λ:

xwgm = k a =
2πa

λ
. (1.14)

Combining eqs. 1.11 & 1.13, the general solution of the scalar wave equation is therefore:

ϕ(r, θ, φ) =

∞∑
l=0

m=−l∑
m=l

[αljl(kr) + βlyl(kr)]Y
l
m(θ, φ). (1.15)

The field distribution and resonance locations are computed by matching the solutions

interior and exterior to the microsphere at the dielectric-air boundary [102] using the vector

Helmholtz equation. A characteristic equation is formed which has many roots (the root

number denoted by mode number s) that determine an infinite set of eigenfrequencies

(WGMs) for a given radius.

1.2.1 Mode Numbers & Eccentricity

The mode numbers s,m,l have a physical interpretation, whereby:

• s is the number of peaks in the radial intensity distribution,

• 2m describes the number of maxima in the azimuthal spatial distribution

• modes with m < 0 propagate in the opposite direction to m > 0

• l is the number of waves resonant along the circumference with the polar intensity

distribution containing (l − |m|+ 1) lobes.

Shown in fig. 1.4 are a variety of polar plots (i.e. φ = 0 and θ is varied) that illustrate

the electric field distribution of a WGM in a microsphere, simulated using a Matlab code

by Balac and Feron [104]. The first column shows varying mode number s = 1, 2, 3 with

fixed m = l, where the number of field maxima is equal to s. In the second column s = 1,

with varying l,m, where the number of lobes is equal to (l − |m|+ 1).
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Figure 1.4: A variety of polar plots (i.e. φ = 0 and θ is varied) showing the electric field
distribution of a WGMs with varying mode numbers s, l, and m in a silica microsphere,
simulated using a Matlab code by Balac and Feron [104].

The WGMs typically excited are those with the lowest s, high l, and |m ≈ l|. Modes

with large s tend to have lower optical quality factors due to greater leakage out of the

sphere, and the intensity peaks in the radial distribution are less confined to the surface.

When m = l, a fundamental WGM mode is created such that if s = 1, from a geometric

point of view, the modes correspond to near-glancing rays incident upon the interior

surface. If a light ray has a smaller angle of incidence on the sphere surface, then two round

trips may be necessary for phase matching meaning the mode deeply penetrates inside the

sphere e.g. s = 2, to create a different set of resonances with different wavelength but the

same l number (i.e. same number of reflections).

In reality, spheres will have deformations and eccentricity which removes the 2l + 1

degeneracy in m, creating new resonances that must be calculated using perturbation the-

ory, discussed elsewhere [102]. The degeneracy of the counterpropagating WGMs (i.e.±m)

can be broken when the sphere has surface defects or dust (acting as a scatterer), and a

portion of the mode in one direction can propagate in the opposite direction. The two

modes behave as coupled oscillators which split the WGM resonance into a doublet. Such

an effect has been beneficial for sensing applications, where the split mode can be used to

detect the presence of a surface scatterer, such as a virus [107]. However, the use of split

WGMs is actively avoided within this thesis to minimise cross-coupling of counterpropa-

gating signals.

15



1.3 Properties of Whispering Gallery Mode Resonators

Following the work of Lam [108] and Schiller [109], who utilise an analytic approximation

of the Bessel functions, a closed-form expression describing the position of WGMs at

frequency ω0, in a sphere, is given by:

ω0 =
c na
na

(
l + 1/2 + ν1

[
l + 1/2

2

]1/3

+ ...

)
, (1.16)

where −ν1 is the first zero of the Airy function (ν1 ≈ 2.34), n is the refractive index of the

sphere, a is sphere radius, and na is the refractive index of the surrounding medium, i.e. air

or vacuum. This equation shows the dependence on refractive index of both resonator and

surrounding medium, as well as the resonator size. To first order, when na = 1, eq. 1.16

is approximately 2πna = lλ, which is easily recognised as the condition for constructive

interference of a wave after undergoing a round trip of the resonator circumference. This

approximation is most accurate for WGMs with low l mode numbers but is often useful

for estimating the free spectra range (FSR) (ωFSR, in radians) and the cavity finesse F :

ωFSR = |ωs,m,l − ωs,m,l+1| ≈
c

n a
, (1.17)

F = Qopt
ωFSR

ωs,m,l
=

Qopt c

ω0 na
, (1.18)

where Qopt is known as the optical quality factor, discussed shortly. The finesse (typically

75,000 for WGM resonators in this thesis) relates the cavity losses Qopt and the round trip

time τrt, such that τrt = 2πna
c ≈ 3 ps for a 177µm diameter sphere such as the one studied

in chapter 4.

1.3.1 Optical Quality Factor

The amount of energy dissipation in an oscillating system is defined by the quality factor

of the mode, which is the energy storage time normalised with respect to the period of

oscillation:

Qopt = ω0 τ, (1.19)

where Qopt is the optical quality factor for a WGM resonance at frequency ω0, τ is the

decay time governing loss (the inverse of the total WGM decay rate κ). For a lossless

cavity the storage time would be infinite such that no energy is radiated or absorbed.
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For real systems, loss mechanisms can be split into two categories; intrinsic and extrinsic,

where those belonging to the cavity itself are intrinsic (coupled at a rate γi), whereas those

related to external perturbations, such as a waveguide, are extrinsic (at rate γe). Each

loss mechanism sets a limit to the quality factor such that Q−1
opt = Qi

−1 + Qe
−1, where Qi

and Qe is the quality factor limited by intrinsic and extrinsic losses respectively.

In the absence of coupling waveguides, the optical energy in the WGM resonator de-

cays exponentially with time constant τ0 = 1
γi

, such that the quality factor is limited to Qi.

The sum of intrinsic losses due to material absorption (including surface contaminants),

scattering losses (intrinsic bulk and surface inhomogeneities) and radiative/tunnel losses

defines τi. Tunnelling losses occur due to incomplete TIR at the curved interface and

produces a small amount of transmittance due to photons tunnelling out of their bound

states (i.e. into free-space), but is typically negligible [41]. Bulk absorption in the mate-

rial limits the quality factor to Qmat = 2πn
αλ ≈ 1011, where α is the material absorption

coefficient. No WGM system has achieved the bulk absorption limited quality factor yet.

Similarly, scattering at the surface, which scales with surface roughness, should not be

of great concern since reflowing the WGM resonator with a high power laser provides

smooth surfaces due to surface tension, although it has been shown that redeposition of

evaporated silica can lead to sub-wavelength defects and the presence of surface waves can

deform the surface [102]. However, large dust particles (µm’s in diameter) adhering to

the surface are the dominant scattering source, causing a decrease in Qopt (as well as a

WGM doublet due to the broken degeneracy of ±m modes) [110]. Another surface loss is

water chemically adsorbed onto the highly hygroscopic silica which has been measured to

cause Qopt to drop by 20% in the first five minutes after fabrication [41], although partial

recovery of Qopt can be achieved using a 400o C bakeout [111].

The extrinsic losses are dominated by the intentional coupling to a waveguide that

allows light in and out of the WGM resonator. Such a propagating mode further reduces

the storage time by introducing an extrinsic decay rate γe = 1
τe

so that the total decay

rate becomes κ = γe + γi, and the so-called ‘loaded’ quality factor is:

Qopt =
ω0

κ
=

ω0

γe + γi
= ω0 (τe + τ0). (1.20)

Typical Qopt obtained in experiments using WGM in silica microspheres are of the order

107−108, and the highest obtained is 0.8×1010 [41]. Those for microdisks are considerably
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lower (≈ 106) due to etching imperfections in the MEMS fabrication method, but can be

improved by reflowing with a CO2 laser to form a toroid. A high Qopt ensures a long

photon lifetime, which is the time required for the light energy in the resonator to decay

to 1/e of its original value. A Qopt = 0.5×108 at 1064 nm gives a lifetime of around 28 ns,

which corresponds to ≈ 20, 000 cycles (i.e. round trips) for a 177µm diameter sphere.

1.3.2 Evanescent Field

Light trapped inside a WGM resonator undergoing TIR at the curved boundary will have

an associated evanescent field extending beyond the resonator edge into the surround-

ing medium (i.e. air), shown in fig. 1.5 which plots the radial field distribution for a

fundamental WGM with m = l, s = 1.

Figure 1.5: The radial dependence of the EM field of a 177µm diameter silica micro-
sphere with mode numbers s = 1, l = m = 768. The electric field distribution is plotted
against the radial distance, normalised by the sphere radius, so that 1 indicates the sphere
boundary. The evanescent field is coloured in orange.

The evanescent field decays as ∝ e−αsr, and the decay constant αs is given by [112]:

αs =
√
β2
s − k2n2

a, (1.21)

where βs =

√
l(l+1)

a is known as the propagation constant. For large spheres the approxi-

mations βs ≈ l
a , and l = kna can be used to give the evanescent field decay length (for a

sphere surrounded by air na = 1) as [112]:

α−1
s ≈

c

ω0

√
n2 − 1

, (1.22)

which is ≈ 150 nm for 1064 nm light. The evanescent field allows for near-field evanescent

coupling to a waveguide to excite the WGMs (detailed later), as well as sensing changes
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to its surroundings such as pressure [58], water content [59], and mechanical motion [1, 3,

9, 10, 15, 25, 40, 66–70].

1.3.3 Mode Volume

One unique feature of WGMs is the confinement of the field within a small mode volume

Vm, which plays an important role for a variety of applications that require a high optical

energy density, such as enhancing the optical dipole force (‘cavity enhanced optical dipole

force’ [32] used in chapter 3 & 4) or non-linear Kerr effects [41]. The expression for the

mode volume is given by [113]:

Vm =

∫
ε(r) |E|2

max
(
ε(r) |E|2

) dV, (1.23)

where ε = n2(r) is the dielectric constant of the material at position r. Equation 1.23

can be analytically solved using a Matlab simulation by Balac and Feron [104], giving

Veff = 4.35×10−15 m3 for the mode shown in fig. 1.5. The electric field distribution of this

mode is shown in fig. 1.6 in both the a) polar and b) azimuthal planes, where the WGM

is confined, and circulates around the equator.

Figure 1.6: The electric field distribution for the s = 1, l = m = 768 fundamental WGM
mode in a� = 177µm silica microsphere, excited with 1064 nm light (1063.5565 nm) shown
in a) the polar plane (φ = 0o rad with varying 0 < θ < π), which is zoomed-in. Displayed
in b) is the distribution along the azimuthal plane when θ = π

2 and −0.11o < φ < 0.11o rad.
Note that b) is a zoomed in view of the mode which circulates all around the circumference
i.e. 0 < φ < 2π.

Braginsky provides an approximate solution to eq. 1.23 for s = 1 modes [13]:

Veff ≈ 3.4π3/2

(
λ

2πn

)3

l11/6
√
l −m+ 1, (1.24)
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which gives Veff = 5.30 × 10−15 m3 for the mode in fig. 1.6, around 20% larger than that

found by modelling.

1.3.4 Comparison with Theory using White Light Excitation

A Matlab code written by Christian Matzler [103] can be used to predict the WGM

resonance locations by numerically solving the scattering theory in section 1.2. The output

of this code is the reduced scattering coefficient (reduced refers to the incorporation of the

anisotropy coefficient) as a function of excitation wavelength. Such a spectrum was used

in the early experiments of this Ph.D. to validate the excitation of WGMs in a levitated

10µm diameter silica sphere, trapped in a quadrupole trap. Here, broadband white light

was successfully used to excite a spectrum of WGMs, and the scattered light collected

from a � ≈ 10µm silica sphere is plotted in fig. 1.7 (bottom blue trace). The periodic

peaks correspond to WGMs of varying linewidth from ≈ 100 GHz to THz. The details of

this set-up is outlined in the appendix, section 8.1. The top black trace is the simulated

resonance locations for a sphere of refractive index 1.45 and diameter � = 9µm, where

the difference in diameter is related to the variance of the microsphere sizes (colloidally

produced spheres often have standard deviation of 10-20 % in size), as well as the difference

in refractive index which has not been measured6.

Figure 1.7: Blue data: Experimentally measured WGM resonances of an ≈ 10µm diameter
silica microsphere, levitated in an quadrupole trap at trap frequency 20 Hz, and illuminated
with focused white light. The scattered light collected is collected using a spectrometer.
Black data: The predicted locations of the WGMs of a 9µm diameter silica microsphere.

6The refractive index is quoted between 1.43-1.46 from Bangs Laboratory who supplied the silica mi-
crospheres.
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Similar broadband excitation has been achieved elsewhere, using levitated aerosol

droplets [95]. The narrowest predicted WGMs cannot be measured due to the poor sur-

face quality of the colloidally produced spheres, but is also limited by the resolution of

the spectrometer7, and the low excitation and collection efficiency via free space coupling.

Despite the benefits of an environmentally decoupled WGM resonator, the low ion trap

frequency of 20 Hz, and its lack of spatial confinement (which gives the elongated ap-

pearance in the microscope image, inset of fig. 1.7) as well as the poor surface quality of

the spheres resulted in unsuccessful monochromatic coupling. This is the primary reason

for developing the clamped microsphere-cantilever instead of pursuing a levitated set-up.

One benefit with using spheres with diameters above 100µm, is that there are more WGM

modes within a given wavelength range due to a smaller free spectral range.

1.4 Theory of Optical Coupling to Whispering Gallery

Modes

The excitation of WGMs is highly dependent on phase matching to minimize scattering

loss, making free space coupling inefficient due to the different phase velocity of the propa-

gating light in air and silica. Although recent advances have shown low efficiency (10-20%)

monochromatic coupling to deformed (high eccentricity) spheres using free space coupling

[99, 100]8, it is accepted that evanescent coupling techniques are far superior. The ma-

jority of experiments conducted since the 1950s use waveguide coupling methods which

rely on bringing the evanescent field regions of a waveguide and sphere in close proximity

(< 1µm). The first techniques involved prism coupling [41], and later moved onto pol-

ished fibres [96–98], and tapers [42–47]. Recently, planar waveguides formed using MEMS

techniques have emerged as promising coupling elements, especially for chip-based systems

[20]. The highest coupling efficiencies of over 95% have been achieved with tapered fibres

[42, 47] due to the taper surface quality, and the ability to tailor the tapering angle and

diameter for a specific sized WGM resonator. The tapered fibre operates by having a

region where the fibre waist is on the order of the laser wavelength so that a large portion

of the fundamental fibre mode protrudes as an evanescent wave beyond the boundary.

The elegance of using a tapered fibre is that it allows for near-complete extraction of light

7Ocean-optics 2000+, resolution 0.1 nm FWHM
8One group have successfully used free-space coupling of a laser to the WGM of a deformed sphere to

cool radial breathing modes [99] using resolved sideband cooling.
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from the cavity, removing the need to detect and resolve information from scattered fields

which are usually low in power and noisy. For this reason, tapered fibres are employed in

this work.

1.4.1 Tapered Optical Fibres

Tapered fibres are typically produced by pulling single mode fibre whilst heating a central

portion with either hydrogen [45] or butane [114] flames, a ceramic heating cube [115], or

a CO2 laser [116]. For small diameters, a dielectric cylindrical waveguide only supports a

single propagating mode. The required waist size of the tapered fibre for confining only

the fundamental mode of the taper, the HE11 mode, is often quoted with respect to the

normalized frequency V-parameter [117]:

V =
2πaw

λ
N.A. =

2πaw

λ

√
n2

core − n2
cladding , (1.25)

where N.A. is the numerical aperature and aw is the radius of the taper waist. A single

mode waveguide requires V to be smaller than 2.405 [118]. This means for λ = 1064 nm,

ncore ≈ 1.45 (i.e. ncore is now the refractive index of the cladding for a tapered fibre),

ncladding = 1 (i.e. air), a taper waist of 2aw = 0.78µm is required.

The radial direction of the field (transverse to the fibre length) decays exponentially as

an evanescent field. Overlapping this field with the evanescent field of a WGM allows for

exchange of light. One condition for efficient coupling is the matching of the propagation

constant βt of the fundamental mode in the taper, to that of the WGM resonance (βs,

defined in the text before eq. 1.22 pg. 18). The evanescent decay length of the microsphere

and taper are α−1
s , α−1

t respectively, leading to a total coupling length of η−1 ≈ (α−1
t +

α−1
s ) ≈ 2

(√
β2
s − k2n2

a

)−1
due to phase matching [112]. This can be approximated as

η−1 = 2
k
√
n2−1

, assuming na = 1. Phase matching with the WGM can be tuned because

βt varies with the taper radius. By approaching the WGM resonator tangentially to the

taper, both fields remain in phase over the extended interaction length, known as the

coupling junction, which allows for efficient coupling.

The following section details the theoretical description of this coupling, including the

perturbative effect on the WGM due to the presence of the taper.
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1.4.2 Evanescent Coupling Theory

When the tapered fibre, with a higher refractive index than the air surrounding the mi-

crosphere, is positioned within a few wavelengths from the WGM resonator boundary,

the WGM evanescent field will feel its presence as it changes the effective refractive index

within the coupling junction. EM energy can be transferred from the optical mode in

the waveguide to the WGM in a process called frustrated total internal reflection. The

exchange of light into and out of the WGM resonator can be mathematically described

using the coupled mode equations [119] in the slowly varying amplitude approximation

for weak coupling. The rates of energy transfer are shown in fig. 1.8 for a microsphere

coupled to a tapered fibre, but are applicable for other types of waveguides.

Figure 1.8: Coupling light into a WGM resonator with a tapered fibre, where the overlap
of the evanescent fields forms the coupling junction. Here, light propagating into the
taper with amplitude Sin enters the WGM resonator at the extrinsic coupling rate γe,
where it remains confined inside the sphere, decaying at the intrinsic rate of γi through
absorption and radiative processes, as well as coupling back into the taper at the rate γe.
The transmission past this coupling junction is Sout and contains information relating to
the WGM as well as any residual uncoupled light from Sin.

The complex scalar mode amplitude ã(t) is introduced, normalised such that |ã(t)|2

is the energy. In the quantum picture, |ã(t)|2 is the number of photons, rescaled by ~ω0.

Three parameters describe the evolution of ã; the resonant WGM frequency ω0, the decay

rate of the mode due to internal cavity losses γi = 1
τi

(referred to as the intrinsic loss),

and the cavity decay rate due to coupling to the waveguide mode γe = 1
τe

(referred to as

the extrinsic loss). The mode amplitude therefore follows a time evolution according to:

˙̃a(t) =
(
−iω0 −

κ

2

)
ã(t) +

Sin(t)
√
τe

, (1.26)

where Sin is the amplitude of the mode in the fibre taper, coupled into the WGM with a
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time constant τe, normalised so that |Sin(t)|2 is the power (or photon flux) impinging on

the coupling region, and κ = γe+γi is the total cavity loss rate which broadens the WGM

linewidth. Since the driving field oscillates harmonically at an angular frequency of ωl

such that S̃in(t) = Sin(t)e−iωlt, working in a rotating frame at this frequency is convenient

to simplify the analysis [119]. Therefore, eq. 1.26 can be written as:

ȧ(t) =
(
i∆− κ

2

)
a(t) +

Sin(t)
√
τe

, (1.27)

where ∆ = ωl − ω0 is the detuning with respect to the WGM resonance. In order to cal-

culate the power circulating in the cavity
(∣∣S̄∣∣2 = |ā|2

τrt
= 1

τrt

)
, the steady state of eq. 1.27,

ā is required. Using a continuous driving amplitude of Sin(t) = S̄in and setting the time

derivative to zero, ā is:

ā =
1

−i∆ + κ/2

S̄in√
τe
. (1.28)

The power circulating in the cavity is therefore:

∣∣S̄∣∣2 =
|ā|2

τrt
=

1

τrt

1

∆2 + (κ/2)2

∣∣S̄in

∣∣2
τe

= 2ηc
F

π

1

1 + 4∆2/κ2

∣∣S̄in

∣∣2 , (1.29)

where τrt is the round trip time, F is the finesse, and ηc is the coupling parameter defined as

ηc = τ0
τ0+τe

. For a cavity where ηc = 0.5, the enhancement of intracavity power compared

to launched power is
∣∣S̄/S̄in

∣∣2 = F/π (on-resonance), showing how high finesse cavities

can build up power and consequently enhance detection of perturbations.

Next, the transmission of the tapered fibre is derived, which contains information about

perturbations detected by the WGM. This is what a photodetector measures (i.e. energy

of the field). The transmitted light amplitude emerging past the coupling region is:

Sout(t) = Sin(t)− a(t)
√
τe
, (1.30)

which in the steady state gives:

S̄out =
τe − τ0 − 2iτeτ0∆

τe + τ0 − 2iτeτ0∆
S̄in

=
(1− 2ηc)κ/2− i∆

κ/2− i∆
S̄in.

(1.31)
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The transmitted power, denoted by T is therefore:

T =
∣∣S̄out

∣∣2 =
(τe − τ0)2 + (2τe τ0 ∆)2

(τe + τ0)2 + (2τe τ0 ∆)2

∣∣S̄in

∣∣2
=

(
1− ηc(1− ηc)κ2

(κ/2)2 + ∆2

) ∣∣S̄in

∣∣2 (1.32)

which is a Lorentzian dip of FWHM linewidth κ. This equation can be expressed in terms

of the intrinsic coupling rate γi, and the extrinsic coupling rate γe: T =
(

1− γeγi
(κ/2)2+∆2

) ∣∣S̄in

∣∣2,

such that on-resonance, the transmission is:

Ton =
(1− γe/γi)2

(1 + γe/γi)
2

∣∣S̄in

∣∣2 , (1.33)

which is related to the on-resonance power coupled to the WGM Pc, by Pc = (1− Ton)
∣∣S̄in

∣∣2.

Note that Pc is not the intracavity circulating power, derived in eq. 1.29.

1.4.3 Coupling Regime

It can be seen in eq. 1.33 that on-resonance, the amount of coupling depends on the ratio

between the extrinsic and intrinsic coupling rates, which creates 3 coupling regimes:

• Undercoupling: γi > γe. The amplitude of the cavity leakage field coupled back from

the resonator into the taper with phase shift between 0 and π (π for on-resonance)

is much smaller than the amplitude of the transmitted uncoupled fibre field. Both

fields interfere destructively causing a decrease in transmission.

• Overcoupling: γe > γi. The accumulated circulating cavity power is much higher

than the remaining pump field within the taper therefore the amplitude of the cavity

field coupled back into the taper maintains a high transmission.

• Critical coupling: γe = γi, for ηc = 0.5. The transmission past the resonator vanishes

due to complete power transfer between the waveguide to the cavity mode. The

leakage field and the propagating field within the taper have equal magnitude but

phase shifted by π causing complete destructive interference.

The overlap between the evanescent field of the taper and that of the WGM sets the

coupling strength of γe, such that γe increases exponentially as
√
γe ∝ e−iαsd, where

d is the coupling distance, and αs is the decay length defined in eq. 1.22. Note that

γi remains constant. Therefore the coupling regime can be easily tuned by changing d,
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as explored experimentally in chapter 39. Critical coupling to WGMs using tapers can

produce coupling efficiencies as high as 99.97% [120], where the taper diameter is optimised

so that the WGM is not coupled to higher order fibre modes. Coupling to these modes

leads to loss as these modes die off when the taper diameter transitions to single mode

operation. Other non-resonant losses can occur due to the presence of the taper itself,

which may scatter part of the light into free-space modes.

In the case of on-resonance coupling ∆ = 0, at critical coupling γi = γe, the intracavity

circulating power
∣∣S̄∣∣2 of eq. 1.29, labelled as Pcirc becomes:

Pcirc =

∣∣S̄in

∣∣2
τrt γi

=
λ0 Qopt

2π2 na
Pi, (1.34)

where λ0 is the WGM wavelength, a is the microsphere radius, n is the refractive index

of the microsphere, and Pi is the power coupled into the taper. The light intensity inside

the cavity is:

I =
Pcirc

A
=

λ0 Qopt

π n 2π aA
Pi ≈

λ0 Qopt

π nVm
Pi (1.35)

where A is the mode area, and Vm ≈ A 2πa is the mode volume. For example, a silica

microsphere � = 177µm, with n ≈ 1.5, and Qopt = 108 with input power Pi = 1 mW,

has Pcirc of 40 W which is concentrated into a mode volume of 4.35× 10−15 m3 (for n = 1,

l = m = 768), giving a large intracavity intensity of 5.2 MW mm−2. Such a build up of

optical power can be beneficial for miniature lasers, and optical parametric oscillators.

However, it leads to bulk heating due to the absorption of light into the cavity medium,

and unwanted non-linear thermal effects due to the Kerr non-linearity [121].

1.5 Thesis Outline

The preceding sections outlined the theory behind WGMs and coupling light into WGMs

using a tapered fibre. Here, the layout of the thesis is described according to the main

achievements within each chapter:

• Chapter 2: The experimental apparatus for fabricating microsphere-cantilevers and

tapered fibres is described. A homebuilt tunable laser for excitating WGMs is charac-

terised, and the set-up for coupling light into the microsphere-cantilever is presented,

9In a Fabry-Perot cavity the three coupling regimes are accessed by changing the transmittivity of the
mirrors, where critical coupling has equal transmittivity for the two end mirrors.
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including active and passive laser stabilisation methods. The results of this section

provide the foundation for all other chapters.

• Chapter 3: The WGM enhanced transduction mechanism for detecting thermal

motion is discussed, and the optimum experimental settings are verified against

theory. The transmission can be processed into a power spectral density (PSD)

in units of energy such that the mechanical properties of the transduced thermal

motion can be extracted. The WGM transduction forms the basis of a feedback

signal, which is used in chapter 4. The feedback forces are identified by actuating

the microsphere-cantilever and the tapered fibre using a piezo-stack and the CEODF

respectively.

• Chapter 4: Using the transduction mechanism in chapter 3, the WGM signal is

processed into a feedback signal using differentiation and amplification. This drives

the actuating forces to cool the c.o.m. motion (and second eigenfrequency) of the

microsphere-cantilever, and higher order modes of the tapered fibre. Also shown is

simultaneous cooling of mechanical modes belonging to both objects.

• Chapter 5: Passive cooling, which does not require electronic signal processing or

a feedback loop, is classically modelled for two types of optomechanical coupling

between mechanical motion and the WGM light field; dispersive cooling where the

motion shifts the WGM resonance, and dissipative cooling where the motion alters

the cavity decay rate. The use of classical modelling validates the original quantum

noise theory of dissipative cooling, showing cooling when light is blue-detuned to

the WGM resonance. The dispersive and dissipative coupling between the tapered

fibre and the WGM in the microsphere-cantilever is experimentally measured, and

a novel future experiment to obtain dissipative cooling is presented.

• Chapter 6: The WGM transduction of motion is used to measure acceleration, where

the displacement of the test-mass (i.e. the microsphere-cantilever), is proportional to

acceleration. Experiments that characterise the sensing performance such as range,

sensitivity, and drift have never been performed on this type of system. An exper-

imental comparison of performance with a commercial sensor shows great promise

for a WGM accelerometer.

• Chapter 7: A range of further experiments are highlighted. Since improvements

to the experiment for specific applications are identified within individual chapters,
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this concluding section provides an outlook for exploring new areas of research.

Two applications are considered; reaching the quantum ground state and inertial

sensing. A conclusion summarising the experimental achievements of the entire

thesis is presented.
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Chapter 2

Excitation of Whispering Gallery

Modes

2.1 Introduction

This chapter details the experimental coupling of light into the WGM resonator under

study; the microsphere-cantilever. Following from the introduction to WGMs in chapter 1,

a tapered fibre is selected as the evanescent coupling waveguide. This method is preferred

as it is less alignment dependent, provides a fibre output channel, and obtains higher

coupling efficiencies than other waveguides. The theory of tapered fibre coupling can be

found in section 1.4.2 (pg. 23) of chapter 1. The large free spectral range of the WGMs,

typically over 700 GHz for an 100µm diameter silica sphere, require a tunable laser source

swept in frequency to locate WGMs. In this thesis a homebuilt 1064 nm laser is used,

which is able to produce a single mode output that is mode-hop free over a range of

6 GHz1. The properties of this laser will be discussed in this chapter.

The use of WGMs in experiments often requires the excitation laser to be fixed on-

resonance (or, at a set detuning from resonance) in which case active stabilisation methods

such as Pound-Drever-Hall (PDH) locking can be employed. Such locking must be robust

to counteract bulk heating effects associated with the large intracavity intensity of the

WGM (up to MW/mm2), which shifts the resonance since the refractive index and/or

cavity dimensions change. The characteristics of this thermo-optic effect, including stable

self-locking using this phenomena, are explored in this chapter alongside the capabilities

1This tuning range is over 100 times smaller than the free spectral range of WGMs in 100µm diameter
spheres, but the cost to build the laser is an order of magnitude lower than commercial 1064 nm tunable
lasers with over 1 THz tuning range.
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of the PDH locking.

The aim of this chapter is to present the primary experimental set-up used for the

remainder of this thesis. In this chapter is described:

• Fabrication of the microsphere-cantilever and tapered optical fibre using a CO2 laser

and a tapering rig respectively, both developed during this Ph.D. The modification

of a homebuilt 1064 nm laser for a large frequency tuning range is characterised.

• Experimental results showing excitation of WGMs within the microsphere. The

relationship between the WGM with respect to the gap between the microsphere

and the tapered fibre (the ‘coupling distance’) is investigated.

• Active PDH stabilisation of the laser to the WGM, which is also used to investigate

the thermo-optic effect. The thermo-optic effect is then exploited for implementation

of passive thermal locking.

2.2 Fabrication of the Microsphere-cantilever & Tapered

Fibre

2.2.1 Microsphere-cantilever

The WGM resonator used throughout this thesis is a microsphere attached to a cantilever,

where the microsphere forms the optical cavity. The cantilever allows for clamping and

creates the mechanical modes that are transduced by the WGMs as described in chapter 3,

and actively cooled as described in chapter 4.

The microsphere-cantilever is fabricated by melting the end of a tapered/untapered

optical fibre using a continuously pulsed CO2 laser, focused with a 20 cm focal length zinc

selenide lens. An image of the scattered light from a melting fibre is shown in fig. 2.1 a).

The peak laser power is set to 5 W, which at the centre of the focus can reach peak

intensities over 1 kW/mm2. Silica strongly absorbs the emitted light at 10.6µm, causing

the fibre to soften at approximately 1650 oC, forming a sphere due to surface tension. The

high viscosity of silica results in spherical structures with low eccentricities of 1% or less,

and low intrinsic roughness (root mean squared roughness of the order of 1 nm) [122].

The size of the sphere and stem can be measured using a microscope and pixel counting,

referenced to a stripped single mode optical fibre of diameter 125µm, shown in fig. 2.1 c).

This method of measurement results in errors due to issues with illuminating the curved

30



object, and is limited by the resolution of the microscope and the pixel size of the camera.

For this reason, larger microsphere-cantilevers with microsphere and cantilever diameters

over 100µm are used in experiments to minimise the influence of this error.

Figure 2.1: a) The ends of fibres are suspended and illuminated with a CO2 laser which
melts the tip to form a microsphere tethered to a stem, where different stem diameters
can be used to create varying sized microspheres shown in b). The dimensions can be
calibrated using pixel counting with respect to a stripped single mode fibre as in c). The
symmetry of the microsphere-cantilever can vary, shown in d), where hooked ends, or
asymmetry can exist.

Controlling the diameter of the microsphere with respect to the cantilever stem is

achieved by melting optical fibres with different diameters created by the tapering proce-

dure described next. Alternatively, melting a larger length of fibre creates larger spheres.

A range of sphere sizes between 40 to 200µm in diameter can be fabricated, shown in

fig. 2.1 b). Although the sphere is attached to the optical fibre from which it was formed,

the presence of the stem does not affect WGM propagation because the excited optical

modes lie in the equatorial plane and thus have negligible overlap with this perturbation

region. Poor alignment of the CO2 laser can result in spheres that are non-centered on

the stem or at the end of hooks, as in the latter two examples of fig. 2.1 d). The hook

shape is undesirable as it is difficult to couple light into a clean equatorial path.
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2.2.2 Tapered Fibre

The tapering rig used to fabricate tapers from a single mode fibre2 is shown in fig. 2.2.

A butane torch acts as the heat source, reaching temperatures of over 1300o C. The flame

size can be manually adjusted from diameters of 1 mm to 4 mm. Two piezo linear actua-

tors with 25.4 mm travel range3, used with translation stages, pull the taper in opposite

directions, controlled using an open-loop driver.

Figure 2.2: a) The tapering rig built during this thesis consists of two motors, and a
butane flame. Two fibre clamps are used to secure the stripped section of fibre. After
tapering, the taper is mounted and an image of the taper waist, illuminated with white
light is shown in b). The appearance of interference colours is related to the thinness of
the taper, comparable to the visible light wavelengths.

Prior to pulling, the acrylate coating of the fibre is stripped (approximately 2 cm length

is stripped) and cleaned thoroughly with isopropyl alcohol until ‘squeaking’ is heard, which

ensures there is no oil contaminating the surface i.e. from handling the optical fibre. This

exposed segment is clamped on both sides with V-grooved fibre clamps. One clamp sits

upon a 3-axis flexure stage to align the fibre centrally through the flame, with extreme

care taken to ensure both clamps are parallel and all parts of the fibre are co-linear to

avoid bends and kinks forming during tapering. Various flame widths were tested as these

offer different rates of heating. It was found that a pulling speed of approximately 40µm/s

worked well with a medium sized flame approximately 2 mm diameter, where the taper is

placed just above the central blue flame (the hottest part).

2Thorlabs 1060XP.
3Picomotor model 8302.
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Tapering Transmission

One method to identify when the taper fulfils the criteria of eq. 1.25 (pg. 22), such that

only the fundamental HE11 mode is supported, is to continuously monitor the transmission

of 1064 nm light whilst pulling. A typical trace recorded on a photodetector, is shown in

fig. 2.3 where after a few seconds of pulling the transmission oscillates in time due to

interference between modes. This indicates that higher order modes can propagate as the

cladding melts with the core, forming beat patterns. When the taper only supports the

fundamental single mode HE11 the beat patterns disappear.

Figure 2.3: A typical tapering transmission where light propagates through a single mode
fibre as it is heated and pulled by over 12 mm on either side. The transmission is comprised
of various beat patterns associated with the interference of higher order modes with the
fundamental mode of the fibre (HE11), the amount of interference dependent on the pulled
waist diameter. When the taper waist reaches the criteria set by eq. 1.25 (pg. 22), single
mode transmission dominates, the waist is comparable to the wavelength of light (1064 nm
here), and no higher modes can propagate within the core.

Typical pulling lengths of around 12-14 mm on each side (i.e. total length of 24-

28 mm) coincide with single mode transmission. The transmission loss during tapering

(typically between 23% to 70%) is due to non-adiabatic tapering transitions, as indicated

by the beat patterns. As the taper waist changes, the fundamental mode becomes guided

by the cladding, and light from this mode can be transferred into higher order modes
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i.e. HE12 unless the taper profile transitions slowly (adiabatically)[123]. The adiabatic

condition can be defined by the local tapering angle Ωt(z), where z donates the position

along the taper where the taper radius is r(z), and Ωt must be shallow enough such that

the mode essentially sees a straight fibre [124]. This means that the local taper length

za = r(z)
tan Ωt

≈ r(z)
Ωt

is larger than the coupling length between the HE11 and HE12 modes,

defined by the beat length zb = 2π
β1(r)−β2(r) , where β1 ,β2 define the propagation constant

of the HE11 and HE12 modes4 at each r. If za > zb the fundamental mode propagates

through the taper with no loss, allowing groups to fabricate adiabatic tapers using clean

heating elements such as hydrogen flames or ceramic heaters5, such that the transmission

post-tapering reaches above 95 % [115].

The typical taper profile can be approximately measured using a microscope and pixel

counting, as shown in fig. 2.4, where the minimum diameter is 1.1± 0.6µm. Such a large

error is related to the resolution of the microscope, and poor illumination of the cylindrical

sides. The taper in fig. 2.4 represents typical taper dimensions fabricated in this thesis

as the same pulling speed, number of pulling steps, and approximately the same flame

heights are used each time. The adiabatic condition is not satisfied until the taper is less

than 30µm diameter (corresponding to ±8 mm distance from the centre of the taper in

fig. 2.4, and after 8 mm pulling distance in fig. 2.3), which explains why there is a DC loss

in transmission in fig. 2.3 due to light exchanged from the fundamental mode to a higher

order mode which is not transmitted. The loss can be decreased by tapering at a slower

rate, which will produce a larger length taper. However, since large coupling powers are

not stringently required, the confirmation of a < 1064 nm waist using the transmission

graph fig. 2.3 is adequate for the experiments in this thesis.

The taper profile shows some asymmetry about ‘0’ mm pulling distance in fig. 2.4 which

is related to the motors being switched on one after the other.

Immediately after tapering the fibre must be tightened using the flexure stage as a

small vertical bend usually ensues. Straightening the taper increases the transmittance by

less than 10% but can benefit stability and alignment. The taper is permanently mounted

on a bracket-like-mount made from steel with a 30 mm wide notch. Since it is mounted in

a clamped-clamped string configuration, where the taper portion is left free-hanging, there

are mechanical modes associated with the taper, experimentally measured in chapter 3,

4The values of β can be found by solving the appropriate boundary value problem at varying fibre waist
size using the scalar wave equation.

5The use of a butane flame is often considered ‘dirty’ due to the presence of carbon deposits.
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Figure 2.4: A typical tapered fibre profile, measured by imaging sections of the taper
with a microscope. The minimum measured diameter is 1.1 ± 0.6µm, limited by poor
illumination of the taper and the resolution of the microscope.

and actively cooled in chapter 4. Nail varnish (nitrocellulose plus plasticizers and resins)

is used to glue the taper onto the mount, chosen for the relatively fast curing time (around

30 mins), as well as a refractive index well matched to silica.

Lifespan of Tapered Fibres

Tapers must immediately be placed in a sealed chamber, or kept at low pressure to avoid

contamination. It has been shown elsewhere [110] that long term degradation of the taper

transmission is due to dust adhesion, measured by comparing a dust free environment

clean room (cleanliness class 10) with normal laboratory conditions where dust particle

sizes of 0.3µm, 0.5µm, and 1µm were detected. Tapers left in the clean room showed 1%

degradation of transmission over 48 hours, whereas normal lab conditions resulted in over

50% degradation in 4 hours. Similar effects were seen in the tapers fabricated in this thesis,

whose lifespan could be prolonged by carefully cleaning the taper surfaces using methanol.

Discrete jumps in transmission are seen when a bubble of methane is created at the end

of a syringe and skimmed over the surface. This can increase transmission by a factor of

10 to 100. No matter how much cleaning is conducted the majority of dust remains due

to strong electrostatic forces and van der Waals forces, and the resulting transmittance at

the end of 3 weeks can be as low as 1% of the initial value. The transmission degradation

due to surface scatterers is one driving factor for researchers who have embedded tapered

fibres in a low refractive index polymer matrix [125]. However, for the purposes of this

thesis, where free-space is required between the taper and the microsphere in order to
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transduce motion, encapsulation cannot be used.

One final comment on taper lifespan is heating due to the light intensity at the thinnest

taper region. For the tapers fabricated in this thesis, intensities exceeding 1 MW/mm2 for

1 mW input power can cause the taper to melt and break, especially at low pressure where

residual gas cannot conduct heat from the material. Any surface contaminants in the

taper region create hot spots as they scatter light, which further decreases the maximum

coupled power before melting.

2.3 Tunable Laser Source

The main requirement for a laser source to interrogate the spectrum of WGMs is tune-

ability. Firstly, the laser needs to be tuned in wavelength (frequency) to locate a resonance,

and secondly, it must follow frequency shifts due to temperature or size variations that

can shift the WGM by hundreds of linewidths. The laser source used in this thesis is

a diode pumped solid state neodynium doped yttrium vanadate (Nd:YVO4) microchip

laser, pumped with an 808 nm diode, with an intracavity electro-optic modulator (EOM)

to tune the output wavelength via path length modulation [126] 6.

2.3.1 Nd:YVO4 Laser

The schematic of the laser operation is shown in fig. 2.5 and photos of the laser are shown

in fig. 2.6

Figure 2.5: The schematic of the tunable 1064 nm output laser. An 808 nm diode provides
pumping that causes stimulated emission from a Nd:YVO4 microchip laser which forms a
cavity with the output-coupler. An LiTaO3 EOM is placed in the middle of this cavity,
connected to electrodes that send a voltage through the EOM to change the cavity path
length, thus tuning the output wavelength.

6The laser was built by a previous student [126], and modifications described in this section were
conducted within this Ph.D
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Figure 2.6: a) Side profile of the inside of the laser. All components sit upon a copper block,
with two sandwiched Peltier devices that control the temperature of the pump diode and
the microchip laser respectively, measured using two separate AD590 temperature sensors
that are shielded from RF noise with a ring of capacitors. b) Front facing profile of the
laser showing the output coupler and the EOM, centred to coincide with the optical beam
path. The positive electrode sits on top of the EOM chip (the ground electrode is the
block that the EOM sits upon).

A 1 W diode7 with centre frequency 808 nm is collimated and then focused onto the

Nd:YVO4 microchip8 with anti-reflection coating for 808 nm and a highly reflective coating

for 1064 nm on the pumping face, and anti-reflection coating for both wavelengths on the

other face. The output wavelength is tunable around 1064 nm. The diode and microchip

are thermally attached to a copper block that is Peltier controlled and temperature tuned

so as to pump the 809 nm absorption band in the neodymium ion. An output coupler is

used to create the cavity (the end face of the Nd:YVO4 forms the other end of the cavity)

and allow transmission of the output beam.

An intra cavity EOM with dimensions (1 × 3 × 5) mm is inserted between the gain

medium and output coupler following the work of Repasky [127]9. The EOM consists of

a crystal whose refractive index changes when an electric field is applied across it, created

by placing a parallel plate capacitor across it. During exposure to an electric field the

optical path length increases, altering the output frequency of the emerging laser beam.

7Thorlabs L808P1WJ
8CASIX, 500µm thick
9In [127], a frequency chirped external cavity diode laser could be tuned 2.4 GHz with an intracavity

EOM
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2.3.2 Laser Output Power

With the pumping diode temperature set to 15.6 oC and the temperature around the

Nd:YVO4 microchip and EOM set to 19.77 oC, the 1064 nm output power versus the

current used to pump the 808 nm diode is recorded, and plotted in fig. 2.7. This output

power is not optimised since inserting the EOM leads to a small amount of misalignment.

The maximum output power is 366 mW with multimode operation, and a maximum of

34 mW power for single mode operation.

Figure 2.7: The onset of lasing and the output power as a function of the current sent
to the pump diode. The start of multimode operation is marked by the arrow, giving an
upper power output for single mode operation of 34 mW.

The power stability of the free running laser is measured to have less than a 0.6% drift

over 13 mins.

2.3.3 Single Mode, Mode-hop Free Tuning Range

Applying a triangle ramp in voltage to the EOM tunes the laser output frequency. Shown

in fig. 2.8 a) is a combination of voltage tuning and DC current tuning. The maximum

range of the voltage amplifier (≈ 350 V) can tune the laser over 3.79 GHz, whereas a

mode-hop free tuning range of 6.65 GHz can be achieved by increasing the current to the

pumping diode. Although current tuning can scan the laser frequency over a greater range,

the laser output stability is affected, requiring some time for the temperature to stabilise. A

6.65 GHz mode-hop free tuning range is ≈ 2% of the FSR for WGM modes in a � =177µm

sphere. Therefore tuning the sphere size instead (i.e. fabricating 20 or more spheres

through trial and error) is the most effective method for locating a resonance. The relation

between the applied tuning voltage and laser frequency is found to be 14.70±0.05 MHz/V.

38



Figure 2.8: a) The single mode, mode-hop free scanning range of the laser is measured by
driving the EOM with a ramped triangle voltage, and applying a linear increase to the
pump diode current. The voltage ramp fine tunes over 3.79 GHz, whereas current tuning
tunes over 6.65 GHz. The mode-hop is marked by an arrow. b) An alternative method
that does not require the wavemeter involves sending the light into a Fabry-Perot (F-P)
interferometer whose output is recorded whilst the laser is tuned via a voltage ramp to the
EOM. The separation between the peaks is equal to the 1.5 GHz FSR of the F-P cavity
so that the total scan range can be calibrated by the (non-integer) number of FSRs.

In fig. 2.8 b) shows an alternative method to measure the tuned frequency using a

commercial Fabry-Perot (F-P) interferometer10. A photodetector records the transmission

of the F-P cavity and the (non-integer) number of peaks is counted against the voltage

ramp to the EOM. The distance between each peak is equal to the FSR of the F-P cavity,

1.5 GHz.

2.4 Experimental Set-Up for Exciting Whispering Gallery

Mode Resonances

A simple experimental set-up for exciting WGMs, used at the start of the Ph.D., is shown

in fig. 2.9. An isolator is placed in front of the laser to prevent feedback, with an amplified

voltage supply controlling the intracavity EOM to tune the laser frequency. A flip mirror in

10The compact F-P is dedicated for daily calibration measurements such as the WGM linewidth, whereas
the wavemeter is shared amongst the group.
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the path of the beam allows for the use of the F-P cavity for calibration. After calibration,

the flip mirror is removed from the beam path, and the laser is coupled into the taper

where the transmission is measured using a photodetector (PD 1). The output of PD 1 is

sent to an oscilloscope with built-in spectrum analyser functionality.

Figure 2.9: A simple set-up for exciting WGM resonances within a microsphere-cantilever.

The microsphere-cantilever is mounted in a fibre clamp that secures it in place. This

sits on a homemade 1D translation stage controlled with piezo-stacks (PZT) for fine tuning

the vertical displacement i.e. the coupling distance with respect to the taper. This stage is

secured onto a 3-axis flexure stage to provide rough manual translation using differential

adjusters. The taper, attached to a bracket mount, is clamped below the microsphere-

cantilever and placed perpendicular to the cantilever stem. Both ends of the taper are

stripped, cleaved, and glued into APC fibre connectors before being polished. All are

placed inside a vacuum chamber to shield against air currents and dust11. The 3D flexure

stage supporting the microsphere-cantilever is used to roughly tune the coupling distance

as the laser is scanning. Excitation of WGMs can then be achieved using a mixture of

manual alignment and fine tuning with the piezo-stacks to slowly decrease the separation

distance12, and is monitored from above using a microscope. The set-up is shown in

fig. 2.10 a), and the microscope view in fig. 2.10 b) where the appearance of a WGM can

be deduced visually.

11The majority of experiments conducted in this thesis operate at atmospheric pressure in air, unless
specified.

12At separation distances of d < 50 nm, the cavity enhanced optical dipole force, electrostatic forces, or
van der Waals forces attract the sphere towards the taper until they touch. Separation of the two objects
requires a large actuation of the piezo-stack supporting the microsphere-cantilever (i.e. displacement of
over 1µm) to overcome the van der Waals forces.
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Figure 2.10: a) The layout of the microsphere-cantilever and tapered optical fibre, placed
perpendicular to one another. A microscope can view, from above, the coupling junction.
When a WGM is excited (bottom panel, b)) non-uniform scattering can be seen, which
indicates the WGM propagating around the equator of the sphere (in and out of the page).

2.4.1 Results

Alongside the increased scattering, a dip in the transmission, T , will present itself when

coupling occurs, such as that displayed in fig. 2.11.

Figure 2.11: A narrow WGM fitted with a Lorentzian of linewidth 5 MHz FWHM, excited
with 1064 nm light at low laser powers to avoid thermo-optic effects. It is recorded as a
dip in the transmission T of the tapered fibre waveguide used to couple light in/out of the
microsphere-cantilever.

WGMs of varying linewidth have been successfully excited and range from a FWHM

linewidth of 5 MHz, to a FWHM of 1 GHz. The narrowest WGM is shown in fig. 2.11

which has a linewidth of 5 MHz FWHM, corresponding to a Qopt = 5.6×107 , which could

be limited due to adhesion of dust, seen as light scatterers in fig. 2.10 b).
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The optical properties of the WGM such as linewidth, resonance frequency and power

coupled are dependent on the external coupling rate γe, as discussed in the introduction.

If heating occurs within the WGM bulk material due to the high circulating intensity,

or a change in environmental temperature, this adds a thermally induced shift to the

resonance location. Both aspects are investigated in this section, namely, the coupling

distance dependence of γe, and the thermo-optic effect relating bulk heating to shifts of

the WGM resonance frequency [13, 41, 128, 129].

Coupling Distance Dependence

Due to the evanescent field overlap between the tapered fibre and the WGM resonator,

γe is exponentially dependent on the coupling distance, d. Using the experimental set-up

detailed above, the piezo-stack supporting the microsphere-cantilever is used to vary d,

and the WGM lineshape and position is monitored in the transmitted light T . This is

plotted in fig. 2.12.

Figure 2.12: The transmission, T , of a WGM excited in a microsphere-cantilever as a
function of coupling distance, d, (red to blue traces correspond to separation gaps between
700 nm to 120 nm). The extrinsic coupling rate γe varies exponentially with d, causing
the WGM to broaden and T to decrease on-resonance. A red-shift is also observed with
decreasing d. Note that when d <120 nm and further decreased (not shown here for
clarity), T increases and is included in the plots of fig. 2.13).

As the extrinsic coupling rate γe increases, the WGM resonance widens as the total

decay rate κ increases. There is also a red-shift of the WGM resonance due to the change

in the effective refractive index surrounding the coupling junction, resulting in a longer

path length that decreases the resonance frequency. The shift in frequency is exponen-

tially dependent on d, related to dispersive coupling, discussed further in chapter 3, and

chapter 5.
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From chapter 1 (pg. 23), the on-resonance transmission is related to the normalised

power coupled into the WGM, Pc, by the relationship 1 − Ton = Pc. The measurement

of Pc at varying d (i.e. applied to the data shown in fig. 2.12), is plotted in fig. 2.13 a).

The actuation of the piezo-stack (i.e. the voltage sent to the piezo-stack, Vd) is recorded

between each measurement, noting that the required actuation for the microsphere to

touch the tapered fibre i.e. Vd=0, corresponds to a coupling distance of d = 0. All previous

measurements of T or Pc can be calibrated from Vd=0 by using the specifications of the

piezo-stack to convert from driving voltage to the actual displacement in meters. The

undercoupled, critically coupled (d ≈150 nm) and overcoupled regimes are marked. The

DC transmission level can therefore be associated with an equilibrium coupling distance. In

order to extract the values of γe, the intrinsic coupling rate γi, and the decay constant η, the

data is re-plotted in fig. 2.13 b) using a re-arranged form of eq. 1.33 (pg. 25): γe
γi

=
√
Ton−1√
Ton+1

.

Fitting b) with an exponential function γe
γi

= γe,0e
−ηd, provides measurements of the WGM

parameters that are used to apply the non-linear fit for Pc versus d, shown in fig. 2.13 a).

Figure 2.13: a) The power coupled to the WGM as a function of the coupling distance
between the tapered fibre and the microsphere-cantilever. The coupling regimes of un-
dercoupled, critically coupled (d ≈150 nm) and overcoupled are shown. The plot is fitted

with Pc = 1− Ton = 1−
(

1−γe/γi
1+γe/γi

)2
, where γe

γi
can be found using plot b), fitted with an

exponential function γe
γi
∝ e−ηd, where η is the decay constant.

The fit to this curve gives γe
γi

= 7.16 e−1.47×107d (note that d is in units of m). The

extrinsic coupling is ∝ e−ηd ≈ e−2αsd, where η−1 is the total decay length and α−1
s is the

evanescent decay length of the WGM, see chapter 1 (pg. 22). The experimental data in

fig. 2.13 sets η/2 = αs = 1.36 × 10−7 which is < 10% smaller than the value predicted
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using eq. 1.22 (pg. 18). Using the experimentally deduced γi
γe

, fig. 2.13 a) can be fitted

using Pc = 1−
(

1−γe/γi
1+γe/γi

)2
, which can be used as a guide to indicate d in experiments.

As mentioned earlier, heating of the microsphere will shift the WGM frequency until

the bulk temperature is in equilibrium with the surrounding temperature. This poses a

technical challenge if the laser is stabilised onto the WGM dip, and must actively ‘chase’

the mode. This thermal effect is described in the following section.

Thermal Bi-stability

Since the mode volumes are so small within WGM resonators, circulating intensities

of 1 MW/mm2 can be obtained for launch powers below 50µW which primarily drives

thermo-optic effects, and to a lesser extent, high order non-linear optical effects. The

isotropic nature of amorphous silica results in the lowest order non-linearities13 of order

χ3, specifically the Raman and Kerr effects [121]14. At the low optical powers used in

this thesis (100’s of µW), the Kerr and Raman non-linearities are negligible [53]. The

dominant cause of the WGM frequency shift is known as the thermo-optic effect which

changes the refractive index and geometry due to bulk heating via absorption. This effect

can arise with coupling powers as low as 2µW, causing hysteresis when scanning a laser

over the resonance. An approximate equation describing thermally induced shifts ∆λ of

the WGM resonance at wavelength λ is [130]:

∆λ

λ
=

∆(na)

na
=

∆a

a
+

∆n

n
= (ζ + ξ)∆T, therefore

∆T =
1

ζ + ξ

∆λ

λ
,

(2.1)

where ζ is the thermal expansion co-efficient that changes the sphere radius a, and ξ

governs the refractive index change, known as the temperature co-efficient of the refractive

index [130]. This is not the same as n2, the second-order non-linear refractive index that

governs the Kerr effect. For silica ζ, ξ are 5.5×10−7 K−1 and 8.53×10−6 K−1 respectively,

showing that the refractive index change is 10 times more dominant. Since the refractive

index change of silica (at room temperature) is positive with an increase in temperature, it

implies that the WGM is always red-shifted with increased coupling power. Approaching

13There are no χ2 non-linearities
14The Raman non-linearity involves the inelastic scattering of optical photons onto vibrational phonons

in the structure, that can be enhanced with the large intracavity power (known as stimulated Raman
scattering). The Kerr non-linearity causes a modification of the refractive index, dependent on the intensity
of circulating light as n(I) = n+ n2I, where n2 is the second order non-linear refractive index. With high
intensities the Kerr effect can generate parametric gain and oscillations
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the WGM from the red or blue side therefore has hysteresis, with thermal bi-stability

[13, 41, 128, 129], shown in fig. 2.14.

Figure 2.14: The thermo-optic effect, where power coupled to the WGM causes bulk
heating and a red-shift of the resonance frequency. This creates a bi-stability seen here as
differing WGM linewidth profiles as the laser is scanned from red-detuned to on-resonance
(here 0 MHz detuning corresponds to the ‘cold’ WGM resonance) versus the scan from
blue-detuned.

During the down-frequency ramp (fig. 2.14 (blue)) the WGM transmission is broadened

in a characteristic ‘shark fin’ shape as the pump and WGM frequency travel together. The

cavity stays resonant for a large range of detunings since thermal shifting is in general,

faster than the rate of laser scan. During the up-frequency ramp (red) the WGM resonance

is narrowed as the pump and WGM resonance move in opposing directions. This causes

the bulk temperature to decrease until the scan wavelength meets the shifted resonance (at

a frequency smaller than for the down-scan), where the cavity jumps into resonance [13].

The bi-stability is observed in the microsphere-cantilever when Pc > 10µW is coupled

into a WGM, and the laser frequency is scanned towards and away from the resonance,

shown in fig. 2.15 b). In fig. 2.15 a), less laser power is used, and a lower Qopt WGM is

excited such that negligible bi-stability is presented.

If the laser is not scanned, but set a fixed detuning with respect to the WGM, the

thermo-optic bi-stability determines one side of the cavity resonance (i.e. ± detuning)

stable when subjected to a continuous pump laser whereas the other is unstable. At room

temperature the unstable side is the red-detuned side, whereas at cryogenic temperatures

it is the blue-detuned side, related to the temperature dependence of the refractive index

of silica. The stable coupling equilibrium on the blue-detuned side is studied later in this

chapter for passive locking. However, if the intracavity power is high, or if Pc has large

fluctuations, maintaining continuous coupling on-resonance (or on the red-detuned side)

requires active fast feedback systems, described in the next section.
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Figure 2.15: WGMs are excited in microsphere-cantilevers by tuning the laser frequency
with a triangular ramp, and the transmission T is recorded. The WGM on the up-scan is
the same WGM on the down-scan. With negligible thermal heating present, a) shows no
difference in the WGM lineshapes on the up/down scan, due to the low Qopt and lower
laser power used. In the presence of bulk heating, thermal bi-stability is clearly seen in b),
where the WGM lineshape during the down-scan is significantly different to that obtained
in the up-scan.

2.5 Laser Locking to Whispering Gallery Mode

Resonances

Maintaining continuous coupling to a WGM requires the laser cavity to remain stable

and frequency locked onto the WGM resonance. Thermal fluctuations, air currents, and

vibrations can cause frequency drift of the laser, whereas the thermo-optic effect can

shift the WGM resonance. Two types of feedback are used to keep the laser frequency

stabilised; active Pound-Drever-Hall (PDH) locking, and a passive thermal locking in

section 2.5.2 (pg. 50).

2.5.1 Implementation of Pound-Drever-Hall Locking

Many experiments employ PDH locking [131, 132] when working with WGM resonators

[45, 54] as it has a large recapture range and is not limited by the resonator bandwidth.

PDH locking requires phase modulated light, consisting of a carrier frequency and two side-

bands, which is coupled to the WGM of a microsphere. The transmitted light15 consists

of two unaltered sidebands along with a phase shifted carrier component. A photodetec-

tor measures the transmission, and the photodetector signal is mixed down with a local

oscillator (L.O.), which is in phase with the modulated light. After phase shifting and

filtering, the resulting electronic signal, called the error signal, gives a measure of how far

15In the usual configuration for PDH locking to a Fabry-Perot cavity, the reflected signal is used. How-
ever, the transmission from the WGM resonator is equivalent to this reflected signal as it contains light
coupled back into the taper from the cavity.
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the laser carrier is off resonance with the cavity and is used in a feedback loop for active

stabilization. A proportional integral (PI) controller carries out the feedback, taking the

PDH error signal and converting it into a voltage that can be fed back to the laser to keep

it locked on resonance with the cavity.

The error signal is given by:

ε = 2
√

PcPsIm [F(ω0)F∗(ω0 + Ω)− F∗(ω)F(ω0 − Ω)] , (2.2)

where F(ω) is the transmission coefficient of the WGM cavity at frequency ω, Pc is the

power in the carrier and Ps is the power in each sideband. Examples of error signals

obtained from WGMs are shown in the section that follows.

Experimental Set-up

The experimental set-up for applying PDH locking is shown in fig. 2.16. The intracavity

Figure 2.16: The basic set-up for Pound-Drever-Hall locking of the laser to the WGMs of
a microsphere-cantilever.

EOM of the laser modulates the phase of the laser by 140 MHz, comparable to the FWHM

of typical WGMs used in this work. The RF modulation is set by the L.O., and sent as

a voltage to the EOM. Since the EOM is also used for tuning the laser frequency (using

a high voltage supply >100 V), a bias-T is required to prevent cross coupling of these

signals. The bias-T is formed using a capacitor of 0.6 pF that blocks signals below 80 MHz

and an inductor of 5.6µH that blocks signals above 80 MHz. The RF voltage is therefore

sent through the capacitor channel. The phase modulated light is coupled into the WGM

resonator. The non-coupled light through the taper beats with the light emitted from the

cavity back into the fibre, and is detected by the photodetector PD 1. The mixer multiplies

this beat pattern with the reference signal from the L.O. to form the error signal. Typical
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error signals obtained from WGMs with and without the thermo-optic bi-stability are

shown in figs. 2.17 a) & b), respectively.

Figure 2.17: Typical error signals obtained from WGMs of microsphere-cantilevers (blue
data) when there is negligible thermo-optic effect in a), and with the thermo-optic bi-
stability (hysteresis) in b). The corresponding WGMs, recorded in the transmission T are
shown in black.

The error signal in fig. 2.17 b) parallels the thermo-optic behaviour causing uneven

spacing of the sidebands. These plots are typical of WGM resonators where pump powers

above 2µW are used [54].

The error signal can be set so that the point where it crosses zero is the lock set-point,

in figs. 2.17 a) b) this is set on-resonance with the WGM. Any detected frequency drift will

offset this zero crossing point which is countered by a change in the voltage sent to the

EOM (via the inductor arm of the bias-T) to tune the laser frequency back onto resonance.

Results

The PDH locking process to stabilise the laser frequency onto the WGM mode is shown

in fig. 2.18. At the point of lock engagement (marked with a red arrow in fig. 2.18), power

is coupled into the WGM resonance and the lock box latches onto the position in the

laser frequency sweep that correlates to the WGM resonance (the lock-point). However,

thermal heating due to the influx of power (Pc) causes the WGM to drift, seen in the

shaded box in fig. 2.18, as the laser frequency chases the WGM.

Once the microsphere bulk temperature re-thermalises with its surroundings (on a

time scale of 0.1 ms for the 85µm diameter sphere used in this set of data), the WGM is

continuously coupled and is in a steady state, with any fluctuations in frequency countered
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Figure 2.18: Experimental data showing the locking process as a function of time. Prior
to the lock engagement, the laser is scanned in frequency to find a WGM in a 85µm
diameter sphere. The lock point marks the laser frequency corresponding to the maximum
PC. After locking, the laser undergoes further tuning (marked in shaded box), related to
the bulk heating of the microsphere that shifts the WGM resonance.

by the PDH locking. In frequency space, this reduces the noise in the system, as shown in

the fast Fourier transform (FFT) of the transmission, fig. 2.19. Shorter rethermalisation

times are expected for smaller microspheres.

Figure 2.19: The FFT of the transmission from the WGM-taper system when a WGM is
excited with 1064 nm light and is running freely (red), versus the lower noise floor obtained
when active PDH locking is engaged (black).

When active PDH locking of the laser is employed in fig. 2.19, the noise floor drops

by over 20 dB within a bandwidth of 7 kHz, and less than 10 dB for higher frequencies.

This noise is attributed to classical fluctuations of the laser, and may be mechanically

induced frequency drifts due to the homebuilt design and alignment of the intracavity

components of the laser (see fig. 2.6 (pg. 2.6)). The PDH lock is stable against small

external perturbations such as normal lab vibrations for long periods of time, but unlocks

when large changes in Pc of over 20 % are applied.
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The bulk heating of the microsphere can be directly measured during the PDH locking

process. Looking at fig. 2.18, the shift in the WGM resonance can be found by measuring

the change in laser frequency immediately after engaging the lock. A set of results where

this process is repeated with increasing Pc on-resonance to the 85µm diameter sphere of

used in fig. 2.18 is shown in fig. 2.20.

Figure 2.20: Using locking graphs such as that in fig. 2.18, the WGM red-shift versus the
power coupled to the WGM can be measured. Note that this set of data is taken with a
85µm diameter sphere.

The rate of frequency change with Pc is to be −13 ± 1 MHz/µW, found by using a

linear fit to fig. 2.20, which agrees well with that found elsewhere [133]. Using eq. 2.1, a

resonance frequency shift of −2.56 GHz/K is expected which correlates to a heating rate

of 0.005 K/µW for a 85µm diameter microsphere-cantilever.

2.5.2 Implementation of Passive Thermal Locking

There are some situations where the PDH scheme employed in the previous section de-

stabilises. For example, if the coupling distance is quickly modulated with a large sinu-

soidal amplitude of ∆d > 20 nm (as is the case in chapter 6, when using shaker tests to

apply angular accelerations), or, if large modulations in Pc are required (i.e. over 20 %

change in Pc), such as to control the cavity enhanced optical dipole force of the WGM

resonator (used to cool mechanical taper modes in chapter 4). An alternative stabilisa-

tion method can be implemented, known as passive thermal locking, which exploits the

thermo-optic bi-stability.

Passive thermal locking was demonstrated by Carmon et. al in [128], and further stud-

ied in [134], showing the ability of the WGM to ‘self-lock’ onto the pump laser. The laser

latches onto the blue-detuned side of the WGM through the heating of the resonator by ab-
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sorption, without an active electronic feedback loop. This can compensate for laser drifts

or perturbations such as mechanical motion due to negative thermal feedback, whereas the

red detuned side of the WGM is unstable due to positive thermal feedback [129], described

in fig 2.21.

Figure 2.21: A schematic to describe the thermo-optic feedback effect when light is con-
tinuously coupled at a laser wavelength detuning of ±∆ = λl − λ0, where λ0 is the WGM
resonance wavelength, and λl is the wavelength of the laser. The power coupled into
the WGM is denoted by Pc, and the bulk temperature is TB. In the presence of per-
turbations, the blue-detuned side of the WGM offers a stable self-compensating thermal
feedback mechanism.

On the blue detuned side, motion of the sphere away and towards the taper causes

a decrease and increase in the power coupled to the WGM respectively (i.e. related to

the dependence of Pc on d in fig. 2.13 pg. 43). This changes the intracavity intensity, and

through absorption changes the bulk temperature TB. The thermo-optic effect causes a

subsequent blue and red-shift (equal to an increase and decrease in Pc, respectively) which

counteracts the initial mechanical perturbation. Conversely, if the perturbation is from

a drift of the ambient temperature that causes TB to decrease, the resonance shifts to a

higher frequency (lower wavelength), increasing Pc which in turn raises TB, red-shifting

the WGM. This compensates the initial perturbation in a negative thermal feedback loop.

A positive thermal feedback loop exists on the red-detuned side, which only amplifies

mechanical perturbations, laser drifts, or changes in the surrounding temperature, making

the lock unstable.

The resilience to perturbations is experimentally verified by passively locking the laser

to the blue-detuned side of a WGM, as close to resonance as possible. This is indicated
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in fig. 2.22 a) by the drop in transmission.

Figure 2.22: Passive thermal locking can be successfully applied close to the WGM reso-
nance but on the blue detuned side, allowing a) continuous coupling to the WGM with no
external active electrical feedback components, and b) resilience to external perturbations
such as mechanical shocks. In b) the transmission is converted to the coupling distance d
using the method in section 2.4.1.

The system is then perturbed by dropping items onto the vacuum chamber and intro-

ducing mechanical shocks onto the optical bench. Each event is transduced by the WGM

system in the transmission, T . The system immediately relaxes back to a constant cou-

pling distance on a time scale of milliseconds, and maintains coupling throughout, seen in

fig. 2.22 b). This reinforces the ability for this system to detect motion, further explored

as an accelerometer in chapter 6.

2.6 Counterpropagating Whispering Gallery Modes

One feature of the WGM taper coupled system is the ability to use counterpropagating

beams, allowing separation of a transduction beam which can be used to monitor the

transmission, and a strong beam that can be used for PDH locking or controlling optical

forces. Such a system is employed in active feedback cooling of the thermal motion of

the microsphere-cantilever (as well as modes of the tapered fibre) in chapter 4. The

elegance of having such counterpropagating beams is that one beam can be detuned from

the other, which can be important for sensing applications where the gradient of the

WGM Lorenztian lineprofile provides a more sensitive monitoring of frequency/amplitude

changes. For this thesis, the role of the strong beam is for PDH locking (or thermal locking)

and the role of the transduction beam, which is weaker in intensity, is for monitoring the

relative motion of the microsphere-cantilever and tapered fibre. The next chapter details
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the optimum detuning that should be applied to the transduction beam for a maximum

signal to noise measurement of motion.

2.6.1 Utilising a Detuned Transduction Beam

In order to produce a counterpropagating detuned transduction beam, the optical set-up

shown in fig. 2.9 is modified by placing a 70/30 beam splitter after the isolator to create

the strong beam (denoted in blue) and the transduction beam (in red), shown in fig. 2.23.

Figure 2.23: Counterpropagating WGM resonances can be excited to provide a strong
beam (blue) dedicated for laser stabilisation (i.e. active PDH feedback or thermal locking),
or to control actuating forces. The strong beam is detuned using AOM 1 & 2 with respect
to a weaker transduction beam (red) that monitors the perturbations of the system as
studied in chapter 3. The transduction beam is monitored with PD 2, and the strong
beam monitored with PD 1.

In the path of the strong beam are two acoustic-optic modulators (AOMs), the first

having a fixed modulation of 80 MHz, and the second AOM tunable between 70-110 MHz,

which is calibrated in fig. 2.24 a). The laser power of the output of the second AOM can

also be tuned by adjusting the AOM input voltage, fig. 2.24 b).

The transduction beam is fibre coupled from the opposite end of the taper to the

strong beam, with 50/50 beam splitters placed prior to each fibre coupling station to allow
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Figure 2.24: The RF frequency tuning range a), and the amplitude output of the acousto-
optic modulator (AOM 2) used to detune the transduction beam with respect to the strong
beam.

extraction of the respective counterpropagating beams (PD 1 detects the strong beam,

PD 2 detects the transduction beam). By choosing the appropriate pair of diffraction

orders from AOM 1 and AOM 2, i.e. the ±1 orders, the transduction beam can be detuned

with respect to the strong beam over a range of ±(−30 MHz → 10 MHz), 70 MHz →

110 MHz and ± (150 MHz→ 190 MHz). Therefore to obtain a transduction beam that is

red-detuned by −∆ with respect to the strong beam by detuning the strong beam, the

strong beam is tuned by +∆ using AOM 2, such as the example shown in fig. 2.25. Here,

the transduction beam is red-detuned by 20 MHz with respect to the strong beam.

2.7 Conclusion

WGM resonators have a spectrum of resonances, described in the introduction, and ex-

perimentally excited in this chapter. The set-ups built during this Ph.D. for fabrication of

the microsphere-cantilever and the tapered fibre used to couple light to the microsphere is

described. The taper coupled microsphere-cantilever system was experimentally investi-

gated, exciting narrow WGM resonances of 5 MHz FWHM linewidth with Qopt > 5× 107.

The external coupling rate γe that mediates the exchange of photons between taper

and microsphere depends exponentially on the coupling distance, d. This was verified

in this chapter, and the WGM coupling regime was tuned from undercoupled, to critical

coupling (d ≈ 150 nm), to overcoupled.

The high intensity generated within the microsphere leads to bulk heating where the

refractive index and sphere dimensions change with increased powers coupled to the WGM.

Such an effect presents itself as thermal bi-stability, seen as linewidth broadening and nar-
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Figure 2.25: Counterpropagating WGMs are excited using the strong beam (black) and
a detuned transduction beam (red), detuned by 20 MHz for a 40 MHz FWHM mode. T
denotes the transmission measured by PD 1 (strong beam), and PD 2 (transduction beam).
The error signal, formed using the strong beam, is decoupled from the transduction beam
so that the zero crossing coincides with the WGM excited by the strong beam.

rowing when the laser is scanned approaching from the blue-detuned side or red-detuned

side respectively. Despite this thermal bi-stability, the active PDH locking demonstrated

in this chapter can stabilise the laser on-resonance with the WGM. A passive thermal lock-

ing equilibrium is successfully applied, where no active feedback electronics are required

to keep the WGM excited on the blue-detuned side, useful for cases where a purposely

large amplitude modulation of intracavity intensity is required that can break the PDH

lock. This is crucial for chapter 4 and chapter 6 where large modulations of the strong

beam Pc, and driven displacements are implemented respectively. Lastly, the input-output

mechanism of the tapered fibre allows for excitation of the counterpropagating WGM (i.e.

the ±m degenerate modes), for the purposes of the active cooling presented in chapter 4,

where one beam is dedicated for transduction and the other for maintaining laser stabil-

isation to the WGM resonance (or modulating optical forces). The transduction beam is

investigated in chapter 3.
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Chapter 3

Transduction of Mechanical

Motion using Whispering Gallery

Modes

3.1 Introduction

This chapter investigates the optomechanical coupling between whispering gallery modes

(WGMs) and the thermal motion of the microsphere-cantilever and tapered fibre. The

coupling allows for optical transduction of mechanical motion by detecting the fluctuations

imprinted onto the WGM field coupled to that motion. Measuring displacements with

WGMs is essential for the sensing and cooling of thermal motion explored in this thesis.

For example, to use the microsphere-cantilever for accelerometry, as detailed in chapter 6,

it is important to characterise the mechanical parameters that predict its response to

stimuli, such as mechanical frequency, mechanical quality factor, spring constant and

effective mass. These can be deduced by analysing the power spectral density (PSD) of the

WGM transmission i.e. from the dedicated transduction beam created in section 2.6.1 of

chapter 2. In active feedback cooling, demonstrated in chapter 4, a feedback signal formed

from the transduction beam is required to drive actuating forces to apply damping.

Transduction is defined as the process by which a device converts one type of quan-

tity (e.g. energy) into another. The first transducers were materials that could convert

electrical and magnetic fields into mechanical motion, such as via Joule magnetostriction

which causes the constriction of iron under the influence of a magnetic field. The Curie

brothers discovery in the late 18th century that an electric charge is produced by applying
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an external mechanical force to quartz crystals.

The transduction of mechanical motion using optical fields can be realised when the

displacement of a mechanical oscillator causes perturbations in the optical intensity [135],

polarisation [136] (i.e. via the strain-optic effect), wavelength [4, 137, 138], and/or phase

[31, 139]. Detection schemes can be as simple as measuring the changing shadow cast by

a movable object in front of a light source [135], or can be enhanced by adding a resonant

cavity structure such as a Fabry-Perot (F-P) cavity [137, 138]. The modulation to the

photon density can be measured by monitoring the intensity directly, or through interfero-

metric or homodyne methods to monitor the phase or frequency shifts. When mechanical

motion shifts a cavity resonance frequency, it is said to be dispersively coupled to the op-

tical field, governed by a linear scale-factor called the dispersive coupling parameter, gom,

in units of Hz m−1. Cavities that have high optical quality factors Qopt, such as the WGM

employed in this thesis, can enhance gom, and in some cases provide an interferometric

calibration between displacement and frequency [21].

Cavity enhanced optomechanical coupling using optical WGMs has been used to trans-

duce and implement cooling of the radial breathing modes of a toroid [4], the flapping mo-

tion of two stacked disks [15], and mechanical modes of nanostrings in the near-field [1].

The gom associated with WGMs is often larger than those for F-P cavities, owing to the

higher Qopt and the mode confinement. For the system studied in this thesis, comprising

of a microsphere-cantilever coupled to a waveguide, the use of the WGM around the mi-

crosphere to detect the motion of its own cavity has been studied by one other group [45].

In 2015 they derived a theoretical framework for this transduction, showing that both

dispersive and dissipative (motion is coupled to the loss of the WGM with dissipative

coupling parameter γom) coupling enhances the displacement measurement. The inclusion

of γom differentiates this system from traditional optomechanics experiments which have

negligible γom. This is discussed in chapter 5.

The sensitivity of a measurement is defined by the imprecision noise of the detector (i.e.

noise of the light field plus electronic noise and photodetector noise), and depends on the

measurement acquisition time since averaging white noise over long timescales decreases

the uncertainty [140]. Displacement sensitivity is measured in units of m Hz1/2, and defines

the linear relationship between the resolution and the measurement time. This is also the

square root of the PSD that characterises the power distribution across frequencies [141].
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Imprecision noise defines the noise floor of the PSD, and places a cooling and measurement

limit. The benefits of using optical fields to detect motion are related to the lower noise

levels easily obtainable in often quantum-limited sources, which can also be squeezed in

amplitude or phase [53, 142, 143].

As cooling progresses to a point where kBT < ~Ωm (Ωm is the mechanical frequency,

T is the effective bath temperature), quantum zero-point fluctuations of the mechanical

oscillator (ZPF) will play a dominant role over thermal fluctuations. Conversely, the

light field that probes this motion will have quantum noise that defines the precision of

measuring the ZPF, as well as heating the motion through radiation pressure backaction1.

A discussion of the quantum treatment of noise and the ultimate limits for transduction

will be presented.

In summary, this chapter will present:

• The theory and experimental demonstration of WGM transduction, showing detec-

tion of the thermal motion of the microsphere-cantilever and tapered fibre.

• Analysis of the classical power spectral density (PSD), created from the transduction

signal, allowing calculation of the mode temperature, and structural mechanical

properties.

• The identification of actuating forces to control the motion of the microsphere-

cantilever and tapered fibre.

• The limitations of continuous displacement measurements.

3.2 Optomechanical Transduction

The successes of many optomechanical cooling experiments take advantage of the transduc-

tion of mechanical motion through dispersive (and/or dissipative) coupling to an optical

resonance. Dispersive coupling is the most prevalent, and is often parametrised by the

optomechanical coupling parameter gom, defined as the shift in the resonance frequency

1There is no limit on resolving the position from an object in an instantaneous measurement i.e. scat-
tering photons off an object allows detection of the position to an accuracy set by the wavelength of the
photon. However, the photon will impart a momentum kick that affects the objects future motion. By
measuring the whole trajectory one can measure both position and momentum in a weak measurement
where Heisenberg’s uncertainty principle is obeyed through the existence of backaction [144]. Such weak
measurements involve integrating the signal over time, instead of a strong, projective measurement. The
large size of the mechanical oscillators in this thesis result in zero point fluctuations comparable to the
size of a proton so that an instantaneous measurement using photons of extremely small wavelength will
resolve the much larger fluctuations of individual atoms rather than the centre-of-mass co-ordinate.
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(ω0) per meter of displacement, gom = dω0
dx . Dissipative coupling results in a change of the

optical losses dκ
dx , where κ is the total decay rate.

3.2.1 Cavity Enhanced Transduction

The simplest detection of motion can be achieved by reflecting photons from a mechanical

oscillator as in fig. 3.1 a).

Figure 3.1: Typical transduction schemes to monitor motion: a) Simple reflection from a
moving mirror to detect its motion x(t) through a phase change. b) The moving mirror
can form a Fabry-Perot cavity, which amplifies the phase change, as well as modulating
the intracavity intensity. c) The radial breathing modes of a WGM resonator cause the
diameter to change in size by x(t), modulating the path length that is detected in the
output transmission of the coupling waveguide. d) The system studied in this thesis, where
the WGM resonator is attached to a spring (cantilever) whose c.o.m. motion changes the
amount of light coupled into the WGM from the waveguide.

Using the simple case of fig. 3.1 a), where the oscillator is a movable mirror whose

motion δx, changes the phase of the reflected beam:

δθ = 4π
δx

λ
, (3.1)

where λ is the wavelength of light. Since δx is often smaller than λ, the phase change

is very small. If the movable mirror is used to form the end-mirror in a F-P cavity, as

in fig. 3.1 b), the phase change is amplified by 2F
π as the photon makes multiple passes

through the cavity [145]:

δθ = 8F
δx

λ
, (3.2)

where F is the cavity finesse, which is the effective resolution of the cavity if used as an

interferometer (i.e. roughly the number of different frequencies it can distinguish), and is

defined as F = ∆FSR
κ where ∆FSR = πc

L is the free spectral range for a cavity with length

L and κ is the decay rate. Note for a WGM cavity, ∆FSR ≈ c
2πna , where a is the radius of

the microsphere, and n is the refractive index.
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3.2.2 The Dispersive Coupling Parameter gom

The lowest resonance frequency of a F-P cavity, which results in a maximum transmission,

is:

ω0 =
cπ

L
, (3.3)

which will shift to ω
′
0 by an amount mediated by the dispersive coupling parameter gom

when the cavity length increases and decreases due to x(t):

ω
′
0(t) = ω0 + gomx(t) =

πc

L+ x
=

ω0

1 + x
L

, (3.4)

which can be approximated for small displacements as ω
′
0 ≈ ω0

(
1− x

L

)
. This means gom

for a F-P cavity is equal to:

gom = −ω0

L
. (3.5)

Experiments that use WGM cavities for transduction are usually coupled to radial

breathing modes of a toroid (fig. 3.1 c)), or to objects placed in the evanescent field of the

WGM resonator. The radial breathing modes alter the cavity diameter so that gom = −ωc
R

where R is the sphere radius [14]. However, for a near-field coupled oscillator, such as the

dielectric tapered fibre, the calculation of gom is more complex as gom is now related to

the evanescent field perturbation from the taper. The frequency shift, derived elsewhere

[3] is:

∆ω0

ω0
= −1

2

∫
Vt

(ε(r)− 1)) |E(r)|2 d3r

n2Vm |Emax(r)|2
, (3.6)

where Vm is the WGM mode volume, Vt is the taper volume, ε(r) is the relative permit-

tivity, and n is the refractive index. At a distance d (i.e. the coupling distance) from the

microsphere surface, the WGM evanescent field is given by E(d) ≈ Emax e
−αsd, where the

decay constant of the evanescent field is α−1
s . Taking account of this dependence on d,

eq. 3.6 becomes [3]:

∆ω0

ω0
≈ −1

2

A

Vm

1− e−2αsT

2αs
(n2 − 1) e−2αsd, (3.7)

where A is the area of the tapered fibre sampled by the WGM optical field, n is the

refractive index of the tapered fibre, and T is the thickness of the taper2. Unlike the F-P

2For tapers of small diameter, i.e. T << 1/2αs, eq. 3.7 can be approximated as ∆ω0
ω0
≈ − 1

2
Vt
Vm

(n2 −
1) e−2αsd [3].
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cavity, this equation implies that gom will vary exponentially with d, but calculating eq. 3.7

requires precise knowledge of the refractive index and the dimensions of the microsphere

and taper which cannot be achieved currently due to technical limitations (discussed in

chapter 2, section 2.2). However, one can see that a smaller mode volume, which will scale

with the diameter of the sphere allows for larger dispersive coupling. The parameter gom

can instead be measured experimentally as in chapter 5 and in the following analysis.

3.2.3 Whispering Gallery Mode Transduction Theory

Although the taper can be considered as a mechanical oscillator in the near-field of the

microsphere-cantilever, a dissipative coupling is also present due to the extrinsic coupling

rate γe introduced in chapter 1 (section 1.4.2). This coupling between the WGM and

the taper increases the cavity losses, κ, as the coupling distance d decreases, as shown

previously in chapter 2 (fig. 2.4.1, pg. 42). This unique combination of dissipative and

dispersive coupling is schematically shown in fig. 3.2, which describe the changes to the

WGM resonance and linewidth when coupled with mechanical motion causing d to change

by ∆d.

Figure 3.2: The relative motion between a WGM resonator and its coupling waveguide
cause modulations to the transmission, T , due to: a) dispersive coupling through gom that
shifts the WGM resonance frequency, changing the amount of light coupled to the WGM,
b) dissipative coupling that modulates the external coupling rate γe (which is linked to
the dissipative parameter γom) by broadening the WGM resonance via extra losses, also
causing a change in T . c) If the light is frequency stabilised on the WGM, and the WGM
resonator placed at a DC coupling distance d0, a displacement of ±∆d modulates T ,
governed by γom and gom. This figure exaggerates the effect since the thermal motion is
over 1000 times smaller than the coupling distance separation.

Dispersion (fig. 3.2 a)), and dissipation (fig. 3.2 b)) is transduced as a shift in the

resonance frequency and a broadening of the WGM FWHM respectively. If the driving

laser is frequency stabilized near-resonance, the sum of both effects causes a modulation
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to the transmitted light as in fig. 3.2 c) in response to a displacement of ∆d from the DC

coupling position d0. The normalised power coupled to the WGM is equal to 1− T .

The existence of dissipative coupling is intuitive, considering the extrinsic coupling

rate γe = γe,0 e
−ηd is shown in chapter 2 (fig. 2.12) to broaden the WGM linewidth as d

is reduced. The relationship between γe and the dissipative coupling parameter gom is

gom = γe,0η e
−ηd0 , where d0 is the DC coupling position, and gom is valid for small ∆d

around d0.

The transduction of the thermal motion of the microsphere-cantilever will be seen

in the Fourier transform of the transduction beam as a peak centred at the mechanical

frequency Ωm. The magnitude of the transduction can be deduced from the peak amplitude

at Ωm. Therefore, a suitable figure of merit to describe the transduction effectiveness is

the signal to noise ratio (S/N), and is labelled as S/N. The analytical expression that

links the parameters gom and γom to the S/N for a tapered fibre coupled to a WGM of

a microsphere was recently derived and experimentally tested by Madugani et. al [45].

Their proof is summarised below.

The derivation relates mechanical motion with the dispersive shift of the WGM reso-

nance, and the change in the extrinsic coupling rate γe that mediates photons exchanged

from the WGM to the tapered fibre. The equation governing the rate of change of photons

from the cavity (da
dt = ȧ) is detailed in chapter 1 (section 1.4.2). Since the low kilohertz

mechanical frequencies of either the tapered fibre or the microsphere-cantilever are sig-

nificantly lower than the intrinsic coupling rate γi, the steady state condition ȧ = 0 is

valid, and ā =
√
γeS̄in

i∆+γi/2+γe/2
(as in eq. 1.28 pg. 24). Therefore the steady state normalised

transmission through the tapered fibre, given by T =
∣∣∣aout
ain

∣∣∣2, can be written as:

T =

∣∣∣∣1− 2Ke

1 +Ke + i∆′

∣∣∣∣2 , (3.8)

where Ke = γe
γi

, Ki = 1 = γi
γi

and ∆
′

= ∆
γi

, normalised for clarity following [45].

A mechanical motion of the form D cos(Ωmt) where D is the peak displacement, will

cause both dispersive and dissipative perturbations to the WGM mediated by gom and

γom. Dispersive coupling results in red-shifting the WGM when the microsphere-cantilever

moves towards the tapered fibre:

∆(t) = ∆0 − gomD cos(Ωmt), (3.9)
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which is normalised by γi to form: ∆
′
(t) = ∆

′
0 − GomD cos(Ωmt), where Gom = gom

γi
.

Dissipative coupling causes increased losses as the microsphere-cantilever moves closer to

the taper, increasing the WGM linewidth, and modifies the extrinsic coupling rate:

γ
′
e(d0, t) = γe,0e

−η(d0−D cos(Ωmt)), (3.10)

valid for motion around a DC coupling distance d0. The peak amplitude of the motion,

D modifies γe via γom, which can be found by expanding eq. 3.10:

γ
′
e(d0, t) = γe,0e

−ηd0 (1 + ηD) = γe(d0) + γom(d0)D, (3.11)

where the Taylor expanded form of eηD is used, truncated after the first two terms. This

expression is valid at a set d0 because of the exponential dependence on the coupling

distance d, i.e. γom(d) = ηγe(d).

It is clear that d and ∆0 will influence the S/N of the transduction signal measuring

the motion D cos(Ωmt). In order to find γom, η, and gom one must establish an analytical

expression linking these parameters with d and ∆0.

First, eq. 3.10 can be expanded into a series representation defined as the generating

function of the modified Bessel function of the first kind
∑∞

n=−∞ In(z)einq = ez cos(q):

∞∑
n=−∞

In(ηD)einΩmt = eηD cos(Ωmt). (3.12)

The real part of eq. 3.12 results in a series of harmonics cos(nΩmt) for n = 1, 2, 3..,

which can be linearised to its first order term under the assumption the motion of the

microsphere-cantilever is small. Therefore γ
′
e(d0, t), which is now normalised by γi, be-

comes:

K
′
e(d0, t) ≈ Ke(d0) (1 + 2β cos(Ωmt)) , (3.13)

where β = In(ηD) is the modified Bessel function of the first kind. Substituting Ke(t)

and ∆
′
(t) into eq. 3.8, the authors of [45] Fourier transform the modified expression for

transmission and approximate the result as:

F [T ] ≈
4Ke(d0)

∣∣∣2∆
′
0Gom(d0)− 2β

(
K2
e (d0)−∆

′2
0 − 1

)∣∣∣[
(Ke(d0) + 1) ∆

′
0

]2
+ ∆

′4
0 + (Ke(d0) + 1)4

, (3.14)
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where the S/N at Ωm is the magnitude of the transduction, dependent on d0 and ∆0. The

optimised settings are measured in the next section, and values for gom and γom can be

estimated from this process using eq. 3.14.

3.3 Experimental Method to Optimise Transduction

The optical set-up shown in fig. 3.3 is used to measure transduction. The laser power is

heavily attenuated below 1µW to avoid thermal drifts of the WGM mode and the trans-

duction beam can be frequency tuned using the intracavity laser EOM. The transmission

of the transduction beam is sent into a spectrum analyser which computes the FFT.

Figure 3.3: A simplified experimental set-up to characterise and optimise WGM trans-
duction of the thermal motion of a microsphere-cantilever, defined as the signal to noise
ratio (S/N) of the mechanical peak in the FFT of the transmission. An amplified voltage
source is used to tune the laser frequency via the intracavity EOM, and the piezo-stack
(PZT) at the clamped end of the cantilever is used to change the DC coupling distance.
Offset thermal locking is possible because the input light is heavily attenuated at ≈ 1µW.

Two variables will affect the S/N; the coupling distance, d, and the laser detuning

with respect to the WGM. The dependence of the S/N on laser frequency is investigated

by setting the microsphere-cantilever at an equilibrium DC coupling distance, d0 to the

tapered fibre, and measuring the transmission as the intracavity EOM tunes the laser

frequency across the WGM. Next the laser frequency is thermally stabilised whilst d is

varied with the piezo-stack (PZT).

3.3.1 Results

Following the experimental procedure detailed above, the S/N can be measured using a

single trace FFT as shown in fig. 3.4. Here, the coupling distance d is decreased and the

S/N of the FFT of the transduction signal is measured, normalised to the maximum peak

amplitude3.

3The value of d is calibrated by using the methodology described in section 2.4.1
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Figure 3.4: The FFT of the transduction beam at various coupling distances d shows a
peak at the mechanical frequency of the c.o.m. of a microsphere-cantilever (this mode is
cooled in chapter 4). The FFT is normalised to the maximum S/N.

The S/N relationship with d when the laser is thermally locked at a detuning of ∆ ≈ γi
2

is shown in fig. 3.5 c). The relationship between S/N and laser detuning is plotted in

fig. 3.5 a) at a set coupling distance of d ≈ 180 nm. The graph of fig. 3.5 b) showing the

Figure 3.5: Optimising WGM transduction: a) The S/N as a function of coupling distance
d (blue data), where the S/N is normalised to the peak maximum amplitude. The data is
fitted with eq. 3.14. The power coupled to the WGM on-resonance is also shown in black
data, where γe/γi = (4.4 ± 0.6)e−(11.6±1.2)d. b) The relationship between laser detuning
with respect to the WGM resonance and S/N is measured (red data) and fitted using
eq. 3.14 (red line). The transmission, T , is simultaneously measured (black data) with a
Lorentzian fit over the WGM profile, obtaining (30± 1) MHz FWHM.

S/N versus ∆0 at a fixed coupling distance d0 ≈ 180 nm, is fitted with eq. 3.14 such that

gom(d0) = γiGom, η, and γom(d0) = ηKeγi can be found. The same parameters can be

deduced using fig. 3.5 a) (S/N versus d), fitted with the d dependent version of eq. 3.14.

However, the parameters are now gom(d) = Gomγie
−ηd, and γom = Keγiηe

−ηd, which can

be compared to those obtained from fig. 3.5 b) by setting d = d0. The intrinsic decay rate γi
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can be found by analysing fig. 3.5 a) (black data) showing the normalised power coupled to

the WGM on-resonance, Pc, as a function of d, fitted with eq. 1.33 (pg. 25) from chapter 1,

to obtain γe
γi

. This is compared to the WGM lineshape at d0 = 180 nm (fig. 3.5 b) (black)),

whose FWHM is equal to γe + γi at d0. A value of γi(d0) = (19.4± 1.9) MHz is obtained.

The optimum d is found to be 150 nm, which corresponds to the distance at which

the maximum power is coupled into the WGM. Using a red-detuned transduction beam

also increases the S/N. These results are in very good agreement with those obtained

by the authors in [45]. The S/N dependence on the sign of the detuning indicates that

both dispersive and dissipative changes in the coupling are important, unlike conventional

optomechanical systems such as F-P cavities where dispersion is dominant. For those

systems, β = 0 and F [T ] is symmetric around ∆0 = 0. Asymmetry arises when there is

dissipative coupling [45] which has also been found in a split-beam nanocavity [146]. The

fitting of figs. 3.5 a) & b) to eq. 3.14 is achieved numerically, providing fitted values of γom,

η, and gom, shown in table 3.1.

Transduction Fitted γom(d=180 nm) Fitted η Fitted gom (d=180 nm)
relationship (MHz/nm) (m−1) (MHz/nm)

Laser detuning 1.61± 0.05 14× 106∗ 8.25±0.9
Coupling distance 2.78± 1 (8.6± 0.5)× 106 5.49±1.5

Ref. [45] 0.4 12 to 14 6.7

Table 3.1: The numerically fitted values for the dispersive (gom) and dissipative (γom)
coupling parameters from fitting eq. 3.14 to figs. 3.5 a) & b). The laser detuning and the
coupling distance is varied in a) and b) respectively. Also included is the parameter η which
is the decay constant that determines the variation of gom, γom with d. The superscript
* indicates that this parameter is kept fixed during fitting. The bottom panel displays
parameters measured in ref. [45].

The corresponding values of gom and γe obtained from fitting the coupling distance

dependence (fig. 3.5 a)), versus the laser detuning dependence (fig. 3.5 b)) agree relatively

well with one another, although values obtained from the coupling distance graph have a

larger error. This is related to the tendency of the taper to drift closer to the microsphere

at d < 100 nm, possibly due to electrostatic forces. In comparison to values obtained by the

authors of [45], gom agrees within error, but the value of γom obtained here is between 5 to

7 times larger. This is likely related to the inclusion of a scattering rate γs in the analysis of

[45], as well as geometric differences between the microsphere and tapered fibre. The ratio

γom

gom
is approximately 0.2 and 0.5 for fig. 3.5 a) and b) respectively. The latter value agrees

66



well with the ratio obtained using an alternative method in chapter 5 (section 5.4)4. By

decreasing the coupling distance to maximise gom, γom, it is possible to obtain higher S/N

and coupling parameters comparable to those found for near-field evanescent coupling

between a toroid WGM and nanostring i.e. γom=13 MHz/nm, gom = 290 MHz/nm is

measured in [84].

A clear message is that the transduction should be placed obtained near critical cou-

pling and be red-detuned from the WGM to provide the highest S/N.

3.3.2 Calibration of Units

Although the Fourier transform provides information on the transduction S/N, further

information such as mode temperature and the thermal fluctuations of the microsphere-

cantilever can be extracted using the power spectral density (PSD), which describes the

energy content per unit frequency. The units of the PSD are m2 Hz−1, and the square

root of the background noise level in the PSD sets the transduction sensitivity.

The measured transmission of the WGM transduction beam is a voltage from the

photodetector which must be converted to meters. This can be achieved by modulating

the microsphere-cantilever at a frequency larger than its fundamental mechanical frequency

(in fig. 3.6 a sinuisodial modulation of 3.3 kHz is used for a microsphere-cantilever with

a 2.8 kHz c.o.m. frequency) so that the displacement of the cantilever follows that of the

shaking frame, and not operated as an accelerometer. The peak amplitude of this shaking

is defined by the magnitude of the voltage sent to the piezo-stack, which displaces d by

9.1µm per 150 V.

Using the calibration curve in fig. 3.6, the specific scaling for this sample is (0.142 ±

0.023)µmV −1. This process is repeated over a range of driving frequencies and averaged

each time the experiment is changed. The work conducted in this thesis has resolved

displacements as small as 3 pm, verified by driving the piezo-stack with a small sinusoidal

voltage.

3.4 Actuating Forces

The optimised transduction demonstrated in the preceding section allows for detection of

the c.o.m. thermal motion of the microsphere-cantilever which can be used for sensing

4An alternative method for measuring gom and γom is presented in chapter 5 (section 5.4) and includes
the effects of scattering.
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Figure 3.6: Typical calibration graph to find the conversion factor (unit of V/m) between
the photodetector output voltage, which measures the transduction beam transmission T ,
and the actual displacement in metres. The piezo-stack that actuates the microsphere-
cantilever is driven by a voltage signal to displace the microsphere-cantilever by a set peak
displacement (black), in meters. The WGM transduction beam senses this motion as a
modulation in T , measured by a photodetector as a voltage (red).

acceleration, as demonstrated in chapter 6. However, the FFT of the WGM transduction

beam will contain a spectrum of mechanical peaks alongside the c.o.m. microsphere-

cantilever mode, including many mechanical modes of the taper, considered as detrimental

noise (as well as low frequency mechanical modes from the supports/seismic vibrations in

the lab). In order to control the microsphere-cantilever sensing parameters, or to suppress

extraneous thermal motion from the tapered fibre, actuating forces are required.

Two forces are identified and tested in this thesis, capable of actuating the microsphere-

cantilever and the tapered fibre. In this chapter they are used to experimentally identify

which modes belong to which oscillator by resonantly driving the motion. In chapter 4

these forces are used to apply damping to the c.o.m. motion of the microsphere-cantilever,

as well as reduce the thermal noise from the tapered fibre.

In mechanical systems where dissipation channels already exist through clamping,

control of motion is often achieved using piezo-stacks, such as in AFM imaging [147].

A piezo-stack is already used to control the position of the microsphere-cantilever which

varies the coupling distance (see chapter 2 (section 2.4.1)), as well as calibrate the trans-

duction signal into units of metres (fig. 3.6). It can also provide the appropriate damping

force for the active cooling implemented in chapter 4. Here, the piezo supplies mechanical

power to the system, which generates a secondary vibrational response that reduces the

overall response by destructive interference, cancelling the primary source of vibration

[148]. Piezo-stacks can suffer from hysteresis and time delay which must be taken into

account, analysed in section 3.4.2 of this chapter.
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For those wishing to study quantum effects and cooling to a low phonon occupation,

forces from EM fields such as optical gradient forces, radiation pressure and electric gradi-

ent forces [149] are preferred. These forces can act across vacuum (i.e. near-field coupling)

and can be used in passive cooling methods if the force is optomechanically coupled to

the motion. The main two forces that arise from an optical field are radiation pressure

(the scattering force) and the optical gradient force (dipole force)5. The cavity enhanced

optical dipole force (CEODF) associated with the WGM extends beyond the microsphere

boundary due to the evanescent field gradient, and can actuate near-field coupled objects

[1, 15, 32, 84]. It has been shown elsewhere that a tapered fibre can be actuated by over

1µm using the CEODF from a WGM in a microdisk [32]. In the system studied here,

despite the ability of the microsphere-cantilever to move (i.e. compared to the fixed mi-

crodisk of [32]), the CEODF will actuate the taper towards the microsphere rather than

the microsphere-cantilever itself because the taper is much lighter and less stiff (the spring

constant and effective masses of both objects are measured in this chapter).

The theory, advantages and disadvantages of these two damping forces are presented

below.

3.4.1 Cavity Enhanced Optical Dipole Force

WGM resonators are a type of optical cavity with an associated CEODF related to the

stored optical field, which has an evanescent component beyond the dielectric boundary.

The CEODF is therefore a gradient force which can polarise a susceptible object in such a

way that positively and negatively charged sides of the dipole experience an unequal force.

Macroscopic structures such as waveguides or resonators can be considered a collection

of individual dipolar subunits [150]. This results in a time averaged net force that can

actuate the object, and often provides a larger ‘per-photon force’ than scattering forces

when large gradients are used. The magnitude of the force is determined by the mode

confinement of the WGM.

An attractive CEODF is obtained when light is resonant with the WGM, and the

magnitude is dependent on the optical properties of the WGM and the coupling distance

d. This can be theoretically described following the work of [32], where the force can be

5Another force known as the photothermal force (bolometric force) can occur due to the thermoelastic
effect where the strain field (i.e. due to mechanical motion) causes temperature gradients i.e. for a positive
thermal expansion material, compression leads to hotter regions. This can be coupled to an optical field
whose photons are absorbed to enhance or supress the mechanical motion.
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modelled by considering the potential energy of the waveguide φ, due to the polarisation

induced by the WGM resonator field. Neglecting any contributions that involve cross-

overlap of the fields (as these cancel out when the laser is locked on resonance [32]), and

assuming linear dielectric susceptibility, the time averaged polarisation energy due to a

dipole moment P(r) (per unit volume) is [32]:

φ = −1

2

∫
Vt

P(r) E∗s (r) d3r = −ε0χt

2

∫
Vt

|Es(r)|2 d3r, (3.15)

where Vt is the geometric volume of the taper, χt is the electric susceptibility of the taper

and Es(r) is the electric field of the microsphere WGM. The average stored energy, U, is

related to the effective mode volume of the WGM as U =
ε0Vs′n

2max[|Es(r)|2]
2 where Vs′ is

the effective mode volume of the sphere and n is the refractive index. This allows one to

write eq. 3.15 as:

φ = − χtU

n2Vs′

∫
Vt

∣∣∣Ês(r)
∣∣∣2 d3r, (3.16)

where Ês(r) is the unitless electric field eigenfunction of the WGM, normalised such that

max
[
|Es(r)|2

]
= 1. One can relate this to the coupling distance, d, between the mi-

crosphere and the tapered fibre, by considering the steady-state internal energy of the

WGM:

U =
(1− T )QiPi

ω
, (3.17)

where Qi is the intrinsic optical quality factor, ω is the frequency of light, Pi is the

input power through the taper and T is the transmission which is dependent on the

cavity-to-waveguide optical coupling and loss rates. Note that (1 − T )Pi is equal to the

power coupled into the WGM, Pc. On-resonance, T (ω0) = Ton where ω0 is the WGM

frequency, and Ton(d) =

[(
1− γe(d)

γi

)
(

1+
γe(d)
γi

)
]2

, where γe(d) = γe,0 e
−ηd is the coupling distance

dependent extrinsic coupling rate with decay constant η, and γi the intrinsic unloaded

decay rate. The intrinsic coupling rate, γi = ω0
Qi

remains constant. Substitution of the

coupling distance dependence in eq. 3.16 results in [32]:

φ = −4χtγe(0)Q2
i Pi

ω2
0n

2Vs′

e−ηd(
1 + γe(0)Qi

ω0
e−ηd

)2

∫
Vt

∣∣∣Ês(r)
∣∣∣2 d3r, (3.18)

where the integral part can be approximated by Vt′e
−ηd where Vt′ is the effective volume

of the taper mode. The effective optical force acting on the tapered fibre due to the WGM
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resonator, which actuates the taper towards the microsphere-cantilever is:

F(d) = −∂φ(d)

∂d
. (3.19)

The arising CEODF is attractive and given by [32]:

F(d) = −8ηχtVt′γe(0)Q2
i Pi

ω2
0n

2Vs′
× eηd

(eηd + (γe(0)Qi/ω0))
3

= −2ηχtVt′Qi

ω0n2Vs′
× Pc

(eηd + (γe(0)Qi/ω0))
.

(3.20)

The variables in eq. 3.20 can be found by scanning over the WGM resonance whilst

changing the coupling distance, d. First, the normalised power coupled into the WGM, Pc

as d is decreased is plotted in fig. 3.7 a) (black data points). Using Ton = (1− Pc), a plot

of 1−
√
Ton

1+
√
Ton

is displayed in fig. 3.7 b) (black data points). The on-resonance transmission

Ton(d) states that the y-axis of eq. 3.7 b) is equivalent to γe(d)
γi

. An exponential fit of

fig. 3.7 b) can extract γe = γe(0)e−ηd to find γe(0) = (2.5 ± 0.03) × 109 rad s−1 and

η = (20.2 ± 1) × 106 m−1 for a WGM resonance with a Q-factor of (9.8 ± 2) × 106. The

predicted CEODF for varying coupling distance is plotted in fig. 3.7 a) (blue curve) for a

20µm diameter microsphere with an effective mode volume Vs′ ≈ 70λn
3

= 2.3 × 10−17 m3

and an effective volume of the taper Vt′ ≈ 0.35λn
3

= 1.2× 10−19 m3. A maximum force of

approximately 16 nN can be obtained using 1 mW input power, and occurs at a value of d

smaller than dc, the position at which the maximum power is coupled (critical coupling,

defined in chapter 1, section 1.4.2). This agrees with the theoretical prediction, where the

optimum coupling distance d∗ is found by differentiating eq. 3.20 and setting it equal to

0:

d∗ =
1

η
ln

(
γe(0)Qi

2ω0

)
, (3.21)

which is smaller than dc = 1
η ln

(
γe(0)Qi

ω0

)
. The maximum CEODF amplitude at d∗:

F (d∗) = − 32ηχt

27n2γe(0)

Vt′

Vs′
Pi. (3.22)

This force scales inversely with cavity mode volume, suggesting that as devices ap-

proach the nanoscale the force will be larger. The maximum force is also independent of

the WGM Qi since increasing Qi pushes the optimum coupling distance further from the

edge of the sphere i.e. d∗ ∝ ln(Qi), and cancels the enhancement to the internal field.
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Figure 3.7: a) Shows the normalised power coupled Pc to the WGM (black data), which
influences the CEODF (eq. 3.20, blue line) as a function of coupling distance d, measured
by scanning over the WGM whilst decreasing d until the microsphere touches the taper.

b) A plot of 1−T 1/2
on

1+T 1/2
on

against d, by using the data of a) and the expression Pc = (1− Ton).

The y axis of b) is therefore a plot of γe(d)
γi

which can be used to extract γe(0)e−ηd. The
blue curve in a) is the predicted CEODF for a 20µm microsphere with 1 mW input power,
modelled using eq. 3.20 with the extracted values for η, γe(0).

Experimental Test of the Cavity Enhanced Optical Dipole Force

The actuation of the position of the tapered fibre using the CEODF is tested using the

set-up of fig. 2.23 (pg. 53) in chapter 2. Counterpropagating beams are employed such that

a transduction beam is dedicated for measuring changes in the coupling distance d, and

the power in the strong beam can be adjusted using AOM 2 to vary the power coupled

to the WGM Pc to modulate the CEODF (as in eq. 3.20). The result of this actuation is

shown in fig. 3.8.

The results of fig. 3.8 are performed in the undercoupled regime, away from dc to avoid

the likelihood of the taper touching the microsphere-cantilever. Since the transduction

beam is decoupled from the strong beam (less than 5% cross coupling), and both beams

counterpropagate from one another, the transduction beam transmission only changes in

response to the motion of the taper. Verification that the CEODF cannot actuate the

microsphere-cantilever is shown later in this chapter.
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Figure 3.8: The top panel shows a slow modulation of the power coupled to the WGM
Pc, through manually adjusting the strong beam output power emerging from AOM 2 (the
set-up is shown in fig. 2.23 of chapter 2). A change in Pc, according to eq. 3.20, modulates
the CEODF. The bottom panel displays the transmission from the transduction beam,
converted into a change in the coupling distance d due to the actuated motion of the
tapered fibre due to the CEODF. The approximate anti-phase response of the transduction
beam to Pc(t) is expected for a system in the undercoupled regime.

3.4.2 Piezoelectric Stack

Actuation of the microsphere-cantilever using a piezo-stack6 is implemented for fine tuning

the coupling distance with respect to the tapered fibre in chapter 2, as well as providing

calibration of the transduction signal into displacement units, shown in fig. 3.6. Such

actuators have been used for feedback cooling by many groups [28–31] and are found in

AFM experiments to control the properties of the tip [29, 147]. Here, the piezo-stack is

checked to meet the requirements for driving the microsphere-cantilever for the purposes

of resonantly identifying the modes in this chapter, and for feedback damping in chapter 4.

Lead-zirconate-titanate (PZT) is the ceramic material that forms the piezo-stack,

which undergoes a physical displacement as a result of an applied electric field. The limit

of actuation is defined by the noise of the voltage supply or piezo driver, characterised in

section 4.5 of chapter 4. The piezo-stack can be driven by frequencies lower than its reso-

nance frequency, fPZT, in this case fPZT = 138 kHz (assuming no mechanical load), which

is over 10× larger than the c.o.m. frequency of typical microsphere-cantilevers fabricated

in this thesis.

The output current of the voltage source used to drive the piezo-stack can further limit

the driving frequency, related to the maximum rate of piezo actuation. This restricts the

6Thorlabs AE0203D08F
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driving frequency sent to the piezo-stack to:

fmax =
Imax

πCVpp
, (3.23)

where Imax is the maximum current that can be supplied by the driver (60 mA), C is

sum total capacitance of the piezo-stack (0.18µF) plus the driver (1 nF), and Vpp is the

peak-to-peak voltage change required. A peak-to-peak displacement of 50 pm requires

Vpp = 0.8 × 10−3 V and sets the maximum driving frequency to 132 MHz, over 25,000

times larger than the mechanical frequencies studied in this thesis. Note that larger

modulation amplitudes will reduce this value.

A second consideration when using piezo-stacks is the low-pass filter effect that can

introduce a non-linear response with driving frequency. The piezo-stack can be modelled

as a capacitor such that it creates a low-pass filter with the output impedance of the

driver7. The linear response region is defined by the bandwidth, BW:

BW =
1

2πRC
, (3.24)

where R is the resistance of the driver (150 Ω). The bandwidth is given by BW ≈ 6 kHz,

which means that modulating the piezo-stack at the second eigenfrequency of typical

microsphere-cantilevers (around 20 kHz) will provide a smaller peak-to-peak displacement

than for frequencies lower than 6 kHz.

Lastly, the slew rate defines the change in charge dV
dt = I

C and can be used to check the

time duration for the piezo-stack to elongate after a voltage is applied. For this system,

dV
dt = 330 kV/s such that a change of 50 pm (by applying 0.8 mV) takes 2 ns, negligible

compared to the time period of kHz mechanical oscillations.

The combination of the piezo-driver and the piezo-stack therefore meets the require-

ments for damping the kilohertz motion of the microsphere-cantilever. Although piezo-

actuators have hysteresis when operated in an open-loop voltage-controlled system [151]

(i.e. actuating an object vertically by a distance +y and then −y does not return the

object to its starting position), this is typically < 15% when using the total displacement

range (maximum driving voltage). Since the piezo-stack is used as an actuator in a closed-

loop feedback scheme, the hysteresis is reduced as the position servo-control can eliminate

7Thorlabs MDT693B
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non-linear behaviour.

3.5 The Power Spectral Density

The experimental transduction of thermal motion is best analysed in the form of a power

spectral density (PSD), which plots the energy content per unit frequency. The advantage

of using PSDs is that mechanical properties including the mode temperature, can be

directly determined since the thermal motion of the microsphere-cantilever gives rise to a

peak at Ωm in the PSD (derived next). The amplitude, linewidth, and area of the peak can

deduce the effective mass meff , the spring constant k, and the mechanical quality factor

Qm of the mode (analysed in section 3.6 of this chapter). Crucial to the feedback cooling

in chapter 4 is the ability to measure and damp this thermal motion, allowing read out of

the reduced mode temperature by using the PSD.

The thermal Brownian motion of a mechanical oscillator is a fluctuating quantity x(t)

that is stochastic in nature (random). It is not possible to predict the value of x at

any instant since the properties of x(t) are described by a probability distribution P(t),

however, one can make precise statements about the average value. For example, the

expected value of the function f(x) is defined as either the integral over time or the integral

over the normalised distribution, P(x), i.e. f̄(x) = 〈f(x)〉 = lim
T→∞

1
T

∫ T/2
−T/2 f(x(t)) dt =∫

f(x)P(x) dx. However, to gather information about the temporal properties of the

observed quantity, a useful probe is the autocorrelation function8 which defines how much

x at t is correlated with x at t′:

〈
x(t)x(t− t′)

〉
= lim

T→∞

1

T

∫ T/2

−T/2
x(t)x(t− t′) dt. (3.25)

One can also define a cross-correlation function 〈y(t)x(t− t′)〉.

The linear response of x when subjected to a force F is expected to contain a delay t′,

so that the average value of x at time t is:

〈x(t)〉F =

∫ ∞
−∞

χ(t− t′)F(t′) dt′, (3.26)

where χ(t− t′) is the response function which relates the value of x(t) to a sum over values

of the force F(t′) for the timespan t − t′. The eq. 3.26 is a convolution of two functions

8The autocorrelation function is the normalised autocovariance function (normalised by the variance).
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which can be written alternatively in the Fourier transform as:

〈x(ω)〉F = χ(ω)F(ω). (3.27)

Here, the response function is also known as the susceptibility, χ(ω), and can be complex in

nature, where the real part determines the displacement in phase with the force, whereas

the imaginary part gives a displacement that is π/2 out of phase. The latter corresponds

to dissipation as the external force does work on the system, proportional to the velocity.

The Langevin force of the air molecules responsible for Brownian motion provides both

excitation and damping.

The Fourier transform of a signal

(
x(ω) = lim

T→∞

∫ T/2
−T/2 e

iωtx(t) dt

)
describes how the

signal is distributed amongst different frequency components. The PSD (Sxx(ω)) is the

square of the modulus of the FFT and shows how much power is associated with different

frequencies:

Sxx(ω) = 〈|x(ω)|〉2 = 〈x(ω)x∗(ω)〉

= lim
T→∞

1

T

∫ T/2

−T/2
eiωtx(t)dt

∫ T/2

−T/2
e−iωtx(t′) dt′.

(3.28)

Since this is a measure of energy, it will produce a single-sided PSD found by adding the

square magnitudes of the negative and positive frequency components. For a real signal

these are identical so that the single sided density differs by a factor of 2 to the two-sided

density9. Single sided PSDs will be used throughout this thesis unless stated. The PSD

is related to the autocorrelation function by the Wiener-Khinchin theorem by taking the

inverse transform of the PSD (eq. 3.28):

∫ ∞
−∞

Sxx(ω)e−iωτdω =

∫ ∞
−∞
〈x(ω)x∗(ω)〉 e−iωτ dω (3.29)

such that

∫ ∞
−∞

Sxx(ω)e−iωτdω = lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2
δ(t− t′ − τ)x(t)x(t′) dt dt′

= lim
T→∞

1

T

∫ T/2

−T/2
x(t)x(t− τ) dt

= 〈x(t)x(t− τ)〉

(3.30)

9As will be shown later, this breaks down for quantum noise analysis.
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Taking τ = 0, eq. 3.30 leads to Parseval’s theorem:

〈
|x(τ = 0)|2

〉
=

∫ ∞
−∞

〈
|x(ω)|2

〉
dω, (3.31)

that states the average value of the square of the signal is equal to the variance (when the

signal has zero mean), which is also equal to the integral of the PSD.

3.5.1 Brownian Motion

The force responsible for Brownian motion is a stochastic Langevin force Fth(t). For a

harmonic oscillator, it acts to define the equation of motion as:

m d2x(t)

dt2
+mΓ0

dx(t)

dt
+mΩ2

mx(t) = Fth(t), (3.32)

where Γ0 is the viscous damping factor from air molecules, Ωm is the mechanical resonance

frequency and Fth(t) = α
√

2kBTΓ0
m , where α(t) is the normalised white-noise process (for

all t and t′, 〈α(t)〉 = 0 and 〈α(t)α′(t)〉 = δ(t − t′) [77]. This thermal force acts as a bath

with temperature T0 = 300 K, and is an infinite sum of harmonic oscillators exerting equal

amplitude forces. Assuming eq. 3.32 is periodic, it can be solved in the Fourier domain10

with a general solution analogous to eq. 3.27, of:

δx(ω) = χm(ω)F th(ω), (3.33)

where δx(ω) is the motion of the oscillator, χm(ω) is the mechanical susceptibility and

F th(ω) is the thermal Brownian force in frequency space. The mechanical susceptibility is

found by taking the Fourier transform of eq. 3.32 and utilising F
[

dn

dtnx(t)
]

= (iω)nδx(ω).

This gives the following expression:

F th(ω) = m
(
−ω2 + iωΓ0 + Ω2

m

)
δx(ω), (3.34)

which can be used with eq. 3.33 to obtain the mechanical susceptibility:

χm =
1

m (Ω2
m − ω2 + iΓ0ω)

. (3.35)

10This assumption is valid as the aim is to obtain a steady state solution that is stable. In order to
characterize the full response of the system, including instability and transient responses, one should use
the Laplace transform.
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At low frequencies, where ω << Ωm, the linear response to a sinusoidal force is given by

the spring constant k = mΩ2
m.

The mechanical susceptibility of the oscillator given by eq. 3.35 is Lorentzian-shaped

(assuming the mechanical response is harmonic), and relates the PSD of the thermal force

Sth
F (ω) to the PSD of the position of the mechanical oscillator acted upon by that force

(Sxx,F (ω)). The expression for Sxx,F (ω) is found by using the PSD of eq. 3.33:

Sxx,F (ω) = |χm(ω)|2 Sth
F (ω). (3.36)

This shows that the Brownian force couples to the displacement spectral density through

the mechanical susceptibility. The PSD of the stochastic force Fth(t) is a constant, which

can be derived by considering a random force 〈F(t)F(t′)〉 = Aδ(t − t′), where δ(t − t′) is

the Dirac delta function. The autocorrelation function of this random force is given by

the Wiener-Khinchin theorem as SF(ω) =
〈
|F(ω)|2

〉
= A. Therefore Sth

F (ω) = A. The

fluctuation dissipation theorem, derived elsewhere [144] can be used to derive A. This

states that a system in thermal equilibrium [152] can be represented by:

∫
e−iωt 〈x(0)x(t)〉th dt =

2kBT0

ω
Im [χm(ω)]

= Sxx,F(ω) = Sth
F (ω) |χm(ω)|2 ,

(3.37)

where kB is Boltzmann’s constant, and eq. 3.37 connects the mechanical motion to the

temperature of the bath at T0. It also shows the link between the autocorrelation function

of the fluctuations with the imaginary part of χm associated with dissipation. The imagi-

nary part of χm(ω) is 1
m

Γ0ω
(Ω2
m−ω2)2+ω2Γ2

0
which makes Sth

F (ω) = 2kBT0Γ0m. The complete

PSD of a mechanical oscillator in equilibrium with a thermal bath at temperature T0,

driven by Brownian motion and damped by air collisions is:

Sxx,F (ω) =
2kBT0

m

Γ0

(Ω2
m − ω2)2 + ω2Γ2

0

, (3.38)

which has a Lorenztian-like lineshape centered at frequency Ωm with a mechanical quality

factor of Qm = Ωm
Γ0

.

The link between the root mean square (RMS) thermal motion
√
〈x2〉 and the PSD

of eq. 3.38 can be derived using the equipartition theorem. The total average energy for

a 1-D oscillator in thermal equilibrium is equally distributed between the kinetic energy
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〈Ek〉 and the potential energy 〈Ep〉 so that 〈Etotal〉 = 〈Ek〉+ 〈Ep〉 = kBT0. Assuming the

motion is periodic of the form x sin (Ωmt+ φ), Ek and Ep are given by:

Ek(t) =
1

2
m

(
dx

dt

)2

=
mΩ2

m

2
x2 cos2 (Ωmt+ φ), (3.39)

Ep(t) =
1

2
mx2 =

mΩ2
m

2
x2 sin2 (Ωmt+ φ), (3.40)

which leads to a total time averaged energy of:

〈Etotal〉 =
m

2
Ω2
m

〈
x2
〉
, (3.41)

where the relationship between the peak displacement x, and the RMS displacement
√
〈x2〉

is given as x =

√
〈x2〉

2 . Now, taking the integrated area under the PSD of eq. 3.38, and

using the relation of eq. 3.31 with eq. 3.37:

∫ ∞
0

Sxx,F (ω) dω =
〈
x(t)2

〉
= lim

tT→∞

1

tT

∫ ∞
−∞

∣∣x(ω)2
∣∣ dω, (3.42)

such that:

〈
x(t)2

〉
=

kBT0Γ0

m

∫ ∞
0

1

(Ω2
m − ω2)2 + Γ2

0ω
2

dω

=
kBT0Γ0

m
.

1

Γ0Ω2
m

=
kBT0

k
.

(3.43)

Therefore the area under the peak in the PSD, equal to
〈
x2
〉

is also equal to kBT0

mΩ2
m

.

3.6 Analysis of the Thermal Motion Power Spectral

Density

The optimised transduction settings found in section 3.3 are utilised to experimentally

obtain a high S/N PSD using the set-up of fig. 2.23 (pg. 53) that can be analysed to find

the effective mass meff , spring constant k, mechanical frequency Ωm, and RMS thermal

displacement
√
x2. The piezo-stack is used to set the microsphere-cantilever at a coupling

distance d close to the optimum d = 150 nm, and AOM 2 is used to red detune the trans-

duction beam with respect to a WGM circulating in the microsphere. The transmission

of the transduction beam is measured on PD 2, which is converted to displacement units
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using the calibration method of section 3.3.2.

3.6.1 Computing the Power Spectra Density from Data

In order to compute the PSD, a total of 30 traces of position as a function of time are sam-

pled from the photodetector measuring the WGM transduction beam (sampling rate of

250×105 samples/s, 2 s length). To convert the transduction signal into the PSD the mod-

ified periodogram function in Matlab [141, 153] is used. This applies the Wiener-Khinchin

relation for the sampled autocorrelation function (as opposed to the integral version). Pe-

riodogram refers to the discrete Fourier transform (DFT) performed on one segment of

the time series, while modified refers to the application of a time-domain window function.

The product of the chosen rectangular window and the sample autocorrelation function

undergoes the FFT that results in the one-sided PSD. Averaging over all 30 traces reduces

the variance of the spectral estimates.

A typical PSD is shown in fig. 3.9 where the fundamental c.o.m. mode of the microsphere-

cantilever is at approximately 2.8 kHz, while a number of taper modes are observed between

0.3 kHz - 15 kHz11.

The modes are experimentally distinguished by resonantly driving either the taper or

the microsphere-cantilever (discussed later in fig. 3.10), with further evidence provided

by modelling the system using the finite element modelling (FEM) package COMSOL, as

discussed shortly. The spectrum of taper modes is in good agreement with those measured

by [12]. Torsional modes of the tapered fibre have been studied elsewhere [136] in the

100’s of kHz region. These modes are often unwanted noise peaks that are detrimental

for sensing applications [12]. Cantilevers will exhibit eigenmodes with a c.o.m. mode as

the fundamental bending mode, and higher order bending eigenmodes (motion transverse

to the plane of the cantilever), as well as torsion modes that contain vibration along the

axis of the cantilever at much higher frequency [136]12. The primary focus in this thesis

are transverse modes since the c.o.m. motion of the microsphere-cantilever can be used

to characterise acceleration, as demonstrated in chapter 6.

The modes belonging to a single oscillator are usually isolated from one another in

frequency space, but spectral overlap can occur between modes of 2 separate oscillators

11Taper modes above 10 kHz not shown here and those above 20 kHz are not detected due to the limited
bandwidth of the photodetector. Microsphere-cantilever[A], and taper[A] are used in this set of data. A
full list of the microsphere-cantilever dimensions are listed in section 8.4 of the appendix.

12Here, the torsional modes change the polarisation of the light propagating through the taper due to
the strain-optic effect where the motion creates periodic refractive index variations.
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Figure 3.9: a) The full PSD from the transduction signal shows multiple mechanical modes
belonging to the microsphere-cantilever or the tapered fibre, with inset images depicting
the simulated mode shapes from COMSOL. b) The c.o.m. taper mode is often not probed
due to excess low frequency noise, although ringdown measurments c) can identify such a
mode from this noise.

when they are coupled by a light field that transduces the relative motion between them.

This happens when a mode belonging to the tapered fibre and a mode of the microsphere-

cantilever are close together in frequency, as is the case shown in fig. 3.10 a)13.

The modes in fig. 3.10 can be distinguished by resonantly driving either oscillator with

the actuating forces discussed in section 3.4. The microsphere-cantilever is sinusoidally

shaken using the piezo-stack attached to the clamped end (fig. 3.10 b) black data), whereas

the lighter thinner taper is actuated by sinusoidally modulating the CEODF (fig. 3.10 b)

blue data).

The microsphere-cantilever and the tapered fibre are in theory, circular in cross-section

and should possess orthogonal modes of vibration with identical resonances. Due to fab-

rication errors such as unequal heating in the taper pulling rig, or lopsided melting of

the microsphere on the cantilever, mode splitting can sometimes be seen in the PSD as a

13Microsphere-cantilever[C] and taper[C], see section 8.4 in the appendix for dimensions.
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Figure 3.10: a) Since the WGM is sensitive to the relative motion between microsphere-
cantilever[C] and tapered fibre[C], mechanical modes belonging to both will be present in
the PSD. b) Identification of two spectrally overlapped modes is achieved by resonantly
driving either oscillator.

sideband, although often only at low pressures. Such mode splitting is seen in asymmetric

cross-sectional geometry cantilevers when the dimensional variance is as low as 2% [154],

such as irregular hexagonal nanowires. Mode splitting of mechanical taper modes are seen

in [155] and a clamped-clamped SiN string [84] and may have benefits for 2-D inertial

sensing, due to cross axis coupling.

3.6.2 Signal-to-noise Ratio & Derived Mechanical Properties

The figure of merit for transduction (S/N) is defined for the PSD as:

S/N = 10 log10

Sdet,xx(Ωm)

Simp
det,xx(ω)

, (3.44)

where Sdet,xx(Ωm) is the peak of the detected PSD at the mechanical frequency, Ωm, and

Simp
det,xx(ω) is the measurement imprecision which is the background noise level. The S/N

for the mechanical modes that are feedback cooled in chapter 4 are shown in fig. 3.11 for

zero feedback, with a S/N of 25.2± 0.7 dB for the c.o.m. microsphere-cantilever mode (at

atmospheric pressure) and 27.5± 1.6 dB for the higher order taper mode (at 0.5 mbar).

The S/N compare well to other transduction set-ups such as WGM coupling to the
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Figure 3.11: At the optimised transduction settings, the PSD is computed for the two pri-
mary modes cooled in chapter 4 belonging to a) microsphere-cantilever[A] and b) tapered
fibre[B]. The S/N is the ratio of the peak height at Ωm to the measurement imprecision.

radial breathing modes of a toroid which achieved S/N≈ 20 dB [149]. The S/N could be

improved to 60 dB using shot-noise limited light to lower Simp
det,xx(ω) as in [46], where the

sensitivity reaches 10−18 m Hz1/2, which would be sufficient to detect fluctuations near the

ground state.

The mechanical frequency, effective mass, RMS thermal fluctuation, spring constant

and mechanical quality factor can be extracted from the PSDs of fig. 3.11 by measuring

the integrated area under the curve, the peak height at ω = Ωm, and the FWHM. De-

termining the mechanical properties of mechanical oscillators is crucial for characterising

their behaviour as an inertial sensing test-mass (chapter 6), calculating the lowest possi-

ble feedback cooled temperature (chapter 4), as well as assessing the feasibility for ground

state cooling (chapter 5 and chapter 7).

Mechanical Frequencies

It can be seen in a typical PSD such as fig. 3.9 that multiple mechanical peaks are detected.

Aside from the experimental identification of the modes through resonant driving, as

conducted earlier in this chapter, each mechanical peak can be identified by calculating

the expected eigenfrequencies. For the microsphere-cantilever this can be achieved using

a simple analytical model, whereas for complex geometries like the tapered fibre, finite

element modelling (FEM)14 is required.

Since the total mass of the cantilever is 1.39 × 10−7 kg and the microsphere is 6.39 ×

10−9 kg, both loads must be analysed to find the c.o.m. mechanical resonance frequency.

14COMSOL is used in this thesis.
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The following analysis to predict the eigenfrequencies of the microsphere-cantilever uses

the method of superposition that states the total deflection (eigenfrequency) is the sum

of the deflections caused by individual loads. The microsphere-cantilever is therefore split

into two sub-units. The microsphere is modelled as a point mass equal to ms = 4
3πa

3ρ,

where a is the radius and ρ is the density of silica (ρ = 2200 kg m−3), which is attached to a

massless clamped rod of length L. The cantilever is modelled as a symmetrical beam with

uniform cross section, of length L, and uniform distributed mass, defined by mc = ALρ,

where A is the cross-sectional area. The superscript ∗ denotes parameters calculated for

the individual sub-units.

The deflection of the massless rod when the microsphere is subjected to a load is fully

derived in chapter 6 section 6.3. The deflection at the free-end is given as:

y∗(L) =
msgL

3

3EI
, (3.45)

where g is the acceleration from gravity, E = 73.1 GPa is the elastic modulus (Young’s

modulus) of silica, and I = π�4
c

64 is the second moment of area for a uniform circular cross-

section beam, where �c is the diameter of the cantilever. Using Hooke’s law for a linear

spring, F = ky(L), where F is also equal to mg, and eq. 3.45, the spring constant, k is:

k∗ =
3EI

L3
, (3.46)

which can be used in the relation Ωm =
√

k
m , to derive the eigenfrequency:

Ω∗m =

√
3EI

msL3
. (3.47)

The cantilever sub-unit is modelled using the dynamic beam equation (Euler-Lagrange

equation) to find the transverse eigenfrequencies [156]. Cantilevers have a restoring force

due to the bending rigidity and the equation of motion can be calculated using Euler-

Bernoulli theory of beams 15 [140]. This states the Euler-Lagrange equation as:

− EI
∂4y

∂x4
= ρA

∂2y

∂t2
. (3.48)

The left hand term represents the potential energy due to internal forces and the right

15This theory is a simplification of the linear theory of elasticity which can calculate the load-carrying
and deflection of beams subjected to lateral loads. For more information see chapter 6.
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hand term is the kinetic energy.

The solution for eq. 3.48 can be found in textbooks [156] and solves the eigenvalue

problem using a change in parameter κ4 = Aω2
nρ

EI (where ωn are the mechanical eigenfre-

quencies):

d4X

dx4
= κ4X. (3.49)

The solution is of the form:

X =E(cos (κx) + cosh (κx)) +B(cos (κx)− cosh (κx))+

+ C(sin (κx) + sinh (κx)) +D(sin (κx)− sinh (κx)).

(3.50)

The constants E,B,C,D are found using boundary conditions for a clamped-free cantilever

of length L, which are:

• Deflection is 0 at the clamped end X = 0

• Slope is 0 at the clamped end dX
dx = 0

• Moment is zero at the free end d2X
dx2 = 0

• Shear is zero at the free end d3X
dx3 = 0

This results in the relation:

D

B
= −cos (κL) + cosh (κL)

sin (κL) + sinh (κL)
=

(sinκL)− sinh (κL)

cos (κL) + cosh (κL)
, (3.51)

so that cos (κL)×cosh (κL) = −1. The values of κL that satisfy this are found using tables

of hyperbolic and trigonometric functions. The first two are κ1L = 1.875 and κ2L = 4.694.

Since κ4 = Aω2
nρ

EI , the mechanical frequencies of the cantilever beam are thus:

ω∗n = (κnL)2

√
EI

ρAL4
, (3.52)

where A is the cross-sectional area of the cantilever. The c.o.m. frequency is:

Ω∗m = (1.875)2

√
EI

ρAL4
. (3.53)

Combining the sub-unit eigenfrequencies given by eqs. 3.47 & 3.53 gives the c.o.m.
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eigenfrequency of the total microsphere-cantilever system:

Ωm =

√
3EI

(0.2235ρAL+ms)L3
. (3.54)

The first two mechanical frequencies calculated using eq. 3.54 for microsphere-cantilever[A]

used in chapter 4 (these modes will be cooled) are presented in table 3.2 alongside the

experimentally measured values, and those obtained through FEM. The error between

the measured frequencies and the predicted frequencies is low due to the large size of the

microsphere-cantilever, whose dimensions can be easily measured. Uncertainty regarding

the symmetry of the microsphere-cantilever and the refractive index is the main source of

error.

Method Fundamental mode Second eigenmode % Error with Measured
(Hz) (Hz) Mode 1, Mode 2

Using eq. 3.54 2899 18,174 3.7, 2.5
FEM 2885 18,142 3.2, 2.3

Measured 2795± 0.06 17, 732± 2 -

Table 3.2: Comparison of the resonance frequency of the first two mechanical modes
of microsphere-cantilever[A] studied in chapter 4, obtained through eq. 3.54, FEM and
experimentally measured.

FEM solves eq. 3.48 for any geometry by splitting the structure into elements called

a mesh. The equations are solved for each mesh dependent on the surrounding elements

and takes into account the boundary conditions defined by geometry and clamping. The

smaller the mesh element the more accurate the results but at a cost of longer processing

time. FEM eigenfrequency analysis can output the eigenmode shapes (defection via the

strain field, shown as inset pictures in fig. 3.11) by finding the mechanical eigenvectors.

The changing cross section of the tapered fibre causes a non-uniform distribution of

mass that cannot be easily incorporated into an expression like eq. 3.1. FEM must be used

to indicate the mechanical eigenfrequencies, and those obtained for tapered fibre[B] studied

in chapter 4 are shown in table 3.3. The FEM predicted values for the mechanical taper

frequencies can deviate by over 10% in table 3.3, due to errors associated with measuring

the taper dimensions, non-inclusion of tension, and the approximation of the taper profile

as symmetrical. As shown in chapter 2 fig. 2.4, tapers are usually not symmetrical, and

tension is often utilised to eliminate bends that form during tapering.
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Mode No.: 1 2 3 4 5 6 7 8 9

Measured 514 937 1201 2162 2654 3419 3878 5504 6877
FEM 426 864 1535 2268 2918 3428 4160 5256 6549

Error % 17 8 28 5 10 0.3 7 5 5

Table 3.3: Comparison of the measured and FEM modelled resonance frequencies of the
first 9 transverse mechanical modes of tapered optical fibre[B].

Thermal Motion, Spring Constant & Effective Mass

In fig. 3.9 the PSD revealed a spectrum of mechanical modes. The figure of merit that

determines the importance of each mode on the total response of the oscillator is known

as the modal effective mass meff
16. Only a fraction of the total oscillator mass is involved

in its motion per mode so a high meff implies a high reaction force when the structure is

excited, useful for acceleration sensing as in chapter 6. The modes with the largest meff in

each axis determine the overall response of the system along that axis, therefore the sum

of all meff (per axis) equals the total mass [157].

The relationship between meff , the spring constant k, and the thermal motion
〈
x2
〉
,

can be derived considering equipartition theory and the PSD. The low frequency (D.C.)

response of the microsphere-cantilever is governed by the mechanical susceptibility at

ω = 0: χm(0) = (meffΩ2
m)−1 = 1/k where k is the spring constant and can be re-arranged

such that the effective mass is:

meff =
k

Ω2
m

. (3.55)

This can be used in the equipartition theorem of eq. 3.41 to form:

k
〈
x2
〉

= kBT0, (3.56)

where kB is Boltzmann’s constant, and T0 is the temperature of the surroundings. There-

fore the RMS thermal motion and spring constant are related by:

√
〈x2〉 =

√
kBT0

k
. (3.57)

The area under the PSD is equal to
〈
x2
〉

from eq. 3.43 derived previously. Therefore

one can find the thermal motion
〈
x2
〉
, k, and meff . The calculated values are shown in

table. 3.4 for the first 2 microsphere-cantilever modes, and the 2 higher order taper modes

16All references to m prior to this section, unless identified as the total mass refer to this effective mass,
which will now be used for the duration of the thesis.
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that are cooled in chapter 4.

Mode
√
〈x2〉 (m) k (N/m) meff (kg)
×10−11 ×10−9

Microsphere-cantilever mode 1 2.57± 0.43 6.26± 2.1 20.2± 0.7
Microsphere-cantilever mode 2 0.71± 0.12 82.8± 28.0 6.67± 2.26

Taper mode 8 (0.5 mbar) 4.90± 0.83 1.73± 0.58 1.44± 0.49
Taper mode 9 (0.5 mbar) 2.59± 0.44 6.15± 2.07 3.30± 1.11

Table 3.4: The experimentally calculated RMS thermal motion
√
〈x2〉, spring constant k

and effective mass meff of the four modes cooled in chapter 4 belonging to microsphere-
cantilever[A] and taper[B].

Mechanical Quality Factor

The mechanical quality factor describes the dissipation of energy within a resonant ele-

ment, defined as Qm = Ωm
Γ0

, and has a inverse relationship with bandwidth. The Qm for

the four modes in table. 3.4 are calculated and shown in table 3.5, measured at atmo-

spheric pressure unless stated, and with no active damping. The Qm of the taper modes

Mode Qm

Microsphere-cantilever mode 1 370± 3
Microsphere-cantilever mode 2 642± 16

Taper mode 8 (0.5 mbar) 381± 4
Taper mode 9 (0.5 mbar) 509± 5

Table 3.5: The mechanical quality factor Qm of the four modes to be cooled in chapter 4
belonging to microsphere-cantilever[A] and taper[B]. The measurement of Qm is taken
when no active feedback is applied.

are measured at 0.5 mbar since cooling of these modes in chapter 4 is not efficient until

the pressure is lowered, increasing Qm. The relationship between Qm and pressure is ex-

perimentally measured in the next section. Values of Qm in the 100’s are low compared

to those obtained in optical traps [158], SiN beams [84] or microlevers [137]. A high Qm

results in a larger transduced S/N. If the mechanical oscillator is used as a sensor to detect

forces that shift the mechanical frequency, a low Qm limits the sensitivity by broadening

the linewidth [157]. However, for sensing inertial forces such as acceleration, a high Qm re-

sults in a longer ring down time and may be detrimental for systems experiencing shocks or

transient excitations. This is one motivation for implementing the active feedback shown

in chapter 4.

The importance of Qm for cooling to the mechanical ground state is discussed in
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chapter 5 and chapter 7, however, two points are briefly covered here. Firstly, the cooled

mode temperature Teff , is defined by the initial Qm via Teff = T0
Qm

Qeff
, where 0 < Qeff <

Qm is the damped mode quality factor [159]. Secondly, Qm is related to the rate that

a ground state cooled oscillator heats up since the average phonon number evolves as

d〈n〉
dt = −Γ0[〈n〉−nth], where 〈n〉 is the average phonon occupancy, nth is the initial thermal

phonon occupancy, and Γ0 is the thermal damping rate. An oscillator in the ground state

〈n〉 = 0 at t = 0 heats up with a time dependence of 〈n〉 (t) = nth(1− e−t/Γ0). Therefore

the rate that the mechanical oscillator leaves the ground state is given by d〈n(t=0)〉
dt =

nthΓ0 ≈ kBT0
~Ωm

Γ0 = kBT0
~Qm

[14], which sets a timescale for performing quantum experiments.

There are two types of damping that limit Qm: intrinsic and extrinsic. Each dissipa-

tion process contributes independently to the overall mechanical losses as 1
Qm

=
∑

i
1

Qi
.

Extrinsic damping occurs primarily due to losses from air collisions (discussed later) as

well as clamping losses via acoustic coupling to the supports [157], and phonon tunnelling

[160].

Intrinsic damping can be divided into the dissipation in a perfect crystal lattice and

that in a real, imperfect crystal with bulk and surface defects. The upper limit to Qm is set

by the fundamental losses in a perfect crystal which include thermoelastic damping from

anharmonic coupling between mechanical modes and the phonon reservoir, and losses due

to electron-phonon and phonon-phonon interactions [157]. The latter effect is caused by

the interaction between oscillatory sound waves and thermal phonons. The thermoelastic

effect arises from thermal currents generated by vibratory volume changes in an elastic

media with a non-zero thermal expansion coefficient [161]. Additional imperfections intro-

duce further losses such as surface defects due to adsorbates which decrease Qm. However,

these are only important when surface losses are dominant, which is not the case for the

system in this thesis, as seen in the next section.

3.7 Influence of Air Damping on the Mechanical Quality

Factor

The most dominant source of damping comes from the surrounding environment in the

form of air molecules colliding with the surface of the mechanical oscillator. There are 3

regions of different damping behaviour when the pressure is decreased from atmospheric

pressure, named after the dominant damping mechanism in each region:

89



• < 0.01 mbar (Intrinsic region): damping due to air is negligible compared to the

intrinsic damping of the structure itself. Qm becomes independent on pressure

but other sources of damping such as anchor loss (waves that travel to the clamp-

ing/substrate via a tether are considered lost energy), and surface damping (caused

by defects or surface stress i.e. due to coatings) will dominate.

• 0.01 mbar → 10 mbar (Molecular, or Knudsen region): Damping is caused by inde-

pendent collisions of non-interacting air molecules with the surface of the microsphere-

cantilever. The mean free path of gas molecules is larger than the device dimensions.

• > 10 mbar (Viscous region): The air acts as a viscous liquid with a drag force

calculated using fluid mechanics. Qm changes very slowly when the pressure is

changed.

When no external forces are applied (i.e. no active damping), the microsphere-cantilever

(and tapered fibre) is in thermal equilibrium with the surrounding gas. The drag force

exerted by the gas contains a velocity proportional term that causes dissipation, which

depends on pressure. Lowering the pressure decreases the number of collisions, increasing

Qm, and decouples the oscillator from its thermal bath environment. To understand the

influence of pressure on Qm, the system is pumped down incrementally whilst the PSD of

the transduction beam transmission is recorded. The mechanical frequency Ωm, and the

damping rate Γ0 of the c.o.m. mode of microsphere-cantilever[A] (Ωm=2.8 kHz) and the

8th eigenmode of taper[A] (Ωm=5.5 kHz) (both studied in chapter 4), obtained from the

PSDs, is measured to infer Qm, plotted in fig. 3.12.

Figure 3.12: The influence of the surrounding pressure on the mechanical quality factor
of the c.o.m. of the microsphere-cantilever[A] (blue) and the 8th mode of the tapered
fibre[B] (black), both are studied in chapter 4.

Both sets of data in fig. 3.12 show a distinct change in shape around 10 mbar, in good
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agreement with literature [162], and indicates the system leaving the viscous regime (little

change in Qm with pressure), and entering the molecular regime. The change in Qm for the

microsphere-cantilever mode is less than a factor of 2 whereas the taper mode experiences

a 40 times increase in Qm at low pressure. Such a difference is attributed to the different

size and clamping geometries.

It should be noted that if a different background gas is used with a lower molar mass,

and the experiment is conducted at a pressure between atmospheric pressure and 0.1 mbar,

the Qm could be more than doubled when compared to Qm at the same pressure in air,

as demonstrated in [163]. This is because gas damping is dependent on the RMS speed

of the gas molecules which is proportional to M−1/2, where M is the molar mass. The

damping is also dependent on the density of the gas which varies with M , therefore Qm

scales with 1/
√
M , and will be larger in an environment of helium than in air17.

The intrinsic region is not reached for either oscillator because the vacuum pressure

could not be lowered beyond 0.5 mbar due to vibrations from the vacuum pumps that

excite the mechanical modes and distort the PSD lineshape. This often causes the tapered

fibre to touch the microsphere-cantilever. The roughing pump, which lowers the pressure

to 0.5 mbar, also produces low frequency noise that excite nearly all the low frequency

mechanical modes, shown in fig. 3.13 a).

Figure 3.13: The effect of continuous pumping on the PSD from a) the roughing pump
using microsphere-cantilever[B] and taper[B]. b) shwows the effect of switching on the the
turbo pump using microsphere-cantilever[D]. Both pumps induce extraneous vibrations
that are transduced.

17The molar mass of helium is approximately 7 times smaller than that of air.
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To prevent this excitation from influencing the results of this thesis, the pump is

always switched off momentarily to capture data, before being switched back on to coun-

teract leakages. Switching on the turbo pump to further lower the pressure resulted in

significantly more noise, exciting many mechanical modes across a wide bandwidth of fre-

quencies, fig. 3.13 b). The taper used in fig. 3.13 b) melted soon after the turbo pump

is switched on due to less air collisions to conduct heat away. This issue could not be

resolved within the experimental time frame and the turbo pump is not used in the later

chapters, such that 0.5 mbar is the minimum obtainable pressure.

The sensitivity to environmental vibrations i.e. from the pumps, reiterates the suit-

ability of the system as an accelerometer, the subject of chapter 6.

3.8 Quantum Measurement of Motion

This last section pivots the discussion towards the absolute limit of transducing motion

using optical fields. As shown in fig. 3.11, the imprecision noise defines the displacement

sensitivity, which can be improved by lowering the noise floor. In chapter 4 it is shown the

imprecision noise is classical electronic noise, and limits the cooled mode temperature.

If all classical noise is removed, the ultimate limit in detecting displacement is governed

by quantum theory. Here, the fluctuations of both the mechanical oscillator, and the

optical field coupled to its mechanical motion, must be reduced to their respective quantum

fluctuations18. The laws of quantum mechanics dictates that there is still random motion,

known as the zero point fluctuations (ZPF) that persist due to Heisenberg’s uncertainty

relation governing the limit of simultaneously measuring position and momentum. Since

the preceding PSDs (e.g. fig. 3.9) have background noise levels around
√

10−25 m Hz−1/2,

the noise of the WGM transduction signal is over 1000 times above sensitivities required

to measure ZPF, rendering the system incapable of resolving this quantum effect. To

lower the imprecision, electronic noise must be reduced using low noise amplifiers and

photodetectors, and excess fluctuations of the light itself can be noise cancelled to reach

the vacuum fluctuations (i.e. shot-noise limited light) of the electromagnetic field [165].

In this regime the classical PSD cannot be used for analysis since it implies no noise

or fluctuations at Teff = 0, which is infeasible, and reveals nothing about the influence of

18As shown in chapter 4, the classical thermal noise of the mechanical oscillator can also be reduced,
with active feedback methods theoretically predicted to cool to the quantum ground state when stringent
detection criteria are met [164].
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measuring motion with light. In order to find the ultimate displacement sensitivity, the

quantum noise spectra is required instead.

3.8.1 Zero Point Fluctuations

Heisenberg’s uncertainty principle determines the existence of motional fluctuations, known

as zero point fluctuations (ZPF), even at the zero point energy of a mechanical oscillator.

The ZPF in units of displacement is:

xzpf =

√
~

2meffΩm
, (3.58)

which is derived in section 8.2 of the appendix. Any (non-perturbing) measurement that

simultaneously measures both position and momentum with equal precision is limited to

the ZPF.

The PSD of ZPF is intrinsically quantum. Quantum noise is special because:

• Classically a system at zero-temperature has no noise, but quantum mechanics pre-

dicts fluctuations (ZPF).

• Since x̂(t) and x̂(t′) do not need to commute, the autocorrelation function can be

complex and S∗xx(−ω) 6= S∗xx(ω) (The superscript ∗ denotes the double sided spec-

trum) whereas classical noise spectral densities are always real and symmetrical.

• Heisenberg constraints are imposed with no classical counterpart.

To derive the PSD of the ZPF, the relation between the PSD S∗xx(ω) and the autocorrela-

tion function Gx(t), S∗xx(ω) =
∫∞
−∞Gx(t)e−iωt dt, is applied. Gx(t) is derived in section 8.2

of the appendix, such that the double sided spectral density is:

S∗xx(ω) = 2πx2
zpf {n̄δ(ω + Ωm) + (n̄+ 1)δ(ω − Ωm)} , (3.59)

where n̄ is the average phonon occupancy of the mechanical oscillator, and δ is the Dirac

delta function. This PSD is clearly asymmetrical around ω = 0. In the high temper-

ature limit kBT0 >> ~Ωm, where n̄ ≈ n̄ + 1 ≈ kBT0
~Ωm

, a symmetric PSD is created:

S∗xx(ω) = πkBT
meffΩ2

m
{δ(ω + Ωm) + δ(ω − Ωm)} (derived in section 8.2 of the appendix), which

is equivalent to the classical PSD. The positive frequency part of eq. 3.59 is related to the

absorption of energy into the oscillator and the negative frequency part is the emission of

energy by the oscillator. At the ground state the oscillator can only absorb energy.
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For weak damping Γ0, eq. 3.59 can be written with the delta function replaced by

a Lorentzian (assuming the oscillator frequency is still sharply defined) [144], and the

equivalent one-sided PSD (which is what a detector measures) is given by:

Sn,xx(ω) = x2
zpf(2n̄+ 1)

Γ0/2

(|ω| − Ωm)2 + (Γ0/2)2
, (3.60)

using the definition of the one-sided PSD Sxx(ω) = 1
2 [S∗xx(ω) + S∗xx(−ω)].

When n̄ = 0 the PSD of the ZPF at the mechanical frequency is:

Sn=0,xx(Ωm) = x2
zpf

2

Γ0
=

~
meffΓ0Ωm

. (3.61)

However, when light is used to measure the motion of a highly damped oscillator with

n̄ phonons, the output PSD of the light will contain the Lorentzian of eq. 3.60 but with

additional imprecision and backaction noise due to quantum fluctuations of the light itself.

Backaction noise heats the oscillator, and can prevent reaching n̄ = 0. The next section

derives these additional noise contributions.19

3.8.2 Detection at the Standard Quantum Limit

Light as a detector can be represented as a black box with an input port that couples

to the signal source (the mechanical oscillator), and the output port used to access the

transduced signal. The total noise of this detection system will have noise added to the

output from the light itself, as well as backaction noise feeding back to the mechanical

oscillator that affects its motion. The quantum noise of coherent light is described in

section 8.2 of the appendix, but can be summarised as phase noise (referred to as shot

noise here), SSN, and radiation pressure backaction noise, SRP, which scale with 1/
√
np

and
√
np, respectively.

If quantum limited light is used to measure displacement, the equivalent background

noise floor (imprecision) in units of m2 Hz−1 is given by Simp,xx (equivalent to SSN). The

radiation backaction noise SBA,xx (equivalent to SRP), simultaneously heats the mechanical

oscillator. Heisenberg’s uncertainty relation bounds
√
SBA,xxSimp,xx ≥ ~

2 . Therefore, a

19It should be noted that the quantum PSD for the quantised mechanical oscillator is related to its

classical counterpart through the relation n̄ =
(
e

~ω
kBT0 − 1

)
. For high bath temperature T0, n̄ ≈ kBT0

~ω −1/2,

the PSD of the thermal force is equal to
Sn,xx

|χ(ω)|2 . At the mechanical resonance this equals 2kBT0meffΓ0

which agrees with that derived classically [2].
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measurement may have an imprecision below the ZPF of the mechanical oscillator, but

Heisenberg’s uncertainty principle dictates that there is an associated radiation pressure

noise that imparts a momentum kick, and will limit detection of the ZPF as it heats the

mechanical oscillator20.

The combination of a cooled oscillator (n̄ = 0), plus a quantum limited light source

provides the ideal measurement sensitivity. The backaction noise can be represented by a

force FBA, which limits the response of the oscillator by causing an additional displacement

of xBA(ω) = χmFBA(ω), where the mechanical susceptibility is χm = 1
meff

1
Ω2

m−ω2−iΓ0ω
as

before. The total noise PSD is given by:

Sdet,xx(ω) =Sn=0,xx(ω) +
|χm(ω)|2

2
(S∗BA,xx(+ω) + S∗BA,xx(−ω))

+
1

2
(S∗imp,xx(+ω) + S∗imp,xx(−ω)),

(3.62)

where the first term is the ZPF of the oscillator, the second term is the backaction

noise and the third term the measurement imprecision of the quantum light source. Since

Simp,xxSBA,xx is bounded by ~2/4 [144], the latter two terms of eq. 3.62, i.e. the total

minimum added noise, is:

Smin,xx(ω) = |χm(ω)|2 SBA,xx(ω) +
~2

4SBA,xx(ω)
, (3.63)

which for a quantum limited light source corresponds to the standard quantum limit

(SQL). It should be noted that eq. 3.63 is a function of frequency, which is why imprecision

can be obtained below the SQL at frequencies far from the mechanical resonance [166].

However, one is usually concerned with minimising this noise on-resonance (ω = Ωm).

This occurs when SBA,xx(Ωm) = ~
2|χm(Ωm)| = ~

2meffΩmΓ0. Inserting the expressions for

Sn=0,xx, Simp,xx, and SBA,xx into the total detector PSD (eq. 3.62) forms:

Sdet,xx(ω) = x2
zpf

Γ0/2

(|ω| − Ωm)2 + (Γ0/2)2
+

~
2

(
|χm(ω)|2

|χm(Ωm)|
+ |χm(Ωm)|

)
, (3.64)

20When the light is detuned, this backaction can present itself as dynamical backaction, described in
this thesis as passive cooling which is discussed in chapter 5. The role of radiation pressure backaction
was studied in the taper coupled microsphere-cantilever system by increasing the laser power from 10µW
to approximately 800µW, with no measurable change in the linewidth or peak amplitude in the PSD.
Therefore the assumption of using classical PSDs in chapter 4 is valid.
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where the last two terms equal the SQL, optimised for minimum noise at Ωm:

SSQL,xx(ω) =
~

meff

√
(Ω2

m − ω2)2 + Γ2
0ω

2
= ~ |χm| . (3.65)

Using the approximation Sn=0,xx(Ωm) =
2x2

ZPF
Γ0

= ~ |χm(Ωm)|, eq. 3.64 can be defined as:

Sdet,xx(ω) ≈
x2

zpf

Γ0

(
1 + 3

(Γ0/2)2

(|ω| − Ωm)2 + (Γ0/2)2

)
, (3.66)

which is plotted in fig. 3.14 showing the summation of each noise term, so that the optimum

measurement of the ZPF on-resonance is limited to a precision equal to 2× Sn=0,xx(Ωm),

and implies resolving displacements 2× xZPF [144, 166, 167].

Figure 3.14: The ideal PSD output from quantum limited light probing the ZPF of a
ground-state cooled mechanical oscillator Sn=0,xx (blue). The radiation backaction of the
random fluctuations of photons SBA,xx causes the oscillator to heat up (pink), whereas
the shot noise (phase fluctuations) add imprecision noise Simp,xx (red). The y-axis is the
ratio of the detected PSD with respect to the PSD at the SQL. Both sources of noise
are minimised on-resonance (i.e. Sdet,xx(ω) − Sn=0,xx(ω) = SSQL,xx(Ωm)), bounded by
Heisenberg’s uncertainity principle.

Such an ideal case requires a quantum limited detector with high detection efficiency

ε, and strong coupling (i.e. to avoid using high laser powers, discussed in section 8.2 of the

appendix). The more stringent requirement is cooling the oscillator to its ground state.

No such experiment has achieved reaching the SQL with a mechanical oscillator cooled to

n̄ = 0. Typical issues encountered in experiments are related to optical absorption which

increases backaction noise, and thermorefractive noise which degrades measurement im-

precision [67]. However, even with n̄ > 0, and non-ideal detection efficiency (section 8.2 of

the appendix derives the inclusion of n̄ > 0 and ε < 1), interesting quantum phenomena

has been studied. Many systems have obtained imprecision noise below the SQL at fre-

quencies away from Ωm [1–3], and quantum backaction limited measurements have been
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achieved to measure the motion of a SiN membrane [39] and other devices [168, 169]21.

Detection of ZPF has been achieved in [40] with n̄ = 2.6, and direct observation of back-

action noise imprinted onto the mechanical oscillator has been observed in a photonic

crystal [38]22. In order to surpass the barrier of cooling to the ground state whilst evading

unwanted backaction heating, new methods involving squeezed light have been proposed.

Squeezed light decreases SSN at the expense of increasing SBA (or vice versa), and

can lower the laser power required to reach the SQL [170]. Such a scheme has been used

with a WGM resonator toroid to detect the radial breathing modes with a sensitivity

(imprecision noise) -0.72 dB below the shot-noise level [143]. However, any losses in the

system i.e. propagation losses within the taper, or losses associated with coupling squeezed

light can degrade the squeezing by up to 30% [143].

Another method to surpass backaction is to use measurements of observables where no

perturbing measurement backaction occurs. These are known as quantum non-demolition

(QND) observables. One such pair are energy and phase. Energy can be measured when

the light couples quadratically to displacement, which can be backaction evading [140].

3.9 Conclusion

In this chapter it was demonstrated that the WGM is able to measure the thermal motion

of the microsphere-cantilever that supports it, as well as the tapered fibre used to couple

light to the WGM. The motion is detected by the transduction beam set up in chapter 2,

and optimised here. The maximum S/N is obtained when the transduction beam is red-

detuned with respect to the WGM, and at a set DC coupling distance between sphere

and taper, close to critical coupling. This transduction mechanism is found to contain

both dispersive and dissipative coupling with motion that change the WGM resonance

frequency and the WGM linewidth respectively [45]. Cavity enhanced transduction using

the WGM is important for resolving the sub-nanometer thermal motion of the micron-sized

microsphere-cantilever and tapered fibre.

The transduction beam was further analysed by transforming it into a PSD in units of

m2 Hz−1, which defines the total power content within a given bandwidth. Such a spectrum

reveals multiple mechanical modes of both the tapered optical fibre and the microsphere-

21Note that [169] measures the backaction force as it starts to heat the c.o.m. of a cloud of ultracold
atoms

22Active feedback cooling can in theory damp backaction noise to cool mechanical oscillations to the
ZPF [164] as feedback treats radiation backaction the same as Brownian noise.
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cantilever, and is used to extract the effective mass and the spring constant for each mode.

FEM is used to simulate the mode shapes, and provides verification of the experimentally

measured mechanical eigenfrequencies. Identification of taper and microsphere-cantilever

modes can also be experimentally achieved through resonantly driving one or the other

using actuating forces. The microsphere-cantilever is driven with a piezo-stack, whereas

the CEODF can actuate the tapered fibre. At atmospheric pressure, the taper modes

are present but damped by the surrounding gas. When the pressure is decreased to

0.5 mbar, the mechanical quality factor Qm of the taper modes increases by a factor of 40

whereas the Qm of the c.o.m. mode of the microsphere-cantilever only doubles. When the

PSD is dominated by the spectrum of tapered fibre modes in this way, the detection of

sinusoidal forces, vibrations, or accelerations using the microsphere-cantilever is masked,

and may resonantly drive the taper motion. However, avoiding the use of low pressures

is not appropriate for many applications. For example, quantum limited sensing requires

the microsphere-cantilever requires is de-coupled from its environment by lowering the

pressure. The extraneous thermal noise of the tapered fibre must then be suppressed,

which motivates the importance of the active feedback damping successfully used in the

next chapter to cool these modes.

Lastly the difference between classical and quantum noise was discussed in order to

determine the ultimate limits of displacement measurement. The ideal detector consists of

quantum-limited light to measure the motion of a cooled mechanical oscillator. This ideal

detection is still plagued by noise from the light field that adds imprecision (shot noise),

and can heat up the cooled oscillator (radiation pressure backaction). These noise sources

obey Heisenberg’s uncertainty principle so that the minimum added noise for displacement

detection at the mechanical frequency is equivalent to the PSD of the ZPF, known as the

SQL. The smallest displacement that can be measured is therefore 2 × xZPF. In reality,

detection efficiencies, losses and thermal motion will result in a sensitivity incapable of

reaching the SQL.
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Chapter 4

Active Feedback Cooling

4.1 Introduction

The preceding chapter describes the use of the optical whispering gallery mode (WGM) to

enhance the transduction of thermal motion of both the microsphere-cantilever, and the

tapered optical fibre that acts as the evanescent coupler. The continuous measurement of

displacement over time can be differentiated into a velocity proportional feedback signal.

This is used to drive a force capable of actuating the mechanical oscillator such that it

cools the motional temperature by reducing thermal fluctuations. Section 3.4 of chapter 3

identified the cavity enhanced optical dipole force (CEODF) and the force from the piezo-

stack as suitable damping forces to cool the motion of the taper and the microsphere-

cantilever respectively. In this chapter, electronic signal processing is used to differentiate

the transduction signal which is then amplified to drive the actuating force which reduces

the measured motion, creating a closed feedback loop. The combination of ultrasensitive

transduction and active feedback has been used to cool mechanical oscillators close to their

zero point motion [1, 171], and has enabled cooling of a kilogram-scale oscillator to 1.4µK

[172]. This ‘active’ feedback is different to ‘passive’ cooling where the latter involves the

actuating force storing and dissipating energy.

Active feedback on vibration is used for many applications, ranging from the suppres-

sion of vibration in large structures such as helicopter fuselages [173], to the control of

space structures [174], and control of micro-electro-mechanical systems (MEMS) for sens-

ing and atomic-force microscopy (AFM) imaging [147, 175, 176]. Feedback control can

greatly improve the sensing range and bandwidth of sensors. It is also used to suppress

transient responses to shock [177] and for reducing non-linear behaviour in sensors [178].
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Precision measurements, such as the detection of gravitational waves using the LIGO

observatory [37], also rely on feedback damping methods to reduce noise, and decouple

environmental vibrations [50].

In order to use active feedback to cool thermal mechanical motion, the precision with

which one can measure such motion is the limit to cooling, and ideally, requires low

noise electronics, minimal delays in the feedback loop, and quantum limited detection.

An optimum feedback system should therefore be dominated by the shot-noise of the

laser such that one can reach an imprecision (sensitivity) at the standard quantum limit

[1, 31, 39], discussed in chapter 3. Optomechanical devices using shot-noise limited light

have achieved impressive transduction sensitivities on the order of 10−19 m Hz−1/2 (10−19 m

can be measured over an integration time of 1 s) [179], which rivals values obtained in

kilometre long interferometers [37, 172, 180], at a fraction of the size.

For typical feedback cooling experiments the actuating force is commonly from a piezo-

electric stack [28–31], or an optical force such as the scattering force (radiation pressure)

[1, 19, 77, 145, 172, 179, 181, 182], or the optical dipole force [78, 149], ([149] use a

cavity enhanced optical dipole force)1. Cavity enhanced optical dipole forces (CEODFs),

discussed in chapter 3 (section 3.4.1), are associated with WGMs due to the small mode

volume confinement of the high Q optical field, which has an evanescent portion that

extends beyond the dielectric boundary, free to interact with near-field objects such as the

tapered fibre.

In fig. 4.1 is shown the active feedback cooling implemented on the taper coupled,

microsphere-cantilever system described in this chapter.

The CEODF, FCEODF, acts as an attractive force between the tapered fibre and the

microsphere-cantilever and is used to provide feedback damping ∝ −dyc

dt on the motion of

the micron-diameter taper, yt(t). A piezo-electric stack is used to damp the motion of the

much larger (177µm in diameter), heavier (20×10−9 kg), and stiffer microsphere-cantilever

whose motion is described by yc(t). The transmission through the taper continuously

monitors the relative displacement between the two oscillators as this changes the coupling

distance, d, and alters the WGM.

Active cooling of the taper modes, which has not been achieved until now, demonstrates

the feasibility of optically cooling a waveguide with the CEODF, and shows stabilization

1Other types of less commonly used cooling forces have been demonstrated, such as the photothermal
force [137] and bolometric force [17], the electric gradient force [53, 149], and magnetic damping [176]
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Figure 4.1: The microsphere-cantilever, evanescently coupled to the tapered fibre to
excite a WGM, is used in an active feedback cooling scheme where the WGM transduction
(chapter 3) measures the motion of the taper, yt(t), and microsphere-cantilever, yc(t),
which is imprinted onto the transmission due to the change in the coupling distance, ∆d.
The transmission is differentiated to produce a velocity proportional feedback signal which
drives the piezo-stack, FPZT, and the CEODF, FCEODF, to cool mechanical modes of the
microsphere-cantilever the tapered optical fibre respectively.

of the coupling junction through reducing the mechanical motion of the taper itself. The

spectrum of mechanical modes of tapered fibres is often seen as unwanted noise that can

mask measurements by introducing noise peaks across an otherwise flat noise floor [12],

and causes a fluctuating coupling to the WGM [136]. The cooling of taper modes is a type

of stabilization that differs from that reported in [183], where only low frequency drifts

(< 20 Hz) in coupling distance are counteracted. Cooling of the microsphere-cantilever

is also a novel demonstration of using the WGM to transduce and aid damping of the

motion belonging to the cavity that supports the resonance itself. In the feedback schemes

used in this chapter, multiple mechanical modes of each oscillator can be cooled, and

mode temperatures below 10 K are reached for the dominant mode. This temperature is

consistent with limits determined by the measurement noise of the system. Both feedback

schemes are operated simultaneously to provide stabilisation and damping of the coupled

oscillators. Such a system could be used as a high range accelerometer that can counteract

shock events by reducing the transient response of the system [177], and eliminate drift

[19].

This chapter will present:

• The theoretical framework for active feedback cooling, and its effect on the power

spectral density (PSD) is used to measure the damping rate and temperature.

• The experimental method employed in this thesis to create the feedback loop that
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processes the WGM transduction described in chapter 3. A velocity proportional

feedback signal is created.

• The results of active cooling of multiple mechanical modes of the microsphere-

cantilever using a piezo-stack, and the use of the CEODF to cool multiple modes of

the tapered optical fibre. The actuating forces are driven by the feedback signal.

• Simultaneous cooling of mechanical modes of the coupled oscillator system.

• The performance of active feedback cooling in the presence of time delays, impreci-

sions in measurement, and noise.

4.2 Active Feedback Cooling Theory

The transduction of the thermal motion of the tapered fibre and the microsphere-cantilever

using WGMs, investigated in chapter 3, provides the foundation for implementing active

feedback cooling. This measurement of displacement over time, x(t), is differentiated

into a velocity proportional signal, dx
dt , that can be used in a feedback loop. The loop

drives actuating forces that damp the mechanical mode towards the quantum zero point

motion if the measurement imprecision and additional noise sources are minimised. The

reduction of thermal motion through cooling is seen in the PSD, which now differs from

eq. 3.38 (pg. 78) in chapter 3, and requires a new PSD, derived as follows.

4.2.1 Power Spectral Density of Feedback Damped Oscillators

The 1-D PSD for a thermally damped, driven harmonic oscillator, derived in chapter 3

(eq. 3.38), is used to describe the motion and temperature of mechanical modes in equi-

librium with the environment at T0. Active feedback reduces this thermal motion by

introducing a damping force, Ffb(t). A new form of the PSD can be derived, allowing

deduction of the cooled mode temperature. Starting with the equation of motion2:

d2x(t)

dt2
+ Γ0

dx(t)

dt
+ ω2

0x(t) =
Fth(t)

meff
+

Ffb(t)

meff
, (4.1)

where Fth(t) = ηB(t)
√

2kBT0Γ0 is the Brownian stochastic force defined by ηB(t), the

normalised white-noise process. If the feedback force is proportional to velocity, Ffb =

2The parameter x is equivalent to yc or yt in fig. 4.1.
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−Γfb
dx
dt , where Γfb is the feedback damping rate, eq. 4.1 can be written as:

d2x(t)

dt2
+ (Γ0 + Γfb)

dx(t)

dt
+ Ω2

mx(t) = ηB(t)

√
2kBT0Γ0

m2
eff

. (4.2)

In contrast to damping due to the background gas, damping from feedback does not appear

in the driving term (right hand side of eq. 4.2), which is why this type of cooling is often

referred to as ‘cold damping’. Working in frequency space reveals how feedback affects

the mode temperature and lineshape in the PSD. Following the derivation of the PSD in

chapter 3 (section 3.5.1), the motion of the oscillator in frequency space is:

δx(ω) = χm(ω)(F th(ω) + F fb(ω)), (4.3)

where χm(ω) is the bare mechanical susceptibility derived in eq. 3.35, and F fb(ω), F th(ω)

is the feedback force and the thermal force in frequency space, respectively. The feedback

force can be represented by meffgHfb(ω)δx(ω), where g is a dimensionless gain and Hfb(ω)

represents the feedback force transfer function.

The mechanical susceptibility is modified due to this additional feedback force. Sub-

stituting gHfb(ω) into eq. 4.3 and re-arranging in terms of δx(ω) gives:

δx(ω) =
χm(ω)

1− gHfb(ω)χm(ω)
F th(ω), (4.4)

which shows a modification to χm(ω) such that a new effective susceptibility can be derived

using δx(ω) = χeff(ω)F th(ω):

χeff(ω) =
χm(ω)

1− gHfb(ω)χm(ω)
=

1

meff(Ω2
m − ω2 + iωΓ0 − gHfb(ω))

. (4.5)

If the feedback force is chosen to be proportional to the velocity dx
dt , the feedback transfer

function is of the form:

Hfb(ω) = ΩmΓ0
F [dx

dt ]

δx(ω)
= −iωΩmΓ0, (4.6)

where the Fourier transform identity F
[

dx
dt

]
= iωF [x] = iωδx(ω) is used. The expression

for the effective mechanical susceptibility, eq. 4.5, and the transfer function for damping,

eq. 4.6, can be used to derive the (one-sided) PSD describing feedback damped thermal
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motion:

Sfb
xx(ω) = |χeff(ω)|2 Sth

F (ω), (4.7)

where Sth
F (ω) = 2kBT0Γ0meff is the PSD of the thermal force. Therefore, the PSD for a

feedback cooled, thermally driven mechanical oscillator is:

Sfb
xx(ω) =

2kBT0

meff

Γ0

(Ω2
m − ω2)2 + (1 + g)2ω2Γ2

0

. (4.8)

Or, alternatively:

Sfb
xx(ω) =

2kBTeff

meff

Γeff

(Ω2
m − ω2)2 + ω2Γ2

eff

, (4.9)

where Teff = T0
(1+g) and Γeff = Γ0(1 + g). The use of a differential feedback force results in

two changes to the mechanical motion, seen in the PSD:

• A decrease in the temperature from T0 → T0/(1+g), corresponding to the reduction

of the r.m.s. position fluctuations, and seen as a decreasing PSD peak height.

• An increase in the damping rate from Γ0 → Γ0(1 + g), which will broaden the PSD

peak.

One may wonder what other types of feedback transfer functions are used for motion

control. In general, an imaginary transfer function results in damping (energy dissipa-

tion), whereas stabilisation is achieved using a real transfer function, as is the case for

displacement proportional feedback, Fprop(t) ∝ x(t). A common effect in feedback cool-

ing experiments is to unintentionally obtain a mixture of differential and proportional

feedback due to delays in the feedback loop, (experimentally studied in section 4.4.3 of

this chapter). In comparison to eqs. 4.1 & 4.8, the equation of motion, and the PSD of a

mechanical oscillator stabilised using displacement proportional feedback are:

d2x(t)

dt2
+ Γ0

dx(t)

dt
+ Ω2

mx(t) =
Fth(t)

meff
− gx(t)Γ0Ωmmeff

meff
, (4.10)

Sprop
xx (ω) =

2kBT0

meff

Γ0

(Ω2
m

(
1 + g

Qm

)
− ω2)2 + ω2Γ2

0

, (4.11)

which causes a shift in the mechanical oscillator frequency.
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Systems with Noise

For real systems, the detection of motion cannot be perfectly precise due to Heisenberg’s

uncertainty relations (see chapter 3), such that every detector has an associated mea-

surement imprecision3. The detector actually detects xdet(t) = x(t) + u(t), where u(t) is

the imprecision noise. The PSDs derived in chapter 3 and in the previous section of this

chapter describe the actual mechanical oscillator motion x(t). This is an accurate approx-

imation of the detected PSD when the S/N is high i.e. the PSD peak is approximately a

factor of 2 above the noise floor. This assumption is valid when no feedback is applied

or for weak damping where the PSD peak has not reached the background noise floor

(the imprecision noise). In the case of feedback cooling using high gain, the PSD peak

can become comparable to the imprecision noise, such that this noise is fed back into the

feedback loop, and heats the oscillator motion. In this latter case, the feedback force is

described by Ffb(t) = −Γfb
dxdet

dt and the imprecision u(t) in frequency space is represented

by U(ω), with its own associated PSD, Simp,xx(ω). This modifies the actual oscillator

motion in frequency space originally defined by eq. 4.3, such that the imprecision noise is

included in the driving term:

δx(ω) = χm(ω)
(
F th(ω) + gHfb(ω) [U(ω) + δx(ω)]

)
, (4.12)

where χm(ω) is the unmodified mechanical susceptibility, g is the gain and Hfb(ω) repre-

sents the feedback force transfer function. Note that the detected PSD of the light field,

Sfb,imp
det,xx(ω), that transduces the motion given by eq. 4.12 is different, and is studied in

detail in section 4.4.3. Rearranging eq. 4.12 in terms of δx(ω):

δx(ω) =
χm(ω)

1− gHfb(ω)χm(ω)

[
F th(ω) + gHfb(ω)U(ω)

]
, (4.13)

δx(ω) = χeff(ω)
[
F th(ω) + gHfb(ω)U(ω)

]
, (4.14)

where the effective mechanical susceptibility, χeff(ω), is as previously defined in eq. 4.5.

Using the relation Sxx(ω) =
〈
δx(ω)2

〉
, the PSD of the oscillator motion, measured with

3For monochromatic light, the lowest imprecision noise corresponds to the shot-noise limit and requires
suppression of classical intensity and frequency fluctuations.
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an imprecise detector which drives a feedback damping force is [53, 149]:

Sfb,imp
xx (ω) = |χeff(ω)|2

[
Sth
xx(ω) +

∣∣∣gHfb(ω)
∣∣∣2 Simp,xx(ω)

]
, (4.15)

Sfb,imp
xx (ω) =

Sth
xx(ω) + g2

∣∣Hfb(ω)
∣∣2 Simp,xx(ω)

|meff(Ω2
m − ω2 + iωΓ0 − gHfb(ω))|2

, (4.16)

where Simp,xx(ω) is the imprecision noise of the feedback measurement. If this noise is

well below the PSD of the oscillator motion, Sfb,imp
xx (ω), the heating effect of measurement

noise can be ignored. However, with increased damping, the measurement imprecision will

become comparable or larger than the decreasing Sfb,imp
xx (ω), and will cause heating.

The theoretical PSD of the mechanical motion with active feedback cooling using

negative velocity feedback, (FFB = −g dx
dt ), and negative displacement feedback, (Fprop =

−gx(t)), inclusive of imprecision noise, are plotted in fig. 4.2, scaled by Sth
xx/(meffΩ2

m)2,

with Qm = 500, Simp,xx(ω) = 102, and applied feedback gains between 0 ≤ g ≤ 0.4.

Figure 4.2: Simulated PSD for the actual motion of an oscillator with, a) applied
derivative feedback, and b), proportional feedback, at varying gain, g, with Qm = 500,
Simp,xx = 102, and scaled by Sth

xx/(mΩ2
m)2

Two different responses are shown in fig. 4.2:

• Differential (velocity) cooling, fig. 4.2 a): the transfer function is imaginary which

increases the damping rate and decreases the area under the peak. Above a certain

gain that reduces the mode temperature Teff to the minimum cooled temperature,

Tmin (limited by the imprecision noise), a high level of detector noise is fed back to

the resonator which drives the actuating force, increasing Teff , see fig. 4.2 a) when

g > 0.1. Teff can be inferred by comparing the r.m.s. thermal fluctuations at

the mechanical frequency, which is proportional to

√
Sfb,imp
xx (Ωm), with and without
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(g = 0) feedback:

Teff

T0
=

√
Sfb,imp
xx (Ωm)

Sxx(Ωm)|g=0
, (4.17)

which can be used with eq. 4.15 to find:

Teff

T0
=

√
1 +

g2

S/N
× 1

1 + g
, (4.18)

where the signal to noise ratio, (S/N), is the ratio of the PSD of thermal motion

with no applied feedback, compared to the imprecision noise, S/N =
Sfb,imp
xx (Ωm)|g=0

Simp,xx(ω) .

• Displacement proportional feedback, fig. 4.2 b), results in a real transfer function

which shifts the mechanical resonance frequency. High feedback gains result in heat-

ing for the parameters used in fig. 4.2 b), (Qm = 500,
Simp,xx

Sth
xx

/(meffΩ2
m)2 = 102).

However, cooling can be achieved but would require gains that are Qm times higher

to obtain damping of the same factor as derivative feedback [53], where Qm is the

mechanical quality factor. This will result in more noise entering the system.

For differential feedback cooling, assuming the imprecision noise is smaller than the

measured displacement power4, the following function can be used for fitting the detected

PSD curve:

Sfb,imp
det,xx(ω) =

2kBT0

meff

Γ0

(Ω2
m − ω2)2 + (1 + g)2ω2Γ2

0

+ Simp,xx(ω), (4.19)

where Simp,xx(ω) is the background noise floor around Ωm in the PSD. When the thermal

motion is larger than the level of the background noise, eq. 4.18 is approximated as Teff
T0

=

1
1+g , and the minimum cooled temperature Tmin, can be calculated [31, 53] using:

Tmin =

√
meffΩ3

mT0

kBQm
Simp,xx(ω), (4.20)

noting that Simp,xx(ω) is measured in units of m2 rad−1 s.

In order to infer the cooled temperature Teff , from the PSD, four methods can be used:

1. Direct measurement of the change in damping factor Γeff/Γ0 by fitting the PSD with

eq. 4.19 [145, 184]. Qualitatively this equation describes the vibrational mode which

4Section 4.4.3) in this chapter describes the case when the imprecision noise is higher than the measured
thermal motion PSD and eq. 4.19 is not valid for determination of the temperature.
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experiences a change from a thermal environment defined by a Langevin force with

strength proportional to Γ0T0, to an effective environment with a Langevin force of

the same strength but now proportional to ΓeffTeff , such that Γ0T0 = ΓeffTeff , and

thus, Teff = T0
Γ0
Γeff

.

2. Alternatively, measurement of 2kBT0

(1+g)meff
= 2kBTeff

meff
can be used, obtained from fitting

using eq. 4.19.

3. Measurement of the area under the PSD peak can be used as the energy equiparti-

tion theorem relates the thermal displacement fluctuations to the mode temperature,〈
x2
〉
≈ kBTeff

meffω2
m

=
∫ +∞
−∞ Sfb,imp

xx (ω) dω [185, 186], valid if operating far from the quan-

tum regime.

4. Measurement of the peak height in the PSD at the resonant frequency Ωm
5, defined

as Sfb,imp
xx (Ωm) = 2kBT0

meff(1+g)2Ω2
mΓ0

= 2kBTeff
meffΩ2

mΓeff
.

All four methods require precise knowledge about the properties of the mechanical oscil-

lator such as the effective mass, the damping rate from air, and the initial equilibrium

temperature. This is not always possible to characterise accurately, therefore, a calibra-

tion PSD at zero feedback, (g = 0), can be used to set Γ0,meff ,T0,Ωm, such that all other

PSDs can referenced to these initial values. Dependent on the shape of the line profile,

it may be easier to measure the area under peak in the PSD rather than fit eq. 4.19,

especially if the noise floor is not flat. Peaks which are broadened (e.g. a reduced Qm

from damping) can have large fitting errors dependent on the standard deviation of the

signal (the noise fluctuations). A comparison of the four fitting methods to infer Teff for

the primary cooled modes in this chapter is shown in the appendix, section 8.3.

4.3 Experimental Method

4.3.1 Optical & Electronic Set-up

Active feedback is performed using the CEODF to damp the motion of the tapered fi-

bre and the piezo-stack is used to cool the motion of the microsphere-cantilever. The

experimental set-up from chapter 2 (fig. 2.23, pg. 53) is modified by including components

5An effective mechanical frequency arises if the feedback transfer function has both real and imaginary
components (i.e. mixture of derivative and proportional feedback), discussed in section 4.4.3 of this
chapter.
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required for the feedback loop. The complete optical and electronic layout is shown in

fig. 4.3.

Figure 4.3: The experimental set up of fig. 2.23 in chapter 2 is modified to include a
feedback system. The strong beam (blue) is used for PDH locking (controlled with switch
S 3) (or thermal locking), and controls the magnitude of the CEODF. The red-detuned
transduction beam (red) counterpropagates through the taper and is monitored with an
amplified photodetector (PD 2). The output of PD 2 is split and sent to two servo loops,
each with a proportional amplifier and a differentiator. The differentiated transduction
signal is used to modulate the CEODF by changing strong beam power using AOM 2,
and/or sent to modulate the piezo-stack at the clamped end of the microsphere-cantilever.
Switches S 1 & S 2 can be used to activate both feedback loops simultaneously.

As before, the tapered optical fibre is placed directly below the microsphere-cantilever

and the system is housed within a vacuum chamber. The transduction beam is shown in

red and typically 70µW of this beam is coupled into the tapered fibre. The strong beam

shown in blue, counterpropagates through the same tapered fibre, and approximately

300 − 500µW is coupled and transmitted into the taper. The flip mirror can be used to

steer the strong beam into the scanning F-P interferometer for calibration of the laser

tuning and the WGM linewidth, described in chapter 2, section 2.3.3. The strong beam

is locked to the centre of the WGM using Pound-Drever-Hall (PDH) locking by closing

the switch S 3, or, stabilised close to resonance, on the blue-detuned side, via thermal self-

locking [128]. The latter method is employed when a large modulation of the strong beam
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light intensity is required to control the CEODF which destabilizes the PDH. Both locking

schemes are discussed in detail in chapter 2, section 2.5. The frequency (i.e. detuning)

of the transduction beam can be tuned with respect to the strong beam using acousto-

optic modulators (AOM 1 & AOM 2), as previously in chapter 2 (section 2.6.1). The

transmitted light of the transduction beam is detected on an amplified InGaAs variable

gain photodetector6 (PD 2), whose output is monitored on the PC oscilloscope. Real-

time monitoring is achieved using the FFT function of the oscilloscope, and the data is

processed to create the PSD (see chapter 3 (section 3.6.1)) which contains information

about the mechanical motion of both the microsphere-cantilever and the tapered fibre.

To implement active feedback cooling, a differentiator and an amplifier is required to

create the feedback signal and tune the feedback gain respectively, which is then used to

drive the actuating forces studied in chapter 3. First, the output from PD 2 is sent to

a servo controller7 which is set to proportional gain, with zero integral gain, and simply

functions as an amplifier controlled by a potentiometer to adjust the feedback gain, g.

The output of the servo is then sent to a home made differentiator8 formed by an op-amp

circuit which measures the rate of change in the voltage output of PD 2. The output from

the differentiator (the feedback signal) drives either the piezo-stack (via a piezo driver9)

or to vary the output amplitude of AOM 2 which in turn, varies the laser power of the

strong beam. Each actuating force has its own dedicated servo and differentiator so that

the feedback gain of each cooling scheme can be controlled separately, but share the same

photodiode signal. Switches S 1 and S 2 control whether one or both feedback loops are

operating simultaneously.

4.3.2 Lifetime of Microsphere-cantilever & Tapered Fibre

The usable lifetime of both the microsphere-cantilever and the tapered fibre is limited,

and over time periods of a few weeks contaminants adhere to the surface which lowers

the quality factor, Qopt, and decreases the transmission of the taper due to scattering.

A catastrophic melting of the tapered fibre can occur when too much power is coupled,

especially at low vacuum pressures where fewer air molecules can dissipate this heat.

6Thorlabs PDA20CS
7Newport LB1005.
8There are 2 differentiators used in this experiment; an older, more complicated one built by a previ-

ous Ph.D. student that contains additional filters, used in earlier experiments but was not optimised for
kilohertz frequencies, causing time delays. A new differentiator was used in later experiments comprising
of a more simple op-amp design.

9Thorlabs MDT694B
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Therefore, some data sets in this chapter involve a change of either the tapered fibre

or the microsphere-cantilever. Care is taken to use microsphere-cantilevers of similar

dimension, and tapers are fabricated with the same number of pulling steps, applied with

approximately equal tension. Any change of either oscillator will be identified in the text.

See section 8.4.

4.3.3 Power Spectral Density Fitting Function

All data presented in this chapter, unless specified, are collected using a PC oscilloscope10,

where 30 traces, each 2 s in length, with a sampling rate of 250 × 103 samples/s, are

recorded. These are converted into a one sided PSD, in units of V2 Hz−1 using the pe-

riodogram function in Matlab. An averaging of the 30 PSDs is conducted in order to

improve the noise. The procedure used in chapter 3 (section 3.3.2) to convert to displace-

ment units (m2 Hz−1) is verified for each change of microsphere-cantilever and WGM, but

is found to not vary considerably, since similar DC coupling distances are used.

The PSD of a feedback cooled harmonic oscillator is given by eq. 4.19 and this can

be fitted using OriginLab’s non-linear fitting tool, which uses a Levenberg Marquardt

algorithm for least squares curve fitting. The equation used for fitting is defined as:

y =
AfbΓeff

((Ωm/2π)2 − (ω/2π)2)2 + Γ2
eff(ω/2π)2

+ b, (4.21)

where y is the PSD, in m2 Hz−1, Afb is a variable equal to 2kBT0

(1+g)meff
, Γeff is the effective

damping rate given by Γeff = Γ0(1 + g), ω is the observed frequency, and b is the back-

ground noise level in m2 Hz−1. The lowered mode temperature is Teff = Afb
A0/T0

, where A0

is the parameter Afb when no feedback is applied (g = 0), and T0 is the equilibrium mode

temperature (environment temperature) at zero feedback, chosen for convenience to be

300 K. The value of the feedback gain, g can be calculated from the reduced mode tem-

perature such that g = T0
Teff
− 1 or g = Γeff

Γ0
− 1. Errors quoted for the mode temperatures

are derived from the fitting errors.

10Picoscope 4262
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4.4 Experimental Results

4.4.1 Cooling a Microsphere-cantilever with a Piezo-stack

As outlined earlier in chapter 3, the lower spring constant and effective mass of the taper

modes, makes this oscillator more susceptible to the CEODF. Therefore the CEODF

actuates the taper towards the microsphere rather than the microsphere-cantilever towards

the taper. For this reason, a piezo-stack placed at the clamped end of the microsphere-

cantilever that actuates the position vertically away and towards the tapered fibre, is used

as the damping element.

A microsphere of diameter � =177µm is selected, which remains attached to the fibre

stem of � =120µm and length 5.6 mm, measured approximately using pixel counting

as detailed in chapter 2 (section 2.2.1). A microscope image is shown in fig. 4.4 and

this microsphere-cantilever is referred to as ‘microsphere-cantilever[A]’. The mechanical

properties of the microsphere-cantilever[A] is fully explored in chapter 3 (section 3.6.2)

and re-listed in table 4.1. It was also demonstrated in chapter 3, fig. 3.12, that the Qm

of this micron-size mechanical oscillator is only weakly affected by lowering the pressure,

which allows for ambient operation of feedback cooling.

Figure 4.4: Microsphere-cantilever[A], used in the majority of experiments within this
thesis, imaged using a 40X microscope. The microsphere has a diameter of 177µm, which
remains attached to a fibre stem 120µm in diameter and 5.6 mm long.

Microsphere-cantilever[A] is used alongside a taper, labelled as taper[A], in the exper-

imental set-up of fig. 4.3. When differential feedback is applied to the piezo-stack, the

motion of the fundamental centre-of-mass (c.o.m.) frequency at 2.80 kHz (mode c1), as

well as the second eigenfrequency at 17.73 kHz (mode c2), can be simultaneously cooled,
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Property Fundamental mode (c1) Second eigenmode (c2)

Frequency (Hz) 2795± 0.06 17732± 2
Qm 370± 3 642± 16

k (N/m) 6.26± 2.1 82.8± 28.0
meff (×10−9 kg) 20.2± 0.7 6.67± 2.26

Table 4.1: The mechanical properties of microsphere-cantilever[A], analysed from data in
chapter 3 using fig. 3.11 (pg. 83).

shown in fig. 4.5. The gain parameter gc1, gc2, for each mode is controlled by increasing

the overall gain of the proportional servo, and gc1 6= gc2 since the c.o.m. mode and the

second eigenmode have different mechanical properties. Cooled mode temperatures of

Tc1 = (9±0.4) K and Tc2 = (108±8) K are reached at the maximum gain, at atmospheric

pressure.

Figure 4.5: Piezo-stack feedback cooling of the fundamental mode (labelled c1) of
microsphere-cantilever[A] with Qm1 = 370, reaching Tc1 at varying feedback gains gc1.
The second mechanical eigenfrequency (labelled c2) at 17.73 kHz, with Qm2 = 640, is
simultaneously cooled to Tc2 = 108 K. Mechanical mode shapes are shown as inset dia-
grams. Data was taken at atmospheric pressure, with curves fitted using eq. 4.21 to infer
the mode temperatures Tc1,c2.

The c.o.m. mode is cooled close to the cooling limit, Tmin,c1 = 11± 2 K, calculated by

using eq. 4.20 and the parameters in table 4.1, with Simp,xx = (2± 0.4)× 10−26 m2rad−1s,

measured from the PSD. The second mechanical eigenfrequency of the cantilever is cooled

close to its respective limit of Tc2,min ≈ 80 K, representing effective broadband cooling
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for this particular oscillator. Multimode cooling of mechanical modes belonging to a

single structure has been demonstrated on nanostrings [17], the coupled flapping modes

of a double-disk toroidal resonator [15], and modes of the resonant-bar gravitational wave

detector AURIGA [180].

In fig. 4.6 the effect of the environmental pressure was found to increase Qm by only a

factor of 1.4 as the pressure is lowered from atmospheric pressure (1013 mbar), to 0.5 mbar

pressure. Feedback cooling of the microsphere-cantilever was attempted at 1 mbar, reach-

ing (32 ± 6) K before limited by a parasitic noise peak near 5.5 kHz i.e. a taper mode,

that begins to ring with increasing feedback gain. This is shown in the inset graph of

fig. 4.6, where feedback gains above g = 8.4 drastically increases the noise floor. Such

Figure 4.6: Feedback cooling was attempted at a pressure of 1 mbar for microsphere-
cantilever[A] where the fundamental c.o.m.mechanical mode at 2.8 kHz is cooled to 32±6 K
before a parasitic mode, inset, saturates the feedback loop at gain g > 9. The arrow in the
inset graph shows the c.o.m. mode and heating of the parasitic mode which increases the
noise floor. This extraneous mode belongs to taper[A] (eigenmode 8) at 5.5 kHz, which is
also transduced by the WGM. Mode temperatures are found by fitting eq. 4.21.

extraneous modes are often an issue in feedback cooling and can occur when neighbour-

ing mechanical modes are measured and included within the feedback signal. The origin

of these modes include cross-axis coupling where the orthogonal degenerate mechanical

mode in another axis plane can be detected [154], as well as mechanical modes of the

taper (fig. 4.6), and electronic noise. These modes are often not in phase with the me-

chanical mode to be cooled and can be unintentionally heated leading to saturation of

the feedback loop. Frequency filters can be introduced to suppress the parasitic signal
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but can add phase delays. The effect of delays is experimentally studied in section 4.4.3.

Since the mechanical frequencies of both the microsphere-cantilever and tapered fibre are

close in frequency, adding narrow band-pass filters can affect the feedback response as the

mechanical Q decreases with cooling, which will spread the mode beyond the limits of the

filter passband [53].

4.4.2 Cavity Enhanced Optical Dipole Force Cooling of Taper Modes

In order to cool the taper modes with the CEODF arising from the strong beam, thermal

locking is used to stabilise the laser close to, but on the blue-detuned side of the WGM,

as discussed in chapter 2 (section. 2.5.2). This is because active PDH locking becomes

unstable when the power is highly modulated and is therefore switched off using switch

S 3 in the set-up of fig. 4.3. A typical strong beam laser power of 300-500µW is coupled into

the tapered fibre with a modulation depth of ≈ 70 %. Microsphere-cantilever[A] shown in

fig. 4.4 is used here, but with a different taper (taper[B]) to the one used in figs. 4.5 & 4.6.

The mechanical properties of taper[B] are studied in chapter 3 (section 3.6.2). A WGM

with a linewidth of 460 MHz is measured using the F-P scanning interferometer such that

the variables in eq. 3.20 to predict the CEODF are calculated: γe(0) = 1.8× 1010 rad s−1

and η = 1.4 × 107 m−1 for an intrinic quality factor of Qi = 6.1 × 105, following the

procedure described in chapter 2 (section 2.4.1) [32]. The force between the taper and the

� = 177µm microsphere is predicted to be 80 pN when using 500µW of input light.

The dependence of Qm of eigenmode 8 belonging to taper[B] was experimentally in-

vestigated in chapter 3, fig. 3.7 (pg. 89) showing that at atmospheric pressure, the air

damping is significant and Qm < 10. Therefore under these conditions, the damping

achieved using the maximum modulation of the CEODF is limited (experimentally veri-

fied in section 4.4.2 of this chapter). Cooling is more efficient at low pressures where Qm

approaches its intrinsic value. In the results presented here, feedback is applied at a pres-

sure no lower than 0.5 mbar since the turbo pump cannot be switched on without adding

considerable noise, shown in chapter 3, fig. 3.13 b) (pg. 91). The roughing pump, used to

reach 0.5 mbar, also adds noise and excites the mechanical modes, fig. 3.13 a), such that

measurements must be taken once the pump is switched off. The chamber slowly begins

to let air inside, and measurements must be taken quickly, or at set intervals when the

pressure is lowered after a certain amount of time.
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A plot of the recorded PSD of two taper[B] modes at 5.50 kHz (mode t1), and 6.88 kHz

(mode t2) is displayed in fig. 4.7. These were identified in section 3.6.2 of chapter 3 as

eigenmodes 8 and 9, respectively. The data is taken at 0.5 mbar. Both modes are cooled

simultaneously to (8±0.5) K, and (85±1) K, respectively, by increasing the feedback gain

sent to modulate the CEODF. Taper mode t1 has a different feedback phase relationship

and mechanical properties to mode t2, leading to different complex feedback transfer

functions where the gains gt1 6= gt2. Both cannot be simultaneously cooled efficiently

with the same signal without optimising the feedback signal further. The properties of

these modes at zero gain, g = 0, (measured in section 3.6.2 of chapter 3) are displayed in

table 4.2:

Property Eigenmode 8 (t1) Eigenmode 9 (t2)

Frequency (Hz) 5504± 0.01 6877± 0.2
Qm 381± 4 509± 5

k (N/m) 1.73± 0.58 6.15± 2.07
meff (×10−9 kg) 1.44± 0.49 3.30± 1.11

Table 4.2: The mechanical properties of eigenmode 8 and 9 of taper[B], analysed from
data in section 3.6.2 of chapter 3.

Figure 4.7: Simultaneous CEODF cooling of the 8th and 9th mechanical modes of the
tapered optical fibre, obtained at a pressure of 0.5 mbar. Representational mechanical
mode shapes are shown. Each mode temperature is defined as Tt1,Tt2, at varying gain,
gt1, gt2. Curves are fitted using eq. 4.21 to infer the mode temperatures. The mechanical
quality factor of each mode is Qm1 = 380, and Qm2 = 510.
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Mode t1 is cooled close to its predicted minimum temperature given by eq. 4.20,

Tmin,t1 ≈ 8 K. The shift in the mechanical frequency as the feedback gain is increased is

related to the use of the older differentiator which adds a phase delay of approximately 24

degrees. The role of this phase (time) delay is studied later in this chapter.

Influence of Pressure on Cooling

Unlike the microsphere-cantilever, the mechanical modes of the tapered fibre are more

affected by air damping, and the mechanical quality factor increases by over 40× when

the pressure is lowered to 0.5 mbar, as shown in fig. 3.12 (pg. 90) of chapter 3. To explore

this effect on feedback cooling, i.e. the minimum experimentally obtainable cooled mode

temperature, feedback damping is applied using the CEODF on eigenmode 8 of taper[B]

over a range of pressures. The cooled mode temperature is plotted in fig. 4.8 (black data

points), alongside the predicted limit of cooling Tmin (blue data), defined by eq. 4.20 using

the reference PSD at g = 0.

Figure 4.8: a) The minimum experimentally cooled temperature for eigenmode 8 of
taper[B], plotted against the background gas pressure (black data points). The predicted
minimum temperature (blue points) is calculated using eq. 4.20 and the reference PSD
(g = 0) at each pressure. Errors are obtained from the fit of eq. 4.19. The experimental
values agree with prediction at pressures below 10 mbar only when Qm is increased. At
higher pressures, the balance of thermal excitation and damping from the surrounding gas
can be larger than the power limited CEODF. b) Cooling of mode t1 at 180 mbar, where
the maximum feedback gain (limited by the servo amplifier and the power coupled to the
WGM), does not cool the mode to the noise floor.

It can be seen that at 180 mbar, plotted as an inset in fig. 4.8, the available feedback
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gain has saturated (i.e. the maximum amplification of the feedback signal to modulate

the CEODF prior to causing the feedback to become unstable), but the mechanical mode

is far from cooled to the noise floor. This is because the amplitude of the CEODF is too

low to continuously damp the remaining thermal excitation provided by the background

gas. Increasing the CEODF by using higher laser powers often causes the taper to melt,

although this can be prevented when operating in clean room standard conditions. The

minimum temperature limit is therefore not met until a pressure below 10 mbar. The

non-linear shape of the predicted Tmin in fig. 4.8 is related to the changing noise floor

which decreases as the pressure is lowered due to less background gas, and the large errors

for the experimentally measured Tmin data points around 10 mbar is related to changes in

the pressure during the measurement time as data is taken whilst the roughing pump is

momentarily switched off, as discussed in chapter 3, section 3.7.

4.4.3 Time Delay & Classical Noise in Active Cooling

In this section, modifications to the cooling performance from the feedback loop itself

are explored. Two effects are experimentally investigated; time delays that modify the

oscillator response, and classical noise from electronics that define the imprecision noise

level Simp,xx(ω). The latter effect is important at high feedback gain when the damped

motion, Sfb,imp
xx (ω), becomes comparable to the imprecision noise Simp,xx(ω).

Delayed Feedback

The effect of time (phase) delays when an older differentiator is used for CEODF cooling

of taper modes in fig. 4.7 is seen to shift the mechanical frequency as feedback is applied.

Time delays cause unsynchronized application of the feedback force which can degrade

the cooling performance as well as induce spring softening or stiffening [53], similar to the

optical spring effect [187].

In order to include the effect of a time delay τ , the trial solution for the feedback

transfer function is given by:

Hfb,τ = Γ0Ωm e
−iωτ , (4.22)

where Γ0 is the damping rate, Ωm is the mechanical frequency, and the Fourier transform

of a time delayed signal F [x(t− τ)] = δx(ω)e−iωτ , is used. Therefore following the pro-

cedure used earlier in this chapter to derive the PSD of the mechanical oscillator with
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instantaneous feedback, the PSD when time delays are present is:

Sfb,τ (ω) =
1

meff

Sth
F (ω)[

Ω2
m

(
1− Γ0

Ωm
g cos (Ωmτ)

)
− ω2

]2
+ ω2Γ2

0 (1 + g sin (Ωmτ))2
, (4.23)

where exponential functions have been replaced with cosine and sine expressions, and the

substitution g2Ω2
mΓ2

0 = g2Ω2
mΓ2

0

(
sin2 (Ωmτ) + cos2 (Ωmτ)

)
is used such that eq. 4.23 is

factorised in terms of (Ω2
m − ω2), and ω2Γ2

0.

When τ = π
2Ωm

(i.e. instantaneous differential feedback) the original feedback PSD of

eq. 4.8 is obtained. If τ > π
2Ωm

a time delayed differential feedback is applied, where a

new parameter τv = τ − π
2Ωm

can be used to define the delay with respect to instantaneous

differential feedback. The effective damping factor Γfb,τv
eff , and an effective mechanical

frequency Ωfb,τv
eff , for a constant time delay τv is therefore:

Γfb,τv
eff = Γ0 (1 + g cos (Ωmτv)) , (4.24)

Ωfb,τv
eff = Ωm

√
1 +

g

Qm
sin (Ωmτv). (4.25)

A plot of these equations is shown in fig. 4.9 for Ωm = 4 kHz:

Figure 4.9: The normalised effective damping factor
Γfb

eff ,τv
Γ0

(black), and the normalised

effective mechanical frequency Ωeff

Ωfb
m ,τv

(blue) is modelled against the time delay (normalised

to the mechanical oscillation period) for differential active feedback cooling using a feed-
back gain of g = 2.

In order to verify this dependence on time delay, a phase shifter is inserted into the

piezo-stack feedback loop and feedback cooling is applied to the microsphere-cantilever

labelled microsphere-cantilever[C] with Ωm = 4 kHz. The experiment is conducted at

atmospheric pressure. Due to the order of conducting the experiments, the older differ-

entiator with an inherent 24 degree phase delay at 4 kHz is used. This differentiator is
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responsible for the optical stiffening of the cooled taper[B] modes (i.e. increase in Ωm) in

fig. 4.7. Only additional incremental time delays can be introduced as the 24 degree phase

shift associated with the time delay cannot be reduced11.

The piezo-stack feedback loop is switched on and feedback is applied at a fixed am-

plification of the servo (note that this proportionally controls the feedback gain, g, which

is further modified by the time delay). The time delay is varied by increasing the phase

shift12. The resulting PSDs are shown in figs. 4.10 a) & b), for negative differential feedback

(damping) and positive differential feedback (heating) respectively.

Figure 4.10: Experimental data using microsphere-cantilever[C] showing the effect on the
c.o.m. motion when further time delay, τv, is introduced for a) negative velocity feedback
(i.e. primarily damping) and b) positive negative feedback (i.e. primarily heating). The
servo sets a fixed amplifier gain which controls the gain, g. Cooling, heating, spring
stiffening and spring softening can be obtained.

Here, it can be seen that the system undergoes spring softening (decrease in Ωm) and

spring stiffening (increase in Ωm), for both cooling and heating regimes. This could have

applications in strategic modification of the spring for sensing, to avoid cross coupling or

to aid cooling to lower temperatures in conjunction with passive cooling [188–190]. The

increase in mechanical frequency from spring stiffening increases the number of oscillations

such that the measurement time window i.e. the period of oscillation, is longer13. The

11In latter experiments, the newer differentiator had a 9 degree phase delay which leads to < 10 Hz
shifting of the centre frequency in figs. 4.6 & 4.13.

12The phase shifter is optimized for the 4 kHz fundamental frequency so that a linear relationship between
phase shift and time delay is met.

13If the oscillator is cooled to its mechanical quantum ground state, this corresponds to a longer deco-
herence time [189]
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effective damping factor, Γfb,τv
eff , and effective mechanical frequency, Ωfb,τv

eff , are extracted

from fig. 4.10 by fitting with eq. 4.21 and plotted in fig. 4.11. Errors are obtained from the

fit. The time delay is calibrated by sending a sinusoidal voltage from a function generator

(with frequency approximately equal to Ωm) into the differentiator and phase shifter, and

measuring the resultant delay.

Figure 4.11: The effective damping rate Γeff and mechanical frequency Ωeff of fig. 4.10 for
a) negative velocity feedback and b) positive velocity feedback are found by fitting with
eq. 4.21. Errors are obtained from the fit. As the time delay is increased, a) ,b) show a
change in damping with a corresponding shift of Ωeff representing spring stiffening and
spring softening such that a) undergoes spring stiffening and transitions from primarily

cooling
Γfb,τv

eff
Γ0

> 0 to heating
Γfb,τv

eff
Γ0

< 0. b) shows the opposite behaviour.

From figs. 4.11 a) & b) it can be seen that an approximate quadratic relationship for

Ωfb,τv
eff , and a linear relationship for Γfb,τv

eff exists, in good agreement with the simulation in

fig. 4.9 if one considers these as approximated portions of an overall sinusoidal relationship.

However, the turning point of
Γfb,τv

eff
Γ0

in fig. 4.11 a) occurs before the expected time delay of

0.25× 2π
Ωm

, indicating that another source of delay is present in the overall feedback loop.

A similar, but much less pronounced effect is also seen in fig. 4.11 b).

For negative differential feedback, time delays reduce Γfb,τv
eff because the cooling force

is applied when the resonator motion has already advanced, leading to a displacement-

proportional component that degrades the cooling performance. Theoretically, a negative

velocity feedback loop with a time delay of an entire period, or a positive velocity feedback

with a delay of half a period, could be as effective as a instantaneous negative velocity

feedback, but requires the oscillator motion to be truly harmonic [53, 191].
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Squashing via Feedback

As shown at the beginning of this chapter, the total noise of the feedback loop, known as the

imprecision noise Simp,xx(ω), can modify the mechanical oscillator motion at high feedback

gains when the motion Sfb,imp
xx (ω) becomes comparable to Simp,xx(ω). The influence of

noise on the actual mechanical motion was simulated in fig. 4.2 by using eq. 4.16. Once

thermal fluctuations are cooled to the imprecision noise level, the system starts to send

this noise into the feedback loop, which drives the mechanical oscillator to a higher mode

temperature. Since this noise driven motion is then detected and fed back into the feedback

loop where the noise source originates from, the detected PSD, Sfb,imp
det,xx(ω), has a different

lineshape to the actual oscillator PSD, Sfb,imp
xx (ω). This is because of correlations between

the injected feedback noise and the oscillator motion that cause a phenomena known

as ‘squashing’, where the mechanical mode PSD becomes inverted below the noise floor

[1, 17, 31, 53]. At this stage, the PSD cannot be fitted with eq. 4.19. The imprinting of

noise onto the oscillator motion is an indication that the minimum cooled temperature

defined by eq. 4.20, that depends on Simp,xx(ω), has been surpassed.

Ideally, noise from electronics can be suppressed such that the dominant noise source

is from the primary detection system (i.e. the light field), at the quantum shot-noise limit,

discussed in chapter 3. When Sfb,imp
det,xx(ω) reaches Simp,xx(ω), the detected motion deviates

such that the measured PSD cannot be used to infer the mode temperature of the actual

motion, i.e. Sfb,imp
det,xx 6= Sfb,imp

xx . A new form of the detected PSD is required which is

derived as follows; at high gain the measurement of the oscillator motion under feedback

(including the backaction heating effect of the imprecision noise, derived in eq. 4.14), is

modified by inclusion of the measurement uncertainty:

δxdet(ω) = δximp(ω) + χeff(ω)
[
F th(ω) + gHfb(ω)δximp(ω)

]
, (4.26)

δxdet(ω) = δximp(ω)
[
1 + χeff(ω)gHfb(ω)

]
+ χeff(ω)F th(ω), (4.27)

where Hfb(ω) is the feedback transfer function, and
[
1 + χeff(ω)gHfb(ω)

]
= χeff(ω)

χm(ω) using

eq. 4.5. The PSD of eq. 4.27 is therefore given by [53, 149]:

Sfb,imp∗
det,xx (ω) =

F th(ω) +
∣∣meff(Ω2

m − ω2 + iωΓ0)
∣∣2 Simp,xx(ω)

|meff(Ω2
m − ω2 + iωΓ0 − gHfb(ω))|2

, (4.28)
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which, for differential feedback cooling, can be written as a PSD fitting function [17, 31]:

Sfb,imp∗
det,xx (ω) = Sfb,imp

det,xx(ω) + Simp,xx(ω)
(Ω2

m − ω2)2 + Γ2
0ω

2

(Ω2
m − ω2)2 + (1 + g)2Γ2

0ω
2
, (4.29)

where Sfb,imp
det,xx(ω) is defined previously for feedback without squashing, in eq. 4.19. The

effective mode temperature when squashing is present for high feedback gain is given by

[31]:

Tfb
det =

T0

1 + g
+

g2

1 + g

kΩmSimp,xx(ω)

4kBQm
. (4.30)

A simulation of the detected PSD, eq. 4.29, for Qm = 500, Simp,xx = 102, and gains

between 0 ≤ g ≤ 0.4, scaled by Sth
xx(ω)/(meffΩ2

m)2 is shown in fig. 4.12. The effect of

squashing occurs when g > 0.1:

Figure 4.12: Simulated detected PSD for negative velocity feedback using eq. 4.29, in
constrast with the actual PSD in fig. 4.2 a). The same variables are used whereby Qm =
500, Simp,xx = 102 and scaled by Sth/(meffΩ2

m)2. At g ≥ 0.1 the PSD is inverted below
the noise floor, which would suggest an imaginary or negative temperature that is clearly
unphysical.

By using a microsphere-cantilever with a lower mechanical Qm of 280 and a higher

electronic noise floor due to a noisy differentiator (microsphere-cantilever[D]), the effect of

squashing at high feedback gain is experimentally demonstrated in fig. 4.13 a). The noise

floor of fig. 4.13 a) is 4 times higher than in fig. 4.514. Increasing the gain beyond the

cooling limit pushes the detected thermal noise spectra below the measurement noise.

In fig. 4.13 b) the extrapolated cooled temperatures from experiment (fig. 4.13 a) black

data points), are plotted alongside the predicted temperature given by eq. 4.30 (black

line) at each feedback gain g, which has a turning point at the minimum temperature

(22.3 K). Also plotted in blue is the predicted temperature if the imprecision noise is zero

(in this case, T0(1 + g) remains valid). The various noise sources of the experiment are

14Squashing could not be obtained for microspher-cantilever[A] due to a parasitic mode that is amplified
prior to reaching this lower noise floor.
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Figure 4.13: a) Piezo-stack cooling of the c.o.m. mode of microsphere-cantilever[D] with
a lower Qm = 280 than in fig. 4.5 and 4× higher noise floor, showing squashing with
large feedback gain, g. Data was taken at atmospheric pressure, with curves fitted using
eq. 4.21 for low gains and eq. 4.29 for squashed data at g > 8 (alongside eq. 4.30 to infer
the temperature). Errors are from fitting. In b) is shown the experimentally measured
mode temperature as a function of the feedback gain g (black data points), the predicted
mode temperature using eq. 4.30 (black line), and the equivalent temperature if negligible
imprecision noise floor is present i.e. T0(1 + g) is valid (blue line).

investigated in section 4.5 of this chapter.

4.4.4 Simultaneous Cooling of Two Separate Mechanical Oscillators

Simultaneous operation of both feedback cooling schemes is demonstrated in this section.

The performance for simultaneous cooling is not as efficient as the cooling of each mode

separately. This is because the bandwidth of the feedback system is not narrow enough to

isolate only one mechanical mode. This leads to crosstalk in the feedback signals sent to

the piezo-stack and for CEODF modulation. It is possible to remove cross-talk or parasitic

noise with filters, but it was found that filters added background noise and extra delays,

in agreement with experiments in [53] where the response of the actuation force became

modified and distorted with electronic filters.

Instead, simultaneous cooling of microsphere-cantilever[C] and a new taper (taper[C]) is

conducted where the mechanical modes belonging to both oscillators are less than 250 Hz

apart in frequency, and fewer parasitic modes are present in the PSD. This system is
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chosen to demonstrate that the same transduction signal can be used to cool two separate

mechanical oscillators when the elimination of cross-talk by using filters is not possible.

Cooling of this system is presented in the PSDs in figs. 4.14 a) & b) where a phase shifter

is used to modify the relative cooling efficiencies. Fitting the PSD can be achieved using

the equation:

Sfb,sim
xx (ω) =

n=2∑
n=1

2Γ0,nkBT0

meff,n

1

(Ω2
m,n − ω2)2 + (1 + gn)2Γ2

0,nω
2

+ Simp,xx(ω), (4.31)

which is simply the sum of two feedback cooled modes, and it is assumed the imprecision

noise is low.

Figure 4.14: Simultaneous feedback cooling of coupled oscillators (microsphere-
cantilever[C], taper[C]) at atmospheric pressure. The use of a phase shifter can allow
for preferential cooling of either the a) taper mode at 3.8 kHz using the CEODF or b)
the c.o.m. motion of microsphere-cantilever at 4 kHz using PZT cooling. Fitting can be
achieved using eq. 4.31, however, the damping rate Γeff of the non-preferentially cooled
oscillator does not agree with prediction due to distortion of the mode shape.

In figs. 4.14 a) & b) the simultaneous cooling curves of the same system are presented

where time delays are adjusted to optimise cooling of either a) the tapered fibre mode, or,

b) the microsphere-cantilever mode. The use of time delays allow for minimisation of cross-

talk by shifting the centre frequencies away from one another to avoid distorting the other

oscillators’ PSD peak. The fitting of eq. 4.31 confirmed this distortion as the damping

factor, Γeff , and effective mode temperature, Teff , did not obey (g+1) = Γeff
Γ0

= T0
Teff

, which

can occur with multimode systems [145]. This is due to the interplay between the feedback

schemes which rely on the transduction signal that measures relative displacement changes
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between these two separate oscillators.

In fig. 4.15 a), the same plot of fig. 4.14 b) is shown except the mode temperatures

are inferred by integrating the area, which was in good agreement with the fitting of

fig. 4.14 b). Such a coupled system requires further investigation, but using experimental

data shown in fig. 4.15 b), it is observed that each individual feedback scheme has an effect

on the apparent mechanical damping factor and centre frequency of the other oscillator.

Figure 4.15: a) The inferred mode temperature for the taper mode, Tt, and microsphere-
cantilever, Tc, of fig. 4.14 b) by integrating the area under the respective PSD peaks. This
is in good agreement with the fitted temperatures of fig. 4.14 b). The influence of each
singular feedback loop for such overlapped modes is shown in b) where cooling either
oscillator influences the transduced PSD lineshape of the other.

The study of coupled oscillators has importance within optomechanical systems em-

ploying waveguide structures or hybrid schemes, where multiple mechanical modes are

coupled by light. The cooling of mechanical modes belonging to two different structures

has not been demonstrated until now. The tapered optical fibre, for example, is used in

nearly all WGM experiments, as well as for coupling to cold atoms [192], or to photonic

crystals for sensing [12]. Mechanical noise in the form of the taper modes can be trouble-

some for sensing applications as highlighted in [12], where the spectrum of modes creates

a non-flat background noise floor, and can limit cooling efficiency. Coupled mechanical

modes belonging to separate oscillators has been studied elsewhere in [193] where tunable

optical coupling can switch between coupled (synchronised), and individual oscillation

states. This type of behaviour has not been studied with the microsphere-cantilever sys-

tem but could be explored in future experiments, and may have applications for timing

measurements.
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4.5 Noise Sources

Since it has been identified that active feedback is limited by the noise floor of the system,

one must consider how to improve the cooling limit by lowering the noise. The absolute

noise limit will be the quantum shot-noise of the laser itself, discussed in chapter 3, which

limits many optomechanical systems that use passive [46, 194] and feedback cooling [31,

39], but can provide displacement sensitivities on the order of 10−19 m Hz−1/2 [179, 195,

196], a factor of 107 more sensitive than obtained in this thesis.

It was shown earlier in this chapter that the role of the active feedback loop has a large

impact on the cooling dynamics of the system, and components within the loop supply

noise that are directly fed into the resonator motion. Sources of noise are contributed by

the photodetector, the differentiator, the servo, the piezostack used to modulate the posi-

tion of the microsphere-cantilever, and the AOM used to modulate the power of the locking

beam. Since the Newport LB1005 servo has a low voltage noise density of 10 nV Hz−1/2

and the AOM used for modulation of the strong beam is uncoupled from the transduction

beam15, these can be eliminated as dominant noise sources.

The noise output of the other electronic components and the laser itself are experi-

mentally deduced by measurement. The PC oscilloscope is used to record 30 traces of the

voltage output of each noise source, which are then converted into an averaged displace-

ment PSD. Those of importance, which are shown in in fig. 4.16 are listed below:

• The PSD of the transduction beam (red), which includes all noise sources as well as

the thermal mechanical motion of both the tapered fibre and microsphere-cantilever.

This is effectively a sum of all the noise sources present in the system.

• The photodetector noise level at the typical transduction beam laser power ( 70µW)

and photodetector gain setting (40 dB) (orange).

• The output noise of the piezo-driver (purple), driven by the DC voltage output of

the servo, and is converted into the resultant piezo-stack displacement noise (i.e. the

actuation caused by the piezo-driver noise).

• The output noise of the differentiators used during this project, in particular, the

old differentiator ‘differentiator 1’ (cyan) had a much higher noise output than the

newer differentiator labelled as ‘differentiator 2’ (green).

15The strong beam and the transduction beam can be considered de-coupled as they counterpropagate
through the tapered fibre and excite degenerate clockwise/anti-clockwise WGMs. Occasionally interference
or leakage can occur but often cause less than 5 % signal cross-talk.
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• The photodetector at 0 dB gain setting, which has an increased bandwidth from

200 kHz to 10 MHz in order to measure the relaxation oscillation peak of the laser

(prior to any optics/coupled into the tapered fibre), shown as an inset graph. This

is represented as an equivalent PSD (black data).

• An estimation of the laser shot-noise level (blue line), calculated by fitting the re-

laxation oscillation peak of the laser (inset). An estimation of the classical laser

noise if the laser is pumped with a shot-noise limited source is also shown (red line),

found by extrapolating the relaxation peak fit towards lower frequencies. Both esti-

mations of the laser shot-noise and classical noise are converted to the corresponding

displacement noise floor level. The procedure for this is detailed below.

• The noise floor of the PC oscilloscope is also shown (grey), which is lower than all

noise sources measured.

A rough estimation of the laser shot-noise and classical laser noise is found by fitting

the relaxation oscillation peak of the laser output (inset of fig. 4.16) with a fitting function

that defines its PSD [197, 198]:

Sro(ω) = P0
Aω2 +B

(ω2
ro + Γ2 − ω2)2 + 4Γ2ω2

+ c, (4.32)

where A,B are fitting constants, ωro the relaxation oscillation frequency, Γ the damping,

and c is the background noise level. The fitted noise floor, c, corresponds to a displacement

noise PSD of 2.0× 10−28 m2 Hz−1.

From fig. 4.16, the piezo driver and the photodetector are primarily the main sources

of noise. In future experiments the photodetector can either be replaced with a temper-

ature controlled photodetector which reduced thermal noise, or, a balanced detector or

homodyne detection scheme which eliminates classical frequency noise of the laser from

the measurement. However, in order to reach an imprecision defined only by the laser

shot-noise, the differentiator noise (cyan and green data in fig. 4.16) as well as the classi-

cal laser intensity noise (shown in red, and likely to originate from the pumping source),

will also need to be lowered considerably by re-designing the differentiator and using feed-

back to stabilise the laser output itself [165]. The relaxation oscillation is a noise source

that can also be reduced by over 37 dB [199] by feedback methods. At the low frequency

range considered here (<10 kHz) there is also noise associated with thermorefractive noise
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Figure 4.16: The main contributing noise sources are measured and converted to an equiv-
alent PSD. The photodetector and the PZT driver are the main sources of noise, which
sets the transduction signal background noise floor 54.9 dB above the extrapolated laser

shot-noise, Ssn,xx. The dB value is found using 10 log10

Simp
det,xx

Ssn,xx
. Classical sources of noise

imprinted onto the laser intensity are 26.9 dB above the laser shot-noise, and represent
noise that can be reduced using laser stabilisation methods such as those discussed in
chapter 3. The extrapolated laser shot-noise is found by fitting the relaxation oscillation
(inset). The relaxation oscillation also sets the classical background laser noise level.

and 1/f noise. Thermorefractive noise16 occurs due to temperature variations that induce

fluctuations in the cavity refractive index and size (i.e. the thermo-optic effect)[200], as

well as negligible variations in the resonance linewidth [63, 134]. Such an issue does not

add noise if the mechanical frequencies are in the 100’s kHz to MHz range. Phase noise

due to temperature fluctuations within the tapered fibre from weakening of the fibre after

heating and pulling should be investigated in the future, as it can present itself as intensity

noise [201].

As well as reducing classical noise, the displacement sensitivity can be further in-

creased by tuning the transduction efficiency, which is proportional to the optical Q of

the WGM. Since WGMs with linewidths of between 80-500 MHz are usually employed

here, the transduction scaling (i.e. Watts per m, measured by the photodetector) can be

improved by up to a factor of 100, if using the narrowest WGM that has been previously

excited (5MHz FWHM). Using an improved PDH locking method that is not sensitive to

16There is also thermoeleastic noise which is negligible relative to thermorefractive noise [128]
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amplitude fluctuations will aid such a scheme. If the background noise level is reduced

to 1 × 10−30 m2 Hz−1, the minimum temperature for eigenmode 8 (5.5 kHz) of taper[B],

and the c.o.m. mode (2.8 kHz) of microsphere-cantilever[A], is 20 mK and 30 mK respec-

tively, which is still a factor of 105 away from being cooled to the zero point motion at

Tzpf ≈ ~Ωm
kB

, and requires cryogenic operation or tailoring of the mechanical oscillator (i.e.

Ωm) for further cooling.

4.6 Conclusion

In conclusion, feedback cooling of two micron-scale, microgram, coupled mechanical oscilla-

tors using a WGM resonance is experimentally implemented. Mechanical modes belonging

to the microsphere-cantilever and the tapered optical fibre can be individually cooled to

below 10K, representing position stabilization on the picometer scale, comparable to the

diameter of a single atom. The mechanical taper modes can be troublesome for any hy-

brid WGM system using tapered fibre coupling where the taper mode spectrum is present

[12, 136], and direct cooling of these modes has not previously been demonstrated. The

minimum phonon occupancy nmin can be derived from the predicted minimum cooled

temperature (eq. 4.20) as nmin = 1
~

√
kkBT0Simp

ΩmQm
[31], which implies a minimum phonon

occupancy for the microsphere-cantilever mode at 2.8 kHz (fig. 4.5) of 8.5 × 107 , and

n̄min = 3.1 × 107 for the taper mode at 5.5 kHz. Both values are far from obtaining a

quantum state, but demonstrate the feasibility of using WGM enhanced transduction and

WGM enhanced optical dipole forces for cooling.

The role of the feedback loop is explored by introducing time delays that apply cool-

ing whilst also causing spring softening of stiffening, in good agreement with theoretical

predictions. It was shown that time delays reduce the effective feedback damping rate

therefore future experiments require further optimisation of the differentiator such that

instantaneous differentiation can be obtained, especially important when using higher fre-

quency mechanical oscillators. The onset of squashing, where the detected PSD becomes

inverted below the imprecision noise level, is experimentally demonstrated when noise

within the system is fed into the mechanical oscillator, and defines reaching the cooling

limit. Both oscillators can be cooled simultaneously, stabilizing the coupling distance,

which enhances the potential to use the cooled system for ultraprecise closed-loop force

sensing. Although there is no improvement in acceleration sensing (discussed in chap-
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ter 6), the increased damping rate and the broadening of the mode increases the sensing

bandwidth and allows for periodic measurements (where cooling is switched on and off)

since the cooling is faster than the heating from air [181]17, and the system responds faster

to external forces allowing shorter integration times [19]. The modification of Qm through

damping has applications for AFM probing of soft biological samples like DNA which can

be prone to deformation from the tip-sample force if the thermal motion of the AFM tip

is large [147].

Currently, the cooling presented in this thesis is limited by detection noise and the

low Qm of the oscillators. However, the ability to cool the c.o.m. motion of objects within

this intermediate size and mass scale has not been fully investigated, and is attractive for

creating macroscopic quantum objects at the Planck mass to test gravitationally induced

collapse [202]. The steps that can be taken to cool oscillators of this size more effectively

are to increase Ωm and Qm of the oscillators (described in chapter 7), reduce the noise

within the system, and increase the transduction sensitivity. Noise reduction strategies are

easier in principle to apply, and feedback schemes to lower the classical fluctuations of the

laser can be implemented using a noise eater or other servo design [165, 203]. Increasing

the transduction sensitivity by choosing higher optical Q WGMs, which in the literature

can be as high as 6 × 1010 [204], will improve the ability to resolve smaller fluctuations.

However, other enhancements can be made by the inclusion of quantum point contact

(QPC) transducers [205], plasmonics [206, 207] or single-electron transistors [208, 209] to

improve the transduction mechanism.

17If the measurement is performed within one oscillation after switching off cooling, the temperature
increases by approx 2πT0/Qm at the end of the measurement window
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Chapter 5

Passive Cooling

5.1 Introduction

Active cooling using feedback electronics, as demonstrated in chapter 4, is only one method

to damp the thermal motion of a mechanical oscillator. Passive cooling, where electronic

control is not required to drive the actuating force, can also be implemented. This type

of cooling can be preferable to active methods as less components are needed, and may

have reduced noise. Instead, an optomechanical coupling between the motion of the os-

cillator and an optical cavity field mediates damping of the mechanical motion, where

displacements alter the optical resonance dispersively or dissipatively. If the oscillator

moves faster than the time it takes for photons to decay out of the cavity, a delayed op-

tical response to the motion occurs. This delay creates a dynamical backaction force that

can extract motional energy, where cooling is limited by radiation pressure backaction and

laser shot-noise1.

In chapter 3 it was shown that there is a dispersive and dissipative coupling between

the WGM of the microsphere-cantilever and the relative motion between the microsphere

and the tapered fibre, defined with respect to the coupling distance d between both objects.

The dispersive and dissipative coupling rates are defined by gom(x) = dω0
dx , and γom(x) = dκ

dx

such that mechanical motion changes the WGM frequency ω0, and linewidth κ, respec-

tively. Changes in d due to the thermal motion of either the microsphere-cantilever or the

tapered fibre (x(t)) can therefore be detected as a fluctuating power coupled to the WGM,

Pc(t). Since the cavity enhanced optical dipole force (CEODF) is dependent on Pc (see

eq. 3.20 in chapter 3), CEODFs can be used for both passive cooling schemes.

1This is known as the standard quantum limit, which is discussed in section 3.8 of chapter 3.
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By utilising dispersive coupling, passive cooling analogous to the Doppler cooling of

atoms can be achieved using red-detuned light with respect to the WGM2. Dispersive

cooling schemes have had success creating nano/micron-scale mechanical oscillators with

low phonon occupancies of less than 1 [25–27]. A second method relies on dissipative

coupling, where motion changes the decay rate (losses) of the WGM resonance. In the

quantum noise picture, interference between the quantum fluctuations of the laser field

(white noise), and the dissipative bath of the cavity (which has a resonant lineshape as

it is filtered by the cavity susceptibility), can interfere to produce a region in frequency

space with no noise, i.e. a 0 K bath [210]. To date, only one system has implemented

dissipative cooling [211], although in combination with dispersive cooling.

In this chapter, a simple classical model of the coupled equations of motion describing

a mechanical oscillator and an optical cavity field are used to investigate the proper-

ties of dispersive and dissipative cooling. Although the dispersive case is well studied

[14, 138, 160], the theory of dissipative cooling uses quantum noise analysis [210], valid

for low phonon occupancies. Therefore an indication that the predicted dynamics in the

quantum model can also be obtained at high phonon occupancies in the classical regime is

a useful gauge for future experiments. It should be noted that others have studied dissipa-

tive coupling analytically, predicting limits to ground state cooling [212], strong coupling

optomechanics [213, 214], chirped pulse cooling [215], and enhancements to sensing [216].

The simple model in this chapter reveals further information on the modification of the

damping rate when a combination of gom and γom coupling is present.

Lastly, gom and γom are measured for the microsphere-cantilever, taper coupled system

studied in this thesis. An alternative experimental and analytical method to that used

in chapter 3 is applied, and the values are compared to those obtained in the literature.

Dispersive and/or dissipative cooling of a high frequency mechanical mode of a tailored

microsphere-cantilever is predicted, or, alternatively, cooling of a high frequency mode of

the near-field coupled tapered fibre.

In this chapter is described:

• An introduction to passive cooling and dynamical backaction.

• Modelling of passive cooling (dispersive, dissipative, and a mixture of both) using

the classical coupled equations of motion.

2The decay rate of the cavity is equivalent to the spontaneous emission from atoms.
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• Measurement of the dispersive and dissipative rates for the taper coupled, microsphere-

cantilever WGM system.

• A proposal for a future experiment to obtain dissipative cooling.

5.2 Passive Cooling Schemes

Optical passive cooling schemes rely on an optomechanical coupling between a cavity light

field and a mechanical oscillator. This can be optimised through the detuning incident

light with respect to the cavity, such that the thermal motion of the oscillator is damped

by an actuating force arising from the optical field. The two most commonly used optical

forces are radiation pressure, involving direct momentum transfer (e.g. Fabry-Perot (F-

P) cavities with a movable end mirror [145, 217, 218], or the interaction of WGMs and

mechanical breathing modes in toroids [46, 196]), and the optical gradient force (e.g. nano-

objects in the evanescent field of a waveguide or WGM resonator [3, 15, 55], or, cavity

cooling of nanospheres [6–8, 158]).

The two types of optomechanical coupling are dispersive coupling and dissipative cou-

pling, where the mechanical motion modulates the resonant frequency or the damping rate

(i.e. losses) of the optical cavity, respectively. The coupling implies that the mechanical

oscillator is brought into contact with a colder detector (i.e. the cavity bath), which leads

to passive backaction cooling (also referred to as self-cooling via dynamical backaction),

similar to a hot object placed in contact with a colder one [140].

WGM resonators can be used for both types of cooling such that the backaction force

arises from the CEODF, and acts on an object placed within the WGM evanescent field.

This near-field coupling has attracted attention in recent years [1, 3, 9, 10, 15, 25, 40, 66–

70], as the enhanced gradient field results in extremely large per-photon forces and the

highest dispersive optomechanical coupling rates to date.

The next few sections explain how backaction forces can damp thermal motion. Dis-

persive cooling is illustrated using the simple F-P cavity as the framework. A qualitative

discussion on dissipative cooling is also presented before a model of both types of cooling

is demonstrated using classical coupled equations of motion. This can be used as a guide

towards future implementation of these types of cooling.

134



5.2.1 Dispersive Cooling

A F-P cavity with one movable mirror is commonly used to describe the universal phe-

nomena of cavity optomechanics, shown in fig. 5.1.

Figure 5.1: a) A Fabry-Perot cavity formed by a fixed mirror, and a movable mirror
whose motion is described by x(t). Light is coupled into the F-P such that the intracavity
intensity ∝ aa∗(t) builds up, and a standing wave forms. The intracavity photon number is
aa∗(t). Radiation pressure FRP, proportional to the intensity, is applied by the intracavity
field onto the movable mirror. b) The backaction effect can be described by considering
the motion of the movable mirror in time, (top panel, red trace), and the velocity, v(t)
(middle panel, green) where x(t) changes at a frequency larger than the cavity decay rate.
A finite amount of time ∆t is required for the cavity resonance condition to stabilise.

The F-P with a movable end-mirror in fig. 5.1 a) experiences a scattering force (ra-

diation pressure) due to the circulating intracavity intensity. The thermal motion of the

mirror, x(t), creates a new optical round trip condition by dispersively shifting the cav-

ity resonance relative to the incident field. The optomechanical dispersive coupling rate

defines this shift as gom = dω0
dx , which for the F-P system is gom = ω0

1+ x
L
≈ −ωc

L , where L

is the cavity length, and ω0 is the cavity resonance frequency. The system then evolves

to establish a new static equilibrium [219]. A finite time is taken for the cavity response,

defined by the linewidth, and known as the cavity decay rate κ. If the mechanical oscilla-

tor is tailored to oscillate at a frequency Ωm much faster than κ, by the time the cavity

has re-established a maximum intensity (i.e. maximum radiation pressure), the mirror has

continued along its motion. This delay, ∆t, creates a backaction effect whereby for blue

detuning, amplification of the mechanical oscillator motion occurs, and for red-detuning,

the motion is cooled. This is due to a net positive or negative transfer of energy from

the radiation field to the oscillator, respectively. As with atomic laser cooling, where the

spontaneous decay rate is analogous to the cavity linewidth, the maximum cooling or am-
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plification rate occurs when the laser is detuned to the maximum slope of the resonance

lineshape. For cavity optomechanics, this corresponds to the half width half maximum

(HWHM) of the optical resonance i.e. the WGM [219], although this is no longer valid

when Ωm � κ, discussed next.

Sideband-Resolved Cooling

The cooling and amplification process outlined in fig. 5.1, is linked to inelastic scattering

due to Stokes and anti-Stokes sidebands on the probe wave. This technique is used to cool

molecules beyond the Doppler limit if the spontaneous decay rate κ is smaller than the

vibrational frequency, Ωm, and has achieved ground state cooling of trapped ions [220].

Considering the case of a molecule with a vibrational mode3 that Doppler shifts incident

light to resolve a spectrum of sidebands at frequencies ω0− jΩm, where j = ±1,±2..., and

ω0 is the unperturbed resonance transition of the molecule. Equal amplitude sidebands at

±Ωm are created as the vibrational motion Rayleigh scatters the incident light at frequency

ωl = ω0. This is an elastic process with no net transfer of energy. Raman scattering is an

inelastic process that occurs when the incident light is detuned with respect to ω0, such that

the amplitudes of the sidebands are asymmetrical and photons are preferentially scattered

with an increase (anti-Stokes) or decrease (Stokes) in energy. Energy is extracted or added

to the vibrational state respectively.

If κ > Ωm these sidebands are unresolved fig. 5.2 a) (top panel). Red-detuning ωl

by the HWHM of the resonance (bottom panel) leads to an increase in the anti-Stokes

process, such that photons extract energy from the vibrational state, damping the motion.

However, since the system is in the unresolved sideband regime, the Stokes process is not

heavily suppressed such that cooling is limited to the Doppler limit. When κ � Ωm, the

‘resolved-sideband’ condition is met and the Stokes (ωl −Ωm), and Anti-stokes (ωl + Ωm)

sidebands are seen in the cavity transmission, fig. 5.2 b) (top panel). Using red-detuned

light at ωl = ω0 − Ωm, shifts the spectrum such that the anti-Stokes process is enhanced,

whereas the Stokes process is suppressed (bottom panel). Note that for maximum resolved-

sideband cooling or heating, the optimum detuning is ±Ωm respectively.

In the quantum picture, resolved-sideband cooling can be described by considering the

ladder of internal molecular states observed by an incident photon, fig. 5.3. Here, the

3This is analogous to the microsphere-cantilever such that the vibrational mode of the molecule is
equivalent to the c.o.m. motion of the microsphere-cantilever.
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Figure 5.2: The difference between the two regimes of dispersive cooling of an oscillator
with motion at frequency Ωm, dispersively coupled to the intracavity field of a cavity with
resonance frequency ω0, and cavity decay rate κ. a) is the non-resolved sideband scheme,
when κ > Ωm, and b) is the resolved-sideband scheme when κ ≤ Ωm. Damping of the
motion is achieved when the incident light at frequency ωl, is red-detuned to the cavity
resonance, such that for a) ∆ = ωl − ω0 = −κ/2. In the case of b), ∆ = −Ωm such that
the light is tuned to the Stokes sideband.

coupling between the light field and the molecule vibrational mode influences the state

|n̄l, n̄〉 where n̄l is the average photon occupation and n̄ is the average phonon occupation.

Figure 5.3: The quantum picture of resolved-sideband cooling. The resolved internal states
of a molecule (or optomechanical cavity), where the combined state of the average phonon
occupancy n̄, and photon occupancy n̄l, is represented by |n̄l, n̄〉. If the incident laser is
red-detuned, with energy ~ωl = ~(ω0−Ωm), the transition |0, n̄〉 → |1, n̄− 1〉 (blue arrow)
is enhanced, corresponding to anti-Stokes scattering. Rayleigh scattering (grey arrow)
and Stokes scattering (red arrow) are suppressed. Re-emission of the photon (wavy lines)
occurs with energy ~ω0, where the annihilation of a phonon with energy ~Ωm makes up
for the energy deficit of the incident photon at ~(ω0 − ωl).

When an incident photon of energy ~ω = ~(ω0 − Ωm) (i.e. red-detuned to the

Stokes sideband), approaches the molecule, the molecule preferentially absorbs the photon

through the annihilation of a phonon of energy ~Ωm. This leads to the spontaneous emis-

sion of a photon of energy ~ω0. By making the energy scale (~κ) set by the spontaneous
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emission very small compared with the spacing between the internal levels (~Ωm), ground

state cooling can be achieved.

The same technique can be applied to the F-P cavity studied in fig. 5.14. Detuning

to the Stokes sideband corresponds to transitions where a photon is added to the cavity,

whilst simultaneously the occupation of the mechanical oscillator is decreased by one

phonon. At the mechanical ground state where the average occupancy is n̄ = 0.5, both

Stokes and anti-Stokes scattering rates are equal, no further cooling is possible, and the

mechanical mode is in thermal equilibrium with the optical bath [194].

For both non-resolved and resolved sideband cooling, the in-phase component of the

radiation pressure force (real), changes the mechanical oscillator’s rigidity, known as the

optical spring effect [219], whilst the quadrature component (imaginary) causes damp-

ing/heating.

5.2.2 Dissipative Cooling

Optomechanical systems where motion is coupled to the loss (linewidth) of the cavity mode

can theoretically cool to the quantum ground state, without being sideband resolved [210].

The authors in [210] derived the noise power spectra (PSD) of the resultant backaction

force using the quantum Langevin equations [160, 164]. The backaction noise spectrum

mimics a zero-temperature environment due to quantum noise interference between the

shot-noise of the incident laser and the intracavity light, outlined in fig. 5.4. This has a

Fano lineshape as a consequence of quantum noise interference, where the zero can coincide

at the mechanical frequency (i.e. creating a 0 K bath), and suggests no limit to cooling.

Fano lineshapes occur due to interference between a resonant and non-resonant process.

For a purely dispersive system noise exists as radiation backaction noise due to the photon

number fluctuations of the incident light field. When dissipative coupling exists, the

mechanical oscillator mediates the coupling between this backaction noise (which is a non-

resonant white noise process), and the cavity’s dissipative bath (which is shot-noise limited

light filtered by the resonant, frequency dependent cavity susceptibility) [210]. Since this

process is independent on the ratio κ
Ωm

, cooling can be applied in the non-resolved sideband

regime. The detuning of the incident light with respect to the cavity resonance at which

4Note that in optomechanics, radiation pressure originates from the reflection of photons off the mirror
surface and not from absorption and re-emission as is the case in conventional laser cooling. Still, the
cooling mechanism of both schemes is completely analogous.
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Figure 5.4: The interference between a resonant process and a continuum produces a
Fano lineshape with a minimum in the power spectral density (PSD). In the case of WGM
experiments using quantum limited light, the WGM cavity acts as a filter (i.e. due to the
cavity susceptibility) to create a resonance lineshape that fluctuates due to the coupling
to motion, and the continuum corresponds to the incident light which has fluctuations
corresponding to a flat noise spectrum. The interference of these noise spectra leads to a
Fano lineshape with a 0 K cavity bath temperature at a finite frequency.

maximum cooling occurs is given by:

∆opt =
Ωm

2
+
κgom

γom
, (5.1)

where γom = dκ
dx is the dissipative coupling rate, and gom = dω

dx is the dipersive coupling

rate. The noise interference outlined in fig. 5.4 creates two cooling and two instability

(heating) regions [213], which have been studied using an interferometer set-up [221].

So far, no system has shown purely dissipative coupling to a cavity, although successful

combined dissipative and dispersive cooling of a membrane at zero detuning (using light

on-resonance with the cavity) has been achieved in a Michelson interferometer [211].

5.3 Modelling of Passive Cooling using Whispering

Gallery Modes

The previous sections qualitatively described how dispersive and dissipative coupling can

bring about a backaction force to cool mechanical motion optically coupled to a cavity.

The dynamics and characteristics of both cooling schemes using a WGM resonator can

be modelled by considering the classical coupled equations of motion. This allows for

comparison of the damping rates from each scheme, as well as combined cooling using

both dispersive and dissipative coupling.

Shown in fig. 5.5 a) & b) are two realisations of near-field coupling between a mechanical

oscillator and the evanescent field of a WGM resonator.
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Figure 5.5: a) The taper-microsphere junction, where the tapered fibre (or the
microsphere-cantilever) could be cooled passively by using the dynamical backaction force
arising from the dispersive gom, and dissipative γom coupling rates. Both rates depend on
the modulation of the coupling distance, d(t), by the motion of the tapered fibre x(t). The
value of γom depends on the extrinsic coupling rate between the WGM and the tapered
fibre, γe(d). b) An alternative near-field coupling scheme where an ‘external’ oscillator
(shown as a levitated sphere) with motion x(t) modulates the distance D to the micro-
sphere surface, whereas d is fixed at d0, therefore γe(d0) is constant.

The system studied throughout this thesis is represented by a), which shows a tapered

fibre exchanging light to the WGM belonging to a microsphere-cantilever at the extrinsic

rate γe(d). The DC coupling distance d(t) is modulated by the thermal motion of the ta-

pered fibre x(t)5. The presence of the taper causes a shift in the WGM centre frequency,

which is described by the linearised dispersive coupling rate gom(d). The dissipative cou-

pling rate, also linearised for small motions around a DC coupling distance d, is equal to

the derivative of γe(d)6. Shown in fig. 5.5 b) is an alternative version of near-field coupling

where the mechanical oscillator coupled to the WGM, displayed as a levitated sphere at

distance D(t) from the sphere surface, is not the coupling waveguide. Instead, the WGM is

simultaneously coupled to a stiffened waveguide or prism, such that d = d0 and γe(d0) are

fixed. The motion of the levitated sphere, x(t), alters the effective refractive index around

the WGM evanescent field, and shifts the WGM resonance at a rate gom(D), where gom is

exponentially dependent on D. Since this ‘external’ oscillator typically does not exchange

photons with the WGM, there is negligible dissipative coupling. It has been suggested that

carbon nanotubes [222], or plasmonic coated spheres [223], where an internal resonance

5A fixed waveguide such as a prism can be used instead, such that the thermal motion of the microsphere-
cantilever is passively cooled.

6This linearisation is required because of the exponential dependence of γe(d) ∝ e−ηd (as well as gom).
Note that κ = γe(d) + γe.
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provides a loss channel, could be dissipatively coupled to WGMs.

The CEODF of the WGM, used in chapter 4 to cool mechanical modes of the tapered

fibre, can be used for passive cooling. In contrast to active feedback damping using the

on-resonance DC component of the CEODF (attractive force), the dispersive coupling to

a high frequency mechanical mode drives a backaction CEODF defined by:

Fgom
opt = − 1

ω0

dω0

dx

∣∣∣∣
k

U ∝ −gom |a(t)|2 , (5.2)

where ω0 is the cavity resonance frequency, U is the total energy given by U = ~ω |a|2,

|a|2 is the intracavity photon number equal to aa∗, where a∗ is the complex conjugate of

a, and dω0
dx = gom is the dispersive optomechanical coupling rate. The motion of the taper

in fig. a) (or the levitated sphere in fig. b)) towards the sphere is defined as a decrease of x

(i.e. a decrease of d and D in fig.5.5), leading to an increased red-shift of the WGM such

that the force is attractive.

When the CEODF is driven by dissipative coupling, a reactive form of the CEODF

arises whose sign (attractive or repulsive) is dependent on the detuning with respect to

the WGM (this reactive force is similar to that found in atomic physics [224]):

Fγom
opt = −γom∆

γe
|a(t)|2 , (5.3)

where ∆ = ωl − ω0 is the detuning. Note that the laser detuning and the sign of γom

determine whether the force is attractive or repulsive.

5.3.1 Coupled Equations of Motion

The classical dynamics are studied for dispersive and dissipative near-field cooling using

the WGM and its associated CEODF. It is assumed that the system contains many photons

and phonons in order to study the feasibility of cooling from room temperature. Modelling

towards ground state cooling requires the quantum Langevin equations, which can predict

the minimum average phonon occupancy [160, 164]. This is only necessary for n̄th � Qm,

where n̄th is the average thermal phonon number, and will not be considered here.

The equations for the WGM cavity field and the motion of the taper were introduced in

chapter 2 and chapter 3 respectively. The backaction forces from dispersive and dissipative
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coupling further modify the equation of motion describing the tapered fibre:

d2x(t)

dt2
+ Γ0

dx(t)

dt
+ Ω2

mx(t) =
1

meff

(
−gom |a(t)|2 − γom∆

γe
|a(t)|2 + Fth(t) + ...

)
, (5.4)

where the forces on the right-hand-side of eq. 5.4 are the dispersive backaction force, the

dissipative reactive backaction force, and the thermal force. The first two forces rely on the

intracavity intensity |a(t)|2 = aa∗, which is the average number of photons. For the case of

fig. 5.5 a), where the optomechanical coupling is between the WGM and a movable taper,

the coupling distance d is modulated such that the intracavity photon number evolves as:

da(t)

dt
=

(
i [∆− gom d(t)]− γi

2
− γe(d)

2
+
γom

2
x(t)

)
a(t) + i

√
γe(d)− γom d(t)Sin, (5.5)

which describes the cavity field after transformation into the laser frequency rotating

frame, as outlined in chapter 1, section. 1.4. As a reminder, the term Sin =
√

Pi
~ω0

defines

the input laser which supplies the cavity with photons at the extrinsic coupling rate γe(d),

using an input power of Pi. Cavity loss of photons back into the waveguide also occurs

at the rate γe(d) that exponentially depends on d. The intrinsic loss, when the cavity is

unloaded (i.e. not coupled to the taper), is governed by the fixed rate γi. The total loss

that defines the loaded WGM linewidth when there is no taper motion is κ = γi+γe(d). In

the presence of taper motion, κ = γi + γe(d)− γom(d)x(t) for small motions around a DC

coupling distance d, where γom(d) = −ηγe(d) is equal to the differential of γe = γe,0e
−ηd,

where η is the decay rate. Therefore, the reactive force defined in eq. 5.3 is attractive

for red-detuning whereas for blue-detuning it acts as a repulsive force. Note that eq. 5.5

already takes into account the sign of γom.

For the case of fig. 5.5 b), d is fixed relative to a stationary taper and the optomechan-

ical coupling exists between an external object with motion x(t), in the near-field of the

microsphere-cantilever:

da(t)

dt
=

(
i [∆− gom x(t)]− γi

2
− γe(d)

2
+
γom

2
x(t)

)
a(t) +

√
γe(d)Sin. (5.6)

5.3.2 Approximations

A key difference between the near-field coupling described by eq. 5.5 and eq. 5.6 is the

role of γe(d), which acts as a dissipative channel. In the case of a levitated sphere, γe(d) is
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fixed γom can be found by experimentally monitoring the change in the WGM linewidth

as this levitated object is brought closer to the surface of the sphere. One interest of this

thesis is to cool the taper motion, where γe(d) is now modulated by the taper, such that

γom is defined by the linearised form of γe(d), which is γe(d) as γe0e
−ηd − γomd(t) (valid

for small modulations around d), where γom = ηγe(d). This means γom appears twice in

eq. 5.5, most notably in the pumping term: i
√
γe − γomd(t)Sin [216]. The presence of d(t)

in this square root term becomes difficult to factorise when deriving an effective damping

rate (studied next). For the preliminary investigation here, it is therefore assumed the

pumping term of eq. 5.6 is an adequate approximation for the pumping term of eq. 5.57.

The implications of this approximation only influence the ability to dissipatively cool to

the quantum ground state, which cannot be predicted using classical modelling and thus

will not impact the results here. According to [210], the optimum dissipative system should

be dominated by changes in the external coupling to the port used to drive the cavity,

i.e. the extrinsic rate γe that appears in the pumping term and the loss terms. If the

pumping term is not modified, no quantum noise interference is obtained, and the system

must be sideband resolved to reach the ground state. However, if a mixture of dispersive

and dissipative coupling exists, non-perfect destructive noise interference can arise and a

Fano lineshape with a minimum bath temperature (6= 0 K) is obtained [212]. Therefore,

the assumption that the WGM field can be represented by eq. 5.6, which is coupled to the

taper motion described by eq. 5.4 will suffice.

Two further simplifications are imposed for ease of modelling using Mathematica.

Firstly, an ideal harmonic motion is assumed by setting Γ0 = 0, Fth = 0 in eq. 5.4.

Secondly, the equations are normalised into dimensionless units by using the constant

D =
√
meffΩm. The dimensionless parameters are now X = Dx, τ = tΩm, d2X

dτ2 = 1
Ω2

m

d2X
dt2

,

and dX
dτ = 1

Ωm

dX
dt . Variables are defined as ∆̃ = ∆

Ωm
, γ̃i = γi

Ωm
, γ̃e = γe

Ωm
and S̃in = Sin√

Ωm
.

The dispersive and dissipative rates are now g̃om = gom

ΩmD
and γ̃om = γom

ΩmD
respectively.

The dimensionless versions of the approximated coupled equations (eq. 5.4 and eq. 5.5),

representing the motion of the tapered fibre coupled to the intracavity photon number of

the WGM resonator at a set DC coupling distance, are:

da(τ)

dt
=

[
i
(

∆̃− g̃omX(τ)
)
− γ̃i

2
− γ̃e

2
+
γ̃om

2
X(τ)

]
a(τ) +

√
γ̃eS̃in, (5.7)

7This approximation can be avoided by using the quantum description of the system, derived in [225],
but does not give much insight into the cooling dynamics when starting from high phonon occupancy.
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d2X(τ)

dt2
+X(τ) =

(
−g̃om +

γ̃om∆̃

γ̃e

)
|a(τ)|2 . (5.8)

Mathematica’s inbuilt NDSolve function can iteratively solve these coupled differential

equations in the time domain, or, alternatively, the equations can be used to form an

effective damping rate, Γopt, similar to that found for active feedback cooling. The sign

of Γopt determines if the thermal motion is reduced (+Γopt) or increased (-Γopt), using

the axis convention of eq. 5.4. The magnitude of Γopt is proportional to the reduced or

increased mode temperature.

The method of deriving an effective damping rate is to consider the backaction force

that arises from fluctuations ∂x(t) around the steady state position x̄, after linearising

eq. 5.8 using x(t) = x̄ + δx(t). The magnitude of this backaction force depends on the

fluctuations of the cavity field ∂a(t), ∂a∗(t) around ā, ā∗, after linearising eq. 5.7 using

a(t) = ā + δa(t), where aa∗ is the intracavity photon number. The steady states are

obtained by setting ẋ(t) = ȧ(t) = ä(t) = 08, where only the first stable solution is

required9. The expressions for δx(t), δa(t) are rewritten in the frequency domain (by using

the Fourier transform), and combined with expressions for ā, x̄, to derive the backaction

force:

∂F̃gom,γom
opt (ω) ≈

(
−g̃om +

γ̃om∆̃

γ̃e

)
[ā∗∂a(ω) + ā∂a∗(ω)] , (5.9)

which is the dimensionless form of ∂Fgom,γom
opt (ω) for combined dispersive and dissipative

cooling.

5.3.3 Dispersive Backaction Damping Rate

If only dispersive coupling is considered (γom = 0), the backaction force of eq. 5.9 is

given by ∂Fgom
opt (ω) ≈ −gom (ā∗∂a(ω) + ā∂a∗(ω)). The steady state, coupled equations in

dimensionless form are:

ā =

√
γ̃eS̃in

−i(∆̃− g̃omX̄) + γ̃i
2 + γ̃e

2

, (5.10)

X̄ = −g̃om |ā|2 . (5.11)

8Derivatives in time, from this point onwards will be denoted by ȧ(t) = da(t)
dt

, ä(t) = d2a(t)

dt2
9More than one stable solution can be found if the light intensity is large [218], or when floppy mechanical

oscillators or high optical quality factor cavities are used.
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These equations form an polynomial expression in X̄, equal to 0 which can be solved to

find the root X̄, for a particular combination of S̃in, κ̃, and g̃om:

g̃2
omX̄

3 − 2∆̃g̃omX̄
2 +

((
γ̃i + γ̃e

2

)2

+ ∆̃2

)
X̄ + g̃omγ̃eS̃

2
in = 0. (5.12)

Once X̄ is found, it can be used in eq. 5.10 to obtain the corresponding value of ā.

Next, the dynamics of the small modulations ∂a(τ) and ∂X(τ) are considered, where

second order terms i.e. ∂a(τ)∂X(τ) or ∂a∗(τ)∂a(τ) are neglected:

∂ȧ(τ) =

(
i∆̃− ig̃omX̄ −

γ̃i
2
− γ̃e

2

)
∂a(τ)− ig̃omā ∂X(τ). (5.13)

∂Ẍ(τ) + ∂X(τ) = −g̃om [ā∗∂a(τ) + ā∂a∗(τ)] = ∂Fgom
opt (τ). (5.14)

Transforming eq. 5.13 into frequency space (τ 7→ ω) and using Fourier transform identities

for ∂Ẍ, ∂Ẋ, expressions for ∂a(ω) and ∂a∗(ω) can be written as:

∂a(ω) =
−ig̃omā

−i∆̃ + ig̃omX̄ + γ̃i
2 + γ̃e

2 − iω
∂X(ω), (5.15)

∂a∗(ω) =
ig̃omā

∗

+i∆̃− ig̃omX̄ + γ̃i
2 + γ̃e

2 − iω
∂X(ω), (5.16)

which can be used to derive the backaction force:

∂F̃gom
opt (ω) =

− g̃2
om |ā|

2

 ∆̃− g̃omX̄ + ω

(∆̃− g̃omX̄ + ω)2 +
(
γ̃i+γ̃e

2

)2 +
∆̃− g̃omX̄ − ω

(∆̃− g̃omX̄ + ω)2 +
(
γ̃i+γ̃e

2

)2

 ∂X(ω)+

+ ig̃2
om |ā|

2

 (γ̃i + γ̃e)/2

(∆̃− g̃omX̄ + ω)2 +
(
γ̃i+γ̃e

2

)2 −
(γ̃i + γ̃e)/2

(∆̃− g̃omX̄ − ω)2 +
(
γ̃i+γ̃e

2

)2

 ∂X(ω).

(5.17)

The real and imaginary part of eq. 5.17 correspond to the in-phase and quadrature mod-

ulation of the circulating power with respect to the mechanical motion, which gives rise

to the backaction induced optical spring effect, and backaction damping/amplification,

respectively10. This equation can be evaluated at ω = Ωm, noting that in dimensionless

units Ωm = 1.

10This is analogous to the mechanical frequency shift and damping for active feedback cooling in chap-
ter 4.
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The dimensionless dispersive backaction damping rate is therefore given by:

Γ̃gom
opt ≈ g̃2

omā
2

 (γ̃i + γ̃e)/2

(∆̃− g̃omX̄ + 1)2 +
(
γ̃i+γ̃e

2

)2 −
(γ̃i + γ̃e)/2

(∆̃− g̃omX̄ − 1)2 +
(
γ̃i+γ̃e

2

)2

 . (5.18)

To use this equation, the steady state intracavity photon number |ā|2 (eq. 5.10) and

steady state position X̄ (eq. 5.11) are inserted. The dispersive backaction damping rate

is modelled in fig. 5.6 for varying detuning ∆/Ωm and both a), laser power (represented

by the pumping term Pi = S2~ωΩm, (note that S2 ≡ S2
in) and b), the ratio of the

extrinsic to intrinsic coupling rates, γe
γi

, that defines the taper to microsphere coupling

regime (this is dependent on d, investigated in chapter 2 section 1.4.). The parameters

chosen are gom = 2π × 20 MHz nm−1, γi = 2π × 5 MHz, a taper mode with frequency

Ωm = 2π×8 MHz, and effective mass 2×10−12 kg. A high Ωm is chosen since the kilohertz

taper modes are too low for passive cooling using the narrowest WGM excited within this

thesis ≈ 5 MHz.

Figure 5.6: a) Density plot of the effective dispersive damping rate Γopt for varying detun-
ing ∆ (normalised to mechanical frequency Ωm) whilst increasing the incident pumping
photons (represented by Pi = S2~ωΩm). The laser power Pi is varied from 0 to 94 mW
using 1064 nm light, and the WGM is undercoupled (γe = γi/2). b) Density plot of Γopt

for varying detuning whilst changing the WGM coupling regime usig γe
γi

, for Pi = 94 mW.

From fig. 5.6 a) & b), red-detuning results in cooling of the taper motion whilst blue

detuning leads to heating. The magnitude of Γgom
opt scales with the pump power. The

maximum Γgom
opt occurs at the optimum detuning of ∆ = −0.75 Ωm ≈ 1.125 × κ, since

the system is on the boundary of being sideband resolved. Using fig. 5.6 b) sets the

optimum WGM coupling regime (and therefore the taper to microsphere coupling distance)

to critical coupling when γe/γi = 1. Pushing the system further into the sideband resolved
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regime, as shown in fig. 5.7, shifts the optimum detuning to ∆ = −Ωm, as expected from

the Raman scattering picture11.

Figure 5.7: The effective dispersive damping rate Γopt on a mechanical oscillator near-
field coupled to the WGM of a microsphere, plotted as a function of the detuning ∆ of
the pump light (with power Pi = 23 mW) with respect to the WGM resonance, in the
undercoupled regime given by γe = 0.5 γi. In the sideband resolved regime (Ωm/κ � 1,
where κ = γi+γe), the largest Γopt is reached when ∆ = −Ωm, whereas in the non-resolved
sideband scheme ∆ = −κ/2.

5.3.4 Dissipative Backaction Damping

In order to directly compare with the dispersive cooling simulation in fig. 5.6, the same rate

as dispersive coupling is used for dissipative coupling: γom = 2π × 20 MHz nm−1, which

is valid at a set DC distance between the moving tapered fibre and microsphere. The

same values for Pi, γi, Ωm, and meff are inserted into the coupled dimensionless equations

eq. 5.7 & eq. 5.8, with zero dispersive coupling (gom = 0).

The steady state solutions are then found by looking for the first real root of:

γ̃2
om

4
X̄3 − γ̃om

(
γ̃i
2

+
γ̃e
2

)
X̄2 +

(
∆̃2 +

(
γ̃i + γ̃e

2

)2
)
X̄ − γ̃om∆̃S̃2

in = 0. (5.19)

Following the procedure used to derive the effective damping from dispersive coupling,

the imaginary part of the dissipative force ∂F̃γom
opt (ω) = γ̃om∆̃

γ̃e
(ā∗∂a(ω) + ā∂a∗(ω))12 gives

11The limit to cooling is still dependent on imprecision noise related to the light field itself which acts as
detector, as well as radiation pressure backaction noise since the light also acts as an actuator, discussed
in section 3.8 in chapter 3.

12Note that the negative sign of γom has been taken into account.
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a new expression proportional to the dissipative damping rate, Γopt. When evaluated at

ω = Ωm, the dimensionless effective damping from dissipative cooling is:

Γ̃γom
opt ≈

γ̃om∆̃

γe
ā2

 (γ̃om/2)(∆̃ + 1)

(∆̃ + 1)2 +
(
γ̃i
2 + γ̃e

2 −
γ̃om

2 X
)2 −

(γ̃om/2)(∆̃− 1)

(∆̃− 1)2 +
(
γ̃i
2 + γ̃e

2 −
γ̃om

2 X
)2

 .

(5.20)

This dissipative backaction damping rate is plotted as a function of detuning and pump

power in fig. 5.8 a), whereas in b) the WGM coupling regime γe/γi is varied alongside the

detuning. The same variables are used as in the dispersive case allowing direct comparison

to fig. 5.6. Note that the ratio of γe/γi in fig. 5.8 b) is calculated from 0 to 1 whereas the

dispersive case was calculated from 0 to 3.

Figure 5.8: a) Density plot of the effective dissipative damping, Γopt for varying detuning
∆ (normalised to the mechanical frequency Ωm) and pump power defined as Pi = S2~ωΩm,
where Pi is the incident power. Pi is varied from 0 to 94 mW using 1064 nm light, and
the WGM is undercoupled γe = γi/2. b) Density plot of Γopt for varying detuning whilst
changing the WGM coupling regime, i.e. γ̃e

γ̃i
for Pi =94 mW.

In contrast to dispersive cooling, the largest dissipative damping rate occurs for blue

detuning, as predicted from the quantum noise analysis of dissipative systems [210, 212].

The effective dissipative damping is comparable to dispersive cooling, with the dispersive

cooling rate larger by a factor of 1.3.

In order to validate the claim that non-resolved sideband cooling can be achieved, the

dependence of Γγom
opt on the ratio Ωm

κ is modelled, as shown in fig. 5.9 a) & b) using the same

Pi of 24 mW as the dispersive case of fig. 5.7. From fig. 5.9 a) it can be seen that cooling

when blue detuned with respect to the WGM can be achieved for mechanical frequencies

up to 20× lower than the total linewidth of the WGM. The narrowest WGM excited

using our experiment is 2π × 5 MHz, suggesting a 250 kHz mechanical frequency could
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be dissipatively cooled. This could correspond to the higher order modes of the tapered

fibre [136]. As the sideband resolved parameter is further increased to 0.25, fig. 5.9 b), the

characteristic appearance of two cooling regimes and two heating regimes become more

pronounced.

Figure 5.9: Density plot of the effective dissipative backaction damping Γopt with varying
resolved sideband parameter from a) Ωm

κ =0.025 to 0.14, and b) Ωm
κ =0.14 to 0.25. The

input laser power is Pi = 23 mW, and the WGM coupling regime is undercoupled γe =
γi/2.

Increasing the sideband resolved parameter from 0.25 to 2.5, modelled in fig. 5.10a),

obtains damping rates comparable to the dispersive scheme in fig. 5.7.

Figure 5.10: a) Effective dissipative backaction damping Γopt as a function of detuning (∆)
and the resolved sideband parameter Ωm

κ for the WGM undercoupled regime γe = γi/2,

with a laser power of 23 mW. In b) is shown a 2D slide of a) when Ωm
κ = 1, showing 2

cooling and 2 heating regimes as a function of detuning.

In the figure next to it (fig. 5.10 b)), is displayed a 2D slice of the dissipative damping

rate shown in a), but at a fixed Ωm
κ = 1, which shows two cooling Γopt > 0, and two

heating Γopt < 0 regimes.

149



5.3.5 Combined Passive Cooling in the Evanescent Field

If there is a combination of dissipative and dispersive backaction in the evanescent field,

as is the case for the coupling between the microsphere-cantilever and taper (measured in

chapter 3), the damping rate is:

Γ̃gom,γom
opt ≈

(
−g̃om +

γom∆̃

γe

)
ā2

(γ̃om/2)(∆̃− g̃omX̄ + 1)− (g̃om/2) (γ̃e + γ̃i)

(∆̃− g̃omX̄ + 1)2 +
(
γ̃i+γ̃e−γ̃omX̄

2

)2

+

+

(
−g̃om +

γom∆̃

γe

)
ā2

−(γ̃om/2)(∆̃− g̃omX̄ − 1) + (g̃om/2) (γ̃e + γ̃i)

(∆̃− g̃omX̄ − 1)2 +
(
γ̃i+γ̃e−γ̃omX̄

2

)2

 .
(5.21)

In order to understand how the ratio between the dissipative and dispersive coupling

changes the backaction damping rate, fig. 5.11 a) & b) is simulated by changing γ̃om

g̃om
from

0→ 0.5 in a), and from 0.5→ 4 in b).

Figure 5.11: The effective damping rate Γopt from passive cooling using both dispersive
and dissipative coupling. The ratio between the dissipative and dispersive coupling rates
is varied from a) γom

gom
= 0 → 0.5, and b) γom

gom
= 0.5 → 4, for Pi = 94 mW, γe = 0.25 γi,

gom = 20 MHz nm−1, and a WGM linewidth of 5 MHz, and Ωm = 8 MHz

The laser power in fig. 5.11 is set to 94 mW, and gom = 20 MHz nm−1 is fixed whilst

γom is varied. The system is in the undercoupled regime γe = γi/4, with a mechanical

frequency of Ωm = 8 MHz. Intuitively the dependence on detuning transitions from the

dispersive cooling case where red-detuned light causes damping, to a regime where cooling

can occur on-resonance (γom

gom
≈ 0.5), and then cooling for blue-detuning fig. 5.11 b) as the

dissipative coupling is increased.
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5.4 Measurement of the Optomechanical Coupling Rates

From the simulations, it is clear that the optomechanical coupling betwen the microsphere-

cantilever WGM and the mechanical modes of the tapered fibre offer an unique test-bed for

applying dissipative and dispersive cooling. In light of this, the dissipative and dispersive

coupling rates are measured again using the experimental set-up in fig. 3.3 (pg. 64) of

chapter 3, alongside an alternative method for determining the coupling rates than in

section 3.3. The laser is scanned across the WGM whilst decreasing d (the coupling

distance) so that the WGM resonance frequency, decay rate κ, and the power coupled to

the WGM, Pc can be measured from the WGM transmission.

The dispersive coupling rate gom is deduced by plotting the shift in WGM frequency

against d. An exponential fit of Ae−ηd is applied, where A is a constant, and η is the decay

constant (equivalent to 2αs where αs is the evanescent decay rate). The derivative of this

fit, Aηe−ηd, is equal to the linearised form of gom(d), valid for small modulations around d.

The linearised form of the dissipative coupling rate, γom(d), is equal to the derivative of the

extrinsic coupling rate γe = γe,0e
−ηd, which describes the rate that photons are transferred

between the taper waveguide and the microsphere-cantilever which can be measured as

in section 2.4.1 of chapter 2. However, the derivative of the measured change in linewidth

with d is found to be larger than γom calculated from the measured γe(d). The difference

is attributed to scattering losses, denoted as γs, where photons are not coupled back into

the taper. All three measured rates are plotted in fig. 5.12.

Figure 5.12: The measured dissipative, dispersive, and scattering rates for a microsphere-
cantilever coupled to a tapered fibre A WGM of ≈ 470 MHz FWHM is used with ≈ 1µW of
input laser light. The rates are valid for small modulations about a DC coupling distance
d.
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In fig. 5.12 is displayed the measured dispersive, dissipative, and scattering rates for

the taper coupled, microsphere-cantilever system studied in this thesis. At a DC coupling

distance d, the coupling rates have been linearised such that they are valid for small

displacements from d. The exponential fit to these curves can be used to approximate

these rates as:

• Dispersive coupling rate gom ≈ −78× e(−13.4×10−3)d MHz nm−1.

• Dissipative coupling rate γom ≈ 47× e(−14.7×10−3)d MHz nm−1

• Scattering rate γs ≈ 20× e(−11.5×10−3)d MHz nm−1

These values agree within an order of magnitude compared with the microsphere-taper

system of [45] where the ratio between dispersive to dissipative coupling is 20, and the

ratio between dispersive to scattering is 5. The ratios obtained here are 2 and 3.5 respec-

tively, where differences will be related to geometric and surface differences between the

two systems. The scattering rate γs, measured experimentally, but not included in the

modelling of section 5.3, entails an additional loss to the system not associated with the

cavity driving field. In the quantum noise picture this leads to a non-perfect destructive

interference [212], which limits cooling to the ground state but is not expected to influence

the classical dynamics.

In table 5.1 lists optomechanical structures where γom and gom have been measured or

predicted, including that of our own system (as in fig. 5.12), and those in similar systems

[45, 225] . The lower panel of the table shows WGM resonator systems where near-field

coupling is used to control the motion of an external mechanical oscillator (i.e. not the

tapered fibre within the coupling junction), which have negligible dissipative coupling, but

can achieve large gom. The majority of systems with dissipative coupling have a larger

dispersive coupling, and to date, increasing this dissipative component, whilst decreasing

the dispersive contribution has proven unsuccessful.

In comparison to the systems with both dispersive and dissipative coupling, the ta-

per coupled, microsphere-cantilever system ranks mid-level, with gom=16 MHz nm−1 and

γom = 8 MHz nm−1 at a DC coupling distance of 120 nm. Such large values are attributed

to the taper, which is not simply a dielectric in the near-field of the WGM resonator, but

also functions as a photon loss and pumping channel. The Michelson interferometer is

currently the only system to demonstrate combined dispersive and dissipative cooling of

a 80 ng membrane to 126 mK [211]. Purely dissipative cooling has not been obtained.
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Ref. Cavity Structure Mechanical Oscillator max.γom max.gom
(MHz nm−1) (MHz nm−1)

[213]2013 Michelson interferometer SiN membrane 0.114∗ 0.448∗

[146]2014 Photonic crystal Split-beam nanocavity 500 2000
[222]2013 Toroid with WGM Carbon nanotube 0.4† N.A.
[226]2015 Photonic crystal Split-bean nanocavity 3 10
[227]2015 Microsphere Graphene 0.1 0.21
[225]2009 Toroid with WGM SiN waveguide 26.6 2

[32, 68]2007 SiN disk Taper 35+ 10
[45]2015 SiO2 Microsphere Taper 0.845+ 14+

UCL SiO2 Microsphere Taper 8+ 16+

[69]2005 Double sphere Seperation gap - 200∗

[70]2009 Stacked Double ring Coupled motion - 31,000
[1]2015 Toroid evansecent field Nanostring - 700

*Estimated from data within reference. † Predicted. + Deduced at a coupling distance of 120 nm.

Table 5.1: A table of systems with dispersive γom, and dissipative γom coupling rates,
including the system studied in this thesis (ref: UCL).

5.5 Proposal for a Dissipative Cooling Scheme

The results of the simple model in section 5.3, and the measured optomechanical coupling

rates of the taper coupled, microsphere-cantilever WGM system in section 5.4 indicate a

worthwhile pursuit of dissipative cooling in a future experiment. However, three improve-

ments are required:

1. A suitably high frequency mechanical mode (Ωm > 100 kHz) must be used, which

could belong to a torsional mode of the tapered fibre [136], or the microsphere-cantilever

itself if the cantilever is tailored to obtain a high Ωm (described in chapter 7).

2. The measured gom is too large and must be suppressed with the aid of active

feedback stabilisation of the laser frequency, similar to the PDH stabilisation implemented

in chapter 2. However, if a high Ωm is used, further optimisation of the feedback is required

such that it is fast enough to counteract the dispersive shift of the WGM mode.

3. The predicted laser powers required to demonstrate dissipative cooling are less than

1 W. However, the current fabrication and storage methodology for the tapered fibres in

this thesis (chapter 2) results in tapers that typically melt at input laser powers over

5 mW at atmospheric pressure, and less than 1 mW at 0.5 mBar. Switching to a hydrogen

flame reduces surface contaminates, and working within a clean room can help reduce dust

adhering onto the taper during installation into the vacuum chamber. This will allow for

more light to be coupled into the taper, and thus the WGM.

It should be noted, that if successful dissipative cooling of the c.o.m. motion of the

microsphere-cantilever is achieved, the system can be further optimised for reaching the
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quantum ground state and testing quantum phenomena, described in chapter 7. The

microsphere can be untethered from the cantilever, and levitated using an optical and/or

ion trap, whilst a tapered fibre optically couples light to the WGM circulating within it13.

5.6 Conclusion

In conclusion, this chapter broadly introduces passive cooling methods utilising optome-

chanical coupling between mechanical motion and optical fields. Both dispersive and dis-

sipative coupling exists between the tapered fibre and the microsphere-cantilever, whereby

the motion of either oscillator shifts the WGM resonance (dispersive coupling rate gom),

and alters the WGM decay rate (dissipative coupling rate γom). The experimentally mea-

sured values of γom and gom for the taper coupled microsphere-cantilever system, in the

range of 10 MHz nm−1, are sufficient to obtain dispersive cooling, dissipative cooling or a

combination of both. The latter two cooling schemes would herald new results, currently

only achieved by one set-up [211].

A simple classical model using the coupled equations of motion to describe disper-

sive and/or dissipative cooling has been implemented. The classical and quantum model

of dispersive cooling has been actively studied for many years, and as such, no new in-

formation is presented here. However, dissipative cooling is relatively new, with fewer

experimental demonstrations. Although the original quantum analysis of dissipative cool-

ing predicts cooling to the quantum ground state without requiring the sideband resolved

regime, classical modelling is useful for investigating the validity of this claim when the

oscillator contains many phonons. It is shown in section 5.3 that dissipatively cooling a

high frequency (Ωm > 100 kHz) mechanical mode of either the microsphere-cantilever or

the tapered fibre could be demonstrated with relatively achievable laser powers. Signature

behaviours predicted by the quantum theory of dissipative cooling is validated through

the classical model, such as the existence of 2 heating and 2 cooling regimes dependent on

the laser detuning with respect to the cavity resonance. Unlike dispersive cooling, where

cooling is obtained with red-detuned light, dissipative cooling allows for cooling when

blue-detuned. Of course, to obtain more accurate predictions of the damping rate, and

the final cooled mode temperature, the simple model presented here should be modified

to include the stochastic force responsible for Brownian motion.

13A 10µm diameter silica sphere levitated in a Paul trap is demonstrated in chapter 1, fig. 1.7 (pg. 20).
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Chapter 6

A Whispering Gallery Mode

Accelerometer

6.1 Introduction

The cumulative work of chapters 2 & 3 can be combined into an optical whispering gallery

mode (WGM) accelerometer, unlike any commercially available device.

Accelerometers are sensors that can measure the acceleration of a moving or vibrating

body. Such devices play an integral role in precise navigation [228, 229], gravity gradiom-

etry [135, 230], and structural health monitoring. There are two types of accelerometer;

those using a test-mass on a spring, or free-fall accelerometers. The most common use

a test-mass on a spring (i.e. cantilevers or electrodes), and measure the extension of the

spring as the ‘g-force’ (also referred to as proper acceleration) is applied. The spring

elongates until the restoring forces within the spring pull the test-mass back. This mea-

surement of acceleration is relative to the Earth’s reference frame, such that a constant

reading of −g (g=9.81 m s−2) is obtained in the y-axis. Free-fall accelerometers such as

atom interferometers [231] measure the time it takes for the test-mass to fall a set distance.

This cancels out the measurement of the Earth’s gravitational field, and are considered

more accurate but are larger in size.

It will come as no surprise that within the last twenty years many optical systems have

revolutionized the field of inertial sensing. Optical accelerometers operate by measuring

the interaction of a moving test-mass with an optical field, for example, the change in light

coupling efficiency into an optical fibre [23, 232], the optical mode coupling between two
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photonic-crystal zipper beams [12]1, or the dispersive coupling of a movable mirror in a

Fabry-Perot cavity [21]. Optical sensors offer significant improvements over their electrical

counterparts2, as they are non-conductive, immune to electromagnetic interference and can

reach sensitivities limited only by the quantum fluctuations of light [2, 71, 179] (and the

mechanics of the test-mass).

The microsphere-cantilever fabricated and studied in chapter 2 offers both a test-mass

and an optical resonance in the form of the WGM. Similar devices use WGMs to detect

a moving test-mass placed in the WGM evanescent field [19, 24]. However, in this thesis,

the test-mass is the WGM resonator itself, which has been studied previously by Haus et

al. [20] using a WGM resonator coupled to a MEMS waveguide. Here, the coupling is pro-

vided by a tapered fibre (the fabrication and coupling of WGMs using the tapered fibre is

shown in chapter 2). The circulating WGM within the microsphere can transduce its own

motion on the cantilever, which is optimised and described in chapter 3. In that chapter,

the thermal motion of the microsphere-cantilever could be detected, which demonstrates

the feasibility of transducing a resultant deflection of the cantilever in response to accel-

eration3. An internal force known as stress (force per unit area) causes the cantilever to

bend such that the deflection (related to strain) is proportional to acceleration. The the-

ory that describes the relationship between stress, strain, and deflection will be presented

in this chapter, in order to compare experimental measurements with prediction.

The limit to sensing, i.e. the minimum resolvable acceleration, is set by the noise floor

in the displacement power spectral density (PSD). Typical displacement PSD’s obtained in

chapter 3 using the WGM transduction show a displacement sensitivity ≈ 10−12 m Hz−1.

For the purposes of measuring acceleration, this displacement sensitivity corresponds to

an acceleration sensitivity, called the noise equivalent acceleration aNEA, such that an

aNEA ≈ 1µg Hz−1/2 implies a measurement of 1µg within a sample time of 1 s. It will be

shown that the WGM sensor studied in this chapter offers the lowest reported aNEA from

a WGM device.

1A photonic zipper beam comprises of a clamped-clamped beam whose cross section is patterned for
strong optical localisation into a small mode volume at the centre of the beam. Two nanobeams placed
within the near-field of the other results in strong optomechanical coupling to the relative motion between
the beams.

2Capacitive accelerometers measure the capacitance change between a fixed electrode and a movable
electrode. They are prone to electromagnetic disturbance and jamming, often requiring significant invest-
ment and engineering to measure accelerations ≤ µg.

3The taper can also function as an accelerometer but it is 20 times lighter therefore will have an
acceleration sensitivity which is a factor of

√
20 smaller compared with a microsphere-cantilever with similar

mechanical frequency and mechanical quality factor, see section 6.4.4 on the noise equivalent acceleration.
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The sensing range is entirely determined by the material and geometry of the microsphere-

cantilever, as well as the physical separation distance to the taper. This DC coupling

distance between the taper and the microsphere is referred to as the ‘null position d0’

in accordance with accelerometer terminology, and large displacements away from d0 can

eventually cause the microsphere to touch the taper, setting a maximum acceleration limit.

The maximum sensing range for this type of system has not been previously reported, and

no indication of the stability using the microsphere-cantilever has been studied. Stability

in particular refers to drifts that may offset the measurement, providing a false signal.

The so-called vibration rectification error (VRE) affects all test-mass sensors due to non-

linearity caused by asymmetric clamping or geometry (i.e. the time averaged deflection

is biased in one direction), and to a lesser extent, asymmetric damping. The VRE is

troublesome in high vibration environments as it causes a false bias in the output.

The lack of experimental data characterising the WGM sensor in terms of drift, VRE,

and the sensing range (i.e. linear range vs. non-linear range) motivates the majority of

the experimental investigations presented here.

This chapter will:

• Discuss the theory behind the WGM microsphere-cantilever accelerometer.

• Present measurements of the WGM acceleration sensing range, compared with a

commercial accelerometer.

• Present measurements of the noise equivalent acceleration, and measure the mini-

mum resolvable acceleration over a range of driving frequencies.

• Investigate drift, including vibration rectification errors.

6.2 Accelerometer Theory

Accelerometers are classical mechanical systems whose principle of operation can be repre-

sented by a test-mass attached to a spring, shown in fig. 6.1 a). The test-mass (with mass

m) is connected a flexible spring with spring constant k fixed to the base via the hous-

ing. The surrounding gas within the housing introduces damping defined by a damping

coefficient, b.

When a force F is applied to the system, the casing and the base will be accelerated

immediately, changing the base position by Y . Newton’s first law of motion states that the

test-mass tries to stay at rest and lags behind, requiring an internal force to elongate the
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Figure 6.1: a) A simple test-mass accelerometer; the test-mass is attached to a spring
with spring constant k and is damped by the surrounding gas with damping coefficient
b. The spring is fixed to the housing that sits upon the base. When a force F is applied
to the base, the base accelerates such that its position changes by a distance Y . The
test-mass lags behind such that the spring is stretched by a distance y. The magnitude
of y is linearly proportional to F = ma and is therefore a measure of the acceleration.
b) The corresponding picture for the WGM accelerometer is shown; the test-mass is a
microsphere, attached to a cantilever which acts as the spring. The deflection of the
microsphere-cantilever in response to acceleration is measured using the tapered fibre,
which couples light in/out of the WGM. The evanescent field overlap of the taper and the
WGM is sensitive to the relative distance between the two objects, and can transduce the
displacement due to acceleration.

spring by y such that the test-mass experiences the same acceleration as the base. Hooke’s

law describes the linear relationship between the spring elongation and the applied force4,

which is proportional to acceleration (Newton’s second law F = ma, where m is the mass

of the test-mass assuming the spring has negligible mass).

The equation of motion that describes the change in test-mass position relative to the

base (i.e. the distance y − Y ), with effective mass meff and spring constant k is:

k(y − Y ) + b
d(y − Y )

dt
= meff

d2Y

dt2
, (6.1)

where the acceleration of the test-mass d2y
dt2

is equal to the acceleration of the base d2Y
dt2

at driving frequencies lower than the test-mass resonant frequency. A new parameter is

introduced to represent the relative displacement y − Y = D, which simplifies eq. 6.1:

meff
d2Y

dt2
+ kD + b

dD

dt
= 0. (6.2)

4This is an approximation known as the elastic regime, as large forces can cause the cantilever to bend
irreversibly, described later in this chapter.
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At rest, or at a constant acceleration a, eq. 6.2 reduces to:

a =
d2Y

dt2
=
kD

meff
, (6.3)

which connects F = meffa, and F = kD, such that the relative displacement of the test-

mass is proportional to the base acceleration. Re-arranging eq. 6.3 into D = ameff
k , the

amplitude of D for a given acceleration is inversely proportional to k, and proportional to

meff , meaning heavier or floppier test masses will increase the displacement amplitude.

The dynamic response of the sensor can also be derived by considering a sinusoidal

driving motion that causes the base to move by Y (t) = A cos (Ωdt), where A is the peak

amplitude, and Ωd is the driving frequency. The equation of motion becomes:

d2D

dt2
+ 2ζΩm

dD

dt
+ Ω2

mD = −AΩ2
d cos (Ωdt), (6.4)

where Ωm is the test-mass resonance frequency, defined by Ωm =
√

k
meff

, and ζ = b
2meffΩm

is the damping ratio that expresses the level of damping relative to critical damping,

introduced in chapter 3. It is expected that after an initial transient phase, the test-mass

will start to copy the harmonic motion of the base, therefore a trial solution for D is

chosen:

D(t) = D0 cos (Ωdt+ ϕ), (6.5)

where D0 is the peak relative displacement, and ϕ is the phase lag with respect to the

driving signal. This is substituted into eq. 6.4:

[
Ω2

m − Ω2
d

]
D0 cos (Ωdt− ϕ)− 2ζΩmΩd sin (Ωdt− ϕ) = Ω2

dA cos (Ωdt). (6.6)

The identities cos (Ωdt− ϕ) ≡ cos (Ωdt) cos (ϕ) + i sin (Ωdt) sin (ϕ), and sin (Ωdt− ϕ) ≡

sin (Ωdt) cos (ϕ)− cos (Ωdt) sin (ϕ), can be used in eq. 6.6 to form:

[
D0

(
Ω2

m − Ω2
d

)
cos (ϕ) + 2D0ζΩmΩd sin (ϕ)− Ω2

dA
]

cos (Ωdt)

+D0

[(
Ω2

m − Ω2
d

)
sin (ϕ)− 2ζΩmΩd cos (ϕ)

]
sin (Ωdt) = 0.

(6.7)

The solution to eq. 6.7, valid at all times, is when the terms in square brackets equal 0:

D0

[
Ω2

m − Ω2
d

]
cos (ϕ) + 2D0ζΩmΩd sin (ϕ)− Ω2

dA = 0, (6.8)
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[
Ω2

m − Ω2
d

]
sin (ϕ)− 2ζΩmΩd cos (ϕ) = 0. (6.9)

The phase lag can be derived from eq. 6.9 using the identity tan (θ) = sin (θ)
cos (θ) :

tan (ϕ) =
2ζΩmΩd

Ω2
m − Ω2

d

. (6.10)

The peak amplitude of the test-mass response D0 can be found using eqs. 6.8 & 6.10,

alongside the substitutions cos (ϕ) = 1√
1+tan2 (ϕ)

, and sin (ϕ) = tan (ϕ)√
1+tan2 (ϕ)

:

D0 =
A
(

Ωd
Ωm

)2

√(
1−

(
Ωd
Ωm

)2
)2

+
(

2ζ Ωd
Ωm

)2

. (6.11)

This equation reveals 3 characteristics of accelerometers;

• If ζ = 0 (no damping), an uncontrollable resonance effect will occur when Ωd = Ωm

which can lead to damage. The majority of accelerometer designs impose finite

damping to avoid this effect.

• If Ωd � Ωm, eq. 6.11 simplifies to:

D0 =
Ω2

dA

Ω2
m

, (6.12)

such that the ratio D0/A is linearly proportional to (Ωd/Ωm)2. The peak angular

acceleration of the base a = Ω2
dA equals the peak angular acceleration of the test-

mass a = Ω2
mD0, analogous to the DC response given in eq. 6.3.

• If Ωd > Ωm, eq. 6.11 implies that the ratio D0/A tends to 1, such that the mass

remains stationary as the base shakes around it. The displacement between the

test-mass and frame is the same size as the motion of the base itself. This is known

as the seismometer mode of operation.

A model of eq. 6.11 is shown in fig. 6.2, where the ratio D0
A is plotted as function of

driving frequency Ωd, normalised to Ωm. Note that D0 is the relative peak displacement of

the accelerometer, and A is the peak amplitude of the sinusoidal modulation of the base.

The damping ratio ζ is the ratio of damping with respect to critical damping, and is varied

from underdamped to critically damped (critical damping is ζ = 1). The accelerometer

and seismometer modes of operation are highlighted.
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Figure 6.2: Predicted amplitude response D0 of an accelerometer, normalised to the peak
driving amplitude of the base A. This is plotted using eq. 6.11 as a function of sinusoidal
driving frequency Ωd, normalised to the accelerometer resonance Ωm, for a range of damp-
ing ratios ζ. Shaded regions show the system operating as an accelerometer, with a linear
response to acceleration, as well operating as a seismometer, which only detects the base
displacement.

It can be seen from fig. 6.2 that damping plays an important role in defining the

response of accelerometers, as it flattens the peak around the resonance Ωm. A high

damping ratio ζ therefore increases the linear bandwidth of the sensor and the damped

test-mass responds linearly over a wider range of Ωd. The increase in bandwidth can

be theoretically shown by plotting the ratio of the actual response of the test-mass (D0)

governed by eq. 6.11, relative to the required linear response assuming the test-mass

behaves as Dlin =
Ω2

dA

Ω2
m

across all Ωd. This leads to:

D0

Dlin
=

1√(
1−

(
Ωd
Ωm

)2
)2

+
(

2ζ Ωd
Ωm

)2

, (6.13)

which is plotted in fig. 6.3 with varying ζ. The bandwidth is defined as the range of

driving frequencies where D0
Dlin
≈ 1. The error between the expected linear measurement

and the actual measurement is given by ( D0
Dlin
− 1) × 100%. The y-axis range of fig. 6.3

spans D0
Dlin

= ±5%. Increasing ζ towards critical damping results in a larger bandwidth

where D0
Dlin
≈ 1.

There are two main types of damping; structural and viscous air damping. At atmo-

spheric pressure, viscous air damping is dominant for micron-sized objects, and structural

damping related to the energy loss within the material can be neglected. This was con-

firmed in chapter 3 by experimentally reducing the pressure surrounding the microsphere-

cantilever (and tapered fibre) whilst measuring the mechanical quality factor Qm = 1
2ζ ,
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Figure 6.3: The ratio of the test-mass response D0, relative to the expected response Dlin

if the test-mass responds linearly across all frequencies. The damping ratio ζ is varied.
The range of frequencies where D0/Dlin ≈ 1 sets the linear bandwidth, for example, with a
damping ratio of ζ = 0.7, the bandwidth between 0 ≤ Ωd

Ωm
≤ 0.2 results in a measurement

error less than 0.01%.

see fig. 3.12 (pg. 90. It was found that Qm increases as the pressure is reduced from atmo-

spheric pressure to 0.5 mbar, but did not reach the intrinsic Qm, and is still dominated by

air damping. A novel future experiment that has not been conducted with WGM inertial

sensors is to apply cold damping or stabilisation using active feedback, which is commonly

employed in with MEMS sensors [233, 234].

The above analysis only offers an insight into the expected response of a point-mass

on a spring. In fact, the schematic shown in fig. 6.1 b) only represents an equivalent model

for the microsphere-cantilever, where the total mass is lumped into an effective mass meff

(i.e. a point mass), and body loads (e.g. forces that act over the distributed mass) such as

gravity can be modelled as an equivalent single force applied at the c.o.m. position. A more

realistic picture requires modelling the microsphere-cantilever as an elastic body which

can flex and bend under transverse body loads (i.e. the acceleration acts perpendicular to

the cantilever length). The uniformly distributed mass of the cantilever means that the

deflection at each point along the length will vary. The following section describes how

stress within the cantilever material causes strain, resulting in a measurable deflection that

can be predicted using theory. This allows comparison with experimental data, presented

later.

6.3 The Microsphere-cantilever as a Test-mass

In a similar fashion to the eigenfrequency analysis of chapter 3, the microsphere-cantilever

is split into a beam with uniformly distributed mass and length L (fixed on one end), and
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the microsphere is modelled as a point-mass attached to a massless beam with length L.

The total deflection at the free-end of the combined microsphere-cantilever is the sum of

the calculated deflection from each model.

First the cantilever stem is analysed, which consists of a cylindrical rod with uniformly

distributed mass, such that forces from acceleration are also distributed per unit length.

A cantilever with no external loads is shown in fig. 6.4 a), whereas when a force per unit

length (denoted as ‘w’) is applied in fig. 6.4 b), the cantilever bends. The deflection varies

along the length and the largest deflection , y(L) , occurs at the tip.

Figure 6.4: a) The cantilever portion of the microsphere-cantilever is modelled as a beam
with length L, clamped on the left-hand side, with no external forces applied. b) When
a force per unit length w is applied, the cantilever is deflected due to a bending moment
M(x). The maximum deflection, y(x), occurs when x = L, i.e. the cantilever tip.

The aim of the following analysis is to derive the relationship between the external and

internal forces acting on the cantilever that cause deflection. The cantilever is analysed

as segments with length dS0, which undergo bending (fig. 6.4 b)), such that dS is defined

as an arc length.

With no external loads, fig. 6.4 a) shows the cantilever with its neutral axis (i.e. the axis

that runs parallel to the length, through the origin of the cylinder cross-section) coinciding

with the x-axis. When a downward body load w (force per unit length) is applied, the

cantilever bends such that the neutral-axis deflects away from the x-axis, fig. 6.4 b), and

a radius of curvature r exists at x, forming an arc length dS. At each point along x,

the deflection y(x) represents the change in distance from the x-axis, and varies along

the length such that at x = L, the maximum deflection occurs y(L) and is the measured

output of the accelerometer.

The deflection is caused by a bending moment, which is the reaction induced in the

structure from the applied body load. The internal force that gives rise to the bending

moment is known as stress, which governs the deflection (dy
dx) as layers of the cantilever
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are compressed and stretched. In order to derive y(x), the moment arising from the

applied force can be equated to the bending moment caused by the internal stress of the

cantilever. First, a simple analysis of the moments (i.e. turning effect) from the external

forces in fig. 6.4 b) are considered. The equation for the moment of a force F acting at a

perpendicular distance l is M = Fl, such that the sum of the external moments at position

x is:

M = −wL
L

2
+ wLx− wx

x

2
= −w(x− L)2

2
, (6.14)

Also present at x is an internal bending moment equal to eq. 6.14. A schematic of the

bending mechanism is shown in fig. 6.5. The bending moment relates the internal stress

force σ, acting perpendicular to the cross-section of the cantilever (fig. 6.5 a), such that:

M =

∫
A
−hσ dA, (6.15)

where σ is the internal stress force that resists the force w, h is the vertical distance in

the cross-section from the neutral axis, and A denotes that eq. 6.15 is an area integral.

Figure 6.5: a) The cross-section of the cantilever experiences a varying stress force σ (green
arrows) dependent on h, that resists the applied force, where h denotes the distance from
the neutral axis. b) With no applied transverse force, a segment of the cantilever of length
dS0, does not vary in length with h. c) When a force is applied, a stress field develops
that varies with h, such that the cantilever deforms with an arc length dS dependent on
h. The change in arc length from dS0 is related to the strain ε.

If the cross-section is considered as a thin layer i.e. a circular sheet, in the presence

of an unequally distributed stress field, the upper portion (h > 0) will be pushed in the

negative x-direction, whereas the lower portion h < 0 is pushed forwards in the x-direction.

A segment of the cantilever contains many cross-sectional layers such that the total stress

applied results in a deflection. A segment of the un-deflected beam with length dS0 is

shown in fig. 6.5 b). Imagining now that the cantilever is made up of horizontal stacked

layers, the layer at any point h has a constant length dS0. When the beam is subjected

to an applied force, fig. 6.5 c), the varying stress field causes each horizontal layer to bend
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unequally. The neutral-axis maintains the original length dS0, since r is defined relative to

h = 0 (dS0(0) = r dθ), whereas horizontal layers at positive h undergo a length elongation,

and those at negative h are compressed (reduction in length). The length dS at each h is

therefore defined by dS(h) = (r − h) dθ.

Strain (ε) is the resultant change in length due to stress, and is defined as the ratio of

the change in length compared with the unstressed length:

ε =
dS(h)− dS0

dS0
=

(r − h) dθ − r dθ

r dθ
= −h

r
, (6.16)

which describes a zero strain at h = 0 (neutral axis) that increases linearly with h. Young’s

modulus5 is known as the elastic modulus as it governs the linear relationship between

stress and strain through E = σ
ε , therefore using eq. 6.16, the stress can be defined by:

σ = −Eh

r
, (6.17)

which can be used in eq. 6.15 to define the bending moment that resists the moment due

to the applied force:

M = −
∫
A
h

[
−Eh

r

]
dA =

E

r

∫
A
h2 dA. (6.18)

The remaining integral in eq. 6.18 is known as the second moment of area denoted by I,

which for a circular cross-section is equal to:

I =

∫ 2π

0

∫ rc

0
(rc sin (θ))2 rc drc dθ =

πr4
c

4
, (6.19)

where rc is the cantilever radius, and θ is the polar angle.

The radius of curvature can be approximated as 1
r ≈

d2y
dx2 using lengthly geometric

algebra. Therefore the rate of change of the deflection can be written as:

M = EI
d2y

dx2
. (6.20)

By equating eq. 6.14 with eq. 6.20, and integrating twice, a direct derivation of the deflec-

tion y(x) at any point x can be formed:

∫ ∫
EI d2y = −

∫ ∫
w(x− L)2

2
dx2, (6.21)

5Young’s modulus for silica is 70 GPa
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EI y =
w

2

[
x4

12
− Lx3

3
+
L2x3

2
+Bx+ C

]
, (6.22)

where B, C are constants of integration, found by applying the following boundary con-

ditions:

• No deflection at the clamping point: x = 0, y = 0.

• Gradient is flat at the clamping point: x = 0, dydx = 0.

This leads to B = C = 0 which sets the deflection as:

y(x) =
wL

24 EI

[
x4

L
− 4x3 + 6x2L

]
. (6.23)

At the free-end of the cantilever x = L, the maximum deflection is:

y(L) =
wL4

8EI
. (6.24)

The force acting on the cantilever per unit length is w = mc a = aρπr2
c where ρ is the

density of silica (2200 kg m−3), and mc is the bulk mass of the cantilever. Substituting

these values, and the equation for I (eq. 6.19) into eq. 6.24:

y(L) =
aρL4

2E r2
c

, (6.25)

which predicts the deflection of the cantilever stem at the tip, which contributes to the

overall deflection of the microsphere-cantilever.

Next, the deflection due to the microsphere point-mass is considered, which gives rise

to a bending moment at a point x along the cantilever length, equal to M = −FL(1− x
L),

where F = msa is the force experienced by the sphere with total mass ms = (4/3)ρπr3
s ,

and rs is the sphere radius. Equating this with the right hand side of eq. 6.20 and double

integrating with respect to x gives:

EI y =
Fx3

6
− FLx2

2
+Bx+ C (6.26)

where B,C are constants of integration found using the same boundary conditions as the

cantilever analysis. The boundary conditions set B = C = 0, and the deflection due to
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the microsphere is:

y(x) =
FL

EI

(
−x

2

2
+
x3

6L

)
. (6.27)

The point of interest is the deflection due to the microsphere at the free-end of the can-

tilever where x = L:

y(L) =
FL3

3EI
=

16ρr3
sL

3a

9Er4
c

. (6.28)

The combined effect of the force acting on both the microsphere, and the distributed

cantilever mass, results in the total deflection at the free-end of the microsphere-cantilever

yt(L) in response to acceleration, which is the sum of eq. 6.28 & eq. 6.25:

yt(L) =
aρL3

Er2
c

[
16r3

s

9r2
c

+
L

2

]
. (6.29)

This equation, which only requires knowledge about the geometry and material of the

microsphere-cantilever will be useful to predict the sensing range, and compare with ex-

perimental data.

6.3.1 Whispering Gallery Mode Transduction of Acceleration

As proven in chapter 3, a change in the coupling distance d between the microsphere-

cantilever and the taper perturbs the WGM such that the motion is imprinted onto the

taper fibre transmission. The so-called transduction beam introduced in chapter 3, is cre-

ated by continuously exciting the WGM with a laser red-detuned to the resonance. In this

chapter, the transduction beam is used to detect an experimentally applied acceleration

by measuring the deflection of the microsphere-cantilever.

When operating as an accelerometer, the microsphere-cantilever is placed at a DC

coupling distance d relative to the taper. With no deflection, the corresponding position

of the free-end (i.e. the microsphere) is referred to as the ‘null-position’ (d0) using sensor

terminology. Acceleration causes a deflection of the microsphere away or towards d0

by y(L) derived above, which is transduced by the WGM, and recorded in the output

transmission of the taper. When applied forces are removed, the microsphere returns to

d0.

The transmission is a measure of the change in power coupled to the WGM (Pc), which

is shown to vary non-linearly with d in chapter 2. Since the null-position is chosen to be

at a fixed d, it is expected that there is a limited range of accelerations which result in
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a deflection ∆d around d0
6 that causes a linear change of Pc. Another unknown is the

absolute sensing limit since ∆d cannot exceed d0, otherwise the microsphere will touch the

taper. A previous study was conducted on a similar WGM accelerometer over 15 years ago

[20], but did not experimentally measure either of these parameters. Therefore the results

presented here are the first to characterise multiple parameters of a WGM accelerometer,

where the test-mass is the WGM resonator itself.

6.4 Experimental Results

Two different microsphere-cantilevers are used in the following sets of data, labelled as

microsphere-cantilever[E ], and microsphere-cantilever[F ], fabricated using the method in

chapter 2. Note that microsphere-cantilever[F ] is only used in section 6.4.4 to measure the

sensing bandwidth and the acceleration sensitivity, owing to its higher c.o.m. mechanical

frequency. Using the experimental set-up of fig. 2.23 (pg. 53), also in chapter 2, a WGM

is excited with counter-propagating beams, such that one beam forms the transduction

signal (red-detuned with respect to the WGM), and the other is used as the strong beam

in a passive thermal locking set-up7. The transduction signal is the output of the WGM

sensor, and is measured with a photodetector.

In order to experimentally verify the performance of the WGM sensor, a commercial

sensor by Analog Devices (ADXL327) is mounted close to the microsphere-cantilever. The

ADXL327 is a 3-axis accelerometer with a sensing range of ±2 g, a maximum bandwidth

of 1600 Hz, and a noise density of 250µg Hz−1/2, where acceleration is measured with the

unit g (defined relative to gravity g= 9.81 ms−2) as standard within the inertial sensing

community. It operates by measuring a capacitance change due to a movable electrode

test-mass.

A piezo-stack8 is used to accelerate the combined system (i.e. by moving the ‘base’).

Due to the limited displacement range of 9.2µm, it is easier to apply large angular ac-

celerations instead of a large DC acceleration. This is achieved by applying a sinusoidal

driving signal to modulate the piezo-stack displacement. The peak amplitude of the an-

gular acceleration is amax = ∆lΩ2
d, where ∆l is the change in piezo-stack length from the

null-position. The peak-to-peak angular acceleration is 2 × amax. As shown in eq. 6.12,

6Note that y(L) ≡ ∆d.
7A passive thermal lock is employed instead of the Pound-Drever-Hall lock (chapter 2 section 2.5.1)

because the high vibrational tests performed in this chapter destabilise the active lock.
8Thorlabs PK4DMP1.
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the microsphere-cantilever responds linearly to the sinusoidal acceleration, and the WGM

transduction signal will show a corresponding sinusoidal modulation, with a peak am-

plitude proportional to amax. It is often more convenient to use measure peak-to-peak

amplitudes (i.e. the sum of the deflection away and towards the null-position) since the

null-position may shift. The term ‘angular acceleration’, which is used to highlight the

use of a sinusoidal shaker test, will be dropped from this point onwards for clarity.

6.4.1 Sensing Range

The first measurement is of the sensing range, using microsphere-cantilever[E ] with di-

mensions rc = 60µm, rs = 76µm, and L = 7 mm, placed at d0 = 0.35µm from the taper.

The piezo-stack is driven with driving frequency Ωd = 2π × 1400 Hz, and an increasing

peak displacement amplitude A such that the WGM sensor and the ADXL327 experience

a peak-to-peak acceleration of 2× AΩ2
m. The peak-to-peak response from the ADXL327,

and the WGM sensor is plotted in fig. 6.6 a) & b) respectively.

Figure 6.6: The ADXL327 and the WGM accelerometer are driven by a sinusoidal
acceleration at Ωd = 2π × 1.4 kHz, with a increasing peak-to-peak acceleration. The
peak-to-peak response of the ADXL327 is shown in a), where a linear fit is applied to
deduce the scale factor. The inset graph shows the non-linearity of the ADXL327 output
with increased acceleration. In b), the response of the WGM sensor using microsphere-
cantilever[E ] is plotted, which displays a similar non-linearity. For both a) & b), fits are
applied only within the linear response range where the scale factor error is < 0.6 %.
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The ADXL327 provides a response with scale factor 418±2 mV/g, found by measuring

the gradient in fig. 6.6 , and in good agreement with the specified value of 420± 42 mV/g

in the specifications. The WGM sensor has a linear scale factor of 1233 ± 7 mV/g but

it should be noted that due to the use of a variable gain photodetector, this value can

be amplified arbitrarily, at the cost of increasing photodetector noise. The experimental

linear sensing range (i.e. ± peak acceleration) is found to be ±1 g for the ADXL327, and

±0.7 g for the WGM sensor using microsphere-cantilever[E ]9.

Using eq. 6.29, and the dimensions of microsphere-cantilever[E ], the predicted absolute

peak-to-peak sensing range10 due to a maximum ∆d = 0.35µm is:

2× amax = 2× 0.35µm× E r2
c

L3ρ
[

16r3
s

9r2
c

+ L
2

] ≈ 6.4 g. (6.30)

The absolute peak-to-peak sensing range of the WGM sensor is marked in fig. 6.6 b),

where a peak-to-peak acceleration of 2.3 g caused the microsphere to touch the taper.

This is nearly 3 times smaller than prediction. It is anticipated that the null-position

is shifted during vibration testing, which can be caused by vibration rectification errors,

and is thoroughly investigated later. First, the influence of a shifted d0 is analysed with

experimental data to calculate the required 0 g bias shift that would result in a reduction

of the sensing range.

Sensing Range Dependence on Null-position

It has been verified in chapter 2 section 2.13 that the power coupled to the WGM (Pc)

is dependent on the coupling distance d. This is measured for the same microsphere-

cantilever used in fig. 6.6 b) (microsphere-cantilever[E ]), by actuating d away and towards

the null position d0 using the piezo-stack that supports it. This mimics the deflection

∆d that would occur in the presence of acceleration. The normalised Pc is plotted as a

function of ∆d, in fig. 6.7 (blue crosses). The predicted peak acceleration (amax) required

to cause ∆d is plotted in black, using eq. 6.29.

A large deflection of the microsphere-cantilever due to acceleration will modulate the

transduction signal output according to the non-linear relationship between Pc and ∆d in

9Here, ‘linear’ is strictly defined as the range of acceleration where the fitted scale factor has an error
less than 0.6%. The ADXL327 spec sheet quotes a linear range of ±2 g, but with a scale factor error of
10 %.

10This is also referred to as the ‘dynamic range’ in the inertial sensor community.
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Figure 6.7: The power coupled to the WGM in microsphere-cantilever[E ] is measured
as the coupling distance d is varied away from the null position d0 by ∆d, (blue crosses).
This mimics the output response of the WGM if the microsphere-cantilever deflects by ∆d
due to a peak acceleration. The predicted peak acceleration required to cause a deflection
equal to ∆d is plotted in black using eq. 6.29. The linear sensing range is approximately
the region where Pc changes linearly with ±∆d around d0, corresponding to a predicted
range of ± 1 g, equal to a peak-to-peak max. acceleration of 2 g.

fig. 6.7 (blue data). Note that the output of the transduction signal is the transmission,

which is defined in chapter 2 as T = 1 − Pc. At a null-position of d0 = 0.35µm, the

maximum linear relationship with Pc is limited by the value of ∆d that reaches the turning

point, ∆dlin ≈ −0.13µm (marked in dashed lines). This turning point sets a maximum

Pc, such that after the turning point, Pc decreases with further acceleration, and the

transduction signal will show a double-well shape. Since Pc varies exponentially with

large +∆d, i.e. in response to a high acceleration with peak-to-peak amplitude > 2×∆dlin

results in very little change in Pc at ∆d > 0.3, and will show a smaller reading that deviates

from the linear scale factor.

The predicted linear sensing range from fig. 6.7 is marked out by the black dashed

lines, representing a region where Pc is approximately linear with ±∆d, that corresponds

to a sensing range of ±1 g, not too dissimilar to the experimentally measured range ±0.7 g

in fig. 6.6 b). However, the discrepancy between the absolute sensing range is unaccounted

for.

A possible explanation is that a DC drift in the null-position occurred part way through

testing. Using the results in fig. 6.7, a shift in the null position by −0.1µm (i.e. if d0

changes to 0.25µm) is predicted to limit the absolute sensing range to ±1 g, and could

account for the peak-to-peak range of 2.3 g in fig. 6.6 b). There are three possible causes
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for a null-position drift:

• A random misalignment of the supporting mounts, posts or the flexure stage.

• The cavity enhanced optical dipole force (CEODF) due the WGM11 may attract the

taper towards the microsphere at small d (i.e. when the sphere is deflected closer to

the taper), which can lead to a DC offset.

• Vibration rectification errors, which shifts d0 in vibrational environments.

To see if the CEODF is a possible source of drift, the long term stability in the presence

of no vibration is measured.

6.4.2 Long Term Stability

An indication of a continuous systematic drift of the null-position, unrelated to shocks

or changes in mounting stability, is to measure the long term stability of the WGM

transmission, T . Microsphere-cantilever[E ] is once again coupled to the tapered fibre

at d0 = 0.35µm, and the WGM T is recorded for 10 mins, with zero applied acceleration

(i.e. the measured T from the photodetector corresponds to the 0 g bias level). The plot

is displayed in fig. 6.8, and the drift of d0 corresponds to the gradient of the linear fit in

red, converted into g units using the scale factor from fig. 6.6 b). This drift is not related

to a change in coupling power (which is monitored), or dust adhering to the surface of the

taper or microsphere (which causes staggered jumps that decrease T ).

Figure 6.8: The long term stability of the WGM sensor output is measured by fitting
the transmission, T over time (data in gray, fit in red). This corresponds to the 0 g bias
level (no acceleration is applied). The gradient corresponds to the rate of decrease in T
(the dashed blue line represents a constant T ), which is converted using the scale factor of
fig. 6.6 b) to convert into the equivalent false acceleration measurement of −25± 0.1µg/s.

It is found that over 10 mins, due to the drift of the 0 g bias level, the WGM sensor

outputs a false acceleration reading that drifts by −25 ± 0.1µg/s. A decrease in trans-

11This force was used in chapter 4 to feedback cool the mechanical modes of the taper.
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mission equals an increase in Pc, which would correspond to the taper and sphere moving

closer together, perhaps an indication of the CEODF attracting the taper towards the

microsphere, and should be studied more closely in future experiments. This means that

over time, unless the null-position is returned to d0, a false reading of an acceleration

in the negative y-axis will be reported. In order to fully account for the limited sensing

range of fig. 6.6 b), the taper needs to be actuated towards the microsphere by 100 nm,

corresponding to a decrease in T of approximately 28 %, and would require the experiment

to be functional over 1.5 hours. For this reason, the long term drift can be eliminated as a

major contribution to the lower than expected sensing range, since the data in fig. 6.6 b)

is taken within 20 min. The CEODF may not be responsible for the slow drift, but should

be tested in future experiments by increasing the input laser power which will linearly in-

crease the magnitude of the force. This leaves two remaining sources of null-position drift;

a random misalignment from the supporting stages due to the high vibrational conditions,

or, vibration rectification errors, which are characterised next.

6.4.3 Vibration Rectification Errors

The vibration rectification error (VRE) is a measure of the DC offset in null-position when

a test-mass is exposed to vibration, measured in units of g/g2. The DC output of the

sensor changes as a function of the peak acceleration, even though the total time-averaged

acceleration is zero. There are two main causes of vibration rectification; asymmetric

damping, and DC scaling non-linearity [235].

Asymmetric damping occurs if the motion of the test-mass is more strongly damped

in one direction, i.e. +g direction, than the opposite, i.e. -g. The deflection of the test-

mass as it responds to vibration will therefore be biased towards the negative direction.

If the signal is time-averaged it will give a net DC output that is shifted to the negative

g direction compared to when no vibration is present.

The other mechanism that leads to vibration rectification is a non-linearity in the

sensing range due to the test-mass, where the time averaged response in one direction is

not equal to that in the other direction. This is often related to a geometric asymmetry,

or cross-coupling to another axis direction. This tends to be the more dominant effect

over asymmetric damping.

The theoretical description of the VRE requires an additional quadratic term in the
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test-mass deflection equation in response to an acceleration a, such that the deflection

D(t) is written as [235]:

D(t) = Ca+ βca
2, (6.31)

where C, βc are constants. The constant C is the linear scale factor, measured in fig. 6.6,

and βc is referred to as the co-efficient of the second order non-linearity. If the test-mass

is now subjected to a sinusoidal acceleration of A cos Ωdt, eq. 6.31 becomes:

D(t) = CD0 cos (Ωdt) + βcD
2
0 cos2 (Ωdt), (6.32)

where D0 is the scale factor. The time average of the first term in eq. 6.32 is zero, whereas

the time average of the squared term is proportional to
∫
t cos2(Ωdt) dt = 1

2 , therefore the

time averaged deflection is:

D̄0 =
βcD

2
0

2
. (6.33)

The measurement of D̄0 (the 0 g bias level) reports a false acceleration that is pro-

portional to acceleration squared, and is governed by the constant β2/2, more commonly

referred to as the VRE:

VRE =
βc
2

=
D̄0

D2
0

. (6.34)

Therefore, the deflection can be written as:

D0 = C g + 2g2 ×VRE. (6.35)

The VRE is measured for the ADXL327 and the WGM sensor (using microsphere-

cantilever[E ]) in two ways and then compared to investigate if the non-linearity of the

WGM sensor response can account for the reduced sensing range found in fig. 6.6 b).

First, the 0 g bias level is measured by averaging the modulated WGM transduction

signal/ADXL327 signal when the system is driven by a sinusoidal acceleration with in-

creasing amplitude g, and plotted as a function of g2. The results for the ADXL327and

the WGM sensor are shown in fig. 6.9 and fig. 6.10 respectively. Since the data presented

here corresponds to the same data used to deduce the sensing range in figs. 6.6 a)& b),

a direct comparison can be made using a second method to find the VRE by fitting the

previously measured sensing range with eq. 6.31.

The results of the first method are as follows; the gradient of the fits in figs. 6.9 & 6.10
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Figure 6.9: The VRE for the ADXL327 is calculated by measuring the DC bias shift
of the output signal, at increasing acceleration, plotted as a function of g2. The gradient
gives a VRE of −23.5± 0.3 mg/g2, found by using the scale factor in fig. 6.6 a). This data
is the same as that used in fig. 6.6 a).

Figure 6.10: The VRE for the WGM sensor using microsphere-cantilever[E ] is calculated
by measuring the DC bias shift of the output signal, at increasing acceleration, plotted
as a function of g2. This data is the same as that used in fig. 6.6 b). A linear fit is
applied, but only up to the linear sensing limit found in fig. 6.6 b) (i.e. g < 1.7). The
gradient of the fit gives a VRE of −14.6± 0.5 mg/g2, using the scale factor in fig. 6.6 b).
At g2 > 22, the WGM transmission is non-linear with respect to larger acceleration (see
fig. 6.7), such that the transduced signal is no longer equal to the actual motion of the
microsphere-cantilever. The VRE will cause d0 to further decrease, but the time averaged
WGM measures d0 non-linearly.

are converted into acceleration units using the scale factors obtained for the ADXL327

(fig. 6.6 a)) and the WGM sensor (fig. 6.6 b)) respectively, such that figs. 6.9 & 6.10 repre-

sent D̄0

D2
0
. Therefore, using eq. 6.34 the VRE for the ADXL327 is −23.5±0.3 mg/g2 and for

the WGM sensor, −14.6±0.5 mg/g2. Note that the plot of the 0 g bias level for the WGM

sensor is only fitted up to 2 g2. This is because the WGM does not transduce large ∆d

around d0 linearly, as described by fig. 6.7, and the sinusoidal modulation of the WGM T
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with respect to the sinusoidal acceleration becomes distorted such that the 0 g level is not

equal to half the peak-to-peak amplitude.

To verify if the source of the vibration rectification is due to the non-linearity of the

sensor, the second method to find the VRE is applied. Here, eq. 6.35 is fitted to each

sensor’s full measured range (i.e. including the non-linearity in figs. 6.6 a) & b)), to obtain

the second order non-linearity co-efficient βc = 2 × VRE. Using this method, a VRE of

−104±4 mg/g2 and −25.0±0.9 mg/g2 is obtained for the WGM sensor and the ADXL327

respectively. The value for the ADXL327 VRE from fitting βc is in good agreement with

the value obtained directly from measurement. However, the VRE of the WGM sensor

from measurement of βc is significantly higher. If eq. 6.35 is now fitted over the linear

sensing range of the WGM sensor in fig. 6.6 b), a value of βc = −2 × (21 ± 7) mg/g2 is

obtained, which is closer to the measured VRE in fig. 6.10.

Therefore, a possible explanation for the lower than expected absolute WGM sensing

range (i.e. until the microsphere touches the taper) is as follows; at a peak acceleration

of
√

3 g, a mechanical misalignment of the supporting mounts or stages occurred, pushing

the null position towards the taper (in fig. 6.10, at g2 = 3, the WGM DC transmission

increases, signifying a jump over the turning point in the WGM power coupling of fig. 6.7).

A misalignment of 100 nm is feasible, especially as the system is exposed to continuously

high vibrations. Currently the tapered fibre and the microsphere-cantilever are held by

mounts on separate supports, which are then fixed to a common base. If the mechanical

shift in d0 is related to these supporting mounts, the relative stability can be improved by

mounting both the microsphere-cantilever and a tensioned taper onto the same frame.

The sensing range is ultimately limited by the microsphere-cantilever material proper-

ties. The proportionality limit defines when stress is equal to strain, governed by a material

specific constant (Young’s modulus). This is the basis of Hooke’s law, and relates applied

stress to the linear deflection of the cantilever. The elastic limit of silica determines when

the cantilever becomes permanently deformed, and does not return to its original state once

the applied force is removed. The stress required for silica fibre to break is approximately

6 GPa [236]. A cylindrical cantilever with rc = 60µm, m = 20× 10−9 kg, and L = 5 mm,

can therefore withstand a load of Fmax = 0.2 N acting on the free-end before rupture12.

This is equivalent to an applied acceleration of over 1×106 g, and implies the cantilever

12Here eqs. 6.18 & 6.17 are used to form the relationship σ = Mh/I, where h is the distance from the
neutral axis, M is the moment, and I is the second moment of area. The maximum stress occurs at h = rc.
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could withstand a car crashing into a wall whilst travelling at a velocity of 100 km/hr

(approx 100 g deceleration) [237]. However, the deflection of the cantilever in response to

a = 100 g is 10µm, over 100 times larger than the coupling distance between the sphere

and the taper. In comparison, the ADXL327 is specified to survive a shock of 10,000 g,

and would be more suitable for high g environments unless the microsphere-cantilever is

actively prevented from touching the tapered fibre i.e. in a closed-loop scheme.

Clearly, the WGM sensor studied here requires further work to survive 10,000 g, in-

cluding the need for re-calibration if the microsphere-cantilever must be seperated from

the taper after touching. This may not be an issue if one considers the other end of the

sensing scale; the minimum resolvable acceleration. The exquisite transduction sensitivity

obtained in chapter 3 has already proven that the WGM is able to detect the thermal

motion of the microsphere-cantilever, enabling feedback cooling in chapter 4. The next

section derives the minimum noise equivalent acceleration, limited by the thermal mo-

tion of the test-mass, and sets the absolute sensitivity for detecting acceleration. The

sensitivity is then experimentally deduced and tested.

6.4.4 Sensitivity & Bandwidth

The sensitivity of the WGM accelerometer can be quantified by its noise equivalent ac-

celeration aNEA, which converts the total noise floor of the displacement PSD into an

equivalent minimum resolvable acceleration. It is defined as:

aNEA =
√
a2

th + a2
det + a2

add + ..., (6.36)

which is a sum of all noise sources present in the WGM sensor; ath is the equivalent

acceleration from the microsphere-cantilever thermal motion, adet is related to readout

noise, and aadd is a lumped parameter of other noise sources. For example, miniaturised

capacitive sensors require consideration of the Johnson noise. The fundamental limit to

aNEA is the thermal noise equivalent acceleration ath, as electronic noise and detector noise

can be minimised.

The value of ath can be derived by considering the average force power density F̄(ω)

required to drive a deflection equivalent to the thermal motion. The derivation of F̄(ω)

can be obtained by finding the total kinetic energy Ek = 1
2meff v̄

2 gained by the test-mass

from F̄(ω) where v̄ is the mean velocity, and equating it to the thermal energy 1
2kBT0
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[52]13. Starting with the test-mass equation of motion in frequency space, written as a

function of velocity:

iωmeff v(ω) + b v(ω) +
k

iω
v(ω) = F(ω), (6.37)

where v(ω) = FFT
[

dx(t)
dt

]
= iωx(ω). The mean square velocity is therefore:

v̄2(ω) =
F̄2(ω)

b2 + (meffω − k/ω)2
. (6.38)

The kinetic energy within a frequency interval dω can be written using eq. 6.38:

dEk =
meff

2b2
F̄2(ω)

1 + Qm
2
(

ω
Ωm
− Ωm

ω

)2 , (6.39)

where the mechanical quality factor is used (Qm = Ωmmeff
b ). Writing eq. 6.39 in terms of

frequency f , i.e. ω = 2πf , the total kinetic energy is:

Ek =
1

4πb

∫ ∞
0

F̄2(f) Qm

1 + Qm
2
(
f
fm
− fm

f

)2 d(f/fm) =
F̄2(f)

8b
, (6.40)

which is equal to the thermal energy 1
2kBT0, such that:

F̄2(f) = 4kBT0b. (6.41)

The square root of eq. 6.41 is the root mean square (r.m.s.) amplitude of the force,

measured in units of N Hz1/2. The resultant deflection of the cantilever in response to this

force can be derived using eq. 6.11, which for this case, relates the r.m.s. deflection of the

microsphere-cantilever (
√
D̄2

0), to the r.m.s. driving amplitude of the base (
√
Ā2), such

that F̄(f) = meff

√
Ā2Ω2

d. Writing eq. 6.11 in terms of f and F̄ (f):

√
D̄2

0 =

√
4kBT0b

k

√(
1−

(
fd
fm

)2
)2

+ Qm
2
(
fd
fm

)2

, (6.42)

Assuming the microsphere-cantilever is operated in the accelerometer regime (fd << fm),

13A thermal equilibrium between the microsphere-cantilever and its surroundings at T0 is assumed.
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eq. 6.42 is approximated as
√
D̄2

0 =
√

4kBT0b/k, which can be expressed in terms of :

√
D̄2

0 =

√
4kBT0

Ω3
mmeffQm

. (6.43)

Since fd << fm, the applied RMS acceleration
(√

Ā2Ω2
d

)
is equal to the RMS acceleration

experienced by the cantilever
(√

D̄2
0Ω2

m

)
, (as governed by eq. 6.12). Therefore:

ath =
√
D̄2

0Ω2
m, (6.44)

where ath is the RMS noise equivalent acceleration. Inserting eq. 6.43 into eq. 6.44 obtains:

ath =

√
4kBT0Ωm

meffQm
. (6.45)

The total (RMS) noise equivalent acceleration, aNEA, that is measured in experiments

will be larger than ath unless shot-noise limited lasers and low noise electronics are used.

In order to measure aNEA, and compare with the predicted thermally limited value of ath,

the experiment methodology of [12] is used in this thesis. Firstly the PSD of the WGM

transduction signal is recorded from the photodetector, in units of V Hz−1/2. A sinusoidal

acceleration is applied across a range of driving frequencies Ωd, and the peak-to-peak

WGM response measured, such that the frequency dependent scale-factor is deduced, in

units of V/g. Lastly, aNEA is found by dividing the displacement PSD with this scale

factor, which results in a frequency dependent aNEA, in units of g Hz1/2.

Microsphere-cantilever[F ] is used to conduct the above described experiment. It has

dimensions of rc = 60µm, rs = 90µm, and L = 5.2 mm and is chosen because of its

high fundamental mechanical frequency of Ωm = 2π × 3400 Hz, allowing a large range

of driving frequencies to be applied. The mechanical quality factor is Qm = 350, and

meff = 3.1 × 10−8 kg, such that ath = 5.8 × 10−7 g Hz−1/2. The experimental results

are shown in fig. 6.11, where the displacement PSD is displayed in the middle panel, the

frequency dependant scale-factor is displayed in the lower panel, and aNEA is shown on

the top panel.

The usable bandwidth is defined by the frequency range where aNEA is flat, corre-

sponding to ≈ 2.5 kHz, where aNEA = (2.3±1.5)µg Hz1/2, which is 4 times larger than the

predicted thermal noise equivalent acceleration, ath = 5.8 × 10−7 g Hz−1/2. This will be
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Figure 6.11: (top panel) The measured noise equivalent acceleration, found by dividing
the displacement PSD of the WGM transduction signal (middle panel) with the scale
factor (bottom panel), following the method of [12].

related to noise from the photodetector, resonant vibration from supports, and noise from

the piezo-stack. The large error in aNEA requires further investigation, but is likely to

arise from mechanical resonances of the supporting mounts or the tapered fibre, causing

resonant enhancement of the scale factor (fig. 6.11 (lower panel)). A resonant enhancement

naturally occurs when the driving frequency approaches Ωm, leading to an improvement

of aNEA. A similar but unexpected effect appears at low frequency (<500 Hz), and may

be related to a low frequency mechanical mode of a supporting post or mount.

The deduced value of aNEA is over 100 times better than the specified noise density of

the ADXL327 sensor (250µg Hz1/2), which is due to the larger mass of the microsphere-

cantilever (electrodes tend to be a few micron in length), and the lower noise density of the

optical field. In order to experimentally verify that the WGM sensor is more sensitive than

the ADXL327, a sinusoidal acceleration is applied at various frequencies, with increasing

peak acceleration, until either sensor detects the acceleration in the FFT of their respective

outputs. The results are shown in fig. 6.12, where the driving frequency Ωd ranges from

80 Hz to 1.4 kHz (the bandwidth of the ADXL327 is 1.6 kHz).

From fig. 6.12, the WGM sensor is conclusively more sensitive than the ADXL327 at

every tested Ωd, and is able to detect accelerations in the tens of µg range, limited by the

minimum peak amplitude displacement that can be applied. The ADXL327 is only able

to resolve the highest peak acceleration of ±650 µm (applied at Ωd = 800 Hz), but with
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Figure 6.12: A sinusoidal acceleration is applied to the WGM accelerometer (
microsphere-cantilever[F ]) and the ADXL327 at varying driving frequency. The mini-
mum peak acceleration that is detected in the FFT of the WGM at each frequency is
labelled. The WGM sensor outperforms the ADXL327 at every tested driving frequency,
and is able to detect µg accelerations.

poor signal-to-noise.

The only other WGM sensor where the test-mass is the WGM resonator itself, studied

by [20] over 15 years ago, is quoted to have aNEA = 20.8µg Hz−1/2, but the authors state

a minimum measured acceleration of ‘less than 1 mg’. Therefore the WGM accelerometer

studied in this thesis is the most sensitive yet when tested with sinusoidal excitement.

6.5 Discussion of Results

The summary of the most important parameters measured in this chapter is presented in

table 6.1& 6.2, where the first table summarises the type of device, and the second table

lists the linear sensing range, the bandwidth, the noise equivalent acceleration aNEA, the

minimum measured peak acceleration amin, and the vibration rectification error (VRE).

In the overall landscape of available accelerometers, the sensing range and bandwidth of

the WGM sensor is not exceptional. The bandwidth of the WGM sensor can be increased

by using thicker diameter cantilevers or a smaller cantilever length. The linear sensing

range can also be tailored by modifying the mechanical dimensions, for example other

microsphere-cantilevers with shorter lengths used in this Ph.D. (but not displayed here),

have obtained linear sensing ranges above ±2 g, but their thermal motion could not be

detected in the PSD. The measurement sensitivity of the WGM sensor in this thesis is
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Ref. Test-mass Detection

UCL WGM cavity on cantilever optical WGM
[20] WGM cavity on cantilever optical WGM
[12] photonic crystal evanescent field from tapered fibre
[21] movable fibre Fabry-Perot formed by movable fibre & fixed fibre

ADXL327 electrode capacitance change w.r.t. fixed electrode
[238] electrode capacitance change w.r.t. fixed electrode, closed-loop

Table 6.1: The top panel shows four novel optical accelerometers developed by research
groups, including that of our own. The bottom panel shows the electrical commercial
sensor characterised in this chapter (ADXL327), and a state-of-the art MEMS sensor by
Colibrys [238] employing a closed-loop feedback scheme.

Ref. Linear Range Bandwidth aNEA amin measured VRE

g kHz µg Hz1/2 µg mg/g2

UCL ±0.7∗ 2.5∗ 2.3∗ 12.5∗ 14.6∗

[20] ±0.01∇∇ 0.25 20.8 1000∇ -
[12] ±8 2 2 10 -
[21] - 10 0.1 8500 -

ADXL327 ±1∗ 1.6+ 250+ 650∗ 23.5∗

[238] ±11.7 0.4 1.7 - 0.01

Table 6.2: The parameters of each device in table 6.1. ∗ Measured in this thesis. + Quoted
from specification. ∇∇ From data presented in [20], but not stated as the absolute linear
range. ∇ Presented in text of [20] as ‘below 1 mg’.

only a factor of 4 from obtaining ath = 5.8 × 10−7 g Hz−1/2, which is the ultimate limit

for sensing, and is extremely competitive against commercial accelerometers shown in

table 6.2. Reduction of background noise is the optimum solution for obtaining ath, and

it should be noted that the noise floor of [12, 21] is over 3 orders of magnitude lower

(≈ 10−15 m Hz−1/2) than that for the WGM system presented here. Combined with a

heavier test-mass in the range of 10−6 kg, and/or a microsphere attached to a cantilever

with a higher Young’s modulus such as silicon carbide14, such a noise floor would allow for

aNEA ≈ng Hz−1/2, which could be used for ultrasensitive gravity gradiometry, discussed

in the chapter 7.

The WGM microsphere-cantilever accelerometer of [20] is coupled to a MEMS fabri-

cated waveguide instead of a tapered fibre. Their sensor is quoted with aNEA = 20.8µg Hz1/2,

around 10 times larger than obtained here, but the authors only state the minimum mea-

sured acceleration as ‘less than 1 mg’ [20]. Since their displacement PSD is not shown, it

is not possible to determine the mechanical quality factor to compare ath, and deduce if

noise is preventing detection of micro-g accelerations.

14Silicon carbide has E = 410 GPa (ceramic), approximately 6 times higher than for silica.
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6.6 Conclusion

This chapter has explored the interaction between the optical WGM and the motion of

the microsphere-cantilever in response to acceleration. This WGM accelerometer is en-

tirely fabricated following the methods in chapter 2; the microsphere-cantilever forms the

test-mass, and the tapered fibre supplies light to the WGM. The level of displacement

sensitivity (comparable to picometers) found in chapter 3, allows for detection of micro-g

accelerations as the microsphere-cantilever deflects proportionally to g-forces. Although

one group experimentally studied a WGM microsphere-cantilever accelerometer 15 years

ago [20], in this thesis, a wider range of experimental tests have been performed that char-

acterise the bandwidth, aNEA, and the null-position dependence. This directly contributes

original work to the WGM sensing field that has not been achieved until now.

The WGM accelerometer requires three improvements in order to create a viable pro-

totype. The first is a robust feedback system employing the WGM transduction to coun-

teract slow DC drifts, vibrations, and shock. Such a system can be created using multiple

feedback loops, and controlled with a field-programmable gate array (FPGA). The results

of chapter 4 show successful feedback cooling of the microsphere-cantilever thermal mo-

tion using a derivative feedback loop that drives the piezo-stack supporting it, optimised

for frequencies around Ωm. Active feedback cooling can only extend the sensor band-

width (see fig. 6.3), such that the thermal limit is not surpassed. Quiescence feedback

cooling where the feedback is switched off, and measurements are obtained within the

time it takes for the cooled test-mass to re-thermalise, can circumvent this limit [17]. Al-

ternatively, a proportional-integral-derivative (PID) feedback loop, optimised for a wide

range of frequencies and DC accelerations, can continuously counter the deflection of the

microsphere-cantilever, returning it to the null-position, such that the microsphere is ac-

tively prevented from touching the taper. Such a feedback scheme has been shown to lower

the VRE of a MEMS accelerometer to 10µg/g2 [238]. This would improve the current

WGM VRE by a factor of 1000, and fulfil military grade requirements of VRE≈ µg2 for

precision navigation.

The second improvement relies on manufacturing a suitable frame which both the

tapered fibre and the microsphere-cantilever can be mounted, with minimal supporting

beams, and no additional flexure stages or translation stages. Reducing the number of

mechanical elements minimises noise due to resonant mechanical modes of supporting
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rods. A common frame removes mismatched vibrations (i.e. two separate mounts will

move with different phases and amplitudes relative to one another).

The third improvement is to further study the non-linear read out from the WGM in

fig. 6.6 & fig. 6.7, the slow drift of fig. 6.8, and the VRE in fig. 6.10. By mapping all these

sources of drift, an algorithm which corrects for each can be used to process the WGM

transduction signal, such that non-linearity is removed from the final measurement.
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Chapter 7

Future Work & Conclusions

7.1 Introduction

This thesis has experimentally studied the optomechanical coupling between optical whis-

pering gallery modes (WGMs) and mechanical motion. The system comprises of a micro-

sphere -cantilever evanescently coupled to a tapered fibre which excites the WGM of the

microsphere, fabricated in-house (chapter 2). The transduction properties of the WGM

is investigated, showing successful detection of the thermal motion of the microsphere-

cantilever (and tapered fibre) (chapter 3), which is exploited for the purposes of active

feedback cooling (chapter 4), and sensing acceleration (chapter 6). This chapter outlines

potential experiments that can further extend the reach of these achievements, including

plans to realise the dissipative passive cooling modelled in chapter 5.

Cooling towards the mechanical ground state opens up a plethora of experiments, and

can be achieved using active feedback cooling (chapter 4), and passive cooling methods

(chapter 5). Both methods require shot-noise limited light, which is not the case for

the laser used in this thesis, and passive cooling methods ideally require a mechanical

frequency 100× larger than those of the microsphere-cantilever. For conducting quantum

experiments, the microsphere-cantilever is not suitable for obtaining a c.o.m. quantum

ground state due to the environmental coupling through the clamp, the low mechanical

frequency, and the low mechanical quality factor. This chapter will discuss methods to

improve these three parameters, for example, through the use of levitation, or cryogenic

operation. Possible experiments to study the behaviour of a quantum macroscopic object

are proposed.

Future work to extend the inertial sensing capability of the WGM microsphere-cantilever
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is presented. The results of chapter 6 demonstrated the WGM microsphere-cantilever as

an excellent sensor of acceleration. Tailoring the geometry and mechanical properties of

this test-mass opens up a variety of applications such as gravity gradiometry. A full iner-

tial navigational unit can be formed using the Sagnac effect to sense the rate of rotation,

such that the WGM microsphere functions as a gyroscope. A short introduction towards

achieving these measurements is presented.

The concluding section of this chapter outlines the work presented in this thesis, with

a summary that highlights the main achievements contributed to the WGM field.

In this chapter:

• The importance of a high frequency mechanical oscillator is highlighted with regards

to cooling toward its quantum state.

• Methods of tailoring the mechanical frequencies of the taper-coupled microsphere-

cantilever system are discussed.

• Further work on the inertial sensing capabilities of the WGM resonator are outlined,

including use of the microsphere-cantilever accelerometer for gravity gradiometry.

By combining the WGM Sagnac effect with the accelerometer functionality, one can

form a complete navigational device.

• A final conclusion summarises the work undertaken during the Ph.D.

7.2 Reaching the Micromechanical Quantum Ground State

For all types of backaction cooling discussed in chapter 5, a high mechanical frequency

sets a longer delay between the light field and the mechanical oscillator and increases the

cooling rate. Similar to atomic laser cooling, where κ is equivalent to the spontaneous

emission of the atom, the lowest temperature that can be attained in the non-resolved

sideband regime for dispersive cooling is given by:

Tmin =
~κ
2kB

, (7.1)

which is known as the Doppler temperature [239]. This limit prevents cooling to the

ground state n̄ < 1, where n̄ is the average phonon occupancy, as a direct relation to the

Heisenberg uncertainty principle: the spontaneous emission of a photon that occurs over

the timescale 1
κ implies an energy uncertainty of ∆E ≈ ~κ. Since the average energy of
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the oscillator, Ē = ~Ωm

(
n̄+ 1

2

)
, cannot be lower than this uncertainty, it implies ground

state cooling cannot be reached if κ� Ωm.

The minimum n̄ that can be obtained through sideband resolved cooling using disper-

sive coupling is expressed by:

n̄min =
κ2

16Ω2
m

, (7.2)

obtained at a detuning of ∆ = −Ωm [219], implying that ground state cooling is feasible

when κ ≤ 4√
2
Ωm. However, one issue with passive cooling methods is Heisenberg’s uncer-

tainty principle which leads to the existence of radiation pressure backaction, discussed in

chapter 3. This noise acts to heat the mechanical oscillator such that the minimum added

noise for displacement measurements is equivalent to the power spectral density (PSD)

of the zero point fluctuations (ZPF), known as the standard quantum limit (SQL). The

smallest displacement that can be measured is therefore 2× xZPF.

It should be noted that dissipative only passive cooling, modelled in chapter 5, does

not require the sideband resolved scheme to cool to the ground state [210], although a me-

chanical frequency of 100’s of kHz will relax the laser power required for cooling. In chap-

ters 3 & 5, both dissipative and dispersive coupling is measured between the microsphere-

cantilever and taper, therefore further work should be conducted to minimise the dispersive

component. This could be achieved using a fast laser stabilisation feedback loop which

counteracts the dispersive shifting of the WGM resonance with respect to the mechanical

motion.

Conversely, active feedback cooling can theoretically cool the motion of the oscillator

to its zero point motion by counteracting backaction noise to cool the oscillator to its ZPF

[164]. However, stringent demands are placed on the feedback loop used for active cooling

due to the larger number of electronics required for processing the transduction signal

compared with passive cooling. This would require that classical noise from electronics,

photodetectors and the laser is suppressed, all of which currently limit the active feedback

cooling conducted in chapter 4. A higher c.o.m. frequency of the microsphere-cantilever

would aid feedback cooling, since it is currently amongst many mechanical modes of the

taper in the PSD, shown in chapter 3.
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7.2.1 Tailored Mechanical Properties

The importance of a high mechanical frequency, Ωm, is apparent for meeting the resolved

sideband condition, since making cavities with low κ is challenging. The most success-

ful demonstrations of optomechanical cooling employ mechanical oscillators of thin slab

dimensions [196], or large heavy mirrors [172, 180] that naturally have higher Ωm and

mechanical quality factors, Qm. A downside of having a high Ωm, is that it sets a smaller

zero point motion, xzpf =
√

~
2meffΩm

, that requires an improved measurement sensitivity

(i.e. low imprecision noise). It also defines the starting phonon occupancy n̄th ≈ kBT0
~Ωm

,

thermalised with the environment temperature T0.

In order to increase the mechanical taper frequencies above the kilohertz range, one

could use the taper dimensions specified in [136] (notably the use of tensioning), where

the authors measure torsional mechanical modes with Ωm
2π > 100 kHz, or, the use of a

MEMS fabricated waveguide such as in [225] with 23 MHz frequency. If cooling to the

ground state of the microsphere-cantilever is required, the microsphere can be attached

to a stiffer cantilever made of higher Young’s Modulus material such as silicon nitride or

silicon carbide [240] to increase Ωm. Often it is easier to place an external oscillator into the

near-field of the WGM resonator (as in fig. 5.5 b in chapter 5), such as a clamped-clamped

nanostring [241], but often these have reduced Qm [157]. The increase of surface-to-volume

ratio is one factor which is attributed to the lowering of Qm [157, 242], as well as defects

on the surface due to fabrication processes.

Large quality factors are preferred as it sets the cooling ratio T0
Teff

< Qm. Using

ultrahigh vacuum, and lowering the environmental temperature using a cryostat are both

ways to increase Qm towards its intrinsic value. When the sideband resolved condition

is met, and imprecision noise is minimised, cryogenic conditions have helped achieve an

occupancy of less than 1 [25, 26]1. Especially important for clamped systems is the value

Ωm × Qm, which quantifies the degree of decoupling from the environmental thermal

reservoir [160]. In general, cantilever type resonators will have low Ωm × Qm, due to

mechanical clamping losses. Investigating the dissipation through clamping losses (from

radiation of elastic waves into the substrate), and changing to a low dissipation material

like silicon or sapphire [180], one can increase the intrinsic Qm. For a typical microsphere-

1One consideration for a WGM system is the reversal of the thermally induced optical frequency shift
due to the change in the temperature induced refractive index change [243]. This aids dispersive cooling
as it renders the red-detuned side of the WGM resonance thermally stable [128]
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cantilever used in this thesis, Ωm×Qm ≈ 2π× 1 MHz, whereas a radial breathing mode of

a silicon carbide toroid can reach 2π×10 GHz [240] (the largest reported product amongst

WGM resonators).

7.2.2 Levitated Optomechanics

Conducting experiments to probe quantum behaviour, such as the iconic Young’s double-

slit experiment or matter interferometry, requires cooling to the c.o.m. quantum ground

state in an environmentally decoupled system. For this reason, levitated nanosphere ex-

periments using an optical and/or ion trap have garnered interest recently. Such optical

traps can obtain trapping frequencies of 10-500 kHz, and extremely high mechanical qual-

ity factors up to 1 × 1012 [158] in ultrahigh vacuum. A levitated microsphere version of

the active feedback experiment conducted in chapter 4, or the passive cooling setup in

fig. 5.5 b) (chapter 5) could be considered in future experiments. Such an experiment,

where the levitated WGM resonator is cooled to the c.o.m. ground state by utilising the

coupling of the WGM to a stationary tapered fibre, has never been conducted. Obtaining

high optical quality factor, Qopt WGMs on an untethered sphere cannot be achieved with

colloidally produced spheres (as shown in chapter 1 fig. 1.7) due to the low surface quality.

Re-flowing the surface using a focussed CO2 laser improves Qopt. Other methods such as

dropping glass powder through a microwave plasma torch, or an electric arc, have been

reported to produce 10µm diameter spheres [244], and up to 24µm diameter spheres [245]

respectively.

7.2.3 Probing Quantum Phenomena

An area of focus and significant achievement within optomechanics is cooling close to, or

at a micromechanical quantum ground state [25–27, 246]. Cooling large bulk objects is

appealing for conducting fundamental tests on collapse models [33, 34], creating a super-

position of states [86, 202, 247, 248], quantum squeezing of the mechanical motion [36], as

well as quantum limited sensing applications [2, 40, 71, 249].

In particular, if the mechanical oscillator is cooled to a low phonon occupancy, tests

for continuous spontaneous localisation (CSL) could be achieved without requiring the

mechanical ground state [33, 250]. Within the CSL model, the Schrödinger equation is

modified by inclusion of a non-linear stochastic term that accounts for genuine collapses of
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superposition states. Mass is included in this model such that ‘localisation’ events occur

at a frequency scaled with the mass, implying that macroscopic objects undergo collapse

more readily. In order to conduct an experimental test of CSL, environmental decoherence,

which is an entirely different mechanism, must be minimised to distinguish the noise

signatures of CSL. Due to the stringent requirement for minimal environmental coupling,

the microsphere-cantilever would not be a suitable test-case due to the mechanical coupling

from the clamping point. Since the decoherence rate (and localisation rate) increases with

mass, smaller objects on the order of a 400 nm diameter silica nanosphere are predicted

to be ideal candidates with an appreciable localisation rate without being masked by

decoherence [250]. A variation of the CEODF active feedback cooling in chapter 4, or the

modelled passive cooling in chapter 5 can be used to cool the motion of a near-field coupled

levitated nanosphere, where the WGM of an anchored microsphere (i.e. a microsphere-

cantilever with a short cantilever) provides the CEODF and optomechanical coupling. If

the nanosphere is levitated using a hybrid trap comprised of an optical tweezer and a

Paul trap [7, 250], the optical field can be switched off after cooling, allowing the c.o.m.

mechanical state to evolve. If sources of environmental noise are characterised such as

the blackbody radiation and gas collisions, the comparison between the initial phonon

number and the final phonon number after the period of free evolution can reveal the

effect of extra heating unrelated to these conventional noise. Such heating is predicted

by the CSL model, although care must be taken to ensure optical scattering, a dominant

source of heating, is included in the analysis [250].

7.3 Inertial Sensing

The sensing ability of the WGM microsphere-cantilever coupled to a tapered fibre is shown

to resolve micro-g accelerations in chapter 6. Here, two potential applications of this

optical accelerometer are considered; gravity gradiometry and the sensing of rotation.

7.3.1 Gravity Gradiometry

The use of an ultrasensitive accelerometer to measure variations in the local gravitational

field opens up a range of applications, such as the detection of underground hydrocarbon

reserves, volcanic magma build up [251], and measurement of the Earths tides [135]. The

Earth’s land tides are elastic deformations of the Earth’s crust caused by the residual force
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from the Moon’s gravitation field and the Earth’s centrifugal force, fig. 7.1. These land

deformations vary in amplitude and frequency but typically have a peak signal strength

of 0.4µg and frequencies of 10−5 Hz. Since the time period spans a day, the long-term

stability and drift characteristics of the accelerometer could be tested.

Figure 7.1: A schematic to show the influence of the moon’s gravitational field on the
Earth. The residual force when the centrifugal force is subtracted from the gravitational
field causes a localised modulation of the Earth’s crust due to the change in the gravity
gradient.

It was found in chapter 6 that the microsphere-cantilever WGM sensor has a noise

equivalent acceleration of 2.3µg Hz−1/2, which can be further improved to its thermal

noise equivalent sensitivity of 0.6µg Hz−1/2 by lowering electronic noise and using a shot-

noise limited laser. This would be sensitive enough to detect a tunnel with cross-sectional

area of 2 m2, length 4 m, at a depth of 2 m, in 1 s [135], and is comparable to the sensitivity

of the MEMS device in [135], which was used to measure the Earth’s land tides, specifically

designed with a low mechanical frequency Ωm = 2π × 4 Hz. However, unlike the MEMS

device in [135] the WGM accelerometer bandwidth is over 1000 times larger, does not

require ultralow pressures, and is fabricated without clean room facilities. As with any

vibration monitoring device tested on the Earth’s surface, the authors is [135] state that

seismic noise limits the sensitivity.

Gravitational Waves

A special case of gravity gradiometry is the detection of ripples in space-time called grav-

itational waves. Such waves can be thought of as the ‘sounds’ of the Universe, and are

created by matter in its most extreme form, for example, when neutron stars and black

holes form and collide, as well as gravitational waves propagating from the Big Bang it-

self [230]. A non-spherical acceleration of mass-energy distributions is required to create
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gravitational waves2. By late 2015 LIGO confirmed the detection of gravitational waves

from two colliding black holes [37]. A rich spectrum of gravitational waves are expected to

span across a frequency range between nanohertz to tens of kilohertz. Detection of waves

in the audio frequency band can be conducted using Earth-based detectors (i.e. LIGO),

whereas those in the microhertz to millihertz range require space-based detectors such as

LISA to avoid seismic noise.

Gravitational waves can be considered classical but measurement systems must be

treated quantum mechanically since the expected signals create relative test-mass displace-

ments on the order of 10−18m, approaching or below the SQL. This required sensitivity is

one reason why Earth based detectors are typically kilometre long interferometers such as

LIGO. The microsphere-cantilever test-mass system in chapter 6 is not sensitive enough

to detect gravitational waves, as the SQL is 1000 times noisier than the required PSD

of 10−18 m Hz−1/2. However, reaching this level could be achieved with a high frequency,

heavier microsphere-cantilever with a lower ZPF (i.e. meff ≈ 10−6 kg, Ωm ≈ 100 kHz).

7.3.2 Sagnac Effect

The Sagnac effect is related to a difference in path length experienced by counterprop-

agating optical beams in an interferometer or cavity that undergo rotation. When the

beams are recombined, the resultant interference fringes are shifted according to the an-

gular velocity of the system, denoted as ΩR = dθ
dt . Counterpropagating WGMs shown in

fig. 7.2, undergo this effect, whereby rotation changes the respective path lengths of the

clockwise (CW) and counter-clockwise (CCW) WGMs, breaking the degeneracy of these

±m modes. This creates a WGM doublet. The path length of light travelling in the same

direction as the rotation is increased by ∆L, and the counterpropagating light experiences

a path length decrease of equal amplitude.

The time it takes for WGMCW to propagate around the sphere in the same direction

as the rotation is t1 = 2πa+∆L
c , where a is the microsphere radius, and WGMCCW takes

t2 = 2πa−∆L
c . The increase/decrease in path length ∆L is equivalent to the motion of

the sphere itself such that ∆L = aΩR t1. Therefore the time difference between the

counterpropagating beams is ∆t = t1 − t2 = 4πa2ΩR

c2−a2Ω2
R

. For ΩR � c
a , the time difference is

∆t ≈ 4AΩR
c2

, where A is the cross-sectional area of the microsphere. This causes a WGM

2No gravitational waves are produced for a symmetrical array or distribution of masses gravitationally
collapsing towards a point, as from afar, this is equivalent to the gravitational field of a point mass.

192



Figure 7.2: A microsphere can be used as a gyroscope to measure rotation. Two coun-
terpropagating WGMs, labelled as the clockwise beam WGMCW, and counterclockwise
beam WGMCCW, travel different path lengths due to the Sagnac effect when the sphere
rotates at a rate ΩR in the clockwise direction. The WGMCW beam travels an extra path
length of ∆L, and WGMCCW travels ∆L less.

doublet with peak separation of:

∆f[CW−CCW] = 2
a

λ0
ΩR, (7.3)

where λ0 is the WGM wavelength. Such a device capable of measuring the rate of change

of rotation is known as a gyroscope and is used for determining orientation. The dynamic

range of the gyroscope is limited by the FWHM of the mode such that a frequency split

of 1.25 MHz can be resolved using a FWHM WGM linewidth of 5 MHz. This would

enable detection of ΩR ≈ 7400 rad s−1, which is approximately 42 × 104 deg s−1, using a

180µm diameter sphere. This value can be improved to 3000 deg s−1 by using a narrower

WGM of FWHM 1 MHz with a 5 mm diameter microsphere, but is still not sensitive

enough to measure the 0.004 deg s−1 angular velocity of Earth. Errors associated with

WGM gyroscopes are related to changes of the bulk material, such as modulations in the

WGM path lengths caused by bulk heating. Stable operation therefore requires thermal

control of the surrounding temperature such that changes are less than a milli-Kelvin [57].

Bulk heating can also arise from fluctuations in the intracavity intensity, therefore the

power coupled to the WGMs should be stabilised to pico-Watt fluctuations using feedback

electronics. Maleki et al. have experimentally created a CaF2 WGM toroid gyroscope, 1 cm

in diameter, with a WGM linewidth of 200 kHz, excited using 1550 nm light. A bias drift

of 2 deg hr−1 was measured [57], which is considered poor for the next generation of high

precision navigational gyroscopes aimed at a maximum bias drift < 0.0001 deg hr−1. The

limiting aspects in [57] were identified as dynamic misalignment of measurement optics,
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and WGM power fluctuations due to humidity. Fibre optic gyroscopes are currently the

best performing gyroscopes using the Sagnac effect, with sensitivities on the order of

16µdeg /
√

hr and bias stability of less than 0.00003 deg/hr[252]. It should be noted that

the WGM resonator does not have an large enhanced sensitivity compared to an optimised

fibre optic gyroscope as shown in eq. 7.3, which also describes a fibre optic gyro that forms

a single ring enclosing an area defined by radius a. This is because resonant gyroscopes

utilising the Sagnac effect e.g. a resonant fibre optic gyroscope with multiple coils, or the

WGM resonator studied here, although employing multiple round trips, will also have an

associated increase in loss [253].

Navigation

An inertial measurement unit (IMU) can comprise of 3 gyroscopes and 3 accelerometers to

measure rotation and acceleration in all 3 axes3, used in a strapdown configuration where

the sensors are mounted directly onto the moving body frame. A more complex method

positions the sensors on a free-to-move platform, surrounded by gimbals and torque motors

that are used in a feedback loop to keep alignment with the global frame [229].

Although the output of the WGM accelerometer can be double integrated to give

position, each integral step compounds the influence of drift. Unless the orientation of

each accelerometer axis is guaranteed not to drift, which is only valid if the x-axis or z-axis

do not measure components of the y-axis4, the calculation of position will have an error

rising quadratically in time. Similarly, the use of a gyroscope to measure rotation around

each axis cannot be used to accurately define position because the gyroscope alone has no

absolute reference and is prone drifts and errors once the signal is integrated to determine

the relative angles. In order to navigate using accelerometers and gyroscopes, both devices

require inputs from each other to reduce drift error.

An IMU comprising of both sensors is often used in a Kalman filter [228] to determine

position with reduced uncertainty. The Kalman filter is an algorithm that uses a series of

noisy measurements over time to produce an optimised estimate of future measurements.

It works as follows; step by step, starting at t0; the Kalman filter is provided with an

initial estimate of location, including its uncertainty. Using a user defined mathematical

3Often magnetometers are also used which can measure the Earth’s magnetic field to assign the north
and south directions. The extra redundancy in information can correct for long term drift errors.

4A perfectly aligned y-axis measures a constant acceleration due to gravity, equal to -g, which can
cause a DC bias if another axis can also detect this acceleration. Cross coupling is unavoidable because of
imperfect alignment of the sensors in each axis.
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model, a new estimate valid at t1 is predicted based on t0, taking into account the initial

uncertainty and the accuracy of the model. Then, the measurement at t1 and the predicted

value at t1 are weighted by considering the measurement noise and the total prediction

uncertainty. The output is a new updated estimate of position, valid at t1, which is used

for subsequent analysis at t2.

Although the construction of an IMU using WGM resonators has not been achieved

yet, this is an emerging technology that would open up a new class of optical inertial

sensors for commercial applications. A WGM accelerometer employing the Sagnac effect

requires substantial technical improvements, with little gain in sensitivity compared to

fibre optic gyroscopes [253]. Alternatively, the Coriolis force acting on the microsphere-

cantilever could be used instead to perform a measurement of the rotation. This is can

be achieved by sinusoidally driving the fundamental mechanical mode in the x-axis whilst

measuring the resultant oscillation in the y-axis due to the Coriolis force induced by a

rotation Ωz around the z-axis. In this case, the amplitude of the oscillation in the sensing

mode (∆y) is dependent on the driven amplitude of the cantilever in the x-axis (∆x) such

that ∆y = 2Ωz∆xQm

ωx
, where ωx is the fundamental mechanical frequency of the cantilever.

A sinusoidal modulation with peak amplitude of ∆x = 50 nm allows detection of Ωz ≈

0.07 deg/s using typical parameters for ωx = 2π × 2800 rad/s, Qm = 400, and minimum

detectable displacement of ∆y = 3 pm. Two waveguides are required to transduce the

motion in the y and z-axis. Such a device requires further work on determining drift

and cross-coupling, which are considered more important than sensitivity for long term

navigation. Due to fabrication imperfections when melting microspheres, each sensor

will have a different WGM resonant frequency and Qopt, thus requiring a self-calibration

procedure using a reference F-P interferometer, or a transition line in an atomic gas sample.

7.4 Conclusion

In conclusion, this thesis has explored the ability of optical WGM resonances to transduce

mechanical motion, and enhance optical forces for actuation and cooling. A test system

comprising of a microsphere-cantilever and a tapered fibre, allows for evanescent coupling

of light from the taper to a WGM in the microsphere. A CO2 laser and a tapering

rig were set-up to fabricate high optical Q microspheres (Qopt ≈ 10−7), and micron-

waist tapered fibres respectively. The thermal motion of both objects is imprinted as
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fluctuations of the WGM, and can be analysed in the PSD of the transmission through

the taper (transduction signal). Differentiation of the transmission creates a feedback

signal, proportional to velocity.

Active feedback cooling was implemented by driving a piezo-stack with the feedback

signal to damp the c.o.m. and second eigenfrequency of the microsphere-cantilever sup-

ported by the piezo-stack, which demonstrates cooling of the WGM resonator itself, rather

than an object placed within a cavity. It should be noted that a high Qopt silica micro-

sphere tethered to a stem (i.e. microsphere-pendulum or microsphere-cantilever) was first

studied by Braginsky et al. in 1989. Only within the last five years have groups charac-

terised the transduction mechanism for the taper coupled, microsphere-pendulum version

[45, 129]. The CEODF is driven by active feedback to cool two higher order mechani-

cal modes of the clamped-clamped taper. Although tapered fibres are highly popular for

coupling to WGMs [12, 45, 46], and for near-field coupling [254–256], cooling of the me-

chanical modes has not been achieved until now. Combining these two feedback schemes

together allows for simultaneous cooling of coupled (and separate) oscillators, conducted

for the first time using WGMs. Cooling of the c.o.m. mode of the WGM resonator, or

modes of the tapered fibre has only been achieved within this Ph.D [55].

Alternative to active feedback cooling is passive cooling; where the optomechanical

coupling between the light field and mechanical motion is dispersively coupled (motion

causes a shift in the cavity resonance), and/or dissipatively coupled (motion causes a

change in the cavity decay rate). Both types of passive cooling are classically modelled

for 3 scenarios; a mechanical oscillator placed in the evanescent field of the microsphere-

cantilever, the motion of the microsphere-cantilever itself5, or a near-field coupled tapered

fibre with high mechanical frequency. The results of this modelling indicate possible

future investigations owing to the large optomechanical coupling rates measured from the

microsphere-cantilever taper system. Such an experiment, where mechanical motion is

dissipatively cooled to the ground state with light blue-detuned with respect to the WGM

resonance would signify a world first, and validate the theory of [210], who use quantum

noise analysis rather than classical equations of motion.

Lastly, the exquisite transduction and active control of the motion of the microsphere-

cantilever can be used for sensing micro-g accelerations, and has a sensitivity unmatched

5This requires a tailored microsphere-cantilever with > 100 kHz mechanical frequency, coupled to a
fixed planar waveguide. A levitated microsphere could also be considered.
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by any accelerometer employing a WGM resonator test-mass. An open loop WGM ac-

celerometer has been demonstrated, capable of resolving micro-g acceleration. Further

work to utilise the active feedback cooling of the microsphere-cantilever in chapter 4 could

extend the sensing range and bandwidth to create a robust closed-loop device for real-world

applications such as gravity gradiometry, or navigation.

The main outcomes of each chapter are summarised below:

• Chapter 1 outlined the motivation behind conducting the experiments, which fo-

cus on studying the transduction and cooling properties of WGM resonators. An

introduction providing the theoretical description of morphology dependent optical

WGMs is presented.

• Chapter 2 detailed the fabrication of the WGM resonator used in this thesis, the

microsphere-cantilever. Since an evanescent field exists around the WGM that ex-

tends beyond the geometric boundary, coupling of light to the WGM is achieved using

a tapered optical fibre (also fabricated in-house). Pound-Drever-Hall locking is used

to stabilise the laser frequency onto the WGM resonance, used in chapter 4. Due

to the extremely small mode volume and high optical quality factor of the WGMs,

a large intracavity power can build up, and bulk heating of the WGM resonator is

measured. This resulting thermal bi-stability offers an alternative method to ther-

mally lock the WGM to the laser source, which is implemented in chapters3 , 4 & 6.

Many aspects of this chapter are reported in our conference proceedings [114].

• Chapter 3 explored the mechanism behind WGM enhanced transduction of the rel-

ative motion between the optical cavity and the tapered fibre. Experimental data

is presented revealing the role of dissipative and dispersive coupling in this detec-

tion process. Optimisation of the signal-to-noise ratio of the transduction signal is

achieved using red-detuned light with respect to the WGM, and a DC coupling dis-

tance close to critical coupling. The thermal motion of the oscillators was analysed

using the PSD, and the mechanical properties such as the spring constant, effective

mass, and mechanical quality factor were extracted from the PSD. An attractive

optical dipole force (CEODF) from the WGM, which is actively controlled by mod-

ulating the laser intensity, is shown to preferentially actuate the tapered fibre, since

the microsphere-cantilever is stiffer and heavier.

• Chapter 4 described the main results of the publication obtained during this Ph.D.
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[55], where multiple mechanical modes of the microsphere-cantilever and tapered

fibre are actively cooled using a piezo-stack and the CEODF respectively. The ther-

mal motion of both oscillators is reduced to picometer fluctuations, comparable to

the size of a single atom. However, the average phonon occupancy is only reduced

to tens of millions of phonons, and classical noise fluctuations prevent further feed-

back cooling. Simultaneous cooling is achieved, allowing stabilisation of the coupling

junction and could be explored for timing applications. As well as probing the noise

characteristics of the entire feedback loop, the role of time delay is experientially

verified against theory. Instantaneous differentiation of the transduction signal re-

quires further work. The influence of noise is seen through squashing, implying that

a lower noise photodetector and piezo-driver (or a piezo with a smaller tuning range),

is required in future experiments.

• Chapter 5 presented classical modelling of passive cooling schemes, which utilise

dynamical backaction to damp motion, and do not require electronic processing as is

the case for active feedback cooling. Dispersive and/or dissipative cooling of a high

frequency mechanical mode of a tailored microsphere-cantilever (or tapered fibre)

is predicted, with dissipative cooling especially attractive as it remains an elusive

goal. The classical model validates outcomes specific to the original quantum noise

analysis of dissipative cooling, such as cooling when blue-detuned with respect to the

cavity resonance. The experimentally measured dissipative coupling rate between

the tapered fibre and the WGM of the microsphere-cantilever is over 10 MHz nm−1,

and compares well against other optomechanical devices, validating the system as a

promising candidate for novel dissipative cooling.

• Chapter 6 described the use of the taper coupled, microsphere-cantilever system as

an accelerometer, measured against a commercial device. The acceleration sensi-

tivity of the WGM sensor was found to be consistently better than the commercial

capacitive accelerometer across its entire sensing bandwidth, allowing detection of

micro-g accelerations. The non-linear response when sensing large amplitude dis-

placements (i.e. due to a large acceleration) is calibrated by considering the change

in power coupled to the WGM with coupling distance.

• Chapter 7 presented a list of applications and future work to extend the achievements

of this Ph.D. Increased mechanical frequencies and cryogenic temperatures could be
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used in future to allow for ground state cooling of a WGM resonator, that can

then be tested in a range of experiments to probe quantum behaviour such as the

creation of exotic squeezed states, macroscopic superpositions, and tests of collapse

theories. The acceleration sensing capability can be applied for gravity gradiometry

with µg Hz−1/2 sensitivity, for example, to measure the Earth’s slowly oscillating

land tides. The use of the WGM Sagnac effect to measure rotation can form a

WGM gyroscope. When used in combination with the WGM accelerometer studied

in chapter 6, forms an optical navigational positioning system. Finally, a summary

of the conclusions is presented.
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Chapter 8

Appendix

8.1 Quadrupole Ion Trap Set-up

The trap consists of electrodes oriented to produce a quadrupole trap with a 3D quadratic

potential. This saddle potential cannot produce 2D confinement due to Earnshaw’s the-

orem that states 3D confinement is not possible with purely static fields. Therefore a

rotating field is also applied, the frequency of which is optimised to maintain a stable

orbit near the trap centre [257]. This RF modulation moves the saddle field in axial

and radial directions so that the time variance will subject the particle to a pondermo-

tive force. The ion trap employed consists of two facing cylindrical electrodes (spacing of

1 mm) of outer diameter 5 mm and inner diameter 3 mm, which house rod electrodes 1 mm

in diameter. RF voltage is applied to the rods and the cylindrical electrodes are grounded.

The typical trapping voltage (peak to peak) is 1.2 kV with a driving frequency of

750 Hz. Spheres are loaded into the trap from below using a piezo speaker modulated

at 1 kHz, which springs beads into the trapping region. Spheres are only loaded at a

pressure of approximately 10−3 mbar, avoiding the breakdown voltage of air at a few mbar

(related to the Paschen curve) as the live electrodes shorts with the ground electronics.

Under vacuum it was possible to find the trapping frequency (the centre-of-mass motion)

of the microspheres as their motion, at approximately 19.3 Hz. A green laser is used for

illumination and a photomultiplier tube collects the scattered light in order to Fourier

transform the signal, as shown in fig. 8.2.

In an attempt to excite whispering gallery modes, two light sources were added;

a broadband white light source, and a 635 nm wavelength external cavity diode laser

(ECDL), as shown in fig. 8.1 b), where the red laser illuminates from above, and the white
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Figure 8.1: a) An illuminated 10 µm diamater silica sphere is visibly seen trapped in
between the cylindrical electrodes of the ion trap, marked with an arrow. b) The set-up
for illuminating the trapped microsphere with laser light from above, and white light from
behind. Scattered light is collected using a microscope facing the chamber.

Figure 8.2: a) The power spectrum shows a primary secular frequency of 20 Hz belonging
to the centre of mass motion of an ion trapped silica microsphere.

light source illuminates from behind with respect to the microscope position. The ECDL

was used to try monochromatic free-space coupling of WGMs belonging to the levitated

sphere, but was not successful, as explained in chapter 1. However, the white light source

was able to excite broad WGMs over the visible spectrum, shown in fig. 1.7 of chapter 1.
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8.2 Quantum Noise Spectral Density

8.2.1 Quantum Power Spectral Density of Mechanical Motion

To derive the quantum power spectral density (PSD) of a mechanical oscillator, it is first

quantised, as detailed in [140]. Starting with the Hamiltonian for a 1D quantum harmonic

oscillator:

Ĥ =
p̂2

2meff
+

1

2
meffΩ2

mx̂
2, (8.1)

where p̂ = −i~ δx is the momentum operator, and x̂ is the position operator. The eigen-

states are found by looking for solutions of the linear second order differential equation

corresponding to the time-independent Schrodinger equation Hϕ = Eϕ:

Ĥϕ = − ~2

2meff

δ2ϕ

δx2
+

1

2
meffΩ2

mx̂
2ϕ = Eϕ. (8.2)

The operator â =
√

meffΩm

2~

(
x+ i p

meffΩm

)
, and its complex conjugate can be used to form

the identity â†â = meffΩmx2

2~ + p
2~meffΩm

+ i
2~ [x, p] = H

~Ωm
− 1

2 , and ââ† = H
~Ωm

+ 1/2, so that

the average phonon number is n̄ = â†â 1, and the energy levels are H = ~Ωm(n̄ + 1/2).

This leads to the phonon eigenstates |n〉 that have eigen-energies of En = ~Ωm(n̄+ 1/2).

The zero point energy when n̄ = 0 is E0 = ~Ωm
2 .

However, even at the zero point energy there are zero point fluctuations (ZPF) which

are quantum in nature. The origin of ZPF is found by decomposing the object’s trajectory

into two quadratures, x̂(t) = X̂ cos (Ωmt) + Ŷ sin (Ωmt), where Y,X are constant during

time intervals smaller than the damping time. If these represent position and momentum,

X̂ = x̂(0), and Ŷ = p̂(0)
meffΩm

, respectively, the commutator [x̂, p̂] = i~ leads to [X̂, Ŷ ] =

i~
meffΩm

so that Heisenbergs relation is [160]2:

∆X.∆Y ≥ ~
2meffΩm

= x2
zpf . (8.3)

Any (non-perturbing) measurement that simultaneously measures both quadratures with

equal precision is limited to the ZPF.

The double sided quantum noise PSD is analogous to the classical PSD except with

1Note that n̄ = (e
~Ωmm
kBT − 1)−1 is also known as the Bose occupation factor, where T is the mode

temperature.

2The relation ∆X =

√〈
(X̂ −

〈
X̂
〉

)2
〉

is used.
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quantum operators:

S∗xx(ω) =

∫ ∞
−∞

dt eiωt 〈x̂(t)x̂(0)〉 =

∫ ∞
−∞

dt eiωtGx(t), (8.4)

where x̂ is the quantum operator for position, and Gx(t) is the autocorrelation function.

To find x̂(t), it is assumed the oscillator is maintained in equilibrium with a large heat

bath at T0, with some infinitesimal coupling, so that the Hamiltonian (total kinetic and

potential energy) is given by:

Ĥ(x̂, p̂) =
p̂2

2meff
+

1

2
meffΩ2

mx̂
2 = ~Ωm

(
â†â+

1

2

)
. (8.5)

The solution for x̂(t) and p̂(t) can be found by considering the classical relation meff
d2x
dt2

=

−Ω2
mmeffx, whose solution, given initial conditions x(0) and p(0) is:

x(t) = x(0) cos Ωmt+
p(0)

meffΩm
sin (Ωmt). (8.6)

When eq. 8.6 is differentiated and multiplied by meff this gives the equation for the mo-

mentum:

p(t) = p(0) cos (Ωmt(−meffΩmx(0) sin (Ωmt). (8.7)

The position autocorrelation function Gx(t) is therefore:

Gx(t) = 〈x̂(t)x̂(0)〉 = 〈x̂(0)x̂(0)〉 cos (Ωmt) + 〈p̂(0)x̂(0)〉 1

meffΩm
sin(Ωmt). (8.8)

Classically, the second term disappears because there are no correlations between posi-

tion and momentum, producing a single sided PSD. In the quantum case, the canon-

ical commutation relation between position and momentum implies some correlations

i.e. 〈x̂(0)p̂(0)〉 − 〈p̂(0)x̂(0)〉 = i~, therefore 〈p̂(0)x̂(0)〉 = −i~2 . Since the correlator is

imaginary it means that the autocorrelation function is complex. Using the relations

x̂ =
√

~
2meffΩm

(â+ â†), and p̂ = −i
√

meff~Ωm

2 (â− â†), eq. 8.8 becomes:

Gx(t) =
~

2meffΩm
[n̄ cos (Ωmt) + (n̄+ 1) cos (Ωmt) + in̄ sin (Ωmt)− i(n̄+ 1) sin (Ωmt)] ,

(8.9)
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where the relations â†â = n̄ and ââ† = n̄+ 1 are used. This leads to:

Gx(t) =
~

2meffΩm

(
n̄eiΩmt + (n̄+ 1)e−iΩmt

)
, (8.10)

where the trigonometric identities cos (A) = eiA+e−iA

2 , and e−iA = cos (A) − i sin (A), are

inserted.

This autocorrelation function is used in chapter 3 to further derive the PSD of the

ZPF, which is stated here as:

S∗xx(ω) = 2πx2
zpf {n̄δ(ω + Ωm) + (n̄+ 1)δ(ω − Ωm)} , (8.11)

where n̄ is the average phonon occupancy of the mechanical oscillator, and δ is the Dirac

delta function. This double sided PSD is clearly asymmetrical around ω = 0.

For weak damping Γ0, eq. 8.11 can be written with the delta function replaced by a

Lorentzian (assuming the oscillator frequency is still sharply defined) [144]:

S∗xx(ω) = x2
zpf

{
n̄

Γ0

(ω + Ωm)2 + (Γ0/2)2
+ (n̄+ 1)

Γ0

(ω − Ωm)2 + (Γ0/2)2

}
. (8.12)

In the classical regime, i.e. n̄ ≈ kBT0
~Ωm

, such that eq. 8.12 becomes the classical single sided

PSD derived in chapter 3.

8.2.2 Shot-noise Limited Light

If a shot-noise limited laser is used to measure motion, Poisson statistics define the random

vacuum fluctuations of the light field which determine the measurement sensitivity. The

phase noise (fluctuations in the phase quadrature), often referred to simply as ‘shot-

noise’ increases the measurement imprecision, and increases the noise floor of the PSD.

This scales with 1/
√
np, where np is the number of photons. The random arrival of

photons leads to radiation pressure backaction (amplitude quadrature fluctuations), which

is referred to as backaction noise, that will heat the motion. This increases with
√
np [143]

The generic definition of the standard quantum limit (SQL) is when these two noise

sources contribute equally to the total measurement noise, at the mechanical frequency.

The number of photons with fluctuations of (∆np)
2 = n̄p, where n̄p is the mean photon

number. Since coherent states of different phase are not orthogonal to each other there

is a uncertainty in any measurement of the phase θ, obeying Heisenberg’s uncertainty

204



principle of ∆np∆θ = 1
2 . The PSDs associated with these measurements, Snp and Sθ also

obey this limit.

8.2.3 Using Shot-noise Limited Light for Displacement Measurements

A continuous beam carrying an average photon flux of ¯̇N has a variance of (∆N)2/t =

Sn = ¯̇N . The phase of the beam will therefore have fluctuations of Sθ = 1

4 ¯̇N
[144]. The

noise on a phase measurement that attempts to resolve the phase shift of 2κx from a photon

as it interacts with the observed object is SSN = Sθ/4κ
2 and the radiation pressure that

transfers a momentum of 2~κ to the object is SRP = 4~2κ2Sn. The expression
√
SRPSSN =

~
2 sets the ideal scenario which is the lower bound on the Heisenberg uncertainty principle

[144].

The equivalent displacement PSD of SRP and SSN in units of m2 Hz−1, i.e. when light

is used to detect displacement, determines the sensitivity, and is derived in chapter 3.

8.2.4 Influence of Phonons and Detection Efficiency

A realistic detector, such as a photodetector will have a detection efficiency ε < 1 (this also

applies to the coupling efficiency of the light to the mechanical motion where scattering

losses and absorption can limit ε). The imprecision noise introduced previously is therefore

re-defined as Simp,xx(ω) = ~
2
|χm(ω)|
ε1/2

. Excess phonons may also be present in a realistic

system due to residual thermal motion that cannot be damped further, or backaction effects

from the light. Including both these effects and approximating x2
zpf |χ(Ωm)| = ~ |χm(Ωm)|

in eq. 3.60 of chapter 3, the total noise PSD of eq. 3.62 changes to:

Sdet′,xx(Ωm) = ~ |χm(Ωm)| (2n̄+ 1) +
~
2
|χm(Ωm)|+ ~

2

|χm(Ωm)|
ε1/2

, (8.13)

which reduces to Sdet,xx(Ωm) = 2~
mΓ0Ωm

for an ideal detector and a ground state oscillator,

in agreement with eq. 3.66. The total excess noise from residual phonons and inefficient

detection on-resonance is:

Sadd,xx(Ωm) = 2~n̄ |χm(Ωm)|+ ~
2
|χm(Ωm)|+ ~

2

|χm(Ωm)|
ε1/2

, (8.14)

which is plotted in fig. 8.3 a) for an ideal detector ε = 1, but varying phonon occupancy n̄,

and fig. 8.3 b) for n̄ = 10 but varying ε. The x-axis is defined by the ratio of the input laser
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power to the optimum laser power, PSQL, which defines the balance between SBA,xx and

Simp,xx by tuning the average photon number n̄p. The SQL is shown for n̄ = 0, whereas

higher phonon occupancies result in noise levels far higher.

The role of the detection efficiency in fig. 8.3 b) where the phonon occupancy is n̄ = 10

and ε is varied from 1 to 0.001 shows that at a certain ε the total added noise is no longer

minimised. Derived elsewhere is the minimum ε that does not add further noise, which is

related to n̄ through n̄+ η−1/2−1
2 << 1 [166]. In order to approach the SQL when n̄ = 0,

the minimum detection efficiency must be ε = 1/9. Using optical homodyne detection,

the quantum efficiency can be as high as 0.9 [140].

Figure 8.3: The additional noise introduced by continous weak measurement of position
for a) perfect detection efficiency (ε = 1) with varying phonon occupancy from the ideal
case of n̄ = 0 to n̄ = 100. Sn=0→100,xx is shown as individually patterned red lines, with
the corresponding total added noise (eq. 8.14) in matching patterned black lines. b) The
added noise when the oscillator has n̄ = 10, but the detection efficiency is varied from
0 ≤ ε ≤ 1 which alters Simp,xx, shown as patterned green lines.

The optimum laser power PSQL as seen in fig. 8.3, has consequences for passive cooling

whereby the power required to cool to the ground state may be larger PSQL and will result

in unwanted backaction heating. For a WGM cavity (or F-P cavity) with total cavity

decay rate κ, and dispersive coupling to the mechanical oscillator parametrised by gom,

there exists a balance between gom and the required cooling power that sets the minimum

added noise, which can potentially reach the SQL and cool to n̄ = 0.
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8.3 Comparison of Fitting Methods to Infer Mode

Temperature

In order to validate that the fit function employed in chapter 4 (described in section 4.3.3),

is an accurate measure of the reduced mode temperature, all four methods for inferring

the mode temperature as detailed on pg. 108 are compared.

Plotted in fig. 8.4 are the extracted mode temperatures and errors, found from analysing

the PSDs of the feedback cooled c.o.m. mode of microsphere-cantilever[A] (labelled c1),

and eigenmode 8 of taper[B] (labelled c2).

Figure 8.4: The mode temperatures reached for feedback gain g are plotted for a) the
taper[B] mode at 5.5 kHz, and b) the c.o.m. mode of microsphere-cantilever[A] at 2.8 kHz,
using the four methods described previously, where the temperature can be found by
comparing i) Teff , ii) Γeff , iii) the area under the PSD, and iv) the peak height of the PSD.
The predicted decrease in mode temperature using T0(1 + g) is plotted as a line. Errors
are taken from the respective fitting functions.

The mode temperatures can be inferred by comparison to the calibration PSD, taken

when no feedback is applied. The first two methods to find Teff require fitting with eq. 4.19

to find fitting parameters.

• Firstly, Afb = 2kBT0

(1+g)m , which is similar to the amplitude of a Lorentzian-like line-

shape, can be used such that Teff = Afb
A0/300 , where A0 is taken at zero gain.

• Secondly, the fitted parameter Γeff = (1+g)Γ0, that is proportional to the linewidth,

can be used in Teff = 300
Γeff/Γ0

.
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• A third method for determining the temperature is to integrate the area under the

PSD: Areafb =
∫ +∞
−∞ Sfb,imp

xx (Ω) dΩ ≈ kBTeff
meffΩ2

m
, such that Teff = 300Areafb

Area0
.

• Lastly, the peak height of the PSD at the mechanical frequency, Sfb,imp
xx (Ωm) =

2kBT0

meff(1+g)2Ω2
mΓ0

can be used to find Teff = 300√
Sfb=0,imp
xx (Ωm)/Sfb,imp

xx (Ωm)
.

The x-axis of fig. 8.4 is the gain ‘g’ that corresponds to the currently used fitting function

employing Afb = 2kBT0

(1+g)m , described in the experimental methods (section 4.3.3).

All methods of extrapolating the mode temperature are in good agreement for the

cooling of mode t1 of taper[B] and mode c2 (c.o.m.) of microsphere-cantilever[A], with only

the lowest mode temperature derived from integrating the PSD area showing disagreement.

These errors are due to integrating a noisy, low amplitude, highly damped peak in the

PSD.

8.4 List of Dimensions

The dimensions of the microsphere-cantilevers tested in this thesis is presented in table 8.1,

where the measurement errors are less than 10 %.

Name Sphere Diameter Stem Length Stem Diameter
µm mm µm

A 177 5.6 120
B 179 5.5 114
C 142 4.4 103
D 192 6.1 115
E 152 7.0 120
F 180 5.2 120

Table 8.1: The dimensions of the microsphere-cantilevers used in this thesis, with mea-
surement errors of less thn 10%.

The dimensions of the taper shown in chapter 2, fig. 2.4 is representative of all the

tapers used in this thesis since the same pulling speed is used alongside a similar number

of pulling steps and consistent flame dimensions3. The same dimension of mount is used

for each taper, such that the overhang length does not significantly vary between each

fibre, and the mechanical mode frequencies shift by less than 500 Hz (see for example the

two different tapers used in chapter 3, fig. 3.13.). Measuring the dimensions of each taper

is not required for obtaining the mechanical properties, and is only conducted for a few

cases i.e. taper[B], to compare with FEM modelling.

3This was confirmed by comparing the waist diameter of two tapers made on different days using the
exact same pulling parameters, showing agreement within the measurement error of ±0.6µm.
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