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Abstract
The advent of quantum computing has challenged classical conceptions of which problems are
efficiently solvable in our physical world. Thismotivates the general study of howphysical principles
bound computational power. In this paper we show that some of the essentialmachinery of quantum
computation—namely reversible controlled transformations and the phase kick-backmechanism—

exist in any operational-defined theorywith a consistent notion of information. These results provide
the tools for an exploration of the physics underpinning the structure of computational algorithms.
We investigate the relationship between interference behaviour and computational power,
demonstrating that non-trivial interference behaviour is a general resource for post-classical
computation. In proving the above, we connect higher-order interference to the existence of post-
quantumparticle types, potentially providing a novel experimental test for higher-order interference.
Finally, we conjecture that theories with post-quantum interference—the higher-order interference
of Sorkin—can solve problems intractable even on a quantum computer.

1. Introduction

One of themajor conceptual breakthroughs in physics over the past 30 years was the realisation that quantum
theory offers dramatic advantages [4] for various information-processing tasks—computation in particular
[1, 2, 4]. This raises the general question of howphysical principles bound computational power.Moreover,
what broad relationships exist between such principles and computation? Amajor roadblock to such an
investigation is that quantum computation is phrased in the language ofHilbert spaces, which lacks direct
physical or operational significance.

In contrast, the framework of operationally defined theories [5–9] provides a clear-cut operational language
inwhich to investigate this problem. Theories within this framework can differ [7] from classical and quantum
theories.Whilemany of themmay not correspond to descriptions of our physical world, theymake good
operational sense and allow one to assess how computational power depends on the physical principles
underlying them in a systematicmanner.

Previous investigations into computationwithin this framework have taken a high-level approach using the
language of complexity classes to derive general bounds on the power of computation [9]. However,much of
quantum computing is concerned not somuchwith this high-level view, but insteadwith the construction of
concrete algorithms to solve specific problems. A deeper understanding of the general structure of
computational algorithms in this framework has so far remained illusive. Herewe take this low-level algorithmic
view and askwhich physical principles are required to allow for some of the commonmachinery of quantum
computation in this context.

In this paperwe show that three physical principles, causality (which roughly states that information
propagates frompresent to future), purification (roughly, that information is fundamentally conserved) and
strong symmetry (all information carriers of the same size are equivalent)—which are necessary for awell defined
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notion of information—are sufficient for the existence of reversible controlled transformations (theorem (2),
section 3) and a generalised phase kick-backmechanism (theorem (3), section 3). In the quantum case, the phase
kick-backmechanism [3] plays a vital role in almost all algorithms—notably theDeutsch–Jozsa algorithm,
Grover’s search algorithm and Simon’s algorithm—while reversible controlled transformations are central
components ofmostwell-studied universal gate sets and fundamental for the definition of computational
oracles.

Onemight ask how the computational power of theories with these crucial algorithmic components
depends on their underlying physical properties. One such property—currently under both theoretical [11–14]
and experimental [15, 16] investigation—is the existence of higher-order interference.

Sorkin [17, 18] has introduced a hierarchy ofmathematically conceivable higher-order interference
behaviours and shown that quantum theory is limited to having only second-order interference. Informally, this
means that the interference pattern created in a three-ormore-slit experiment can bewritten in terms of the two
and one slit interference patterns obtained by blocking some of the slits; no genuinely new features result from
considering three slits instead of two. This is in contrast to the existence of second-order interference where the
two slit interference cannot be reproduced from that of single slits. Informally, theories are said to have higher-
order interference if irreducible interference patterns can be created inmulti-slit experiments.

Second-order interference between quantum computational paths appears to be a resource for non-classical
computation [4, 19]. It therefore seems prudent to investigate howdifferent interference behaviour is related to
computation in general. In quantum theory there is an intimate connection between phase transformations—
such as those used in the kick-backmechanism—and interference.Motivated by this, in section (2.2.2), we
introduce a framework that relates higher-order interference to phase transformations in operationally defined
theories.

We show that the generalised phase kick-backmechanism allows one to access any ‘higher-order phase’ in a
controlledmanner. Using this, in section (3.2), we show that the existence of non-trivial interference behaviour
allows for the solution of problems intractable on a classical computer.We also conjecture that these higher-
order phase kick-backs allow for the solution of computational problems intractable even on a quantum
computer. Additionally, in section (3.1), we show that higher-order phases lead to newparticle types that exhibit
both qualitatively and quantitatively different behaviour to fermions, bosons and anyons. Thus potentially
providing a new experimental test of higher-order interference.

2. The framework

2.1.Operational physical theories
Wework in the circuit framework for operationally defined theories developed in [5, 6, 8]. An operational theory
specifies a set of physical processes that can be connected together to form experiments and assigns probabilities
to different experimental outcomes. A process has input ports, output ports, and a classical pointer.When a
process is used in an experiment, the pointer comes to rest in one of a number of positions, indicating an
outcome has occurred. Intuitively, one can think of physical systems as passing between the ports of these
processes. These systems come in different types, denoted A B, ... In an experiment these processes can be
composed both sequentially and in parallel, andwhen composed sequentially, typesmustmatch.

In this framework, closed circuits define probabilities. Processes that yield the same probabilities in all closed
circuits are identified. The set of equivalence classes of processes with no input ports are called states, no output
ports effects and both input and output ports transformations. The set of all states of systemA is denoted AW , the
set of all effects onB is denoted B and the set of reversible transformations between systemsA andB is denoted

A
B 4. Note that B

A has a group structure. A state is pure if it does not arise as a coarse-graining of other states5; a
pure state is one forwhichwe havemaximal information. A state ismixed if it is not pure. Similarly, one says a
transformation is pure if it does not arise as a coarse-graining of other transformations. It can be shown that
reversible transformations are pure.

The ‘Dirac-like’notation sA∣ ) is used to represent a state of systemA, and er B( ∣ to represent an effect onB.
Here r is the position of the classical pointer, which can be thought of as the outcome of themeasurement
defined by er r{( ∣} . States, effects and transformations can be represented diagrammatically:

4
The set of states, effects and transformations each give rise to a vector space and transformations and effects act linearly on the vector space

of states.We assume in this work that all vector spaces arefinite dimensional.
5
The process j j Y{ } Î , where j index the positions of the classical pointer, is a coarse-graining of the process i i X{ } Î if there is a disjoint

partition Xj j Y{ }Î ofX such that j i X ij
 = å Î .

2
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This diagrammatic approachwas inspired by the categorical formalismof quantummechanics [30, 31].

Definition 1 (Causality [5]).A theory is said to be causal if there exists a unique deterministic effect for every
system, such that for allmeasurements, er r{( ∣} .

Mathematically, causality is equivalent to the statement: ‘Probabilities of present experiments are
independent of futuremeasurement choices’. In causal theories, all states are normalised[5]. That is, =1
for all s∣ ). The deterministic effect allows one to define a notion ofmarginalisation formulti-partite states.

Definition 2 (Purification [5]).Given a state sA∣ ) there exists a systemB and a pure state AB∣ )y onAB such that
sA∣ ) is themarginalisation of AB∣ )y :

Moreover, the purification AB∣ )y is unique up to reversible transformations6 on the purifying system,B.

While the purification principle appears to only concern states, it can be leveraged to prove somewhat
analogous results about transformations ([5], theorem 15): letT T, ¢ be reversible transformations. If

then there exists a reversible transformationG such that

ð1Þ

Equation (1), above, depicts the equivalence of purifications of a transformation up to a local reversible
transformation, as opposed to the purification of statesmentioned in definition(2). These can in fact been
shown to be equivalent [5, 6], and sowewill use the term purificationwhen referring to either notion.

Pure states si i
n

1{∣ )}= are perfectly distinguishable if there exists ameasurement, corresponding to effects

ej j
n

1{( ∣} = , such that e sj i ij( ∣ ) d= for all i j, . Note that an n-tuple of pure and perfectly distinguishable states can

reliably encode an n-level classical system.

Definition 3 (Strong symmetry [11]).A theory satisfies strong symmetry if for any two n-tuples of pure and
perfectly distinguishable states , ,i i{∣ )} {∣ )}r s there exists a reversible transformationT such thatT i i∣ ) ∣ )r s=
for i n1 ,...,= .

Informally, the purification principle says that information is fundamentally conserved, strong symmetry
states that all information carriers of the same size are equivalent and causality implies that information
propagates frompresent to future. Note that standard quantum theory, real vector space quantum theory and
the classical theory of pure states satisfy all of the above principles. These principles will be shown to be a primer
for interesting and consistent computation. In section (3.2), we shall investigate the change in computational
power as one varies the interference behaviour in theories satisfying causality, purification and strong symmetry.

2.2.Higher-order interference via phase transformations
2.2.1. A quantum example
Perhaps the cleanest example of interference in quantum theory is exhibited by theMach–Zehnder
interferometer, illustrated below:

6
That is if two states AB∣ )y and AB∣ )y¢ purify s A∣ ) , then there exists a reversible transformationTB on systemB such

that TAB B AB∣ ) ( )∣ )y y= Ä .

3
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There are three parts to this:

(1) Prepare a state as a superposition of paths:

s∣ ) ∣ ∣ ≔ r= + ñá+ +

(2)Apply a ‘phase transformation’:

P s R R ,z z∣ ) †r=f
f f

D
D

+
D

with Rz
fD a rotation by fD about the z-axis of the Bloch ball.

(3)Measure in a superposition of paths:

e P s R RTr cos
2

.z z
2( ∣ ∣ ) ( )† ⎜ ⎟⎛

⎝
⎞
⎠r r

f
= =

D
f

f f
D +

D
+

D

The observed interference pattern is therefore amap from the group of ‘phase transformations’, parametrised
by fD , to the unit interval (i.e. probabilities),

P cos
2

. 22 ( )⎜ ⎟⎛
⎝

⎞
⎠

fD
fD 

The existence of interference in quantum theory is encapsulated in the statement: “the interference pattern
observed for a particular superpositionmeasurement cannot be reproduced by the statistics generated by ‘which
path’measurements”. In the above example this translates to:

q i i R Rcos
2

Tr , 3
i

i z z
2

0

1

(∣ ∣ ) ( )†⎜ ⎟⎛
⎝

⎞
⎠ åf

r
D

¹ ñá f f

=

D
+

D

where qi is an arbitrary constant. Equation (3) is to be interpreted as an inequality of the functions defined on the
right- and left-hand side. That is, these functions do not coincide on all phase transformations. This follows
from the fact that:

R i i R i i i, 0, 1 . 4z z∣ ∣ ∣ ∣ { } ( )† ñá = ñá " Îf fD D

That is, the left-hand side of equation (3) depends on fD while the right-hand side does not.

2.2.2. Operational theories
The quantum example from section (2.2.1) illustrates the key components necessary to discuss interference:

(i) a notion of ‘path’,

(ii) a notion of ‘superposition of paths’,

(iii) transformations that leave the statistics of ‘which path’ measurements invariant, i.e. ‘phase
transformations’,

(iv) a notion of ‘interference pattern’, i.e. a way of associating phase transformationswith probabilities.

These points will nowbe discussed in the context of arbitrary operationally defined theories.We then use
this framework to link higher-order interference and phase transformations. Our approach is similar in spirit to
that of Garner et al [20], with the caveat that they have not considered higher-order interference.

(i)Paths: a path is defined by a state and effect pair, wherewe view the state as ‘preparing a state which
belongs to the path’ and the effect as ‘measuringwhether the state belongs to the path’ and sowe demand the
probability of the state-effect pair to be one.

4

New J. Phys. 18 (2016) 033023 CMLee and JH Selby



Definition 4.Paths, p:

p s e e s, s.t. 1.≔ (∣ ) ( ∣) ( ∣ ) =

In our quantum example, the paths were p 0 0 , 0 00 (∣ ∣ ∣ ∣)= ñá ñá and p 1 1 , 1 11 (∣ ∣ ∣ ∣)= ñá ñá .

Paths are disjoint if the state defining one path has zero probability of belonging to the other, and vice versa.

Definition 5.Disjoint paths, p p1 2^ :

p p e s .i j ij1 2 ⟺ ( ∣ ) d^ =

An n-path experiment is defined by nmutually disjoint paths such that the set consisting of the effects from each
path forms ameasurement.

Definition 6. n-path experiment, :

In the quantum case, an n-path experiment would correspond to amulti-arm interferometer.

(ii) Superposition of paths: a superposition of pathswill be defined relative to some n-path experiment  via
the notion of support.We say that a state (or effect)has support on a path if the effect (or state) associated to that
path gives a non-zero probability.

Definition 7. Support of a state or effect, sSupp[∣ )] or eSupp :[( ∣]
s p e s

e p e s

Supp 0 ,

Supp 0 .
i i

i i

[∣ )] ≔ { ∣ ( ∣ ) }
[( ∣] ≔ { ∣ ( ∣ ) }




Î ¹
Î ¹

If the support of a state consists ofmore than one path this does not guarantee that it is a superposition of paths
—it could equally well be a classicalmixture of paths. A superposition statemust therefore lie outside the convex
hull of the states which have support only on a single path. In our quantum example, the state ∣ ∣+ñá+ —

introduced in point(1) of section (2.2.1)—was a superposition of paths.

We can define set of states (or effects)with support on some subset of paths I Í as:

s s I

e e I

Supp ,

Supp .
I

I

≔ {∣ ) ∣ [∣ )] }
≔ {( ∣ ∣ [( ∣] } 

W Î W =
Î =

(iii)Phase transformations: a phase transformation—relative to some —is any transformation that leaves
the statistics of ‘which path’measurements invariant.

Definition 8.Phase group, :

T e T e i, .i i≔ { ∣ ( ∣ ( ∣ }  Î = " Î

In the quantum example, the phase transformationwas the rotation Rz
fD introduced in point(2) of

section (2.2.1).

(iv) Interference patterns:we now generalise the quantum interference pattern of equation (2) to arbitrary
operational theories.

Definition 9. Interference pattern, :s e,

T e T s: 0, 1 ::s e, [ ] ( ∣ ∣ )   

Given this definition, equation (3) translates into the existence of e 0,1( ∣ { }Î —that is, an effect with support on
path 0 and path 1—and s 0,1∣ ) { }Î W such that

C 5s e
i

s e,
0

1

, i ( )å¹
=

for all possible choices of ei i( ∣ { }Î including subnormalised effects, this is the analogue of the qiʼs in
equation (3). In otherwords, there is some choice of superposition state and effect such that their interference
pattern cannot be reproduced by the statistics generated by effects with support on a single path.

5
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Other approaches to defining higher-order interference in operational theories (for example [11]) have
additional structure such that one can define a set of ‘filters’, FI{ }, for the theory. These are transformations that
represent the action of leaving open some subset of paths Iwhile blocking the others. In this case one can define
e e FI I( ∣ ( ∣= giving a specific set of effects. However, arbitrary theories do not have sufficient structure to define
filters and so onemust consider all possible choices eI( ∣with the correct support. Otherwise [25, 26] one can—
even in quantum and classical theory—choose a specific set of eI( ∣ to give the artificial appearance of higher-
order interference.

It follows that the existence of a non-trivial phase group implies the existence of interference in a general
theory. Indeed, the left-hand side of equation (5) depends on the phase group element, while the right-hand side
does not—the analogue of equation (4) from the quantum example.We nowuse our framework to discuss
higher-order interference.

2.2.3. Higher-order interference and phase
Adapting Sorkin’s original definition of higher-order interference [17] to our framework results in: the existence
of nth-order interference in an n-path experiment corresponds to the existence of an effect e∣ ) and a state s( ∣ such
that

1 , 6s e
I

n I
s e,

1
, I( ) ( )∣ ∣ 


å¹ -
Ì

- +

for all e .I I∣ ) Î As in equations (3) and (6) is to be interpreted as an inequality of the functions defined on the
right and left. See appendixD for an in-depth discussion of equation (6).

Motivated by equation (6), wewish to determine if particular phase transformations give rise to higher-order
interference. The defining feature of phase transformations is that they leave the statistics of effects with support
on single paths—that is, effects in i i⋃ { } —invariant. The natural generalisation of this is to consider
transformations that not only leave the statistics of effects on single paths invariant, but also superposition
effects. Thismotivates the following definition.

Definition 10.A transformation T is n-undetectable
if: e T e e, I I n I:( ∣ ( ∣ ( ∣ ⋃ = " Î .

Together with its natural converse.

Definition 11.A transformation T ism-detectable
if there exists e I I m I:( ∣ ⋃ Î , such that e T e( ∣ ( ∣¹ .

We can now link higher-order interference to certain types of phase transformations, whichwe call higher-
order phases.

Theorem1.A transformation T that is n detectable and n 1- undetectable implies the existence of nth-order
interference.

Proof.Choose s∣ ) and e( ∣ such thatT is detected. It is then clear that the left-hand side of equation (6) is
dependent onT, while—due to undetectability—the right-hand side is not. They are thus distinct functions. ,

In our quantum example, the phase transformationwas two-detectable, but one-undetectable.

3. Controlled transformations and a generalised phase kick-back

Definition 12.Given a set of pure and perfectly distinguishable states i{∣ )}and a set of transformations Ti{ }, we
define a controlled transformation C Ti{ }as:

ð7Þ

The top system and lower systems are referred to as the control and target respectively.

Note that classical controlled transformations—where the control ismeasured and conditioned on the outcome
a transformation is applied to the target—exist in any causal theory [5]with sufficient distinguishable states.
However, such transformations are in general not reversible and do not offer an advantage over classical

6
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computation [21].Moreover, the existence of reversible controlled transformations appears to be a rare property
of operational theories [21]. The following states that in theories satisfying our assumptions, there exist
reversible controlled transformations. The proof is in contained in appendixB.

Theorem2. In any theory satisfying (i) causality, (ii) purification, (iii) strong symmetry, there exists a reversible
controlled transformation for all sets of reversible transformations Ti{ }.

Moreover, the following theorem states that any controlled transformation in such theories ‘preserves
superpositions’.Where ‘superposition’ ismeant in the sense of section (2.2.2) part (ii) and ‘preserves
superposition’means that the probability of detecting the system in each path of the superposition is preserved
by the transformation. See appendixC for the proof.

Lemma1. Superpositions are preserved on the control input:

ð8Þ

where i{( ∣} is themeasurement that perfectly distinguishes the7 control states i{∣ )}.

Every controlled transformation in quantum theory has a phase kick-backmechanism [4]. Suchmechanisms
form a vital component ofmost quantumalgorithms.Wenow show the existence of a generalised phase kick-
backmechanism in any theory satisfying our assumptions.

Lemma2.Given an s∣ ) such thatT s s i,i∣ ) ∣ )= " , there exists a reversible transformationQs such that

ð9Þ

Moreover, Qs is phase transformation:

Proof.

Thefirst equality follows from causality and the second from equation (8) and the definition of s∣ ). Equation (1)
then implies the existence of a reversibleQs such that:

Note thatQs depends on both the controlled transformation and the joint eigenstate s∣ ). Note that:

Causality—via state normalisation—then gives:

,

In quantum theory, it is possible to achieve any phase transformation via a kick-backmechanism.However,
theorem(2) only implies the existence of at least one phase that can be ‘kicked-back’.We now show that all

7
In theories satisfying strong symmetry themeasurement i{( ∣} is unique up to normalisation, see appendix(A.1).

7
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phases arise via the generalisedmechanism. Consider the set of pure and perfectly distinguishable states si{∣ )}
and let Ti{ }be elements of their phase group, i.e.T s s ,i j j∣ ) ∣ )= i j," . Construct the controlled transformation
C Ti{ }. The designation of control and target for C Ti{ } is symmetric:

Thus any C Ti{ } is control-target symmetric if theTi are elements of a phase group. The transformations on the
target are given by the kicked-back phases, Qi{ }. Given an arbitraryWi, construct the transformation W Ci{ } and
note that via control-target symmetry it is equivalent to C Gi{ }, for some Gi{ }. The controlled transformation
C Gi{ } thus gives rise to the kicked-back phaseWi andwe have:

Theorem3.Every phase transformation can arise via a generalised phase kick-backmechanism.

3.1. Particle exchange experiments
Dahlsten et al[23] have shown that there is a close connection between particle exchange statistics and the phase
group in operational theories.We use the framework and results presented in this paper to expand upon and
formalise these connections.Motivated by the quantum case, place a pair of indistinguishable particles in
superposition by inputting them to an interferometer, as shown in the following diagram.

On the upper path the two particles are swapped using some operation ‘S’, while on the lower path they are left
invariant—that is, the identity operation  is applied. The entire physical set-up is described by a bipartite state,
one partition of which corresponds to the state of the particles, s P cles∣ ) Î W ¢ , and the other to the ‘which path’
information embodied in the interferometer, s Path∣ )¢ Î W . The entire scenario thus takes place in the state space

Path P cleW Ä W ¢ . In the quantum case, the phase transformation generated by this procedure corresponds to the
type of indistinguishable particle employed in the experiment.

Thewhole experiment can be described via a controlled transformation, with path information as the
control and particle state as the target. Via theorem(2), such an experiment exists in theories satisfying our
assumptions. Applying operation S to the particle state corresponds to swapping a pair of indistinguishable
particles and somust leave the statistics of anymeasurement invariant. Therefore S s s∣ ) ∣ )= , where s∣ ) is the
initial particle state

Theorem(2) tells us that the above diagram corresponds to a kicked-back phase on the control system, as in
equation (9). Thus, to every particle type, there exists a corresponding phase transformation, whichwas the
connection discussed in [23]. But, in an arbitrary theory, the converse is not necessarily true. The quantumphase
group isU(1) and,fixing its representation to be ei{ }q , bosons kick-back the transformation corresponding to

0q = , fermions q p= and anyons any arbitrary θ. Thus, to every particle type in quantum theory there is an
associated phase, and vice versa.

To generalise this to theories satisfying our three assumptions, wemust connect the operational description
of these theories to themore physical notion of particles. Towards this end, wemake the following two
assumptions:

(1) Every operational state s∣ ) corresponds to the state of some collection of indistinguishable particles.

(2) Every transformation that leaves the operational state s∣ ) invariant corresponds to a (possibly trivial)
permutation of the collection of indistinguishable particles.

8
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Given the above, theorem(3) tells us that to every phase transformation there exists a corresponding particle
type. Therefore, to each higher—order phase-described in theorem(1)—there is associated a particle type that
should be observable through a generalisation of the above experiment.

Consider s∣ ), which corresponds to the state of some collection of indistinguishable particles, and a
permutation operationπwhich leaves s∣ ) invariant. Note that, for a given permutation, theremay bemultiple
topologically distinct ways of performing it, particularly in two-dimensions or topologically non-trivial spaces.
Now consider the n-path experiment, illustrated below, where on each path some distinct permutation
operation i n, 1 ,..., ,ip = takes place.

This can be described by a controlled transformation C i{ }p . Given the above two assumptions, any nth-order
phase—if they exist in the operational theory—can be kicked-back by such an experiment.

Recall that nth-order phases are n-detectable, but n 1- -undetectable. That is, the action of such phases
cannot be detected by any effect with support on less than n paths.Which is in stark contrast to quantum, or
2nd-order, phases, which can always be detected by an effect with support on twopaths. Thus, permutations of
particles, whose type all correspond to an nth-order phase, can only be detected by recombining all paths in an n-
path experiment. In some sense then, nth-order phases encode holistic information about all paths in an n-path
experiment.

3.2. Computational oracles
Oracles play a vital role in quantum computing, forming the basis ofmost known speed-ups over classical
computation [4]. Despite their importance, defining a general notion of oracle-that reduces to the standard
notion in the quantum case-in operationally defined theories has proven difficult [9]. A particular example of a
quantumoracle is the following controlled unitary:

U Z Z0 0 1 1 , 10f
f f0 1∣ ∣ ∣ ∣ ( )( ) ( )= ñá Ä + ñá Ä

withZ a Paulimatrix, f : 0, 1 0, 1{ } { } a function encoding some decision problem and Z 0 ≔ . The
quantumphase kick-back forUf amounts to

U Z0 0 1 1 . 11f
f f0 1∣ ∣ ∣ ∣ ( )( ) ( )= Ä ñá + Ä ñáÅ

One can see that inputting 1∣ ∣+ñ ñandmeasuring the first qubit in the ,{∣ ∣ }+ñ -ñ basis reveals the value of
f f0 1( ) ( )Å in a single query of the oracle—a feat impossible on a classical computer [4].

The results of theorem(2) provide away to define computational oracles in any theory satisfying our three
assumptions. An oracle in such theories corresponds to a reversible controlled transformation8, where the set of
transformations Ti f i,{ }( ) being controlled depend on a function f i: 0, 1{ } { } encoding a decision problem
of interest. As the transformationsTi f i, ( ) depend on the value of f(i), so does the controlled transformation and
the kicked-back phase. That is, in theories with a non-trivial phase group, the phase kick-back of an oracle
encodes information about the value f(i) for all i. In such theories, there is thus a non-zero probability of
extracting such global information. Non-trivial interference behaviour can thus be seen as a general resource for
non-classical computation.

In the quantum case, there is a limit to howmuch global information one can obtain in a single oracle query.
In the situationwhere f n: 0 ,..., 1 0, 1{ } { }-  a quantumoracle can only extract the value of f i f j( ) ( )Å ,
for some i j, , in a single query without error [4]. Can theories with higher-order interference reliably extract
more global information about f—without error—in a single query? The results of section (3.1) appear to
suggest that nth-order phases encode information about all paths in an n-path experiment, as opposed to 2nd-
order, or quantum, phases which only encode information about atmost two paths. Based on this fact—that
higher-order phases encodemore holistic information that quantumones—and the result of theorem(3), we
conjecture that theories with higher-order interference can solve problems intractable on a quantum computer.
To prove such a conjecture however, a concrete example of such a theory is needed.While there are partial

8
There could bemany distinct transformations that have the same behaviour on a set of control states. As long as one fixes which

transformation corresponds to the oracle, this is not a problem.

9

New J. Phys. 18 (2016) 033023 CMLee and JH Selby



examples in the literature [24, 25], none of these are complete [26]. Answering such a conjecture in the
affirmative is thus not yet possible, although some evidencewas provided in [26].

4. Conclusion

The key result of this paper was to provide a set of physical principles that are sufficient for the existence of
reversible controlled transformations. Such transformations are central to our understanding of quantum
computing, information processing and thermodynamics.Moreover, thesewere shown to guarantee the
existence of a generalised phase kick-backmechanism,which, in the quantum case, forms a fundamental
component of almost all algorithms. These physical principles are defining characteristics of information:
independence of encodingmedium; propagation frompresent to future; and conservation at a fundamental
level. It would therefore be surprising if these principles were not necessary primers for information processing.
These results provide the tools for an exploration of the structure of computational algorithms—and how they
connect to physical principles—in operational theories.

We developed a framework that connects higher-order interference and phase transformations, generalising
the intimate connection between phase and interference witnessed in quantum theory. These ‘higher-order’
phases are accessible via our generalised kick-backmechanism. Given two assumptionswhich connect the
operational theory to a physical description of particles, these higher-order phases were shown to give rise to
exotic particle types. Additionally, using the controlled transformations to define an oraclemodel of
computation, we conjectured that these higher-order phasesmay allow for the solution of problems intractable
even on a quantum computer. Computational problems thatmay be susceptible to efficient solution by
generalised phase kick-back include the n-collision problem, and the non-abelian hidden subgroup problem.
Discovering that higher-order interference leads to ‘unreasonable’ computational powermay provide a reason
‘why’ quantum theory is limited in its interference behaviour—in the sameway that implausible
communication complexity is thought to limit quantumnon-locality [10].

In section (3.1) it was shown that to observe the exotic particle types corresponding to higher-order phases,
theremust be distinct ways to swap particles. Aswe live in a topologically trivial three-dimensional space, there is
only one topologically distinct way to swap point particles. This can either be seen as evidence ofwhy quantum
theory is limited to only second-order interference, or evidence that such particle typesmust have non-trivial
structure, similar to toroidal anyons [27]—which are constructed from a solenoid ringwith an attached charge
—or closed strings [28].

Finally, reference [29] has shown that thermodynamicwork can be extracted fromquantum coherences—
2nd-order phases in our language. This raises this the question of whether one can extract workmore efficiently
using higher-order phases? If such efficiencies are in contentionwith thermodynamic principles this could
provide a reason ‘why’ quantum theory has limited interference. Initial investigations into formulating a
consistent thermodynamics in operational theories have been reported in [32–34]. The framework and results
presented heremay therefore have implications for thermodynamics, information processing and how each
arises in a unifiedmanner fromphysical principles.
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AppendixA. General results following from causality purification and strong symmetry

A.1. Uniqueness of distinguishingmeasurement
Strong symmetry (together with the no restriction hypothesis, which says that allmathematically well-defined
measurements are physical) implies that, given any set of pure and perfectly distinguishable states i{∣ )}, there
exists a uniquemeasurement j{( ∣} such that

i j .ij( ∣ ) d=

See [11, 22] for details.Moreover if there is a set ej{( ∣} such that e ij j ij( ∣ ) a d= then

e j .j j( ∣ ( ∣a=
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A.2. Existence of amaximallymixed state
Purification implies that there is a unique completelymixed state defined by

Any state is a ‘refinement’ of this state. See [5, 6] for details.

A.3. Purification of themaximallymixed state is dynamically faithful
Purification implies that there exists a state ∣ )y that purifies the completelymixed state:

This is unique up to reversible transformation.We denote a particular choice of this purification as

Purifications of the completelymixed state are called dynamically faithful states [5, 6] and satisfy the following
important condition [5, 6]:

Appendix B. Existence of controlled transformations

Wecan define two sets of pure and perfectly distinguishable states

Strong symmetry implies that there exists a reversible transformation between these two sets,T : 1 2 

This result, together with the existence of dynamically faithful states, will be used to show the existence of a
reversible controlled transformation C Ti{ } for an arbitrary set of reversible transformations Ti{ }.

Lemma3. ‘Superposition preservation’

Proof. Firstly we prove aweaker conditionwhich is superposition preservation for pure local effects
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the implication follows from the uniqueness of themaximally distinguishingmeasurement up to normalisation.
Then purification implies

Now consider

where the above follows the fact that i i 1( ∣ ) = . This, in conjunctionwith the previous results, gives:

,

Lemma4. T$ ¢ such that

Proof.
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Dynamic faithfulness then gives the result. ,

Theorem4.T ¢ is a controlled transformation, T C Ti{ }¢ = .

Proof.

which is the defining characteristic of C Ti{ }. ,

AppendixC. Superposition preservation

Lemma 3 already gives some notion of superposition preservation, we can use our other results above to
extend this.

Proof.

Thefirst equality uses theorem4 and the second lemma 3.Using the result of dynamically faithful states then
implies

,

This actually only proves the existence of a controlled transformation that preserves superpositions, it is
simple to show that itmust be true for all controlled transformations using an argument analogous to lemma 3.

AppendixD.Definition of higher-order interference

The original definition of higher-order interference was in the framework of quantummeasure theory [17, 18].
The definition revolves around the concepts of ‘histories’ and the ‘quantummeasure’. Histories correspond to
paths through space–time, a set of historiesA is any collection of these paths.Wewill be concernedwith sets of
histories with some initial condition s and some final condition e alongwith an intermediate condition i that ‘the
history passes through slit i’.We label these sets of histories Ase

i . In an interference experiment it is common to
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have someway to create a path difference between the different slits, either by introducing some ‘phase shifter’ or
bymoving thefinal detection point, we label this data t.

The quantummeasureμ associates some probability to each set of histories, which should be thought of as
the probability that a particle ‘has a history from that set’. In generalμwill depend on the experimental control t.

The existence of higher-order interference in this framework is as follows:

Definition 13. nth order interference ⟺ s e s t, . .$

A t A t1 .
i

i
se

I

n I

i I
i
se1( ) ( ) ( )∣ ∣

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ 

È Èåm m¹ -
Î Ì

- +

Î

Given this definitionwe can provide a translation to the operational definition thatwe are using

QMT GPT

Initial condition s s∣ )
Final condition e e( ∣
Experimental control t T

Probability of path i A ti
se[ ]( )m Tse i ( ){ }

Probability of subset I A ti I i
se[⋃ ]( )m Î TseI ( )

Note that some ambiguity is introduced in switching to the operational framework, which eI IÎ should be
picked?Other approaches to defining higher-order interference in operational theories [11] have required
sufficient structure to define a set of ‘filters’, FI{ }, for the theory. These are transformations that represent the
action of leaving open some subset of slits Iwhile closing the others, inwhich case e e FI I( ∣ ( ∣= . However,
arbitrary theories do not have sufficient structure to define filters and so onemust consider all possible choices
eI( ∣with the correct support. This leads to the following definition of nth-order interference.

Definition 14. nth order interference ⟺ s e s t, . .$

T T1 ,s e
I

n I
s e,

1
, I( ) ( ) ( )∣ ∣ 


å¹ -
Ì

- +

eI I( ∣ " Î .

The introduction of the ‘"’ statement compared to the original definition is due to the ambiguity in choosing
which effect corresponds to blocking some subset of paths. In themain text the explicit dependence onT in the
above equationwill be suppressed, as se has already been defined as a function from the phase group to
probabilities.

For example, the existence of second-order interference implies that there exists s∣ ) and e( ∣ such that

,s e s e s e, , ,0 1{ } { }  ¹ +

e i i∣ ){ } " Î .While the existence of third-order interference corresponds to the existence of, s∣ ) and e( ∣ such that

,s e s e s e s e s e s e s e, , , , , , ,0,1 1,2 2,0 0 1 2{ } { } { } { } { } { }      ¹ + + - - -

eI I∣ ) " Î .
We consider the above for the case of quantum theory to provide some intuition for the definitions. Firstly,

we show the existence of second-order interference. Define our paths by p i i i i,i ≔ (∣ ∣ ∣ ∣)ñá ñá , then choose
s e∣ ) ∣ ∣ ( ∣= +ñá+ = . Then e r i ii i( ∣ { ∣ ∣}{ } Î ñá , where ri is an arbitrary positive real number. The phase group is
given by e 0 0 e 1 1i i0 1≔ { ∣ ∣ ∣ ∣} ñá + ñáq q . It is then simple to show that

T cos
2

,s e,
2 0 1( ) ⎜ ⎟⎛

⎝
⎞
⎠

q q
=

-

while

T T
r r

2
.s e s e, ,

0 1
0 1( ) ( ){ } { } + =

+

It is then simple to see that, as functions of iq

r r
cos

2 2
,2 0 1 0 1⎜ ⎟⎛

⎝
⎞
⎠

q q-
¹

+
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for any choice of ri, i.e. e i( ∣{ } . Therefore—by our definition-quantum theory has second-order interference as we
would expect.

Next we consider our definition of third-order interference for quantum theory.We consider a specific
choice of s∣ ) and e( ∣, and note that this can be simply—but tediously—generalised to all choices. Consider
s e1 3 0 1 2 0 1 2∣ ) (∣ ∣ ∣ )( ∣ ∣ ∣) ( ∣= ñ + ñ + ñ á + á + á =/ , and the phase group, e 0 0 e 1i i0 1{ ∣ ∣ ∣ = ñá + ñq q

1 e 2 2i 2∣ ∣ ∣}á + ñáq . Then let e i j i ji j,
1

3
( ∣ (∣ ∣ )( ∣ ∣)){ } = ñ + ñ á + á and e i ii

1

3
( ∣ ∣ ∣){ } = ñá . Note that these are sub-

normalised effects. It is then simple to check our definition for this particular choice of s∣ ) and e( ∣. The
interference patterns can bewritten as

(1)

T
1

9
e e e

1

9
3 e e ,

s e

i j

,
i i i 2

i ii j j i

0 1 2( ) ∣ ∣

( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟



å

= + +

= + +

q q q

q q q q

>

- -

(2)

T
1

9
e e

1

9
2 e e ,

s e,
i i 2

i i

i j
i j

i j j i

, ( ) ∣ ∣

( )( ) ( )

{ } = +

= + +

q q

q q q q- -

(3)

T
1

9
e

1

9
s e,

i 2
i

i( ) ∣ ∣{ } = =q

and so

T T T .s e
i j

s e
i

s e, , ,i j i,( ) ( ) ( ){ } { }  å å= -
>

This proves that the particular choice of state s∣ ) and effect e( ∣do not give higher-order interference for quantum
theory. This can, however, be readily generalised to hold for any choice, and so demonstrates that quantum
theory does not exhibit higher-order interference.
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