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Abstract  25 

Mechanical loading is the primary functional determinant of bone mass and architecture, and 26 

osteocytes play a key role in translating mechanical signals into (re)modelling responses.  27 

Although the precise mechanisms remain unclear, Wnt signalling pathway components, and 28 

the anti-osteogenic canonical Wnt inhibitor Sost/sclerostin in particular, play an important role 29 

in regulating bone’s adaptive response to loading. Increases in loading-engendered strains 30 

down-regulate osteocyte sclerostin expression, whereas reduced strains, as in disuse, are 31 

associated with increased sclerostin production and bone loss. However, while sclerostin up-32 

regulation appears to be necessary for the loss of bone with disuse, the role of sclerostin in the 33 

osteogenic response to loading is more complex. While mice unable to down-regulate 34 

sclerostin do not gain bone with loading, Sost knockout mice have an enhanced osteogenic 35 

response to loading. The molecular mechanisms by which osteocytes sense and transduce 36 

loading-related stimuli into changes in sclerostin expression remain unclear but include several, 37 

potentially interlinked, signalling cascades involving periostin/integrin, prostaglandin, 38 

estrogen receptor, calcium/NO and Igf signalling. Deciphering the mechanisms by which 39 

changes in the mechanical environment regulate sclerostin production may lead to the 40 

development of therapeutic strategies that can reverse the skeletal structural deterioration 41 

characteristic of disuse and age-related osteoporosis and enhance bones’ functional adaptation 42 

to loading. By enhancing the osteogenic potential of the context in which individual therapies 43 

such as sclerostin antibodies act it may become possible to both prevent and reverse the age-44 

related skeletal structural deterioration characteristic of osteoporosis. 45 

46 



4 
 

Highlights: 47 

1) Loading-related changes in osteocyte sclerostin expression spatially predict 48 

subsequent osteogenic responses.  49 

2) Acute sclerostin down-regulation is not sufficient for maximal osteogenic responses 50 

to loading. 51 

3) Inability to down-regulate sclerostin precludes functional adaptation to loading, 52 

whereas lack of sclerostin prevents bone loss in disuse. 53 

4) Sclerostin clearly influences the osteogenic context in which loading acts as its 54 

deletion enhances functional adaptation to loading. 55 

 56 

  57 
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Introduction 58 

Mechanical loading is the primary functional determinant of bone mass and architecture [1, 2]. 59 

Loading generates strain (percentage change in dimension) and other mechanically relevant 60 

stimuli (e.g. fluid flow shear stress) throughout the bone tissue and within the osteocyte 61 

canalicular network. Loading levels or distributions which engender strains beyond a habitual 62 

minimum effective strain (MES) trigger bone formation resulting in increased bone mass, 63 

improved bone architecture and thus re-establishment of habitual levels and distribution of 64 

strain [3-5]. Decreased loading, such as occurs during disuse, results in osteoclastic bone 65 

resorption and bone loss in an apparent attempt to also re-establish habitual levels and 66 

distribution of strain. This homeostatic feedback loop, described by Harold Frost as ‘the 67 

mechanostat’ [4], involves the site-specific co-ordinated (re)modelling activity of osteocytes, 68 

osteoblasts and osteoclasts [5].    69 

Osteocytes are embedded in the mineralised matrix and were long thought to have little or no 70 

function, but are now known to play a particularly important role in coordinating local bone 71 

remodelling responses and have recently described as ‘master-regulators’ [6-8]. The Wnt 72 

antagonist Sost/sclerostin is almost exclusively expressed by osteocytes in the adult skeleton 73 

[9], and osteocytes are also an important source of receptor activator of nuclear factor κB ligand 74 

(Rankl) [10], which probably plays a key role in initiating repair in damaged bone; e.g. 75 

apoptosing osteocytes around microcracks secrete Rankl [11]. Canonical Wnt signalling in 76 

osteocytes also regulates bone resorption via the expression of osteoprotogerin (Opg); mice 77 

lacking -catenin in osteocytes have dramatically reduced bone mass due to reduced Opg levels 78 

[12].   79 

Given their location and morphology, with long interlinked dendritic processes forming a 80 

functional syncytium extending to the bone surfaces, osteocytes are ideally suited to sense load-81 

associated strains, including shear strains across their membranes as fluid is displaced through 82 

their canalicular system. Osteocytes are now considered to be the primary mechanosensors 83 

which locally coordinate adaptive (re)modelling responses [13]. The experiment by Skerry et 84 

al [2] that led us to acceptance of this hypothesis was the demonstration of rapid strain 85 

magnitude-related increases in the activity of the metabolism enzyme glucose-6-phosphate 86 

dehydrogenase (G6PD) in osteocytes in the turkey ulna following a short period of loading.    87 

For many years after this, the mechanisms underlying the coordination of adaptive remodelling 88 

responses by osteocytes were largely unknown. Hypothesised mechanisms included direct cell-89 



6 
 

cell communication [14, 15] and/or the secretion of paracrine mediators such as prostaglandins 90 

(PG) or insulin-like growth factors (Igf). However, once sclerostin had been shown to be 91 

expressed in osteocytes [9], Robling et al [16] convincingly demonstrated that one potentially 92 

important mechanism by which mechanical loading controls osteocyte activity is by regulating 93 

sclerostin expression. His demonstration that loading the mouse ulna down regulates sclerostin 94 

expression has been reproduced in a variety of experimental loading models [17-23] (Figure 95 

1).  It then led to proposal of the simple model that local, loading-related down-regulation of 96 

osteocyte sclerostin increases bone formation by relieving inhibition of canonical Wnt 97 

signalling in osteoblasts while also, directly or indirectly through regulation of OPG, 98 

supressing the resorptive activity of osteoclasts (Figure 2). The responses of transgenic mice 99 

with altered sclerostin expression to changes in loading strongly support the validity of this 100 

model. However, recent findings of sclerostin-independent changes in bone formation 101 

following loading [24] have demonstrated that this model is somewhat over-simplified. 102 

Furthermore, the mechanisms by which loading-related stimuli initiate this process by down-103 

regulating sclerostin have only been partially explored.  104 

 105 

Loading-related changes in bone mass reflect sclerostin regulation 106 

The model presented in Figure 2 is largely based on the demonstration that the cross-sectional 107 

distribution of strains engendered within loading-responsive regions of mouse long bones 108 

spatially parallel the acute down-regulation of sclerostin protein (within 24 hours following an 109 

episode of loading [18]) and subsequent increases in bone formation. As described above, this 110 

was first demonstrated in the mouse ulna subjected to non-invasive axial loading [16]. Axial 111 

loading of the mouse ulna generates different magnitudes of mechanical strain in the bone’s 112 

proximal, middle and distal regions as well as in different cross-sectional sectors at the same 113 

longitudinal site. Strain magnitudes were found to correlate with both the increase in bone 114 

formation and the down-regulation of sclerostin within these regions. Conversely, the reduction 115 

in strain experienced through tail suspension-induced disuse increased Sost RNA expression in 116 

the mouse tibia. However, protein level analysis of sclerostin expression by 117 

immunohistochemistry following tail suspension did not detect changes in the proportion of 118 

osteocytes stained positive for sclerostin around the level of the tibia/fibula junction [16].  119 

The lack of change in sclerostin expression around the mouse tibia/fibula junction during tail 120 

suspension is potentially consistent with the finding that this region appears to be the least 121 
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affected by disuse, with the most significant bone loss occurring proximal and distal to this 122 

region [25]. In a later study, Moustafa et al [19] mapped site-specific changes in sclerostin 123 

expression in the mouse tibia using immunohistochemistry following unilateral axial loading. 124 

In cross-sections from the highly load-responsive proximal tibia, the increase in bone formation 125 

and decrease in osteocyte sclerostin expression correlated with the mechanical strains predicted 126 

by finite element model analysis. In contrast, in the distal tibia below the tibia/fibula junction, 127 

sclerostin was not down-regulated and bone formation did not increase following loading. In 128 

the same study, disuse following sciatic neurectomy increased sclerostin expression in both the 129 

proximal and distal tibia, and additional loading after disuse significantly reduced sclerostin 130 

expression in both sites, although the magnitude of the effect was greater proximally. Similar 131 

site specificity was also observed in the trabecular compartment of the proximal tibia: loading 132 

reduced sclerostin expression and increased bone gain in the secondary spongiosa, but in the 133 

primary spongiosa no bone formation was observed nor any associated down regulation of 134 

sclerostin expression. These detailed analyses demonstrate that the spatial distribution of bone 135 

loss with disuse and of bone formation following loading closely follow the early changes in 136 

sclerostin expression. However, none of the studies published to date correlating changes in 137 

sclerostin expression with the spatial distribution of bone formation flowing loading have 138 

shown that the two are causally related. The relationship between sclerostin regulation and 139 

bone (re)modelling is clearly complex as both continuous (catabolic) and intermittent 140 

(anabolic) parathyroid hormone (PTH) treatments down-regulate Sost despite having opposite 141 

effects on bone mass [26-28]. 142 

Evidence that the spatial correlation between loading-related sclerostin regulation and changes 143 

in bone (re)modelling may be causal is provided by loading studies using different genetically 144 

modified mouse models. Sclerostin knockout mice do not show bone loss in response to disuse 145 

induced by hind limb unloading [29] or botulinum toxin injection [24], suggesting that 146 

sclerostin up-regulation is necessary for disuse-induced bone loss. To determine whether 147 

sclerostin down-regulation following increased loading is necessary for subsequent bone 148 

formation, transgenic mice harbouring the human SOST gene driven by an 8Kb Dmp1 149 

promoter (SostTg) were generated [20]. Ulna axial loading down-regulates endogenous, but not 150 

human, Sost expression in these mice. Further supporting evidence that sclerostin down-151 

regulation is required for loading-induced bone formation, was the observation that loading 152 

induced significantly greater bone formation in wild type than SostTg mice. These independent 153 

studies specifically test the roles of sclerostin in bone’s adaptation to loading and as such 154 
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provide strong evidence that both loading-related bone gain and disuse-associated bone loss 155 

require changes in sclerostin expression, at least in young mice.  156 

Evidence supporting the potential importance of Sost down-regulation in bones’ osteogenic 157 

response to loading also comes from studies utilising mice with genetic modifications in 158 

mechano-responsive pathways which result in altered Sost regulation following loading. For 159 

example, increased basal sclerostin expression, abrogation of sclerostin down-regulation with 160 

loading and reduced load-related bone formation is observed in periostin knockout (Postn-/-) 161 

mice [22]. Similarly, four point tibial bending of mice lacking osteocytic Igf1 expression does 162 

not result in Sost down-regulation and triggers a diminished osteogenic response to loading 163 

compared with wild type controls [23]. In contrast, deletion of the androgen receptor in male 164 

androgen receptor (AR) knockout mice is associated with greater sclerostin down-regulation 165 

and enhanced bone formation following loading compared with wild type controls [21]. Taken 166 

together, these studies provide examples of situations in which changes in sclerostin regulation 167 

are associated with altered adaptive responses to loading. 168 

 169 

Mechanisms underlying sclerostin down-regulation by loading 170 

The above in vivo studies describing altered basal sclerostin expression and changes in the 171 

load-related regulation of sclerostin in genetically modified mice, while informative, provide 172 

limited insight into the molecular mechanisms by which osteocytes regulate sclerostin 173 

expression. Instead in vitro studies using a variety of model systems have been required to 174 

address this. These studies have shown that the basal rate of sclerostin expression is under both 175 

transcriptional and broader epigenetic control (Figure 3). Its restricted expression in osteocytes 176 

is achieved through an epigenetic mechanism; the SOST promoter is DNA methylated in 177 

osteoblasts but becomes demethylated during the osteoblast to osteocyte transition, allowing 178 

initiation of gene expression [30]. Transcription factors known to bind elements in the 179 

demethylated SOST promoter include the bone-specific transcription factors Runx2 and 180 

Osterix [31, 32]. Bone non-specific transcription factors such as MyoD and C/EBP also bind 181 

the SOST promoter in human Saos-2 cells [31]. The ability of these various factors to regulate 182 

Sost expression is epigenetically determined by histone deacetylase (HDAC) enzymes such as 183 

Sirt1 and HDAC5 [33, 34], and once expressed Sost RNA stability is influenced by micro-184 

RNAs such as miR-218 [35].  185 
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SOST promoter activity is enhanced by Mef2 binding to a distal enhancer element and 186 

inhibition of this binding is one of the mechanisms by which Sost is down-regulated by PTH 187 

[34, 36, 37]. Similar mechanistic studies into Sost regulation by strain have been hindered by 188 

the limited availability of cellular models. Primary osteoblasts do not express readily detectable 189 

levels of Sost until they form mineralised matrix, which precludes their use for in vitro strain 190 

studies. Mouse osteocytic MLO cell lines do not reliably produce readily detectable levels of 191 

Sost [38] and their expression of the constitutively active SV40 antigen [39] impacts 192 

PI3K/AKT signalling, which is a stain-responsive pathway [40]. The more recently developed 193 

IDG-SW3 cell line promises to circumvent this limitation, but these cells only express Sost 194 

after prolonged periods of differentiation [41]. Not surprisingly few osteoblastic cell lines 195 

express detectable Sost. However, rat UMR-106 osteosarcoma cells do respond to strain [40] 196 

and express very high levels of Sost in a manner akin to them having a constitutively active 197 

gene [38], but this makes the physiological relevance of this model questionable. In contrast, 198 

human Saos-2 osteosarcoma cells are also mechanoresponsive, but only confluent cultures 199 

express readily detectable Sost RNA and sclerostin protein [41-43] which is why we have used 200 

this model system. Subjecting subconfluent cultures of Saos-2 cells to in vitro strain by four 201 

point bending increases their proliferation [43, 44], whereas confluent cultures up-regulate 202 

osteocalcin and down-regulate Sost over a time course which parallels that seen in rodent bones 203 

following in vivo mechanical loading [43, 45].  204 

Using the Saos-2 model we initially reported that Sost down-regulation by strain involves 205 

Cox2-initiated PGE2 signalling through an EP4/ERK pathway [45], consistent with a previous 206 

report that selective treatment with an EP4 agonist enhances the osteogenic responses to 207 

mechanical loading in vivo [46]. The importance of this pathway in the mechanical regulation 208 

of Sost expression is further demonstrated by the recent report that Cox inhibition with 209 

carprofen prevents sclerostin down-regulation in the ulnae of mice subjected to axial loading 210 

[47]. Cox2 upregulation in mechanically-stimulated osteoblastic cells is abrogated by 211 

inhibition of nitric oxide (NO)/protein kinase G (PKG) signalling down-stream of calcium 212 

signalling [48]. Inhibition of the NO synthase (Nos) enzyme also abrogates fluid shear-induced 213 

Sost down-regulation in osteoblastic cells [49], whereas long bone derived osteoblastic cells 214 

from AR knockout mice, which show enhanced sclerostin down-regulation in vivo, produced 215 

higher levels of NO when subjected to fluid shear in vitro [21].  216 

AR, NO and PGE2 signalling pathways are all influenced by estrogen receptors (ERs), which 217 

also interact with canonical Wnt pathway components in mechanically strained osteoblastic 218 
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cells [50, 51]. Our group and others have shown that the ERs, particularly ERα, are mediators 219 

of bone’s adaption to loading (as reviewed in [50]). Global deletion of ERα greatly diminishes 220 

cortical osteogenic responses to loading [52] thus we were surprised to observe that blockade 221 

of ERα does not prevent Sost down-regulation by strain in Saos-2 cells, rather ERα inhibition 222 

in vitro or global deletion in vivo reduces basal Sost levels [43]. However, this observation is 223 

consistent with the subsequent demonstration that deletion of ERα in mature osteoblasts and 224 

osteocytes does not impair the adaptive response to axial tibial loading in female mice [53, 54]. 225 

In contrast, ERβ blockade does not alter basal Sost levels, but prevents strain-induced Sost 226 

down-regulation in Saos-2 cells [43]. Although the role of ERβ in bone’s adaptation to loading 227 

has not been extensively investigated, it is worth noting that ERβ enhances Cox2 up-regulation 228 

[55] and ERK activation [56] following mechanical stimulation in different in vitro models.  229 

Both these roles of ERβ are consistent with a down-stream Cox-2/PGE2/ERK pathway 230 

mediating Sost down-regulation following strain, although ERβ may also act down-stream of 231 

PGE2 signalling as PGE2 treatment increases estrogen response element activation in 232 

osteoblastic cells [57]. Interestingly ERβ knockdown prevents periostin up-regulation by 233 

estradiol in periodontal ligament cells [58] and given periostin knockout mice do not show 234 

significant sclerostin down-regulation [22], ERβ’s role in sclerostin regulation may be through 235 

periostin as well as through ERK activation. Activation of ERK could be either up-stream of 236 

periostin action and/or down-stream of its binding to integrin receptors, including integrin αV 237 

[3, 59, 60] and deletion of integrin αV in the osteoblast lineage prevents Sost down-regulation 238 

in the ulnae of mice subjected to axial loading [61]. Integrin αV directly interacts with and 239 

facilitates Igf1/Igf1R signalling [62, 63], which is potentially consistent with the report that 240 

osteocyte Igf1 deletion also abrogates loading-induced Sost down-regulation [23]. Intriguingly, 241 

integrin αv also facilitates opening of connexin (Cx)43 hemichannels and Cx43 facilitates the 242 

release of PGE2, which is involved in the rapid activation of β-catenin in osteoblastic cells 243 

subjected to mechanical stimulation in vitro [64, 65]. However, integrin αV expression is not 244 

required for ERK activation in calvarial osteoblastic cells subjected to fluid shear [61].  245 

To date, no in vivo studies have been published that have systematically investigated the roles 246 

of different mechano-responsive signalling pathways in sclerostin regulation following 247 

loading. The majority of available studies are based on in vitro observations in osteoblastic cell 248 

lines subjected to defined mechanical stimuli which cannot fully replicate the effects of in vivo 249 

loading on the heterogeneous cell populations residing in and on bone. Currently, only 250 

Cox2/prostaglandin signalling has been demonstrated to acutely regulate sclerostin expression 251 
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in vitro, suggesting a direct effect, and to also facilitate sclerostin down-regulation following 252 

loading in vivo. Furthermore, the mechanisms by which unloading results in sclerostin up-253 

regulation have not been investigated and cannot be assumed to be the same as those which 254 

result in its down-regulation following increased loading. Nonetheless, putting the available 255 

jigsaw pieces together it is possible to propose a linear pathway which links early strain-related 256 

signalling events to ultimate down-regulation of Sost expression (Figure 4). The sequence of 257 

events proposed in Figure 4 is potentially consistent with the timing of gene expression changes 258 

seen following loading; Cox2 is up-regulated within 1-2 hours [66] followed by Postn up-259 

regulation around 6 hours [22] and eventually Sost down-regulation 8-24 hours after loading 260 

[47, 67]. However, the direct mechanisms by which loading-related stimuli decrease Sost 261 

promoter activity and/or reduce Sost RNA stability remain unknown and merit further study. 262 

The proposed model is also limited in assuming that all of the reported mediators of Sost down-263 

regulation are involved in osteocytes’ acute and immediate responses to strain. Bones’ ability 264 

to respond to acute changes in loading is context dependent and multiple factors, local and 265 

systemic, are likely to influence the way Sost expression is regulated by loading; e.g. in a bone 266 

which has adapted its mass and architecture to the customary loads placed upon it, osteocytes 267 

and/or adjacent osteoblasts are likely to express factors which may limit or enhance strain-268 

related Sost down-regulation. 269 

 270 

Sclerostin itself influences the osteogenic context in which loading acts 271 

Sclerostin itself is one such modulator of the osteogenic context; e.g. in vitro, its presence 272 

inhibits recruitment of Saos-2 cells to the cell cycle following mechanical strain or Wnt3a 273 

treatment, but not following treatment with estradiol [43, 44]. Sclerostin has also been shown 274 

to reduce proliferation and increase apoptosis in the absence of mechanical stimulation in other 275 

models [68, 69]. In addition, sclerostin has the potential to influence multiple signalling 276 

pathways that regulate various stages of the osteoblast lineage. Reported effects of sclerostin 277 

treatment on osteoblastic cells in vitro include inhibition of differentiation [70-72], inhibition 278 

of mineralisation [71], induction of RANKL expression [73], and promotion of osteocytic 279 

osteolysis [74]. Short term treatment of osteoblastic cells with recombinant sclerostin alters 280 

(predominantly down-regulates) the expression of a large number of genes, many of which are 281 

components of the Wnt signalling pathway [75]. This is consistent with sclerostin acting 282 

primarily as a canonical Wnt signalling inhibitor, although potential interactions with BMP and 283 
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platelet derived growth factor (PDGF) cascades have also been reported [9, 72]. In the context 284 

of bone’s response to loading, transgenic mice deficient for canonical Wnt co-receptors or the 285 

intra-cellular secondary signalling molecule β-catenin show diminished responses to 286 

mechanical loading [47, 76, 77]. β-catenin is rapidly activated in osteocytes subjected to 287 

mechanical loading, but this response is diminished in osteocytes of mice unable to down-288 

regulate sclerostin [20]. Taken together, these studies provide strong evidence that sclerostin 289 

acts as a canonical Wnt pathway inhibitor and that its down-regulation facilitates activation of 290 

this pathway following loading, but whether sclerostin directly or indirectly modulates other 291 

pathways following loading remains unknown. 292 

 293 

Sclerostin down-regulation is not sufficient for load-related osteogenesis 294 

The findings discussed thus far suggest that altered sclerostin expression is a critical osteocyte 295 

response to changes in mechanical loading and that sclerostin regulation permits/facilitates 296 

both adaptive osteogenesis when loads are increased and net resorption when they are 297 

decreased as in disuse. However, while it is clear that osteocytes, and sclerostin, are important 298 

for mediating bone’s adaptive responses, it is wrong to assume that bone’s responses to disuse 299 

and loading are regulated by the same mechanisms. This was suggested several years ago by a 300 

microarray study which showed that the genes and pathways regulated by loading are not all 301 

the same as those regulated by disuse [67]. Putting it another way; just because a cell or 302 

signalling pathway plays a critical role in the context of disuse, it does not mean that it will 303 

also be as important in regulating the bone formation response following loading. This is 304 

illustrated in an experiment which targeted ablation of osteocytes using diphtheria toxin [78]. 305 

Osteocyte ablated mice do not lose bone during unloading induced by tail suspension, however, 306 

osteocyte ablation does not prevent bone restoration caused by return to normal activity 307 

following a period of disuse. This suggests that either tail suspension induces bone loss through 308 

mechanisms unrelated to loading, such as increased glucocorticoid production [79], or that the 309 

responses of other cells to changes in loading are sufficient for normal bone gain following 310 

loading in the absence of osteocytes (and therefore sclerostin). 311 

This latter interpretation is consistent with the recent report that Sost knockout mice do not lose 312 

bone due to unloading, but still show osteogenic responses to increased loading [24]. In fact, 313 

when loaded so as to generate equivalent strains, Sost-/- mice show greater bone formation than 314 

wild-type controls. Thus, while viable osteocytes able to up-regulate sclerostin expression 315 
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appear to be an absolute requirement for bone loss in disuse, down-regulation of sclerostin 316 

following loading does not appear to be so critical for the subsequent osteogenic response. That 317 

osteocytes are not the only cell involved in the adaptive response to loading should not come 318 

as a surprise given that numerous studies have shown that osteoblast-like cells are also 319 

mechano-sensitive. Well-established responses of osteoblast-like cells to strain include 320 

enhanced osteoblastic differentiation of marrow stromal cells (MSCs) as well as resumption of 321 

proliferation of cortical long bone derived osteoblastic cells [44, 52, 80-82]. Furthermore, the 322 

study which, to the authors’ knowledge, was the first to demonstrate that osteocytes respond 323 

rapidly to changes in mechanical loading showed equally rapid responses (within 6 minutes) 324 

in adjacent periosteal cells [2]. 325 

The ability of osteoblasts to sense and respond to strain in vitro is clearly demonstrated by their 326 

ability to very rapidly enter into the cell cycle after strain exposure in the absence of sclerostin 327 

[18, 43, 44, 52]. In vivo, an increase in the number of osteoblasts on the periosteal surface is 328 

seen within 24 hours following loading [18], although the location and nature of the 329 

proliferative osteoblast population remains undefined. A recent study on the effect of age on 330 

the loading response provides further evidence that down-regulation of sclerostin in osteocytes 331 

does not necessarily translate into an appropriate bone formation response. We hypothesised 332 

that in old mice loading would not down regulate sclerostin, but instead found that loading 333 

down-regulated sclerostin in 19-month-old mice to the same extent as in young (17-week-old) 334 

mice [18], even though the osteogenic response to non-invasive axial tibial loading was lower 335 

in old than in young animals. Interestingly this study showed that in old mice it was the ability 336 

of osteoblasts to proliferate that was compromised; osteoblast progression through the cell 337 

cycle following strain exposure in vitro and the increase in the number of periosteal osteoblasts 338 

following loading in vivo were impaired. These deficiencies in osteoblast function that occur 339 

with age may not only limit bone’s adaptive responses to loading but also the beneficial effect 340 

of sclerostin neutralising therapies [83]. 341 

The finding that osteocytes in tibiae of old mice remain able to sense changes in mechanical 342 

loading and acutely respond by down-regulating Sost has recently been independently 343 

replicated by Holguin et al [84]. In the Holguin study, a single bout of axial tibial loading 344 

effectively down-regulated Sost in 5-month-old as well as 12-month-old and 22-month-old 345 

mice, although the bone formation response was blunted with age. A possible explanation is 346 

that Sost RNA down-regulation is more transient in bones from 22-month-old than 5-month-347 

old mice and others have shown changes in Wnt pathway-related gene transcripts and blunting 348 
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of β-catenin activity in the old [84-86].  Intriguingly, Holguin et al found that while repeated 349 

bouts of loading on subsequent days repeatedly down-regulate Sost in young mice, only the 350 

first bout of loading results in Sost down-regulation in the old. This suggests that old bone cells 351 

become refractory to repeated bouts of increased loading. However, we have recently reported 352 

that prior and concurrent disuse enhances the osteogenic response to repeated bouts of axial 353 

tibial loading in aged mice [87]. Whether this “rescue” of bone’s response to loading in old 354 

mice is associated with the restoration of cells’ ability to down-regulate sclerostin after each 355 

bout of loading needs to be determined. Nonetheless these studies demonstrate bone’s “strain 356 

memory” influences subsequent responsiveness and that this relationship becomes less 357 

effective in the elderly. The relevance of these findings from rodent studies to elderly humans 358 

remains to be established. 359 

 360 

Conclusions 361 

Numerous studies have demonstrated that sclerostin plays a role in the effective working of the 362 

mechanisms associated with regulation of bone mass and architecture in relation to mechanical 363 

loading (the mechanostat). Sclerostin expression increases following unloading with the 364 

consequent inhibition of Wnt signalling and associated bone loss. Down-regulation of 365 

sclerostin is permissive for osteogenesis in response to loading, at least in part by relieving 366 

inhibition of canonical Wnt signalling. This is consistent with the potently osteogenic responses 367 

observed in humans treated with sclerostin-inhibiting antibodies now in advanced stages of 368 

clinical development [88]. However, sclerostin down-regulation in osteocytes is not the only 369 

process linking cellular mechanically-related responses to functional remodelling as evidenced 370 

by mice lacking Sost having an enhanced response to loading. This is consistent with the 371 

emerging narrative that there is not a single linear pathway regulating bone’s adaptive 372 

responses to loading, rather multiple pathways in which osteoblasts as well as osteocytes play 373 

important roles [50, 89, 90]. Elucidating the complex cellular mechanisms involved in 374 

mechano-responsiveness remains important because it could lead to the development of ‘smart’ 375 

novel therapeutic targets able to augment bones’ specific physiological adaptive responses to 376 

loading-engendered stimuli rather than relying on non-specific, and largely ineffective, 377 

therapies to prevent or reverse loss of bone mass. 378 

 379 

 380 
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 605 

Figure 1: Mechanical loading decreases, whereas disuse increases sclerostin expression. 606 

Sclerostin immunolocalisation in tibial cortical bone osteocytes of control limbs subjected to 607 

normal cage activity, limbs subjected to disuse through sciatic neurectomy, and disused limbs 608 

subjected to exogenous osteogenic axial loading. Figure reproduced with permission from 609 

Moustafa et al [19]. Scale bar = 50µm. 610 
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 612 

Figure 2: Simplified model describing sclerostin’s roles in bones’ adaptation to loading-613 

engendered strains. Strains greater than the minimum effective strain (MES, green) are 614 

association with low osteoclast activity and increased osteoblast activity, whereas the low 615 

strains experienced in disuse are associated with reduced osteoblast activity and increased 616 

osteoclast activity. The activity of these effector cells are coordinated by osteocytes at least in 617 

part through sclerostin (red) secretion. In low strain conditions, sclerostin inhibits osteoblast 618 

function and may indirectly promote resorption through Rankl [73]. Strains greater than the 619 

MES down-regulate sclerostin, allowing activation of osteoblasts at least in part through 620 

canonical Wnt signalling, which may indirectly inhibit resorption through Opg expression. 621 
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 624 

Figure 3: Simplified schematic representation of transcriptional and epigenetic 625 

regulators of basal Sost expression. In osteoblasts, the SOST gene is epigenetically 626 

repressed through DNA methylation (M) and potentially histone acetylation (Ac). HDACs 627 

also fine tune SOST promoter and Mef2-dependant enhancer activity in cells which express 628 

Sost. Transcriptional regulators able to bind the SOST promoter include osteoblast-specific 629 

(Runx2, osterix) and non-bone-specific (MyoD, C/EBP) transcription factors. Once 630 

expressed, Sost RNA stability is influenced by micro-RNAs including miR218.  631 

  632 
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 633 

Figure 4: Schematic representation of pathways implicated in sclerostin down-634 

regulation by mechanical stimulation. 1) Strain rapidly activates Ca signalling and down-635 

stream (2) NO/guanylate cyclase (GC)/PKG signalling leading to up-regulation of Cox2, 636 

which also involves ERβ.  Cox2 produces PGE2 (3) which is released at least in part through 637 

Cx43 hemichannels to activate EP receptors including EP4.  EP4 activates ERK (4) 638 

signalling. Strain-induced ERK activation also involves ERβ and ER transcriptional activity 639 

is in turn increased in osteoblastic cells by PGE2.  Activated ERβ can up-regulate periostin 640 

(Postn) expression (5). Periostin acts through integrins (6) including integrin αv, which 641 

interacts with the Igf1 receptor (7).  Responses down-stream of Igf1R include ERα-mediated 642 

activation of AKT (8), however, the mechanisms by which the signalling cascades described 643 

inhibit Sost expression following exposure to strain remain unknown. 644 


