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Background:Greymatter (GM) abnormalities are robust features of schizophrenia and of people at ultra high-risk
for psychosis. However the extent towhich neuroanatomical alterations are evident in non-clinical subjects with
isolated psychotic experiences is less clear.
Methods: Individuals (mean age 20 years) with (n = 123) or without (n = 125) psychotic experiences (PEs)
were identified from a population-based cohort. All underwent T1-weighted structural, diffusion and quantita-
tive T1 relaxometry MRI, to characterise GMmacrostructure, microstructure and myelination respectively. Dif-
ferences in quantitative GM structure were assessed using voxel-based morphometry (VBM). Binary and
ordinal models of PEs were tested. Correlations between socioeconomic and other risk factors for psychosis
with cortical GMmeasures were also computed.
Results:GMvolume in the left supra-marginal gyruswas reduced in individualswith PEs relative to thosewith no
PEs. The greater the severity of PEs, the greater the reduction in T1 relaxation rate (R1) across left
temporoparietal and right pre-frontal cortices. In these regions, R1 was positively correlated with maternal edu-
cation and inversely correlated with general psychopathology.
Conclusions: PEs in non-clinical subjects were associated with regional reductions in grey-matter volume reduc-
tion and T1 relaxation rate. The alterations in T1 relaxation rate were also linked to the level of general psycho-
pathology. Follow up of these subjects should clarify whether these alterations predict the later development of
an ultra high-risk state or a psychotic disorder.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Grey matter (GM) abnormalities have been identified in several
structures in schizophrenia patients (Ellison-Wright et al., 2008;
Haijma et al., 2013; Honea et al., 2005; Velakoulis et al., 2006; Vita
et al., 2006; Wright et al., 2000). The most heavily implicated are the
prefrontal, parietal, temporal, anterior cingulate cortices, and hippo-
campus (Kanaan et al., 2005). GM volume is reduced in chronic versus
first episode schizophrenia patients (Meisenzahl et al., 2008) and falls
progressively with age(Vita et al., 2012).
earch Imaging Centre (CUBRIC),
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smith).

. This is an open access article under
In order to delineate structural brain differences that might predis-
pose to psychosis, it is important to examine themwithout confounding
effects of medication or chronic illness. Studies that examine first-epi-
sode or drug naive patients overcome such issues to some extent. A
number of studies have also focused on high-risk groups: individuals
presenting with the At-Risk Mental State (ARMS) or those deemed to
be at ultra-high-risk (UHR) for psychosis (Fusar-Poli et al., 2013;
Simon et al., 2011). Studies of GM alterations in this group have found
macroscopic changes in the cerebral cortex (Borgwardt et al., 2007;
Mechelli et al., 2011). A meta-analysis of VBM studies (Fusar-Poli
et al., 2011) showed that at-risk groups tend to show reductions in
GM volume in many of the regions implicated in schizophrenia, al-
though the changes are generally less severe (Ziermans et al., 2009,
2012). Other meta-analyses (Borgwardt et al., 2011; Fusar-Poli et al.,
2011) also found that reduced GM volume in prefrontal, cingulate,
temporo-parietal, insular and cerebellar regions were significant
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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predictors of transition to full-blown psychosis. More recent, larger and
better controlled studies show defined GM structural changes associat-
ed with both risk of (Cropley et al., 2016) and transition to psychosis
(Cannon et al., 2014; Mechelli et al., 2011; Pantelis et al., 2003;
Ziermans et al., 2009). Of particular interest is the North American Pro-
drome Longitudinal Study which showed that young adults who later
transition to psychosis have reduced frontal grey matter compared to
thosewho do not transition (Cannon et al., 2015). Another large cohort,
The Philadelphia Neurodevelopmental Cohort, of young adults with
psychotic experiences showed reduced grey matter volume in medial
temporal regions (Satterthwaite et al., 2016).

While numerous studies have examined GM morphometry in
schizophrenia and at-risk groups, other imaging modalities that can
provide insights into cortical microstructure have seldom been ex-
plored. MRI methods commonly used to quantify myelination and mi-
crostructure in white-matter may be used as putative measure of
cyto- andmyeloarchitecture in cortex (Weiskopf et al., 2015). For exam-
ple, T1 relaxometry (Homer and Beevers, 1985) is sensitive to myelin
content in health and disease and can be used to derive high-resolution
corticalmyelinmaps in vivo (Dinse et al., 2015; Lutti et al., 2013). To our
knowledge, no studies have investigated in vivo cortical myelination
using MRI in schizophrenia or in at risk-groups. Diffusion tensor imag-
ing (DTI) (Basser et al., 1994), has been applied to investigate changes
in cortical microstructure in a number of clinical groups (Kang et al.,
2012; Muñoz Maniega et al., 2004; Oreja-Guevara et al., 2005; Rovaris
et al., 2006; Vite et al., 2008), Most commonly, mean diffusivity (MD)
is used as an inverse measure of cellular density. One recent study
(Park et al., 2014) examined diffusivity of frontal and temporal cortices
and found it to be higher in schizophrenia patients. To our knowledge,
there are no published MRI studies of cortical diffusivity in non-familial
at-risk groups.

There are several risk-factors associated with the development of
psychosis. These include obstetric factors (Abel et al., 2010; Dalman
et al., 2001; Foerster et al., 1991; Lewis, 2002; Rifkin et al., 1994) socio-
economic disadvantage (Byrne et al., 2004; Gallagher et al., 2013;
O'Donoghue et al., 2015; Werner et al., 2007), premorbid IQ (David
et al., 1997; Woodberry et al., 2008; Zammit et al., 2004), childhood
trauma and life stress (Gallagher et al., 2013; Kraan et al., 2015;
Morgan and Fisher, 2007; Norman and Malla, 1993) and substance
abuse (Kelly, 2000; Koskinen et al., 2009; Moore et al., 2007). The path-
ogenic processes underlying these factors are unknown and multiple
mechanisms are possible. Some may operate through the cyto- and
myeloarchitecture of the cerebral cortex.

This study utilises a large epidemiological birth cohort, the Avon
Longitudinal Study of Parents and Children (ALSPAC) (Boyd et al.,
2013; Golding et al., 2001) cohort, which has rich biological, clinical
and psychosocial data to examine the association betweenGMstructure
and PEs. Neuroimaging of this cohort has previously shown significant
alterations white matter circuitry (Drakesmith et al., 2015, 2016).
We tested the hypothesis that abnormalities in GM volume and
myeloarchitecture are associated with PEs even in the absence of a clin-
ically identified disorder. This approach has a number of advantages. In
particular, it allows the examination of PEs without selection biases and
confounding factors such as secondary effects of illness including phar-
macological treatment. Furthermore, the cohort has accrued unbiased
longitudinal data on a number of developmental and socio-economic
variables that can constitute risk factors for psychosis, affording us an
opportunity to identify any relationships between them and GM abnor-
malities that may also be linked to PEs.

2. Methods and materials

2.1. Subjects

Subjects were recruited from theAvon Longitudinal Study of Parents
and Children (ALSPAC) (Boyd et al., 2013; Golding et al., 2001) cohort.
The original sample consisted of pregnant women whose expected de-
livery dates were between April 1991 and December 1992 resulting in
the birth of 15,458 foetuses (see Supplementary material, Section 1 for
full description of cohort). 4320 subjects from the cohort were assessed
for psychotic experiences (PEs) using the Psychotic-like Symptoms
(PLIKS) semi-structured interview (Horwood et al., 2008; Zammit
et al., 2008), conducted at 17/18 years of age by trained psychologists.
Those who were found to have one or more psychotic experience
were invited to undergo scanning. The presence of PEs was judged ac-
cording to clinical criteria of the Schedule for Clinical Assessment in
Neuropsychiatry (SCAN) (Wing et al., 1990) and excluded experiences
occurring due to waking, falling asleep, fever or drug consumption.
PEs were further categorised as ‘suspected’ (n = 44), ‘definite’, (n =
47) and ‘clinical disorder’ (PEs plus functional deterioration and/or
help-seeking; n = 32) (Zammit et al., 2013). 126 subjects with PEs
were recruited and an equal number of randomly-selected controls,
who had completed the same assessments but who were rated as not
having had PEs experiences were also scanned. At the time of scanning
all subjects were approximately 20 years old (see Table 1 for details).

Informed consent was obtained prior to scanning. Ethical approval
was granted by the Cardiff University School of Psychology Ethics
Committee and the ALSPAC Ethics and Law Committee. Of the subjects
initially scanned, 3 PE subjects and 1 control were unable to complete
the full MRI acquisition. While all participants completed the T1-
weighted structural scan, the sample sizes for the relaxometry and
diffusion MRI scans of the two groups were n = 123 and n = 125,
respectively.

2.2. Risk factors

A number of candidate variables hypothesized to contribute to psy-
chosis risk were obtained from the ALSPAC variable catalogue (http://
www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/).
These included age and gender plus 12 other risk-factors: (1) IQ at age 8
estimated from the WISC (Wechsler Intelligence Scale for Children
(WISC-IIIUK)) (Golombok and Rust, 1992); (2) current general psycho-
pathology at age 17/18measured using the computerised Clinical Inter-
view Schedule (revised: CIS-R) (Lewis et al., 1992); (3) parental social
class (OPCS, 1991); (4)maternal education; (5) birthweight; (6) resus-
citation at birth; (7) stressful life events at age 15/16 measured on the
Development and Wellbeing Assessment (DAWBA) questionnaire
(Goodman et al., 2000); (8) handedness; (9) tobacco use; (10) alcohol
consumed; (11) cannabis consumption (all substance use data gathered
at age 17/18); (12) month of birth.

Any missing data points for each subject were estimated using re-
gression imputation (S. F. Buck, 1960) across the entire cohort. Descrip-
tive and inferential statistics of all selected risk factors are detailed in
Table 1.

3. Imaging

3.1. Structural MRI acquisition

All MRI data were acquired at Cardiff University Brain Imaging Re-
search Centre, UK on a 3 TGeneral Electric HDxMRI system (GEMedical
Systems, Milwaukee, WI) using an eight-channel receive-only head RF
coil. T1-weighted structural imageswere acquiredwith a 3D fast spoiled
gradient echo (FSPGR) sequence (TR = 7.8 ms, TE = 3.0 ms, flip angle
20°, voxel size = 1 mm3 isomorphic).

3.2. Relaxometry MRI acquisition and pre-processing

Relaxometry images were acquired using driven equilibrium single
pulse observation of T1 with high-speed incorporation of RF field inho-
mogeneities (DESPOT1-HIFI) (Deoni, 2007). A series of spoiled gradient
echo (SPGR) images was acquired with 8 flip angles plus an additional
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Table 1
Descriptive and inferential statistics for the candidate covariates. Descriptive statistics for continuous variables report mean± standard error for each group. Descriptive statistics for or-
dinal and categorical variables are reported as tabulated frequencies. Inferential statistics for the 2-group binary classification uses the student t-test for continuous, the χ2-test for cate-
gorical and the Cochrane-Armitage χ2-test (denoted χ2CM) for ordinal variables. Inferential statistics for the 4-group ordinal classification uses Spearman's ρ correlation for continuous and
ordinal variables and χ2CM test for categorical variables.

Variable Descriptive statistics Inferential statistics Proportion
imputed

No PEs With PEs 2-Group binary
classification

4-Group ordinal
classification

Suspect Definite Clinical Total

1. Premorbid IQ 111.44 ± 0.12 104.65 ± 0.31 106.79 ± 0.32 103.13 ± 0.42 105.07 ± 0.12 t = 3.456
p = 0.001⁎⁎

ρ = −0.188
p = 0.003⁎⁎

0.137

2. CIS-R score 6.30 ± 0.05 9.16 ± 0.17 12.26 ± 0.18 16.78 ± 0.34 12.33 ± 0.08 t = −5.903
p = 1.2 × 10−8⁎⁎

ρ = 0.408
p = 2.3 × 10−11⁎⁎

0.065

3. Parental social class 0.173
I 10 4 5 0 9 χ2

CM = 9.229,
p = 0.002⁎⁎

ρ = 0.204,
p = 0.001⁎⁎II 54 10 16 5 31

III (non-manual) 52 24 23 20 67
III (manual) 6 0 0 2 2
IV 3 5 2 3 10
V 0 1 1 2 4

4. Highest maternal education 0.065
None 11 8 5 5 18 χ2

CM = 9.022,
p = 0.003⁎⁎

ρ = −0.197,
p = 0.002⁎⁎Vocational 6 5 3 1 9

Ordinary Level 39 16 21 19 56
Advanced Level 34 7 7 4 18
Degree 35 8 11 3 22

5. Birth weight (g) 3466.2 ± 4.0 3323.4 ± 12.6 3401.7 ± 9.7 3165.3 ± 18.5 3312.2 ± 4.3 t = 2.335,
p = 0.020⁎

ρ = −0.155,
p = 0.015⁎

0.060

6. Resuscitated at birth 0.387
No 106 33 38 27 98 χ2 = 1.538,

p = 0.463
χ2

CM = 0.141,
p = 0.707Yes 19 11 9 5 25

7. Stressful life events 0.173
No 111 36 40 23 99 χ2 = 3.301,

p = 0.069
χ2

CM = 4.451,
p = 0.035⁎Yes 14 8 7 9 24

8. Handedness 0.411
Right 92 36 34 22 92 χ2

CM = 0.001,
p = 0.971

ρ = 0.022,
p = 0.737No dominance 25 6 9 7 22

Left 8 2 4 3 9
9. aTobacco consumption
(cigarettes per day)

0.59 ± 0.02 1.27 ± 0.08 0.44 ± 0.04 2.23 ± 0.14 1.20 ± 0.03 t = −1.717,
p = 0.087

ρ = 0.021,
p = 0.737

0.472

10. bCannabis consumption 0.411
Never 87 28 32 19 79 χ2

CM = 1.588,
p = 0.208

ρ = 0.077,
p = 0.226Once or twice 11 6 4 1 11

Less than monthly 25 6 8 10 24
Monthly or more 2 4 3 2 9

11. cAlcohol consumption 0.020
Never 16 6 2 0 8 χ2

CM = 1.045,
p = 0.307

ρ = 0.053,
p = 0.408Once or twice 23 5 9 6 20

Less than monthly 12 5 9 6 20
Monthly 52 21 19 14 54
Weekly or more 22 7 8 6 21

12. dMonth of birth 2.30 ± 7.52 1.72 ± 7.33 1.31 ± 7.50 2.18 ± 7.51 1.71 ± 7.44 F = 1.565,
p = 0.212

ρ = 0.088,
p = 0.384

0

Standard covariates (included in all analyses)
Age (years) 20.11 ± 0.004 20.14 ± 0.013 19.88 ± 0.011 20.04 ± 0.015 20.01 ± 0.004 t = 1.488,

ρ = 0.138
ρ = −0.147,
p = 0.020⁎

0

Gender 0
Male 49 14 16 7 37 χ2 = 2.2757,

p = 0.131
χ2CM = 2.952,
ρ = 0.085Female 76 30 31 25 86

a The number of cigarettes participant smokes every day on average in the last 30 days.
b From a multiple-choice question asking how many times the participant used cannabis in the past 12 months (all substance use data gathered at age 17/18).
c 6 or more units of alcohol in the past year.
d As a scale from 0 (1st January) to 12 (31st December). AWatson-Williams 2-sample F-test and a circular-linear. ρ-correlation using the circular statistics toolbox (Berens and

Baclawski, 2009).
⁎ p b 0.05.
⁎⁎ p b 0.01.
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inversion-recovery (IR) SPGR image. All images had TE = 2.11 ms and
TR = 4.7 ms, voxel resolution: 1.70 × 1.72 × 1.72 mm. SPGR images
were acquired with flip angles of 3°, 4°, 5°, 6°, 7°, 9°, 13° and 18°. For
the IR-SPGR acquisition, Inversion time = 450 ms and flip angle = 5°.
The DESPOT1 protocol constitutes part of the mCDESPOT protocol
(Deoni et al., 2008) which was also collected from this cohort. This
method and associated findings are reported in Supplementary materi-
al, section 2.
Relaxometry data were pre-processed using FSL v5.0 (Jenkinson et
al., 2012). All SPGR/IR-SPGR images were coregistered to each other
using a rigid affine transform and skull-stripped (Smith, 2002). Relaxa-
tion rate (R1 = 1/T1) maps were derived using the (DESPOT1-HIFI)
model (Deoni, 2007), which incorporates correction for B1 field inho-
mogeneities with in-house code. A synthetic T1-weigted image was
computed from the quantitative T1 map with contrast matching that
of the FSPGR image. This was used to compute a non-rigid affine



A

B

Fig. 1. (A) Significant negative effects of PEs on GM volume using the binary classification
of PEs. ROI volume 1976 mm3. MNI coordinates [−64 −20 32]. (B). mean and standard
error of GM volume in significant ROI, with binary classification of PEs.

553M. Drakesmith et al. / NeuroImage: Clinical 12 (2016) 550–558
transform using a mutual information cost function from the DESPOT
space to the FSPGR space. This transform was then applied to the R1
maps so that they are now in the same space as the FSPGR T1-weighted
images. Mislocalisation error between the two spaces was quantified to
assess any potential impact these might have on subsequent statistical
analysis (see Supplementary material, Section 4).

3.3. Diffusion acquisition and pre-processing

Diffusion MRI comprising a cardiac-gated diffusion-weighted spin-
echo echo-planar imaging sequence was used to acquire high angular
resolution diffusion weighted images (HARDI) (Jones et al., 1999). 60
gradient orientations and 6 unweighted (b=0 s/mm2) imageswere ac-
quiredwith the following parameters: TE=87ms, b=1200 s/mm2, 60
slices, slice thickness= 2.4 mm, FoV= 230 × 230mm, acquisition ma-
trix= 96 × 96, resulting in data acquiredwith a 2.4 × 2.4 × 2.4mm iso-
tropic resolution following zero-filling to a 128 × 128 in-plane matrix
for the fast Fourier transform. The final image resolution was therefore
1.8 × 1.8 × 2.4 mm.

HARDI datawere pre-processed in ExploreDTI v4.8.3 (Leemans et al.,
2009). Data were corrected for motion and eddy currents prior to
tractography. Motion artefacts and eddy current distortions were
correctedwith B-matrix rotation (Leemans and Jones, 2009); field inho-
mogeneities were also corrected using standard approaches(Wu et al.,
2008). Diffusion weighted images (DWIs) were non-linearly warped
to a synthetic T1-weigted image computed from the quantitative T1
map from the DESPOT processing pipeline (see above) and using the
fractional anisotropy map computed from the DWIs as a reference.
Warps were computed using ‘Elastix’ (Klein et al., 2010) using normal-
ised mutual information as the cost function and constraining deforma-
tions to the phase-encoding direction. The corrected DWIs are therefore
in the same (undistorted) space as the mcDESPOT images.

The corrected HARDI data were fitted to the diffusion tensor (DT)
and corrected for CSF-partial volume effects (Pasternak et al., 2009)
was applied to the DTs. The mean diffusivity (MD) was then computed
from the DT. Intra-scan head motion was quantified and assessed for
potential impact on subsequent statistics (see Supplementary material,
Section 4).

3.4. Voxel Based Morphometry (VBM).

Differences in GM were analysed using Voxel Based Morphometry
(VBM) (Ashburner and Friston, 2000; Good et al., 2001) using an
optimised VBM protocol in FSL (Douaud et al., 2007). T1-weighted
structural imageswere skull stripped (Smith, 2002) and GM segmented
(Zhang et al., 2001). The GM images were then non-linearly registered
to theMNI152 brain template and a study-specific templatewas created
from the average of the transformed GM images. All native GM images
were non-linearly registered to this study-specific template and “mod-
ulated” to correct for local expansion and contraction due to non-linear
components of the spatial transformation. The modulated GM images
were then smoothed with an isotropic Gaussian kernel with a FWHM
of 4mm3.

MD and R1mapswere also analysed with VBM. TheMD and R1 data
were registered to the original FSPGR T1-wieghted space using a non-
rigid affine transform with the synthetic T1-wighted image as a refer-
ence. The grey matter segmentation from the FSPGR was then used to
mask the grey matter in each image. The images were then registered
to the VBM template using the same warp fields originally used to reg-
ister the GM images. R1 and MD images were then smoothed with
Gaussian kernels of 4mm3 and 8mm3, respectively, to accommodate dif-
ferences in voxel size. Unlike the GM volume images, modulation was
not performed for these images as these variables are not quantifying
spatial properties, unlike GM volume. Modulation is therefore not ap-
propriate for these images.
3.5. Statistical analysis

Statistical analyses were performed using a voxel-wise general line-
ar model on the template-space images. Multiple comparisons across
voxels were corrected using permutation-based non-parametric testing
(Nichols and Holmes, 2002), with threshold-free cluster enhancement
(Smith and Nichols, 2009) across 5000 permutations.

Two designs were tested. The first treats PE status as a binary classi-
fication (with PEs vs. without PEs). The second model treats the PE sta-
tus as a 4-point ordinal scale (no PEs N suspected N definite N ‘clinical
disorder’). In both cases, age and gender were treated as covariates.
Maps of permutation corrected p-values (pcorr) were computed for
each image metric (MD and R1) and each design (i.e. binary or 4-
point ordinal classification). Effects are treated as significant at
pcorr b 0.05. In the cases where was a significant correlation between a
risk-factor and PEs, the analysis was also performed with the inclusion
of the relevant risk factor as a covariate. In addition, correlations be-
tween GM measurements and the other risk factors were tested for,
with age and gender treated as covariates.



Table 2
Regions of AAL atlas overlappingwith regions of significant effect onGMvolume, using the
binary classification of PEs.

Region Overlap with ROI
(# voxels)

min pcrr MNI coordinates

Supramarginal gyrus (left) 164 0.027 −64 -20 32
Postcentral (left) 26 0.031 −62 -18–30
Superior temporal (left) 20 0.031 −56 -24–18
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4. Results

4.1. Demographics

Group effects on each of the candidate risk factors are reported in
Table 1. Premorbid IQ, CIS-R scores, parental social class and maternal
education all show strong effects in both the binary and the ordinal
B

A

Fig. 2. (A) Regions of significant effects of PEs on R1 inferred using the ordinal classification
coordinates [−42−44 52], Frontal ROI: volume 2696mm3 MNI coordinates [42 52 0]. (B) Me
classifications (p b 0.01). A smaller, but still significant, group effect
was also observed for birth weight (p b 0.05). All other risk factors
showed no significant group effects.
4.2. Binary classification

GM volume in a region of the left supramarginal gyrus (Fig. 1,
Table 2) was decreased in subjects with PEs compared to subjects
with no PEs. There were no group effects on MD or R1.
4.3. Ordinal model

There was a significant negative effect in R1 in left temporoparietal
and right pre-frontal regions (Fig. 2, Table 3), with R1 lowest for the
suspected and definite PE groups. No significant effects were identified
with GM volume or MD.
of PEs in left parietal and right frontal cortices. Parietal ROI: volume 11,088 mm3, MNI
an and standard error of R1 value in the significant ROI, with ordinal classification of PEs.



Table 3
Regions of the AAL atlas where R1 significantly correlates with PEs.

Region Overlap with ROI
(# voxels)

min pcorr MNI coordinates

Parietal/temporal
Inferior parietal (left) 399 0.026 −42 ·-44 52
Middle temporal (left) 392 0.028 −62 -50 −10
Angular gyrus (left) 257 0.031 −52 -52 −28
Superior temporal (left) 133 0.028 −58 -48 −16
Superior parietal (left) 51 0.032 −38 -44 −62
Middle occipital (left) 48 0.038 −36 -70 −36
Supramarginal gyrus (left) 46 0.031 −54 -50 −26
Postcentral gyrus (left) 45 0.032 −42 -38 −58

Frontal
Middle frontal (right) 187 0.032 40 52 −2
Medial orbitofrontal (right) 64 0.032 42 52 0
Superior frontal (right) 61 0.042 32 -52 −10
Inferior frontal operculum (left) 38 0.044 −46 14 −18
Inferior orbitofrontal (right) 22 0.034 40 48 0

(See Supplementary material, Section 3).
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4.4. Correlation with risk factors

There were significant negative correlations between R1 and CIS-R
and significant positive correlations between R1 and maternal educa-
tion. Both these correlations overlap spatially with the correlations
with PE status, although in the case of maternal education, the effect is
limited to the left temporoparietal region (Fig. 3 and Table 4).

In addition, there were widespread positive correlations between
MD and birth-weight, mostly in posterior cingulate, parietal and occip-
ital cortices [data not shown]whichdid not overlapwith the R1 changes
nor were they associated with PEs. No other significant correlations
were identified.
5. Discussion

This study used structural MRI, T1 relaxometry and diffusion tensor
imaging (DTI) in conjunction with voxel-basedmorphometry (VBM) to
characterise GM macrostructure and microstructure associated with
psychotic experiences (PEs) in a large population-based sample of
young adults.

Reduction in GM volume in this otherwise healthy group with PEs,
centred on a single region: the left supramarginal gyrus, a key compo-
nent of the ‘heteromodal association cortex’ regarded by some as
being selectively affected in the pathological anatomy of schizophrenia
Fig. 3. Regions of significant negative correlation between R1 and CIS-R score (red) and signific
two Is violet.
(Buchanan et al., 2004). GM Abnormalities in those at increased genetic
risk (Bhojraj et al., 2011), have also been detected in this region. Howev-
er, whenwe compared our simple binary- with an ordinal-basedmodel
closer to the idea of a continuum of psychopathology, the binary model
of PEs was associated with reduced volume whereas the ordinal model
was not.

Alternately, it was the ordinal model that showed a reduction in cor-
tical R1 in non-overlapping left temporoparietal and right prefrontal re-
gions also noted to show changes in those at high risk of psychosis using
conventional volumetric MRI. Such a broad topography of cortical re-
gions has the potential to impinge onmany important linguistic and ex-
ecutive functions. The discrepancy between our two main findings
might be interpreted as different neuroanatomical substrates for gener-
al psychopathology, and more specific pathology relating to psychosis.
However, there were no significant relationships with GM volume and
CIS-R, or any other risk factors.

The regions where R1 is reduced with PEs are consistent with some
of those previously found to show cortical pathology in psychosis risk-
groups (Fusar-Poli et al., 2011; Smieskova et al., 2010), particularly
pre-frontal and superior temporal regions. It is possible that GMvolume
reduction becomes more apparent at later stages of development. A
meta-analysis (Fusar-Poli et al., 2011) found that GM volume was sig-
nificantly reduced in older at-risk groups (25+ years) compared to
younger at-risk groups.

The interpretation that reduced R1 is reflective of reductions in
cortical myelination (Lutti et al., 2014) is consistent with previous
histological and post-mortem studies (see (Bakhshi and Chance, 2015;
Esiri and Crow, 2008; Harrison and Harrison, 1999) for reviews). Of rel-
evance are studies that have shown evidence of reduced oligodendro-
cyte number (Hof et al., 2002, 2003; Uranova et al., 2004), notably in
frontal cortex particularly affecting layer VI, but not in the adjacent
white-matter (Uranova et al., 2004). This could be a pathological corol-
lary of the R1 relaxometry findings. More evidence exists of reductions
inmyelin basic protein (MBP) staining in schizophrenia (Chambers and
Perrone-Bizzozero, 2004; Honer et al., 1999) and altered expression of
myelin-related genes (Hakak et al., 2001; Katsel et al., 2005; Roussos
and Haroutunian, 2014).

In addition, there is evidence that the developmental trajectory of
myelination predicts the trajectory of grey matter volume (Gilmore
et al., 2012; Sowell et al., 2003), although this relationship is complex
(Deoni et al., 2015). It is possible that changes seen in cortical
myelination will manifest as changes in cortical volume later in life
and there is some evidence supporting this in our data (see Supplemen-
tarymaterial, Section 5). Changes in corticalmyelinationmay be related
to synaptic pruning in late adolescence (Huttenlocher and Dabholkar,
ant positive correlation between R1 and maternal education (blue). Overlap between the



Table 4
Regions of the AAL atlas where R1 significantly correlates with CIS-R and maternal education.

Region Negative correlation with CIS-R score Positive correlation with maternal education

Overlap with ROI
(# voxels)

min pcorr MNI coordinates Overlap with ROI
(# voxels)

min pcorr MNI coordinates

Frontal
Superior frontal (right) 262 0.024 24 64 −2 0 – –
Superior orbitofrontal (right) 170 0.026 24 64 0 0 – –
Middle frontal (left) 30 0.046 −28 56 −14 0 – –
Middle frontal (right) 216 0.024 32 58 −20 0 – –
Middle orbitofrontal (right) 84 0.032 10 64 14 0 – –
Inferior orbitofrontal (right) 11 0.048 48 50 10 0 – –
Medial orbitofrontal (right) 34 0.030 10 64 14 0 – –
Gyrus rectus (left) 26 0.030 2 64 16 0 – –
Gyrus rectus (right) 30 0.028 4 66 16 0 – –

Parietal/temporal
Supramarginal gyrus (left) 77 0.020 -64 -34 −24 216 0.022 −54 -38 −28
Superior temporal (left) 105 0.018 −64 -40 −20 204 0.026 −60 -36 −18
Middle temporal (left) 352 0.016 −68 -38 −4 176 0.034 −52 -56 −20
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1997; Paus et al., 2008), which leads to later reductions in cortical vol-
ume. The effects observed in the present study may reflect either a
delay or a reduction of this process. Further imaging of the cohort will
help verify this. It is also interesting to note that the temporoparietal re-
gion where the effect of R1 is seen, has been identified as having the
most protracted rate of cortical development (Sowell et al., 2003)
which might render it vulnerable to a range of insults over time. Fur-
thermore the absence of correlations between RI measures and early
neurodevelopmental factors (birthweight and premorbid IQ at age 8)
indicate that such factors are not implicated in the proposedmyelin-re-
lated pathogenesis of psychosis which occurs at developmental stages
closer to the age of the cohort. It is important to note that that T1 relax-
ation is also sensitive to other factors such asmacromolecular composi-
tion (proteins and lipids) (Bottomley et al., 1984; Rooney et al., 2007)
and iron content (Gelman et al., 2001), so the interpretation of reduced
R1 reflecting reduced corticalmyelination should bemadewith caution.

The correlation analysis revealed significant associations between
CIS-R score and maternal education, a proxy for socio-economic status,
on R1, in regions overlappingwith thosewhere themain effect with PEs
was observed. It is therefore possible that myelination, and possibly the
neurodevelopmental processes described above, are delayed or dimin-
ished by poor socioeconomic environment, perhaps via physiological
stress mechanisms, e.g., infection and inflammation (Najjar and
Pearlman, 2014). The correlations with these factors and the absence
of any cortical R1 effects when covarying for these factors suggest
myelination, macromolecular composition or iron content is related to
more general psychopathology and socioeconomic influences rather
than specifically psychosis. The absence of any apparent effect in cortical
diffusivity, suggests that change in cell density is not necessarily associ-
ated with PEs when seen in a non-clinical context. As with GM volume
change, this may be something that does not manifest until later stages
of illness. Again longitudinal studies will help clarify this.

There were negative correlations between cortical diffusivity and
birth weight, indicating a possible early neurodevelopment influence
on the cytoarchitecture of mature cortex, but we found no relationship
with psychopathology, despite such an association being documented
(Abel et al., 2010; Rifkin et al., 1994). Furthermore, this effect appeared
to be independent of any other measured properties in cortex.

The study has a number of strengths, namely the size and population
base of the sample uncontaminated by for example medication expo-
sure. Psychopathology was verified using a structured clinical interview
and there was extensive socio-demographic and clinical data available
on the sample. The imaging methodology was state-of-the-art and in-
cluded novel application of measures to at-risk groups for psychosis.
Weaknesses include the cross sectional nature of the imaging data and
the narrow age-range of the participants limiting the developmental
inferences that can be drawn. A further limitation is the lack of follow-
up information on the cohort, pertaining to progression or remission
of PEs. As a result the clinical significance of PEs is unclear. In particular,
the risk of a later UHR state, or psychotic disorder is unknown.

In conclusion, there is evidence of a link between cortical volume
and R1 in cortex and verified psychotic experiences in young adults
drawn from the general population. The alterations in R1 may be
reflective of decreased cortical myelination, although macromolecular
composition may also be responsible. The effect is consistent with an
altered neurodevelopmental trajectory, prior to measureable changes
in cortical volume as typically seen in schizophrenia patients and
ultra high risk groups. There is also evidence that this marker of
neurodevelopment is affected by socioeconomic environment.
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