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Abstract
Present knowledge of how the microcirculation is altered by prolonged
exposure to hypoxia at high altitude is incomplete and modification of existing
analytical techniques may improve our knowledge considerably. We set out to
use a novel simplified method of measuring  capillary density during anin vivo
expedition to high altitude using a CytoCam incident dark field imaging
video-microscope.
The simplified method of data capture involved recording one-second images
of the mucosal surface of the inner lip to reveal data about microvasculature
density in ten individuals. This was done on ascent to, and descent from, high
altitude. Analysis was conducted offline by two independent investigators
blinded to the participant identity, testing conditions and the imaging site. 
Additionally we monitored haemoglobin concentration and haematocrit data to
see if we could support or refute mechanisms of altered density relating to
vessel recruitment. Repeated sets of paired values were compared using
Kruskall Wallis Analysis of Variance tests, whilst comparisons of values
between sites was by related samples Wilcoxon Signed Rank Test. Correlation
between different variables was performed using Spearman’s rank correlation
coefficient, and concordance between analysing investigators using intra-class
correlation coefficient.
There was a significant increase in capillary density from London on ascent to
high altitude; median capillaries per field of view area increased from 22.8 to
25.3 (p=0.021). There was a further increase in vessel density during the six
weeks spent at altitude (25.3 to 32.5, p=0.017). Moreover, vessel density
remained high on descent to Kathmandu (31.0 capillaries per field of view
area), despite a significant decrease in haemoglobin concentration and
haematocrit.
Using a simplified technique, we have demonstrated an increase in capillary
density on early and sustained exposure to hypobaric hypoxia at thigh altitude,
and that this remains elevated on descent to normoxia. The technique is
simple, reliable and reproducible.
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List of Abbreviations
EBC            Everest Base Camp

FOV            Field of view area

[Hb]            Haemoglobin concentration

Hct              Haematocrit

IDF              Incident Dark Field

KTM           Kathmandu

LON            London

SpO
2
            Peripheral oxygen saturation

Introduction
The physiological processes involved in acclimatisation to high 
altitude attempt to maintain adequate oxygen delivery as the par-
tial pressure of oxygen decreases. Traditionally, research has 
concentrated on global haemodynamics and the macrocirculation, 
variables such as cardiac output1, oxygen saturations2 and haemo-
globin concentration [Hb]3. Far fewer studies have focused on the 
microcirculation, which regulates blood flow to match micro-
regional oxygen demand. Disruption of microvascular blood flow 
could explain a failure of acclimatisation in some individuals as 
well as the well-documented exercise limitation that occurs at 
altitude despite normalisation of systemic oxygen delivery4. The 
precise role of the microcirculation in acclimatisation to hypoxia, 
however, remains unclear.

Teleological reasoning would suggest that increasing capillary 
density could provide a means to augment oxygen flux and tissue 
oxygenation through a reduction in the inter-capillary distance5. 
Whilst plausible, data on this theory remains contradictory, 
though this may in part relate to the dissimilar tissues observed. In 
human skeletal muscle biopsy samples previously exposed to 
hypobaric hypoxia, no evidence of neovascularisation has been 
demonstrated6–9. Interestingly, in each instance whereby the cap-
illary density was initially thought to increase, no change in 
the capillary-to-fibre ratio was observed. The perceived rise in 
capillary density were therefore interpreted as being secondary 
occurrences in response to a reduction in skeletal muscle mass. 
Conversely, an increase in the density of sublingual microcir-
culatory vessels to >25 μm was demonstrated on ascent to high 
altitude10,11, a response that was further amplified after pro-
longed exposure to hypoxia10. In this instance, what remains to be 
determined is whether the observed changes in vessel density are 
due to microvascular recruitment secondary to increased blood vis-
cosity (and thus quickly reversible), or neovascularization (which 
is likely to be sustained). Moreover, the question of what happens 
to vessel density following re-exposure to normoxia remains to be 
elucidated.

We therefore piloted a novel modification of a previously described 
technique for calculating changes in capillary density12,13 on ten 
individuals, to see if we could firstly support or refute previous 
findings on ascent to high altitude, and secondly see if the changes 

observed persist on descent. Additionally we monitored hae-
moglobin concentration and haematocrit data to see if we could 
support of refute mechanisms of altered density relating to vessel 
recruitment.

Methods
The study was undertaken as part of the Xtreme Everest 2 research 
expedition (XE2)14. The study design, risk management plan and 
protocol were approved (in accordance with the declaration of 
Helsinki) both by the University College London Committee and 
the Ethics of Non-National Health Service Human Research, and 
the Nepal Health Research Council (Reg no. 139/2012). Written 
consent was obtained from all participants. Baseline images of 
the labial capillaries were initially obtained from ten individuals 
in London (LON) (35m) in December 2012 and January 2013. 
Sequential images were taken after an 11 day ascent to Everest 
Base Camp (EBC-early) (5300m), then after 6 weeks residence at 
Everest Base Camp (EBC-late), and finally on descent, over 5 days, 
to Kathmandu (KTM) (1300m) in May 2013.

Images were obtained using a CytoCam-IDF video microscope 
(Braedius, Medical BV, Netherlands). This new device is based 
on the principle of Incident Dark Field (IDF) imaging, which uses 
polarized green light (wavelength 548nm) produced from LEDs 
to visualize, in real time, the sublingual microvasculature. Its 
high resolution imaging sensor (14 Mpixel) allows for a 50% 
increase in optical resolution (300 lines/mm) compared to previ-
ous Sidestream Dark Field imaging devices, and it generates a 
far larger field of view. With the participant lying in the supine 
position having rested for a minimum of 10 minutes, the 
CytoCam-IDF device’s probe was introduced into their mouth 
and placed on the mucosal surface of the inner lip. Once a suitable 
image was visualised on the screen of the CytoCam-IDF moni-
tor, (Figure 1), 1 second of digital video footage was recorded. 

Figure 1. An example of a labial capillary density image.
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This process was conducted on all four lip quadrants (right upper 
lip, left upper lip, right lower lip, left lower lip), and at each quad-
rant four separate videos were acquired. Two trained investigators 
(EGK, PH) obtained all the data.

To determine capillary density, analysis was conducted offline by 
two independent investigators blinded to the participant identity, 
the testing conditions and the imaging site (EGK, JC). Using the 
company’s own video software (CytoCamTools V1, Braedius, 
Netherlands), a single still frame was projected on the computer 
screen and the number of capillary loops per image frame was 
counted manually. Partly visualised capillaries were included if 
the observer was assured that the vessel was a capillary due to 
its morphology. Subsequently, the mean capillary density was 
calculated from the four images obtained in each lip quadrant, and 
from these four results, the mean total lip density obtained. Capil-
lary density was defined as the number of capillaries counted per 
field of view area (FOV), which equates to 1.79 mm2. The hae-
moglobin concentration ([Hb]) (Hemocue AB, Hemocue, Sweden) 
and haematocrit (Hct) (Sigma 1–14 microcentrifuge, Sigma, 
Germany) were obtained from whole blood samples, and periph-
eral arterial oxygen saturation (SpO

2
) measured (Nonin Onyx 

9500, Nonin Medical Inc, Minnesota, USA) on the same days as 
microcirculatory imaging was performed.

Statistical analysis
As data were not normally distributed, they were described by 
median and interquartile range. Repeated sets of paired values 
were compared using Kruskall Wallis ANOVA, whilst comparisons 
of values between LON baseline and other sites was by Wilcoxon 
Signed Rank Test. Correlation between different variables was 
performed using Spearman’s rank correlation coefficient, and 
concordance between analysing investigators using intra-class 
correlation coefficient. All statistical analysis was undertaken on 
SPSS version 21 (SPSS Inc., Chicago, IL, USA), and a P value of 
<0.05 was taken to indicate statistical significance.

Results

Dataset 1. IDF values

http://dx.doi.org/10.5256/f1000research.7649.d134021

The number of loop capillaries seen per field of view

Dataset 2. Physiological values

http://dx.doi.org/10.5256/f1000research.7649.d134022

The haemoglobin, haematocrit and peripheral oxygen saturations 
at each laboratory.

CytoCam-IDF imaging was conducted on all ten individuals on 
the first two occasions, however only eight individuals had data 
captured on descent. No problems were encountered with the 
device or image acquisition. Mean laboratory barometric pressure 
and mean temperature for each location is shown in Table 1.

Changes in labial capillary density are shown in Figure 2. 
Compared with LON (median 22.8 capillaries per field of view 
area (20.7–26.8)), capillary density was significantly increased at 
EBC-early 25.3 (24.5–30.6; p=0.021), EBC-late 32.5, (28.4–36.63; 
p=0.012), and on descent in KTM 31.0 (24.0–35.13; P=0.017). 
Between EBC-early and EBC-late, capillary density increased 
significantly (p=0.017), however there was no significant decline 
in density between EBC-late and KTM (p = 0.069).

Changes in [Hb], Hct and SpO
2
 at each site are shown in Table 2. 

There was a significant increase in [Hb] between LON and EBC-
early (p=0.007), and EBC-early and EBC-late (p=0.011), and a 
decrease between EBC-late and KTM (p=0.008). There was also a 
significant increase in Hct between LON and EBC-early (p=0.007), 
and EBC-late and KTM (p=0.012), but no significant change 
between EBC-early and EBC-late (p=0.191). Between the sites 
on ascent, the increase in vessel density demonstrated an inverse 
relationship with the SpO

2
, however at each altitude there was no 

correlation between vessel density and [Hb], Hct or SpO
2
.

To assess whether an image capture time of 1 second was indica-
tive of that captured over longer periods of time, we obtained  
30 seconds of footage from four individuals at two different loca-
tions. From this we randomly selected one frame per five seconds 
of footage, and counted the number of capillaries per field of view 
area. The values of these may be seen in Table 3, as too can the 
mean and standard deviations for each set of frames, the latter of 
which demonstrates a highest value of only 0.52 capillaries per 
field of view area.

Discussion
This study demonstrates for the first time, persistence of in vivo 
sublingual microvascular density increase on re-exposure to nor-
moxia after a prolonged period of hypobaric hypoxia at high 
altitude. We utilised an infrequently used imaging and analysis 
technique that we had purposefully adapted to suit our needs, and 
found our data aligned with previously published work on blood 
vessel density at altitude10.

Using the data obtained from corresponding blood samples, it is 
possible to speculate on the adaptive processes occurring at each 
measurement point. As previously described, we observed a sig-
nificant rise in [Hb] (14.5 g/dl to 16.4g/dl; p=0.007) and Hct (44% 

Table 1. Mean (standard deviation) atmospheric pressure 
and temperature at each laboratory.

Site Atmospheric 
Pressure (kPa)

Temperature 
(°C)

Humidity 
(%)

London 100.6 (0.2) 16.9 (1.8) 35.4 (6.5)

Everest Base 
Camp 

53.0 (0.2) 12.9 (8.2) 37.8 (17.5)

Kathmandu 86.8 (0.4) 23.8 (3.4) 47.4 (15.7)
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Figure 2. Box-whisker plots of labial capillary density on ascent from London to Everest Base Camp, after six weeks at Everest Base 
Camp, and on descent to Kathmandu.

Table 2. Median (interquartile range) haemoglobin concentration, 
haematocrit and peripheral oxygen saturations at each measurement 
point.

Site Hemoglobin 
concentration (g/dl) Hematocrit (%) Oxygen 

saturation (%)

London 14.5 (13.5–15.3) 44.0 (41.5–47.5) 99 (98–100)

Everest Base 
Camp - early 16.4 (15.7–17.2) 52.0 (51.5–56.3) 81 (79–86)

Everest Base 
Camp - late 18.3 (17.1–19.7) 56.0 (51.0–61.5) 88 (85–91)

Kathmandu 16.0 (14.0–17.0) 50.0 (46.5–55.0) 99 (99–100)

Table 3. Number of capillaries counted per field of view area from one randomly selected frame per 
five seconds of footage, with mean and standard deviation demonstrated.

Code Site Frame 1 
(0–5 s)

Frame 2 
(5–10 s)

Frame 3 
(10–15 s)

Frame 4 
(15–20 s)

Frame 5 
(20–25 s)

Frame 6 
(25–30 s) Mean SD

1 LON 30 30 30 30 30 30 30.0 0.00

2 LON 24 25 24 24 24 25 24.3 0.52

3 KTM 27 27 27 27 26 27 26.8 0.41

4 KTM 22 23 23 23 23 22 22.7 0.52

s = seconds; SD = standard deviation
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to 52%; p=007)) on ascent to altitude. Whilst this polycythaemia 
increases arterial oxygen content, blood viscosity also rises, altering 
its rheology. Under normal physiological conditions, a considerable 
proportion of the microcirculation is thought to be ‘unrecruited’, 
acting as a reservoir for times of increased metabolic needs15. As 
Hct rises, these reserve vessels are recruited, and microvascu-
lar density increases, along with functional capillary density15–18. 
Thus a secondary benefit to increased Hct is achieved; a reduction 
in the diffusion distance from capillaries to mitochondria. Impor-
tantly however, it should be noted that in normal capillary Hct is 
generally 50% less than systemic Hct owing to the streamlined 
blood flow in narrow capillaries19. The effect of hypoxia on this 
association is unknown. Whether or not neovascularisation had 
occurred on arrival at high altitude is difficult to say, although due 
to the short time between measurement points the chances of this 
being the case are low20.

After 6 weeks spent at altitude, a further, and far greater, increase 
in vessel density was apparent; EBC-early 25.3 capillaries per 
field of view area, EBC-late 32.5 (p=0.017). Over the same time 
period, [Hb] had significantly risen, whilst Hct had not. As Hct is 
a more reliable indicator of viscosity between the two variables21, 
it seems unlikely that further recruitment of the microvasculature 
had occurred, yet it is plausible that neovascularisation had. 
Increased levels of vascular endothelial growth factor (VEGF) have 
been detected in subjects ascending to high altitude22; its role in 
angiogenesis perhaps explaining the observed rise in microvascu-
lar density10. Such adaptations lead to improved tissue oxygenation 
by a reduction of the inter-capillary distance, whilst maintaining a 
sufficiently low, and thus fluid Hct to permit flow of red blood 
cells in the microvasculature.

On descent to a lower altitude (KTM) there was no significant fall 
in microvascular density when compared to EBC-late (p = 0.069), 
however, a much greater number of vessels (36% increase) was 
evident when compared with baseline testing in LON. Whilst 
vessel density was thus unaltered on descent, over the same time 
point [Hb] and Hct values significantly declined (p=0.012). When 
compared to the original LON values, Hct on descent to KTM was 
significantly higher (44.0% and 50.0% respectively (p=0.011)), 
however, [Hb] was not (14.5 and 16.0g/dl (p=0.052)). Teasing apart 
the relative contributions of vessel recruitment and neovascularisa-
tion to the observed changes in sublingual microcirculatory den-
sity is challenging. Whilst the failure of vessel density to return to 
baseline after descent suggests some neovascularisation, neither 
[Hb] nor Hct had normalised at the time of the final readings so a 
raised blood viscosity could perhaps be maintaining a heightened 
level of capillary recruitment. A combination of the two proc-
esses would make sense as continually increasing [Hb] to improve 
oxygen delivery would eventually be counter productive. Indeed 
in Tibetans, who have been exposed to environmental hypoxia for 
many generations, there is a clear reduction in [Hb] compared to 
populations who have been exposed to these conditions for less 
time23–26. This suggests Tibetans utilize alternative long-term strate-
gies for chronic adaptation to hypobaric hypoxia, ones that do not 
rely on maintaining a high [Hb]. It is plausible that one such means 
would be to increase their capillary density.

Technique and analysis
The use of the described methodology was also novel. A similar 
technique has been used twice previously; once in the assessment 
of coronary artery disease in diabetes13 and the other in a study 
investigating hypertension and rarefaction during treatment with  
Telatinib12. In these instances, data capture involved recording 
sublingual images for 1 minute13 or 30 seconds12 per quadrant,  
however we altered this time period by using an extremely short cap-
ture phase for data acquisition (< 1 second). Crucially, this allowed 
us to readily obtain snap shot images to reveal data about microvas-
culature density, whilst avoiding concerns surrounding probe and 
patient movement, in addition to issues relating to pressure artefact. 
Analysis was rapid, simple and reproducible; in this study it had 
an observer mean intra-class correlation coefficient of 0.91 (95% 
CI 0.84 – 0.96). Previously no difference in capillary density was  
observed in ten individuals between lip quadrants, and the reproduc-
ibility of the technique to determine capillary density was moderate 
to high with a coefficient of variation of 4.6%12. Of note, the tech-
nique does not allow assessment of microvascular flow, nor does it  
yield information on heterogeneity of microvascular blood flow, 
however, we propose it to be a robust method for the assessment of 
labial vessel density that could be conducted after only a short user 
training period.

Study limitations
The small number of participants used in this study could be con-
sidered a study limitation. As we were both employing a newly-
adapted data acquisition technique, and using a novel device at 
altitude, no power calculation was performed. This therefore 
increases the risk of a type 2 error. Other limiting factors include 
the environmental considerations associated with high altitude 
research in a remote field environment. These include fluctuations 
in laboratory temperature, humidity (Table 1) and participant 
hydration status, all factors that may alter microvascular blood 
flow and density. Attempts were made to limit these potential 
confounding factors by performing CytoCam-IDF imaging at the 
same time of day in heated purpose-built laboratories, and encour-
aging participants to maintain a good state of hydration. Previous 
studies at altitude have also raised concerns over the development 
of tissue oedema10,11 that can occur on ascent to altitude27. Whilst 
this could potentially reduce image quality and lead to false meas-
urements of flow and density, our IDF camera provided us with 
a depth of focus reading, thus allowing us to confirm that we 
were recording at the same depth under the tongue on each time 
point. Finally, we have discussed alterations in capillary or ves-
sel density. It is important however to clarify this nomenclature. 
IDF imaging cannot image blood vessels directly but rather uses 
the fact that polarized green light is optimally absorbed by red 
blood cells within the microvasculature regardless of oxygena-
tion status. Absorption of light by haemoglobin, but not by sur-
rounding tissues, therefore creates a distinct contrast of dark and 
light colour respectively, and red blood cells moving through the 
mucosal microcirculation thus appear as dark globules moving 
along the axis of flow. All vessels visualized are therefore only 
seen if they contain erythrocytes. The variables measured by IDF 
imaging (and its precursor SDF imaging) include a measure of 
total vessel density (TVD) and perfused vessel density (PVD)28. 
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A distinction is made between the two depending on the speed 
of red blood cell flow within the observed vessels. TVD includes 
vessels which contain erythrocytes flowing at any velocity (or 
even at standstill), whilst PVD only includes vessels with con-
tinuously moving erythrocytes. As we cannot measure erythrocyte 
velocity with this simplified method, our observations therefore 
describe the TVD.

Conclusions
This study demonstrated an increase in sublingual microvascular 
vessel density on early and sustained exposure to hypobaric 
hypoxia; and, for the first time, that no significant change in vessel 
density occurred on immediate descent. The technique used to 
capture the images provided a rapid and reliable means for assess-
ing changes in vessel density, and could be applied in future 
studies of microcirculatory vessel density. Further research in 
this area may allow a more complete comprehension of the mul-
tidimensional response to sustained hypoxia that occurs during 
pathophysiological situations.
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