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Abstract

The advent of quantum computing has challenged classical conceptions of which problems are
efficiently solvable in our physical world. This motivates the general study of how physical principles
bound computational power. In this paper we show that some of the essential machinery of quantum
computation—namely reversible controlled transformations and the phase kick-back mechanism—
exist in any operational-defined theory with a consistent notion of information. These results provide
the tools for an exploration of the physics underpinning the structure of computational algorithms.
We investigate the relationship between interference behaviour and computational power,
demonstrating that non-trivial interference behaviour is a general resource for post-classical
computation. In proving the above, we connect higher-order interference to the existence of post-
quantum particle types, potentially providing a novel experimental test for higher-order interference.
Finally, we conjecture that theories with post-quantum interference—the higher-order interference
of Sorkin—can solve problems intractable even on a quantum computer.

1. Introduction

One of the major conceptual breakthroughs in physics over the past 30 years was the realisation that quantum
theory offers dramatic advantages [4] for various information-processing tasks—computation in particular
[1,2,4]. This raises the general question of how physical principles bound computational power. Moreover,
what broad relationships exist between such principles and computation? A major roadblock to such an
investigation is that quantum computation is phrased in the language of Hilbert spaces, which lacks direct
physical or operational significance.

In contrast, the framework of operationally defined theories [5-9] provides a clear-cut operational language
in which to investigate this problem. Theories within this framework can differ [7] from classical and quantum
theories. While many of them may not correspond to descriptions of our physical world, they make good
operational sense and allow one to assess how computational power depends on the physical principles
underlying them in a systematic manner.

Previous investigations into computation within this framework have taken a high-level approach using the
language of complexity classes to derive general bounds on the power of computation [9]. However, much of
quantum computing is concerned not so much with this high-level view, but instead with the construction of
concrete algorithms to solve specific problems. A deeper understanding of the general structure of
computational algorithms in this framework has so far remained illusive. Here we take this low-level algorithmic
view and ask which physical principles are required to allow for some of the common machinery of quantum
computation in this context.

In this paper we show that three physical principles, causality (which roughly states that information
propagates from present to future), purification (roughly, that information is fundamentally conserved) and
strong symmetry (all information carriers of the same size are equivalent)}—which are necessary for a well defined

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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notion of information—are sufficient for the existence of reversible controlled transformations (theorem (2),
section 3) and a generalised phase kick-back mechanism (theorem (3), section 3). In the quantum case, the phase
kick-back mechanism [3] plays a vital role in almost all algorithms—notably the Deutsch—Jozsa algorithm,
Grover’s search algorithm and Simon’s algorithm—while reversible controlled transformations are central
components of most well-studied universal gate sets and fundamental for the definition of computational
oracles.

One might ask how the computational power of theories with these crucial algorithmic components
depends on their underlying physical properties. One such property—currently under both theoretical [11-14]
and experimental [ 15, 16] investigation—is the existence of higher-order interference.

Sorkin [17, 18] has introduced a hierarchy of mathematically conceivable higher-order interference
behaviours and shown that quantum theory is limited to having only second-order interference. Informally, this
means that the interference pattern created in a three-or more-slit experiment can be written in terms of the two
and one slit interference patterns obtained by blocking some of the slits; no genuinely new features result from
considering three slits instead of two. This is in contrast to the existence of second-order interference where the
two slit interference cannot be reproduced from that of single slits. Informally, theories are said to have higher-
order interference if irreducible interference patterns can be created in multi-slit experiments.

Second-order interference between quantum computational paths appears to be a resource for non-classical
computation [4, 19]. It therefore seems prudent to investigate how different interference behaviour is related to
computation in general. In quantum theory there is an intimate connection between phase transformations—
such as those used in the kick-back mechanism—and interference. Motivated by this, in section (2.2.2), we
introduce a framework that relates higher-order interference to phase transformations in operationally defined
theories.

We show that the generalised phase kick-back mechanism allows one to access any ‘higher-order phase’ina
controlled manner. Using this, in section (3.2), we show that the existence of non-trivial interference behaviour
allows for the solution of problems intractable on a classical computer. We also conjecture that these higher-
order phase kick-backs allow for the solution of computational problems intractable even on a quantum
computer. Additionally, in section (3.1), we show that higher-order phases lead to new particle types that exhibit
both qualitatively and quantitatively different behaviour to fermions, bosons and anyons. Thus potentially
providing a new experimental test of higher-order interference.

2. The framework

2.1. Operational physical theories

We work in the circuit framework for operationally defined theories developed in [5, 6, 8]. An operational theory
specifies a set of physical processes that can be connected together to form experiments and assigns probabilities
to different experimental outcomes. A process has input ports, output ports, and a classical pointer. When a
process is used in an experiment, the pointer comes to rest in one of a number of positions, indicating an
outcome has occurred. Intuitively, one can think of physical systems as passing between the ports of these
processes. These systems come in different types, denoted A, B...In an experiment these processes can be
composed both sequentially and in parallel, and when composed sequentially, types must match.

In this framework, closed circuits define probabilities. Processes that yield the same probabilities in all closed
circuits are identified. The set of equivalence classes of processes with no input ports are called states, no output
ports effects and both input and output ports transformations. The set of all states of system A is denoted €Yy, the
set of all effects on Bis denoted & and the set of reversible transformations between systems A and Bis denoted
RE*. Note that R4 has a group structure. A state is pureifit does not arise as a coarse-graining of other states’; a
pure state is one for which we have maximal information. A state is mixed if it is not pure. Similarly, one says a
transformation is pure if it does not arise as a coarse-graining of other transformations. It can be shown that
reversible transformations are pure.

The ‘Dirac-like’ notation 4|s) is used to represent a state of system A, and (e,|p to represent an effect on B.
Here ris the position of the classical pointer, which can be thought of as the outcome of the measurement
defined by { (e,|};. States, effects and transformations can be represented diagrammatically:

4 . . . . .
The set of states, effects and transformations each give rise to a vector space and transformations and effects act linearly on the vector space
of states. We assume in this work that all vector spaces are finite dimensional.

> The process {U;}icy, where jindex the positions of the classical pointer, is a coarse-graining of the process { £;};cx if there is a disjoint
partition {X;}icy of Xsuch that U; = Ziexj E.
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CHH T )= (erlsTals)

This diagrammatic approach was inspired by the categorical formalism of quantum mechanics [30, 31].

Definition 1 (Causality [5]). A theory is said to be causal if there exists a unique deterministic effect (]| for every
system, such that >, (e,| = (l|/for all measurements, { (e,| },-

Mathematically, causality is equivalent to the statement: ‘Probabilities of present experiments are
independent of future measurement choices’. In causal theories, all states are normalised [5]. That s, (i||s) = 1
for all |s). The deterministic effect allows one to define a notion of marginalisation for multi-partite states.

Definition 2 (Purification [5]). Given a state 4|s) there exists a system B and a pure state 45|t’) on AB such that
4ls) is the marginalisation of 4g|)):

14 :@i
!

Moreover, the purification 45|1) is unique up to reversible transformations® on the purifying system, B.

P

While the purification principle appears to only concern states, it can be leveraged to prove somewhat
analogous results about transformations ([5], theorem 15):let T, T’ be reversible transformations. If

ll‘svlw

then there exists a reversible transformation G such that

] ]
T = T o). (1)
:]; 7o)

Equation (1), above, depicts the equivalence of purifications of a transformation up to alocal reversible
transformation, as opposed to the purification of states mentioned in definition (2). These can in fact been
shown to be equivalent [5, 6], and so we will use the term purification when referring to either notion.

Pure states {|s;) }i_, are perfectly distinguishable if there exists a measurement, corresponding to effects
{(ejl}j—1, such that (ejls;) = 6;; foralli, j. Note thatan n-tuple of pure and perfectly distinguishable states can
reliably encode an n-level classical system.

Definition 3 (Strong symmetry [11]). A theory satisfies strong symmetry if for any two n-tuples of pure and
perfectly distinguishable states {|p,) }, {|o;) }, there exists a reversible transformation T'such that T|p,) = |0;)
fori=1,..,n.

Informally, the purification principle says that information is fundamentally conserved, strong symmetry
states that all information carriers of the same size are equivalent and causality implies that information
propagates from present to future. Note that standard quantum theory, real vector space quantum theory and
the classical theory of pure states satisfy all of the above principles. These principles will be shown to be a primer
for interesting and consistent computation. In section (3.2), we shall investigate the change in computational
power as one varies the interference behaviour in theories satisfying causality, purification and strong symmetry.

2.2. Higher-order interference via phase transformations

2.2.1. A quantum example

Perhaps the cleanest example of interference in quantum theory is exhibited by the Mach—Zehnder
interferometer, illustrated below:

6 That s if two states |1)),5 and [t )ap purify |s)4, then there exists a reversible transformation T on system B such
that [{)ap = (I ® Tp)|9)ap-
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Description of
experimental
set up

)

Operational

description in
circuit notation

There are three parts to this:

(1) Prepare a state as a superposition of paths:
Is) =1+ ) {(+1=p,
(2) Apply a ‘phase transformation’:
Pagls) = R2%p,RAT,
with R2¢ arotation by A¢ about the z-axis of the Bloch ball.

(3) Measure in a superposition of paths:
‘ bt A
() = Tr(p R k2 = ot (52

The observed interference pattern is therefore a map from the group of ‘phase transformations’, parametrised
by A¢, to the unit interval (i.e. probabilities),

Prg > cos? (%) 2

The existence of interference in quantum theory is encapsulated in the statement: “the interference pattern
observed for a particular superposition measurement cannot be reproduced by the statistics generated by ‘which
path’ measurements”. In the above example this translates to:

1
co’ (%) = >, Tr(li) (IR p, R2), )
i=0

where g;is an arbitrary constant. Equation (3) is to be interpreted as an inequality of the functions defined on the
right- and left-hand side. That is, these functions do not coincide on all phase transformations. This follows
from the fact that:

R2i) GIREY = 1i) (i, Vi € {0, 1}. @)
That is, the left-hand side of equation (3) depends on A¢ while the right-hand side does not.
2.2.2. Operational theories
The quantum example from section (2.2.1) illustrates the key components necessary to discuss interference:
(1) anotion of ‘path’,
(ii) anotion of ‘superposition of paths’,

(iii) transformations that leave the statistics of ‘which path’ measurements invariant, i.e. ‘phase
transformations’,

(iv) anotion of ‘interference pattern’, i.e. a way of associating phase transformations with probabilities.

These points will now be discussed in the context of arbitrary operationally defined theories. We then use
this framework to link higher-order interference and phase transformations. Our approach is similar in spirit to
that of Garner et al [20], with the caveat that they have not considered higher-order interference.

(i) Paths: a path is defined by a state and effect pair, where we view the state as ‘preparing a state which
belongs to the path’ and the effect as ‘measuring whether the state belongs to the path’ and so we demand the
probability of the state-effect pair to be one.
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Definition 4. Paths, p:
p = (ls), (e]) s.t.(els) = 1.
In our quantum example, the paths were p, = (|0) (0], |0) (0])and p; = (|1) (1], |1) (1]).
Paths are disjoint if the state defining one path has zero probability of belonging to the other, and vice versa.

Definition 5. Disjoint paths, p, L p;:
P, L p, = (eils) = 6.

An n-path experiment is defined by n mutually disjoint paths such that the set consisting of the effects from each
path forms a measurement.

Definition 6. n-path experiment, P:
P:={p;} s.t. p; L pj Vi # j, and Z(eJ = (||

In the quantum case, an n-path experiment would correspond to a multi-arm interferometer.

(#1) Superposition of paths: a superposition of paths will be defined relative to some #n-path experiment [P via
the notion of support. We say that a state (or effect) has support on a path if the effect (or state) associated to that
path gives a non-zero probability.

Definition 7. Support of a state or effect, Supp[|s)] or Supp[(e|]:

Supplls)] = {p; € P| (eils) = 0},

Supp[(el] == {p, € P | (els;) = 0}.
If the support of a state consists of more than one path this does not guarantee that it is a superposition of paths
—it could equally well be a classical mixture of paths. A superposition state must therefore lie outside the convex

hull of the states which have support only on a single path. In our quantum example, the state |+) (4|—
introduced in point (1) of section (2.2.1)—was a superposition of paths.

We can define set of states (or effects) with support on some subset of paths I C P as:
Q ={ls) € @ | Supp(ls)] = I},
& ={(el € €| Suppl(el] = I}.

(#ii) Phase transformations: a phase transformation—relative to some P—is any transformation that leaves
the statistics of ‘which path’ measurements invariant.

Definition 8. Phase group, P:
P = {T ER | (e,—|T= (eilr Vie P}

In the quantum example, the phase transformation was the rotation R? introduced in point (2) of
section (2.2.1).

(iv) Interference patterns: we now generalise the quantum interference pattern of equation (2) to arbitrary
operational theories.

Definition 9. Interference pattern, C; ,:
Ci.: P—[0,1]: T (e|Tls)

Given this definition, equation (3) translates into the existence of (e|] € &o;1)—thatis, an effect with support on
path 0 and path 1—and |s) € €, such that

1
Cs,e = ch,e,- (5)
i=0
for all possible choices of (e;] € &;) including subnormalised effects, this is the analogue of the g;’s in
equation (3). In other words, there is some choice of superposition state and effect such that their interference
pattern cannot be reproduced by the statistics generated by effects with support on a single path.

5
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Other approaches to defining higher-order interference in operational theories (for example [11]) have
additional structure such that one can define a set of “filters’, { F;}, for the theory. These are transformations that
represent the action of leaving open some subset of paths I while blocking the others. In this case one can define
(ef]l = (elF; giving a specific set of effects. However, arbitrary theories do not have sufficient structure to define
filters and so one must consider all possible choices (¢;| with the correct support. Otherwise [25, 26] one can—
even in quantum and classical theory—choose a specific set of (¢/| to give the artificial appearance of higher-
order interference.

It follows that the existence of a non-trivial phase group implies the existence of interference in a general
theory. Indeed, the left-hand side of equation (5) depends on the phase group element, while the right-hand side
does not—the analogue of equation (4) from the quantum example. We now use our framework to discuss
higher-order interference.

2.2.3. Higher-order interference and phase
Adapting Sorkin’s original definition of higher-order interference [ 17] to our framework results in: the existence
of nth-order interference in an n-path experiment corresponds to the existence of an effect |¢) and a state (s| such
that

Cs,e = Z(_l)n7|1|+1cs,el> (6)

ICP

forall|e;) € &.Asinequations (3)and (6) is to be interpreted as an inequality of the functions defined on the
right and left. See appendix D for an in-depth discussion of equation (6).

Motivated by equation (6), we wish to determine if particular phase transformations give rise to higher-order
interference. The defining feature of phase transformations is that they leave the statistics of effects with support
on single paths—that is, effects in | J; £;)—invariant. The natural generalisation of this is to consider
transformations that not only leave the statistics of effects on single paths invariant, but also superposition
effects. This motivates the following definition.

Definition 10. A transformation T is n-undetectable
if: (e|T = (el, Y(e| € Urin<n &-

Together with its natural converse.

Definition 11. A transformation T is m-detectable
ifthere exists (e| € Jryn<m & suchthat (e]T = (e].

We can now link higher-order interference to certain types of phase transformations, which we call higher-
order phases.

Theorem 1. A transformation T that is n detectable and n — 1 undetectable implies the existence of nth-order
interference.

Proof. Choose |s) and (e| such that T'is detected. It is then clear that the left-hand side of equation (6) is
dependent on T, while—due to undetectability—the right-hand side is not. They are thus distinct functions. [

In our quantum example, the phase transformation was two-detectable, but one-undetectable.

3. Controlled transformations and a generalised phase kick-back

Definition 12. Given a set of pure and perfectly distinguishable states {|i) } and a set of transformations { T;}, we
define a controlled transformation C { T;} as:

GHof= - G— ()
(e iz — (] vis o)

The top system and lower systems are referred to as the control and target respectively.

Note that classical controlled transformations—where the control is measured and conditioned on the outcome
atransformation is applied to the target—exist in any causal theory [5] with sufficient distinguishable states.
However, such transformations are in general not reversible and do not offer an advantage over classical

6
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computation [21]. Moreover, the existence of reversible controlled transformations appears to be arare property
of operational theories [21]. The following states that in theories satisfying our assumptions, there exist
reversible controlled transformations. The proofis in contained in appendix B.

Theorem 2. In any theory satisfying (i) causality, (ii) purification, (i) strong symmetry, there exists a reversible
controlled transformation for all sets of reversible transformations { T;}.

Moreover, the following theorem states that any controlled transformation in such theories ‘preserves
superpositions’. Where ‘superposition’ is meant in the sense of section (2.2.2) part (ii) and ‘preserves
superposition’ means that the probability of detecting the system in each path of the superposition is preserved
by the transformation. See appendix C for the proof.

Lemma 1. Superpositions are preserved on the control input:

e - — (®)
@»{Tl}i q Vi, |o)

where { (i|} is the measurement that perfectly distinguishes the’ control states {|i) }.

Every controlled transformation in quantum theory has a phase kick-back mechanism [4]. Such mechanisms
form a vital component of most quantum algorithms. We now show the existence of a generalised phase kick-
back mechanism in any theory satisfying our assumptions.

Lemma 2. Given an |s) such that T|s) = |s), Vi, there exists a reversible transformation Qg such that

CHel- _ ¢ )
GHT - vlo)

Moreover, Q, is phase transformation:

1eHD = D v

Proof.

—HoH _ . AoHD - —
Aml " el T @—

The first equality follows from causality and the second from equation (8) and the definition of |s). Equation (1)
then implies the existence of a reversible Q, such that:

GHTY— GF— "9

Note that Q; depends on both the controlled transformation and the joint eigenstate |s). Note that:

CHD _ s
el

"
GHzH

Causality—rvia state normalisation—then gives:

@D - P w

O

In quantum theory, it is possible to achieve any phase transformation via a kick-back mechanism. However,
theorem (2) only implies the existence of at least one phase that can be ‘kicked-back’. We now show that all

In theories satisfying strong symmetry the measurement { (i} is unique up to normalisation, see appendix (A.1).

7
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phases arise via the generalised mechanism. Consider the set of pure and perfectly distinguishable states {|s;) }
and let { T;} be elements of their phase group, i.e. Tj|s;) = [s;), Vi, j. Construct the controlled transformation
C{T;}. The designation of control and target for C { T;} is symmetric:

arer @

climl- el

Thusany C { T;} is control-target symmetric if the T; are elements of a phase group. The transformations on the
target are given by the kicked-back phases, { Q;}. Given an arbitrary W;, construct the transformation { W;} C and
note that via control-target symmetry it is equivalent to C { G;}, for some { G;}. The controlled transformation

C { G;} thus gives rise to the kicked-back phase W;and we have:

Theorem 3. Every phase transformation can arise via a generalised phase kick-back mechanism.

3.1. Particle exchange experiments

Dabhlsten et al [23] have shown that there is a close connection between particle exchange statistics and the phase
group in operational theories. We use the framework and results presented in this paper to expand upon and
formalise these connections. Motivated by the quantum case, place a pair of indistinguishable particles in
superposition by inputting them to an interferometer, as shown in the following diagram.

On the upper path the two particles are swapped using some operation ‘S’, while on the lower path they are left
invariant—that is, the identity operation 1 is applied. The entire physical set-up is described by a bipartite state,
one partition of which corresponds to the state of the particles, |s) € Qp/ges, and the other to the ‘which path’
information embodied in the interferometer, |s") € Qpyn. The entire scenario thus takes place in the state space
Qpath ® 2prete. In the quantum case, the phase transformation generated by this procedure corresponds to the
type of indistinguishable particle employed in the experiment.

The whole experiment can be described via a controlled transformation, with path information as the
control and particle state as the target. Via theorem (2), such an experiment exists in theories satisfying our
assumptions. Applying operation S to the particle state corresponds to swapping a pair of indistinguishable
particles and so must leave the statistics of any measurement invariant. Therefore S|s) = |s), where |s) is the
initial particle state

Ql)ath — C — _
QP’cle @{ILS}— where e @

Theorem (2) tells us that the above diagram corresponds to a kicked-back phase on the control system, as in
equation (9). Thus, to every particle type, there exists a corresponding phase transformation, which was the
connection discussed in [23]. But, in an arbitrary theory, the converse is not necessarily true. The quantum phase
group is U(1) and, fixing its representation to be {e’}, bosons kick-back the transformation corresponding to
6 = 0, fermions § = 7 and anyons any arbitrary 6. Thus, to every particle type in quantum theory there is an
associated phase, and vice versa.

To generalise this to theories satisfying our three assumptions, we must connect the operational description

of these theories to the more physical notion of particles. Towards this end, we make the following two
assumptions:
(1) Every operational state |s) corresponds to the state of some collection of indistinguishable particles.

(2) Every transformation that leaves the operational state |s) invariant corresponds to a (possibly trivial)
permutation of the collection of indistinguishable particles.
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Given the above, theorem (3) tells us that to every phase transformation there exists a corresponding particle
type. Therefore, to each higher—order phase-described in theorem (1)—there is associated a particle type that
should be observable through a generalisation of the above experiment.

Consider |s), which corresponds to the state of some collection of indistinguishable particles, and a
permutation operation 7 which leaves |s) invariant. Note that, for a given permutation, there may be multiple
topologically distinct ways of performing it, particularly in two-dimensions or topologically non-trivial spaces.
Now consider the n-path experiment, illustrated below, where on each path some distinct permutation
operation 7, i = 1,..., 1, takes place.

19y 19y
1 @ 9 |
\@/ \@/

AR 19y

10 |%| o Q\/
\@ !/ \@ !/
/. \
\ \
N — —
~ - /.\ /.\
| e—1 @
\@/—\ @/

This can be described by a controlled transformation C {;}. Given the above two assumptions, any nth-order
phase—if they exist in the operational theory—can be kicked-back by such an experiment.

Recall that nth-order phases are n-detectable, but n — 1-undetectable. That is, the action of such phases
cannot be detected by any effect with support on less than 7 paths. Which is in stark contrast to quantum, or
2nd-order, phases, which can always be detected by an effect with support on two paths. Thus, permutations of
particles, whose type all correspond to an nth-order phase, can only be detected by recombining all paths in an n-
path experiment. In some sense then, nth-order phases encode holistic information about all paths in an n-path
experiment.

3.2. Computational oracles

Oracles play a vital role in quantum computing, forming the basis of most known speed-ups over classical
computation [4]. Despite their importance, defining a general notion of oracle-that reduces to the standard
notion in the quantum case-in operationally defined theories has proven difficult [9]. A particular example of a
quantum oracle is the following controlled unitary:

Ur = [0) (0] @ Z/© + |1) (1] @ ZfD, (10)

with Za Pauli matrix, f : {0, 1} — {0, 1} afunction encoding some decision problem and Z° := I. The
quantum phase kick-back for Uy amounts to

Ur =1® [0)(0] + 2/ OO @ |1)(1]. (11)

One can see that inputting |+ ) | 1) and measuring the first qubit in the {|+), |—) } basis reveals the value of
f(0) @ f (1) inasingle query of the oracle—a feat impossible on a classical computer [4].

The results of theorem (2) provide a way to define computational oracles in any theory satisfying our three
assumptions. An oracle in such theories corresponds to a reversible controlled transformation®, where the set of
transformations { T; s ;) } being controlled depend on a function f : {i} — {0, 1} encodinga decision problem
of interest. As the transformations T; s ;) depend on the value of (i), so does the controlled transformation and
the kicked-back phase. That is, in theories with a non-trivial phase group, the phase kick-back of an oracle
encodes information about the value f(i) for all i. In such theories, there is thus a non-zero probability of
extracting such global information. Non-trivial interference behaviour can thus be seen as a general resource for
non-classical computation.

In the quantum case, there is a limit to how much global information one can obtain in a single oracle query.
In the situation where f : {0,...,n — 1} — {0, 1} aquantum oracle can only extract the value of f (i) & f (),
for some i, j, in asingle query without error [4]. Can theories with higher-order interference reliably extract
more global information about f—without error—in a single query? The results of section (3.1) appear to
suggest that nth-order phases encode information about all paths in an n-path experiment, as opposed to 2nd-
order, or quantum, phases which only encode information about at most two paths. Based on this fact—that
higher-order phases encode more holistic information that quantum ones—and the result of theorem (3), we
conjecture that theories with higher-order interference can solve problems intractable on a quantum computer.
To prove such a conjecture however, a concrete example of such a theory is needed. While there are partial

8 . . . .
There could be many distinct transformations that have the same behaviour on a set of control states. As long as one fixes which
transformation corresponds to the oracle, this is not a problem.
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examples in the literature [24, 25], none of these are complete [26]. Answering such a conjecture in the
affirmative is thus not yet possible, although some evidence was provided in [26].

4, Conclusion

The key result of this paper was to provide a set of physical principles that are sufficient for the existence of
reversible controlled transformations. Such transformations are central to our understanding of quantum
computing, information processing and thermodynamics. Moreover, these were shown to guarantee the
existence of a generalised phase kick-back mechanism, which, in the quantum case, forms a fundamental
component of almost all algorithms. These physical principles are defining characteristics of information:
independence of encoding medium; propagation from present to future; and conservation at a fundamental
level. It would therefore be surprising if these principles were not necessary primers for information processing.
These results provide the tools for an exploration of the structure of computational algorithms—and how they
connect to physical principles—in operational theories.

We developed a framework that connects higher-order interference and phase transformations, generalising
the intimate connection between phase and interference witnessed in quantum theory. These ‘higher-order’
phases are accessible via our generalised kick-back mechanism. Given two assumptions which connect the
operational theory to a physical description of particles, these higher-order phases were shown to give rise to
exotic particle types. Additionally, using the controlled transformations to define an oracle model of
computation, we conjectured that these higher-order phases may allow for the solution of problems intractable
even on a quantum computer. Computational problems that may be susceptible to efficient solution by
generalised phase kick-back include the #n-collision problem, and the non-abelian hidden subgroup problem.
Discovering that higher-order interference leads to ‘unreasonable’ computational power may provide a reason
‘why’ quantum theory is limited in its interference behaviour—in the same way that implausible
communication complexity is thought to limit quantum non-locality [10].

In section (3.1) it was shown that to observe the exotic particle types corresponding to higher-order phases,
there must be distinct ways to swap particles. As we live in a topologically trivial three-dimensional space, there is
only one topologically distinct way to swap point particles. This can either be seen as evidence of why quantum
theory is limited to only second-order interference, or evidence that such particle types must have non-trivial
structure, similar to toroidal anyons [27]—which are constructed from a solenoid ring with an attached charge
—or closed strings [28].

Finally, reference [29] has shown that thermodynamic work can be extracted from quantum coherences—
2nd-order phases in our language. This raises this the question of whether one can extract work more efficiently
using higher-order phases? If such efficiencies are in contention with thermodynamic principles this could
provide areason ‘why’ quantum theory has limited interference. Initial investigations into formulating a
consistent thermodynamics in operational theories have been reported in [32—34]. The framework and results
presented here may therefore have implications for thermodynamics, information processing and how each
arises in a unified manner from physical principles.
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Appendix A. General results following from causality purification and strong symmetry

A.1. Uniqueness of distinguishing measurement

Strong symmetry (together with the no restriction hypothesis, which says that all mathematically well-defined
measurements are physical) implies that, given any set of pure and perfectly distinguishable states {|i) }, there
exists a unique measurement { (j| } such that

@ilj) = 0.
See[11, 22] for details. Moreover if there is a set { (¢j| } such that (ej|i) = «;6;; then

(ejl = a;(jl.

10
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A.2. Existence of a maximally mixed state
Purification implies that there is a unique completely mixed state ||I') defined by

Tl =), VI eR

Any state is a ‘refinement’ of this state. See [5, 6] for details.

A.3. Purification of the maximally mixed state is dynamically faithful
Purification implies that there exists a state |1)) that purifies the completely mixed state:

This is unique up to reversible transformation. We denote a particular choice of this purification as

C-{

Purifications of the completely mixed state are called dynamically faithful states [5, 6] and satisfy the following
important condition [5, 6]:

T = T

H' - H T e

Appendix B. Existence of controlled transformations

We can define two sets of pure and perfectly distinguishable states

@ @ —
By = C , and By:=

Strong symmetry implies that there exists a reversible transformation between these two sets, T : B, — B,

E = 7]
‘ T = T;

This result, together with the existence of dynamically faithful states, will be used to show the existence of a
reversible controlled transformation C { T;} for an arbitrary set of reversible transformations { T;}.

Lemma 3. ‘Superposition preservation’

T = T;
] 7

Proof. Firstly we prove a weaker condition which is superposition preservation for pure local effects

11
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the implication follows from the uniqueness of the maximally distinguishing measurement up to normalisation.
Then purification implies

1 - —D

=

G
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Lemma4. 3 T’ such that

Proof.
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Tll =2 b =2 i

[ T H
- -

Purification —

= T/
Lo
C

Dynamic faithfulness then gives the result. O

Theorem 4. T' is a controlled transformation, T' = C {T;}.

Proof.
@ G _ G
-l
Dynamically faithful state —-
Hb . G—
. o
which is the defining characteristic of C { T;}. O

Appendix C. Superposition preservation

Lemma 3 already gives some notion of superposition preservation, we can use our other results above to

extend this.
Tl - v E
i o T o T;
e &)

The first equality uses theorem 4 and the second lemma 3. Using the result of dynamically faithful states then

implies
o . —D
@»{Ti}* ﬂ Vlo)

Proof.

This actually only proves the existence of a controlled transformation that preserves superpositions, it is
simple to show that it must be true for all controlled transformations using an argument analogous to lemma 3.

Appendix D. Definition of higher-order interference

The original definition of higher-order interference was in the framework of quantum measure theory [17, 18].
The definition revolves around the concepts of ‘histories’ and the ‘quantum measure’. Histories correspond to
paths through space—time, a set of histories A is any collection of these paths. We will be concerned with sets of
histories with some initial condition s and some final condition e along with an intermediate condition i that ‘the
history passes through slit 7. We label these sets of histories Ai“. In an interference experiment it is common to

13
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have some way to create a path difference between the different slits, either by introducing some ‘phase shifter’ or
by moving the final detection point, we label this data t.
The quantum measure y associates some probability to each set of histories, which should be thought of as
the probability that a particle ‘has a history from that set’. In general ¢ will depend on the experimental control .
The existence of higher-order interference in this framework is as follows:

Definition 13. nth order interference < s, e s. t.

u[ UAEE]O‘) = Z(—l)”'”“u[ UAise:|(t)-

ieP IcP iel

Given this definition we can provide a translation to the operational definition that we are using

QMT GPT
Initial condition s |s)
Final condition e (el
Experimental control t T
Probability of path i A1) Cooty(T)
Probability of subset I wllUier AZ1(6) Coo(T)

Note that some ambiguity is introduced in switching to the operational framework, which ¢; € & should be
picked? Other approaches to defining higher-order interference in operational theories [11] have required
sufficient structure to define a set of ‘filters’, { F;}, for the theory. These are transformations that represent the
action of leaving open some subset of slits I while closing the others, in which case (¢]] = (e|F;. However,
arbitrary theories do not have sufficient structure to define filters and so one must consider all possible choices
(e;| with the correct support. This leads to the following definition of nth-order interference.

Definition 14. nth order interference < s, e s. t.
cs,e(T) = Z (_ 1)n7|1|+1cs,el(T)a

IcP
V(eI| € &.

The introduction of the ¥’ statement compared to the original definition is due to the ambiguity in choosing
which effect corresponds to blocking some subset of paths. In the main text the explicit dependence on T'in the
above equation will be suppressed, as Cy, has already been defined as a function from the phase group to
probabilities.

For example, the existence of second-order interference implies that there exists |s) and (e| such that

C:,e = Cs,e(g) + CS,C“))
Vleriy) € E;. While the existence of third-order interference corresponds to the existence of, |s) and (e| such that

Cs,e = Cs,e(o_l) + Cs,e{lyz) + Cs,eu,g) - Cs,qo) - Cs,e - Cs,e

1) 129
Yley) € &.
We consider the above for the case of quantum theory to provide some intuition for the definitions. Firstly,
we show the existence of second-order interference. Define our paths by p; = (|i) (i, |i) (i|), then choose
[s) = |[4+) (+| = (e|. Then (e;;y| € {nli) (i}, wherer;is an arbitrary positive real number. The phase group is

givenby P := {el%|0) (0| + ei’|1) (1]}. Itis then simple to show that
Cs,e(T) = cos? (@))

while

o+ 1

CS,E(Q)(T) + cS,e(”(T) == \/5

Itis then simple to see that, as functions of 6;

C052(90— 91)1 n + Tl)
2 V2

14
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for any choice of r;, i.e. (¢;;|. Therefore—Dby our definition-quantum theory has second-order interference as we
would expect.

Next we consider our definition of third-order interference for quantum theory. We consider a specific
choice of |s) and (e|, and note that this can be simply—but tediously—generalised to all choices. Consider
Is) = 1/3(|0) + [1) + [2))((0] + (1| + (2]) = (e, and the phase group, P = {ei%|0) (0] + e!|1)
(1]+€i|2) (2|}. Thenlet (e(; ;| = §(|i> + i)+ (jD) and (e | = §|i> (i]). Note that these are sub-
normalised effects. It is then simple to check our definition for this particular choice of |s) and (e|. The
interference patterns can be written as

(6]
1 . ) )
Co(T) = §|e1‘90 + eifh e1¢92|2
= l 3+ Zei((fﬁﬁj) + ei0—0) ’
2 i>j
()]
1 . )
Coei(1) = §|e“9" + elfi?
= l(2 + elli=8) 4 ei—0))
9
3

1oy 1
Cs,eM(T) = glel ll = 6

and so

Cs,e(T) = ch,q;,j)(T) - ch,em(T)-
i>j i
This proves that the particular choice of state |s) and effect (e| do not give higher-order interference for quantum

theory. This can, however, be readily generalised to hold for any choice, and so demonstrates that quantum
theory does not exhibit higher-order interference.
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