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Neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous group of lysosomal storage disorders. NCLs include
the rare autosomal recessive neurodegenerative disorder neuronal ceroid lipofuscinosis type 2 (CLN2) disease,
caused by mutations in the tripeptidyl peptidase 1 (TPP1)/CLN2 gene and the resulting TPP1 enzyme deficiency.
CLN2 diseasemost commonly presentswith seizures and/or ataxia in the late-infantile period (ages 2–4), often in
combinationwith a history of language delay, followed by progressive childhood dementia, motor and visual de-
terioration, and early death. Atypical phenotypes are characterized by later onset and, in some instances, longer
life expectancies. Early diagnosis is important to optimize clinical care and improve outcomes; however, current-
ly, delays in diagnosis are common due to low disease awareness, nonspecific clinical presentation, and limited
access to diagnostic testing in some regions. In May 2015, international experts met to recommend best labora-
tory practices for early diagnosis of CLN2 disease. When clinical signs suggest an NCL, TPP1 enzyme activity
should be among the first tests performed (together with the palmitoyl-protein thioesterase enzyme activity
assay to rule out CLN1 disease). However, reaching an initial suspicion of an NCL or CLN2 disease can be challeng-
ing; thus, use of an epilepsy gene panel for investigation of unexplained seizures in the late-infantile/childhood
ages is encouraged. To confirm clinical suspicion of CLN2 disease, the recommended gold standard for laboratory
diagnosis is demonstration of deficient TPP1 enzyme activity (in leukocytes, fibroblasts, or dried blood spots) and
the identification of causative mutations in each allele of the TPP1/CLN2 gene. When it is not possible to perform
both analyses, either demonstration of a) deficient TPP1 enzyme activity in leukocytes or fibroblasts, or b) detec-
tion of two pathogenic mutations in trans is diagnostic for CLN2 disease.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Neuronal ceroid lipofuscinosis type 2 (CLN2) disease (OMIM
204500) is a rare autosomal recessive lysosomal storage disorder that
results from deficient activity of the lysosomal exopeptidase tripeptidyl
peptidase 1 (TPP1) enzyme (EC 3.4.14.9) caused by mutations in the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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TPP1/CLN2 gene (GenBank accession no. NM_000391.3) [1]. As in other
neuronal ceroid lipofuscinosis (NCL) disorders (Table 1), CLN2 disease
leads to intralysosomal accumulation of autofluorescent storage mate-
rials and neuronal loss.

The in vivo substrate(s) of TPP1 are not known, and the molecular
pathology of TPP1 enzyme deficiency is poorly understood [2]. CLN2
disease incidence estimates range from 0.22 to 9.0 per 100,000 live
births, but it is possible that it is under-recognized [2–4].

The classic phenotype of CLN2 disease is the most common form
of NCL with late-infantile onset (roughly defined as ages 2–4 years)
and generally manifests with new-onset seizures and/or ataxia, typ-
ically in combination with a history of early language delay [5]. Clas-
sic phenotype disease progression is rapid, leading to the loss of
acquired developmental milestones, new or worsening ataxia,
movement disorders (myoclonus, dystonia, and chorea), progressive
dementia, and eventual loss of vision [3,5–9]. A majority of those di-
agnosed with CLN2 disease die prematurely after becoming bedrid-
den and blind. The more rare atypical phenotypes are characterized
by varied ages of initial presentation and/or longer life expectancy
[5,10–12]. An example of atypical CLN2 disease is spinocerebellar
ataxia autosomal recessive 7 (SCAR7; OMIM 609270), which was
initially described as a distinct disorder but is in fact caused by
deficient TPP1 enzyme activity; individuals with SCAR7 develop
ataxia and cerebellar atrophy but do not develop seizures or loss of
vision [12].

In May 2015, 13 international laboratory and clinical NCL experts
met both to develop a CLN2 disease–specific diagnostic algorithm
(Fig. 1) and to define the gold standard diagnostic laboratory tests to
support an early and accurate diagnosis of CLN2 disease.
Table 1
The neuronal ceroid lipofuscinosis disorders.
Adapted from the DEM-CHILD algorithm, http://www.dem-child.eu/index.php/ncl-diagnostic-

Age and clinical presentation Genes Protein products

Newborns (through infantile)
• Epilepsy
• Microcephaly

CLN1 PPT1 (lysosomal
CLN10 CtsD (lysosomal
CLN14 KCTD7 (unknow

tetramerization d
Young children (late infantile)
• Developmental delay or regression
• Newly occurring epilepsy of unknown
cause

CLN1 PPT1 (lysosomal
CLN2 TPP1 (lysosomal
CLN5 (Soluble lysosom
CLN6 (Transmembrane
CLN7 MFSD8 (transme
CLN8 (Transmembrane
CLN10 CtsD (lysosomal

School-aged children (juvenile)
• Vision loss
• Dementia
• Epilepsy

CLN1 PPT1 (lysosomal
CLN2 TPP1 (lysosomal
CLN3 (Transmembrane
CLN5 (Soluble lysosom
CLN6 (Transmembrane
CLN7 MFSD8 (transme
CLN8 (Transmembrane
CLN10 CtsD (lysosomal
CLN12 ATP13A2 (ATPas

Young adults
• Nonspecific mental, motor, or behavioral
abnormalities

CLN1 PPT1 (lysosomal
CLN2 TPP1 (lysosomal
CLN4
(autosomal dominant)

DNAJC5 (HSP40/

CLN5 (Soluble lysosom
CLN6 (Transmembrane
CLN10 CtsD (lysosomal
CLN11 GRN (progranuli
CLN13 CtsF (lysosomal

CLN, neuronal ceroid lipofuscinosis; Cts, cathepsin; GRN, granulin; HSP40, heat shockprotein 40
superfamily domain containing 8; PPT1, palmitoyl-protein thioesterase 1; TPP1, tripeptidyl pep
2. Clinical suspicion and paths to diagnosis of CLN2 disease

Developing a specific suspicion of CLN2 disease through differential
diagnosis is often a protracted process, due in part to lack of pathogno-
monic signs at onset. Based on the expert meeting discussions, three
general paths lead to a laboratory diagnosis of CLN2 disease, depending
on degree of CLN2 disease suspicion (Fig. 1).

2.1. High suspicion of CLN2 disease

CLN2 disease is rarely suspected or diagnosed at initial presentation
to the clinic unless there is already a known, affected family member.
Because CLN2 disease is one of the most common of NCL disorders
[13], children who ultimately present to an NCL specialist with ataxia,
worsening unprovoked seizures, history of language delay, and/or are
at a developmental stand-still will follow a clear, direct path specific
for a high suspicion of classic CLN2 disease (Fig. 1, center) [5]. Typically,
diagnosis only occurs after a series of misdiagnoses, as the early disease
course is clinically similar to many other seizure and/or metabolic
disorders.

An EEG is often the first clinical test performed irrespective of the
level of specific clinical suspicion (Fig. 1). In cases of CLN2 disease, elec-
troencephalograms (EEGs) may detect irregular activity, a slowing of
background activity, and epileptiform abnormalities in posterior re-
gions. Visual evoked potentials reveal an increase of latency; optical co-
herence tomography may detect ocular abnormalities; and
electroretinograms may be diminished [3,5,8,14,15]. Ocular abnormali-
ties and vision defects can be subtle initially but increase in prominence
with disease progression [5,8,15].
algorithm.html, and Schulz et al. 2013 [14].

, in bold if enzyme assay widely available Classical clinical presentation by
age group

lipid hydrolase) Classical
peptidase) Classical
n function; homology to potassium channel
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tidase 1.
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Fig. 1. Diagnostic algorithm in support of early suspicion and diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2) disease. CLN2 disease is diagnosed by biochemical and molecular
laboratory tests. Unexplained seizures, particularly when associated with a history of unexplained language delay and/or developmental milestone regression, may be caused by a
neuronal ceroid lipofuscinosis (NCL) disorder; another common possible early symptom is ataxia. Electroencephalography (EEG) analysis under specific intermittent photic
stimulation (IPS; 1–2 Hz) may assist with differential diagnoses. The recommended approach once CLN2 disease is specifically suspected (center) is demonstration of deficient
tripeptidyl peptidase 1 (TPP1) enzyme activity in leukocytes together with the identification of 2 pathogenic mutations in the TPP1/CLN2 gene. When an NCL disorder is suspected
(right), an NCL gene panel and/or TPP1 enzyme screening along with palmitoyl-protein thioesterase 1 (PPT1) enzyme screening is recommended. When the main suspicion is broadly
of a genetic basis of epilepsy (left), a gene panel to investigate genetic causes of childhood-onset epilepsy is recommended. CLN2 disease diagnosis is achieved upon demonstration of
deficient TPP1 enzyme activity in leukocytes together with normal activity of ≥1 appropriate control enzyme (such as PPT1 and/or β-galactosidase) and identification of 2 pathogenic
mutations in trans in the TPP1/CLN2 gene. EM, electron microscopy; ERG, electroretinography; FA, fluorescein angiography; MRI, magnetic resonance imaging; OCT, optical coherence
tomography; VEP, visually evoked potential.
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Findings of brain imaging techniques (such asmagnetic resonance im-
aging) include progressive cerebellar and cerebral atrophy, reductions in
grey matter volume, and periventricular white matter hyperintensities
[8,16–19]. It is important to recognize that although CLN2 is a greymatter
disease, periventricular white matter hyperintensities may be seen and
should not deviate the diagnosis path towards a leukodystrophy. These
findings may provide clues for diagnosis.

EEG with intermittent photic stimulation (IPS) performed at a fre-
quency of 1 to 2 Hz is a particularly informative test (Table 2). In
many EEGs of those ultimately diagnosed with CLN2 disease a charac-
teristic flash-per-flash response has been reported at low frequency of
stimulation. A classical epileptiform photoparoxysmal response is usu-
ally evident at higher frequencies of stimulation [3,5,20–22]. Although
IPS is often part of routine assessment performed in response to new-
onset seizures, if performed only at frequencies of N2 Hz, the character-
istic response (at 1–2 Hz) that is present inmany individuals with CLN2
disease will be missed. Lack of a characteristic response cannot rule out
CLN2 disease, however.

2.2. High suspicion of an NCL disorder

More commonly, a history of ataxia, worsening unprovoked sei-
zures, and presence of early language delay may not specifically be rec-
ognized as CLN2 disease but may be generally suggestive of an NCL
disorder upon presentation to a metabolic specialist/geneticist, an NCL
specialist, or a pediatric neurologist with experience diagnosing NCL
disorders. Upon a general suspicion of an NCL disorder (Fig. 1, right),
use of an NCL gene panel is endorsed to rapidly assess all known NCL
genes, as most NCL gene products cannot readily be assessed in a bio-
chemical assay. Equally highly recommended is assessment of enzyme
activity of TPP1 and palmitoyl-protein thioesterase 1 (PPT1; EC
3.1.2.22) as a screening approach, because the associated diseases
(CLN2 and CLN1 [OMIM 256730], respectively) are the most prevalent
infantile and late-infantile NCL disorders [13], and reliable enzyme ac-
tivity assays exist for both. Other investigations may include sequential
sequencing of commonlymutated NCL genes and/or use of electronmi-
croscopy (EM) to assess the accumulation of intracellular storagemate-
rials, which is a general hallmark of the NCL disorders [13,23–28]
(Table 2).

2.3. High suspicion of genetic basis for epilepsy/neurological symptoms

Most commonly, initial presentation of ataxia and/or unprovoked
seizures and a history of a language delay to a pediatrician or even to
a pediatric neurologist results in no specific suspicion of CLN2 disease
or NCL. Seizures are a relatively common symptom that prompts medi-
cal consultation in young children ranging from 1% to 14% of children
under 5 years globally depending on region [29–31]. As part of the in-
vestigation into the etiology of epileptic seizures, there is increasing ev-
idence to support use of a gene panel to disclose a genetic basis of

Image of Fig. 1


Table 2
Roles of recommended investigations in the diagnosis of CLN2 disease.

Nature Test Sample type(s) Considerations Role in diagnosis

Clinical test EEG with IPS at 1
to 2 Hz

N/A Individuals with CLN2 disease have characteristic
EEG posterior spikes in response to each light flash
(at 1–2 Hz) [5]

Not a diagnostic test

NCL disorders other than CLN2 disease may
present with these characteristic responses

Note that IPS is often routinely performed at N2
Hz, which will not elicit these characteristic
responses

Electron
microscopy

Detection of
intracellular
storage bodies

Typically skin, rectal, or
blood samples

Accurate assessment and interpretation require
experience and specialized skills that are not
widely available

Not sufficient for diagnosis of a specific NCL disorder

Findings may not be unique to a specific NCL
Enzyme
assay

TPP1 enzyme
activity assay

DBS or saliva Always assess activity of ≥1 enzyme in addition to
TPP1 (PPT1 and/or β-galactosidase
recommended)

Deficient TPP1 activity in DBS or saliva is diagnostic if
confirmed by molecular analysis

Enzyme
assay

TPP1 enzyme
activity assay

Leukocytes or fibroblasts Always assess activity of ≥1 enzyme in addition to
TPP1 (PPT1 and/or β-galactosidase
recommended)

Deficient TPP1 activity in leukocytes or fibroblasts is
diagnostic if consistent with clinical presentation

To confirm a diagnosis, molecular analysis is
recommended

Molecular
analysis

Gene panels
containing the
TPP1/CLN2 gene

Typically blood, buccal
swabs, or saliva; other
samples possible

Does not require specific suspicion of CLN2
disease, potentially speeding path to diagnosis

Findings not diagnostic unless test is validated for
diagnosis

Sanger sequencing is recommended to confirm
identified mutations

If validated: a finding of 2 pathogenic mutations consistent
with clinical presentation in trans is diagnostic

Access and reimbursement can vary regionally To confirm a diagnosis, enzyme analysis is necessary if
only 1 pathogenic variant is found, no variant is found, or if
1 or more VUS is identified

Analysis of parental DNA samples may clarify
whether detected alterations are in trans or in cis

Not all detected alterations may be readily
interpretable, and in rare cases, both causative
mutations may not be identified

Molecular
analysis

TPP1/CLN2 gene
sequencing

Typically blood, buccal
swabs, or saliva; other
samples possible

Sequencing of all exons and associated
intron-exon junctions recommended

A finding of 2 pathogenic mutations consistent with
clinical presentation in trans is diagnostic

Analysis of parental DNA samples may clarify
whether detected alterations are in trans or in cis

To confirm a diagnosis, enzyme analysis is necessary if
only 1 pathogenic variant is found, no variant is found, or if
1 or more VUS is identified

Not all detected alterations may be readily
interpretable, and in rare cases, both causative
mutations may not be identified

CLN2, neuronal ceroid lipofuscinosis 2; DBS, dried blood spot; EEG, electroencephalogram; IPS, intermittent photic stimulation;N/A, not applicable; PPT1, palmitoyl-protein thioesterase 1;
TPP1, tripeptidyl peptidase 1; VUS, variant of unknown/uncertain significance.
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epilepsy for childhood, late-infantile, or particularly infantile epileptic
seizures. Therefore, at this stage, the clinician (Fig. 1, left) may order a
gene panel directed to epilepsy and seizure disorders [32–35]. Whole
exome and whole genome sequencing may also be considered to un-
cover a previously uncharacterized genetic basis of epilepsy.

2.4. Differential diagnosis of CLN2 disease

Different epilepsy syndromes may be considered in young children
with new-onset seizures, including: Ohtahara, West, Dravet, and
Lennox-Gastaut, myoclonic-astatic epilepsy/MAE (Doose syndrome),
and Landau-Kleffner syndromes. GLUT1 deficiency, benign myoclonic
epilepsies, progressive myoclonic epilepsies (Lafora disease,
Unverricht-Lundborg disease, myoclonic epilepsy with ragged-red fi-
bers), along with other channelopathies and metabolic syndromes
that are associated with myoclonic epilepsy (including sialidoses and
galactosialidosis) also may be considered.

Epilepsy and progressive neurodegeneration in children should raise
suspicion of not onlyNCL, but also gangliosidoses,mucopolysaccharidoses,
mucolipidoses, Niemann-Pick type C disease, peroxisomal disorders,
mitochondrial disorders, Gaucher disease type III, and leukodystrophies.

While many of these disorders and syndromes are in fact dis-
tinguishable from the classic presentation of CLN2 disease, natural
variation in clinical presentation of these disorders and syndromes
often conceals an early and direct path to diagnosis of CLN2 dis-
ease. Distinguishing between these disorders and syndromes is
difficult as many lack biochemical diagnostic tests, such as enzyme
activity tests and/or biomarker tests, slowing the time to diagnosis.
Fortunately, there is a biochemical test for diagnosis of CLN2
disease.

3. Laboratory diagnostic tests for CLN2 disease

3.1. TPP1 enzyme activity analysis

CLN2 disease is diagnosable by a biochemical test of TPP1. TPP1 en-
zyme is a pepstatin-insensitive lysosomal serine exopeptidase with op-
timal in vitro activity at acidic pH [1,36–38]. Although a tandem mass
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spectrometry (MS) compatible substrate was recently developed [39],
most diagnostic laboratories assess TPP1 enzyme activity using the
fluorogenic substrate, Ala-Ala-Phe-7-amido-4-methylcoumarin [37,38,
40]. Several variations on the fluorogenic methodology have been pub-
lished [41–43], each of which can differentiate affected individuals from
healthy controls; however, the absolute activities differ. Therefore, it is
essential that laboratories carefully establish unaffected reference
ranges for their implementation of the TPP1 enzyme assay (Fig. 2).

Leukocytes isolated fromwhole blood are the recommended sample
type for analysis of TPP1 enzyme activity, enabling accurate and rapid
diagnostic analysis. Multiple laboratories report TPP1 enzyme activity
levels measured in affected individuals to be distinct from carriers and
unaffected individuals (although the absolute activities differ; Fig. 2).
However, whole blood samples are particularly sensitive to exposure
to temperature extremes or to delays in shipping and receipt, potential-
ly reducing assay reliability.

In addition to leukocytes, several other sample typesmay beused for
analysis of TPP1 enzyme activity, such as fibroblasts, dried blood spots
(DBS), and saliva. The TPP1 enzyme assay should be separately validat-
ed for each sample type in which it is performed. Although analysis of
TPP1 enzyme activity in fibroblasts requires culture of a skin punch bi-
opsy, leading to delays in diagnostic testing, skin punch biopsies are
more robust in suboptimal shipment conditions thanwhole-blood sam-
ples. DBS samples are of great use in regions where the timely and ap-
propriate shipment of blood and/or tissue samples is problematic and
is the likely sample of choice for any screening approaches to detect
CLN2 disease [39], although appropriate DBS sample collection, drying,
and timely shipment remain important for DBS samples. Evaluation of
TPP1 enzyme activity in saliva samples [44] is a component of an inte-
grated strategy for diagnosis of NCL disorders in Latin America [10,26].

Appropriate control enzymes are essential to accurately interpret
TPP1 enzyme activity findings. PPT1 is a suitable control enzyme because
it has broadly similar stability as the TPP1 enzyme inDBS [45], and the ex-
perience ofmost investigators is that the stabilities are comparable in leu-
kocytes, fibroblasts, and saliva. Additionally, evaluation of PPT1 enzyme
activity serves a dual function to both assess sample quality and exclude
Laboratory 1

Laboratory 2

Laboratory 3

Laboratory 4

Laboratory 5

0 100 200

TPP1 Enzyme Activi
nmol/h/mg protein

Fig. 2. Enzyme activity ranges of tripeptidyl peptidase 1 (TPP1) in leukocytes observed in 5 inde
affected individuals (with neuronal ceroid lipofuscinosis type 2 [CLN2] disease) are reporte
methodological differences, such as the protease inhibitors used and the assay pH), each indiv
disease from that of unaffected controls.
CLN1disease, anotherNCLdisorder that can initially presentwith seizures
at similar ages as thosewith CLN2 disease. An additional appropriate con-
trol enzyme is β-galactosidase (EC 3.2.1.23), a lysosomal enzyme not as-
sociated with an NCL disorder. Currently, the only other lysosomal
enzyme defect associated with NCL disease, and for which a specific clin-
ical test is available, is cathepsinD (CLN10 disease).Whereas, the remain-
der of the NCL disorders are not due to an enzyme deficiency.

3.2. Electron microscopy (EM) analysis

Accumulation of intracellular storagematerials in neuronal and non-
neuronal cells is a morphological hallmark of the NCL disorders. Histor-
ically, detection of intracellular storagematerials by EMhas been an im-
portant technique for the classification and diagnosis of NCL disorders
[46]. The recent increase in availability of molecular testing has limited
the use of EM studies in the diagnosis and differentiation of NCL disor-
ders [23]. In addition, few laboratories now have the required expertise
for the accurate interpretation of electron micrographs.

Clinical EM investigation of those suspected of having an NCL disor-
der typically requires collection of skin biopsies or blood samples; rectal,
skeletal muscle, and conjunctival biopsies can also be used [23]. EM ex-
amination shows accumulation of storage materials, typically with cur-
vilinear profiles in CLN2 disease. Some CLN2 disease biopsies show a
mixed pattern of both curvilinear and fingerprint profiles, a pattern
that may be associated with atypical CLN2 phenotypes [10,23,28].

3.3. Molecular analysis of TPP1/CLN2

A diagnosis of CLN2 disease can be confirmed by identification of
two pathogenic variants/mutations (associatedwith a TPP1 enzymede-
ficiency) in trans in the TPP1/CLN2 gene. The TPP1/CLN2 gene is located
on chromosome 11p15 [47], contains 13 exons, and is 6.7 kb in length.
As ofMarch 2016, 140 changes in the TPP1/CLN2 gene have been report-
ed, of which 116 are reported to be pathogenic [13,28,48]. Globally, the
two most commonly reported mutations associated with CLN2 disease
are c.509-1GNC, a splicing mutation, and c.622CNT (p.Arg208Ter),
WT

Carrier

CLN2

300 400

ty,

Min-Max,
nmol/h/mg protein

Individuals,
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pendent laboratories. Activity ranges for healthy individuals (wild type [WT]), carriers, and
d. Although the absolute enzyme activities differ among the laboratories (likely due to
idual laboratory clearly differentiates the TPP1 enzyme activity of individuals with CLN2
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57% of reported mutationsa

Present in 69% to 89% 
of patients

Splice site 
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Missense 

•
•

a as reported in Kousi et al, 2012

149 

156 

35 

18 

10 

176 

0 50 100 150 200 

Mutation Reports in Kousi et al, 2012 

c.509-1G>C

c.622C>T (p.Arg208Ter)

c.851G>T (p.Gly284Val)

c.1525C>T (p.Gln509Ter)

c.1266C>C (p.Gln422His)

84 mutations reported
< 10 times

Fig. 3.Mutations associatedwith classic neuronal ceroid lipofuscinosis type 2 (CLN2)disease. Fivemutations in the tripeptidyl peptidase 1 (TPP1)/CLN2 genehave been reported N10 times
[28]. Themutations c.509-1GNC and c.622CNT (p.Arg208Ter) together represent 57% of all reportedmutations (reported by Kousi et al. [28]), and ≥1 of these 2 alleles is present in 69% to
89% of those diagnosed with CLN2 disease [28,49,50].
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which results in the introduction of a premature termination codon [13,
28,49,50] (Fig. 3). However, in one laboratory's experience, these two al-
leles have not been identified during diagnosis of individuals of Southeast
Asian or Middle Eastern origin (M. Fietz, written communication, April
2016), indicating that c.509-1GNC and c.622CNT (p.Arg208Ter) are not
common in all populations. Further, different mutation profiles have
been reported in some locations, such as Argentina [10,25,26] and Cana-
da/Newfoundland,where a founder effectmutationhas beenwell charac-
terized [28,51,52]. Consequently, global allele frequencies are not
necessarily relevant for some local diagnostic purposes.

Given the broad range of mutations that have been associated with
CLN2 disease [13,28], sequencing of the TPP1/CLN2 gene should ideally
evaluate the entire coding region and associated intron-exon splice
junctions. If DNA sequencing fails to identify mutations, other ap-
proaches such as mRNA analysis, array comparative genome hybridiza-
tion (aCGH), deletion/duplication analyses, and whole genome/exome
sequencing may be of use. If two pathogenic mutations in the TPP1/
CLN2 gene are identified, it is important to confirm that they are on sep-
arate parental alleles (i.e., in trans); analysis of parental DNA samples
can clarify the phase of the detected mutations. Analysis of parental
DNA can also detect possible allele dropout and subsequent false assess-
ments of homozygosity. De novo mutations that arise in germ cells are
also possible, although this has not been reported to date. It has been
the experience of the authors that both TPP1/CLN2mutations are gener-
ally identified by DNA sequencing and, to date, few large deletions have
been identified in individuals with CLN2 disease. In cases where one
TPP1/CLN2 gene pathogenic variant/mutation is uncovered inmolecular
testing, enzyme activity testing is warranted as detection of only one
pathogenic variant cannot rule out CLN2 disease.

As with other recessive genetic disorders, molecular analysis may
identify variants of unknown significance (VUS). At present, thenumber
of reported VUS and likely non-pathogenic sequence changes in the
TPP1/CLN2 gene is relatively low: of 140 reported sequence alterations,
24 alterations (17%) are not believed to bepathogenic [13,48]. However,
it is likely that not all detected VUS have been reported. The increasing
use ofmolecular testing in suspected cases of CLN2diseasemay increase
the number of VUS. Again, if two pathogenic mutations in trans are not
identified, diagnostic testing of TPP1 enzyme activity is required.

3.4. Gene panels and whole exome/genome sequencing

Relevant gene panels—such as symptom-based (epilepsy) gene
panels, NCL gene panels, lysosomal disorder or inherited metabolic
disorder gene panels—may speed the diagnostic process when CLN2
disease is not specifically suspected. Key strengths of gene panels in-
clude relatively rapid turnaround time, the assessment of many genetic
conditions in one analysis, and the investigation of genetic conditions
that are not diagnosed through enzyme activity assays as mentioned.
An informal survey of US laboratories offering gene panels suggests
that the TPP1/CLN2 gene is present on many gene panels, including
those targeting NCL disorders, epilepsy, neurology, lysosomal storage
disorders, inheritedmetabolic disorders, and eye disorders. The authors
recommend the use of gene panels given the support they can provide
clinicians in moving rapidly from clinical presentation to a laboratory
diagnosis.

Whole exome/genome sequencing (WEGS) approaches share many
of the strengths of gene panels and have the advantage of examining far
more of the genome, albeit with an accompanying increase in data com-
plexity and analysis requirements. WEGS approaches may be of partic-
ular use for identification of novel diseases or if the clinical
manifestation of a given mutation is outside of a gene's known disease
spectrum, as was the case for the TPP1/CLN2 mutations found to cause
SCAR7 disease [12]. However, not all regionswill have access or support
for WEGS approaches, and the cost and turnaround time relative to a
gene panel is typically higher and longer.

4. Conclusions

In early stages, CLN2 disease is challenging to recognize, and diagno-
sis is often delayed until after the disease has progressed significantly. In
the majority of cases, key initial symptoms are new-onset epileptic sei-
zures in combinationwith a history of early language delay and/or atax-
ia, although alternative presentations are possible [5]. Differential
diagnosis of a genetic basis of epilepsy by use of symptom- or disease-
based gene panels offer great promise for supporting an early and time-
ly diagnosis of not only CLN2 disease but many other causes of late-in-
fantile epilepsy as well. In the absence of newborn screening for CLN2
disease, gene panels are the broadest symptom-based, multiple-disease
screening approach with a reasonable diagnostic yield. Laboratory tests
to diagnose CLN2 disease are well established (Table 2). TPP1 enzyme
activity can be assessed in several sample types: leukocytes, DBS, fibro-
blasts, and saliva. The gold standard for laboratory diagnosis is demon-
stration of deficient TPP1 enzyme activity (in conjunction with normal
activity of a control enzyme such as PPT1 and/or β-galactosidase)
followed by molecular analysis that detects one pathogenic mutation
on each parental allele of TPP1/CLN2. Given the availability of reliable

Image of Fig. 3


166 M. Fietz et al. / Molecular Genetics and Metabolism 119 (2016) 160–167
enzyme activity assays for both TPP1 and PPT1, togetherwith the higher
prevalence of the NCL disorders for which TPP1 or PPT1 activity is lost
(CLN2 disease and CLN1 disease, respectively [13]), we recommend
that the activity of each enzyme be assayed early in any individual
suspected of having an NCL disorder. Future prospects for early diagno-
sis include ongoing development of MS-compatible enzyme substrates
[39], which could support large-scale screening approaches such as
newborn screening. Disease-specific management, genetic counseling,
and new therapies in development for CLN2 diseasemake early and ac-
curate diagnosis of this severe neurodegenerative disease essential.
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