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Increasing attention is being focused on the use of symmetry-adapted functions to describe magnetic structures, structural
distortions, and incommensurate crystallography.Though the calculation of such functions is well developed, significant difficulties
can arise such as the generation of too many or too few basis functions to minimally span the linear vector space. We present
an elegant solution to these difficulties using the concept of basis sets and discuss previous work in this area using this concept.
Further, we highlight the significance of unitary irreducible representations in this method and provide the first validation that the
irreducible representations of the crystallographic space groups tabulated by Kovalev are unitary.

1. Introduction

The use of symmetry-adapted functions is well established
in many fields, such as electronic structure calculations and
vibrational mode analysis. Increasingly, its value to crystal-
lography is being recognized too. Their direct application
in the refinement of magnetic structures was originally
developed in SARAh [1] and is also available in Fullprof [2]
and for commensurate systems in TOPAS [3]. More recent
interest has focused upon developing the application of this
technique to displacive phase transitions [4–9].

In magnetism, analysis using these functions has been
applied to several neutron scattering techniques, including
spherical neutron polarimetry [10], single crystal diffraction
[11, 12], and powder diffraction [13–15].

The foundation of this method is the derivation of
symmetry-adapted functions using the techniques of rep-
resentation theory. In magnetism and crystallography these
functions are usually referred to as basis vectors (BVs) and
they define the order parameters of some property resulting
from a phase transition; the coefficients of the BVs define
the state of a system with respect to a reference. As such,
via the Landau theory of a second order phase transition,
they have physical meaning that in magnetism can also be

related to the eigenfunctions of a spin Hamiltonian [16–
19]. The generality of the techniques means that different
local quantities can be studied within the same mathematical
framework, linking the physics and symmetry considerations
of order-disorder transitions based on the ordering of scalar
quantities, polar vectors (atomic displacements), axial vectors
(atomic moments), and more complex local structures, such
as tensor and quadrupolar order [20, 21].

Constructing BVs is a simple, though laborious, task
[22]. A representation of some system property under its
symmetry operations is constructed as the direct product
of two component representations Γ = Γ𝑉 ⊗ ΓPerm. In this
notation, ΓPerm represents the permutation of atoms under the
symmetry operations of the system; Γ𝑉 represents how some
property of interest transforms under the same operations.
Fortunately, the full matrix representation is not required
and the character of the matrices is sufficient. Once these
have been determined, Γ is reduced to a linear combination
of irreducible representations (IRs): Γ = ∑𝑖 𝐶𝑖Γ𝑖. The final
step is the generation of BVs using the method of projection
operators.

A common problem when performing these calculations
is the projection of too few or too many basis vectors.
Undergeneration has been thoroughly explored by Stokes

Hindawi Publishing Corporation
Advances in Condensed Matter Physics
Volume 2016, Article ID 3960145, 6 pages
http://dx.doi.org/10.1155/2016/3960145

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79540041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in Condensed Matter Physics

et al. [23]; however, the problem of overgeneration has not
been previously resolved. In this work we discuss projection
operators using the concept of “basis sets” and apply use
concept to resolve over- and undergeneration; we illustrate
the general procedure with an example. Further, in Section 6,
we discuss the unitary nature of the IRs listed in the tables of
Kovalev [24] and highlight the importance of this property.
We begin by defining what constitutes an appropriate set of
solutions and how they are derived.

2. Properties of Basis Sets

Any property of a crystal, such as its magnetic structure or
atomic displacements, may be described by a field. The axis
system of such a field is arbitrary, and the system and is
divisible into subspaces, each with the symmetry of one IR in
the linear expansion Γ = ∑𝑖 𝐶𝑖Γ𝑖. Each subspace is spanned
by sets of BVs with appropriate symmetry, basis sets. The
symmetric basis of the whole system is given by the set of
all basis sets, the complete linear vector space. The desired
basis for the subspacewhich transforms as Γ] is a set of vectors{𝜓]
1 , 𝜓]
2 , . . . , 𝜓]

𝑑]} for which𝑔𝜓]
𝑙 = 𝑑]∑
𝑚=1

d
]
𝑚𝑙 (𝑔) 𝜓]

𝑚, ∀𝑔 ∈ G. (1)

Here G is the symmetry group of the system, d](𝑔) is the
matrix representing the operation 𝑔 in the IR Γ], and 𝑑] is the
order of Γ]. A set of BVs obeying (1) will be referred to as a
basis set; note that basis sets always occur in sets of order 𝑑].
We will use the properties of basis sets to explore over- and
undergeneration in Sections 4 and 5.

3. Presentation of the Operators

Here we present the key equations in the method of projec-
tion operators in two forms [25] and discuss the importance
of unitary IRs when using these standard forms. The reduc-
tion formula is defined as1|G| ∑

𝑔𝑠∈G

𝜒] (𝑔𝑠) 𝜒𝜇 (𝑔−1𝑠 ) = 𝛿],𝜇, (2)

where 𝜒𝑛(𝑔𝑠) is the character of the matrix representing 𝑔𝑠 in
the representation Γ𝑛. The action of the reduction operator
is to determine the coefficients, 𝐶𝜇, when applied to some
representation Γ𝜇 = ∑𝜇 𝐶𝜇Γ𝜇. When amatrix is the conjugate
transpose of its inverse, then it is said to be unitary; an IR
composed of unitary matrices is, itself, unitary. Under the
assumption of unitary IRs (2) can be rewritten in its usual
form as follows:

d𝑚𝑙 (𝑔𝑠) = d
∗
𝑙𝑚 (𝑔−1𝑠 ) ,1|G| ∑

𝑔𝑠∈G

𝜒] (𝑔𝑠) 𝜒𝜇∗ (𝑔𝑠) = 𝛿𝜇,]. (3)

Similarly there are two forms of the projection operator
(strictly, the operators presented in (4) and (5) are not pro-
jection operators; this name is reserved for their idempotent

derivatives for which 𝑙 = 𝑚; however, the phrase “method
of projection operators” is synonymous with technique and
therefore we shall refer to them by this name from herein).
The first of these is applicable to any IR, while the second line
is the projection operator derived under the assumption of
unitary IRs. 𝑊𝜇

𝑚𝑙
𝜓]
𝑖 = 𝑑𝜇|G|∑𝑔𝑠 d𝜇𝑚𝑙 (𝑔−1𝑠 )T (𝑔𝑠) 𝜓]

𝑖 , (4)

𝑊𝜇
𝑙𝑚

= 𝑑𝜇|G|∑𝑔𝑠 d𝜇∗𝑙𝑚 (𝑔𝑠)T (𝑔𝑠) , (5)𝑊𝜇
𝑙𝑚
𝜓𝜇𝑚 = 𝜓𝜇

𝑙
. (6)

The projection operator 𝑊𝜇
𝑙𝑚

generates a set of vectors of
order 𝑑𝜇 from a single vector by permuting the BVs amongst
themselves; specifically a group of BVs the symmetry of Γ𝜇.
Thus, the projection operator will “project out” a complete
basis set from a single BV. However, in general we will not
know any of the BVs and we must consider the action of the
projection operator upon a trial vector, 𝜙 = ∑] ∑𝑑]𝑖 𝐶]

𝑖𝜓]
𝑖 .

𝑊𝜇
𝑙𝑚
𝜙 = ∑

]

𝑑]∑
𝑖

𝐶]
𝑖𝑊𝜇𝑚𝑙𝜓]

𝑖 = ∑
]

𝑑]∑
𝑖

𝐶]
𝑖𝜓𝜇𝑙 𝛿𝑚,𝑖𝛿𝜇,] = 𝐶𝜇𝑚𝜓𝜇𝑙 . (7)

The action of the projection operator is to take the
component of 𝜙 along 𝜓𝜇𝑚 and transform it into 𝜓𝜇

𝑙
; all the

other components are transformed to zero. The projection
operator is most commonly encountered in the form of (5),
which restricts the IRs to being unitary; we discuss this
restriction in Section 6.

4. Overgeneration

Overgeneration is the projection of more BVs than required
to minimally span system’s degrees of freedom. Correspond-
ingly, some of the derived BVs are linearly related. The
problem is how best to reduce our set of solutions to one
that is minimal while preserving the characteristic symmetry
properties within our basis.

Often equivalent solutions will occur in pairs, related by
a complex coefficient: 𝜓1 = 𝐶𝜓2. In this case it is simple
for an algorithm to determine the equivalence relationships.
However, when three or more BVs are linearly related
then, because our BVs are not required to be orthogonal,
there is no simple way to determine linear relationships
between them. In particular, there is no simple algorithm
to determine equivalence relations and thus calculate which
BVs are equivalent. The most often used technique to resolve
this problem is Gram Schmidt orthogonalisation, which
involves generating a set of linearly-independent functions by
successively projecting out components that are orthogonal
to a previously determined set of vectors. Its difficulty is that
it removes the natural symmetry of the BVs. It also fails
to recognise that only entire basis sets can be eliminated;
otherwise our solution is not a set of basis sets and cannot
have the correct symmetry properties.
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Rephrasing the problem, as the projection operator must
derive a set of order 𝑑] or 0 for each trial, it is apparent
that when overgeneration occurs too many trial functions
have been used. If, through judicious choice of trial vectors,
we can reduce all BV equivalencies to the form 𝜓1 = 𝐶𝜓2,
then it becomes possible to determine which trial vectors
give equivalent answers and eliminate all but one of them. By
eliminating trial vectors and not basis vectors, the symmetry
properties of the BVs are preserved.

4.1. Symmetry-Adapted Trial Vectors. Our goal is to deter-
mine a method of constructing an appropriate set of trial
functions. If two BVs are linearly related then the system
property at each pointmust have the same linear relationship.
Thus, by controlling how the property at a single point is
generated we can control the generation of the entire BV.
Under the method of projection operators, the property at a
single point is generated by the sum action of all the operators
which generate that point from an initial position 𝐴0; if
we consider 𝐴0 itself then these operators are the so-called
“stabilizers” of 𝐴0, denoted H0.

H0 ⊂ G𝑘,𝑑𝜇|G| ∑
ℎ𝑠∈H0

d
𝜇

𝑚𝑙
(ℎ−1𝑠 )T (𝑔𝑠) 𝜙]

𝑖 = (𝑎0𝑏0𝑐0)𝐴0. (8)

The property at atom 𝐴0 is defined by the vector (𝑎0,𝑏0, 𝑐0), defined by the crystallographic axes. Izyumov and
Syromyatnikov [22] have developed a formalism for the
reduction and projection operators using stabilizers.

The stabilizers of 𝐴0 form a group and thus subdivide
the 𝑅3 space into invariant subspaces; by selecting our trial
vectors to lie within lines and planes of invariance we
naturally simplify the relations between our projected BVs.
In many cases it will be obvious where the lines and planes
of invariance lie for a stabilizer group, when it is not we
can construct them using the method of projection operators
twice. First, the trial functions are themselves projected using
H0 and the trial vectors 𝜙1 = (1, 0, 0), 𝜙2 = (0, 1, 0), 𝜙3 =(0, 0, 1) at the position 𝐴0. These symmetry-adapted trial
functions can then be used to perform the projection of the
system’s BVs.

This technique is particularly appropriate when the low-
ering of a systems symmetry divides related positions into a
number of orbits. Consider some position 𝐴 𝑖 = 𝑔𝑖𝐴0, where𝑔𝑖 consists of a rotation-reflection ℎ𝑖 and a translation 𝜏𝑖. IfH𝑖
is the group of operations “stabilizing”𝐴 𝑖 thenH𝑖 = 𝑔𝑖H0𝑔−1𝑖 .
Thus, if two orbits are related by the operation 𝑔𝑖, appropriate
set of trial functions 𝜓trial are related by ℎ𝑖𝜓trial.

H𝑖 = 𝑔𝑖H0𝑔−1𝑖 ,𝜓trial,orbit𝑖 = ℎ𝑖𝜓trial,orbit0 . (9)

In the next section we will work through an example
where the standard trial functions produce an excess of

solutions and determine a more appropriate trial set. The
example splits into two orbits under the distorted ordering,
and we show that the trial functions for both orbits have the
relationship given in (9).

4.2. Worked Example. Consider the space group 𝐼4132 (214)
and the 𝑘-vector 𝑘 = (1/2, 1/2, 1/2), with an atom at the
position (0, 0, 0). Under the operations of the space group
of the 𝑘-vector, 𝐺𝑘, there are three equivalent positions at(1/2, 1/2, 0), (0, 1/2, 1/2), and (1/2, 0, 1/2). Using SARAh, the
decomposition of possible atomic displacements is given as
follows:

ΓMag = 2Γ1 + 2Γ2 + 2Γ3. (10)

Every IR is of order 2, and therefore we expect 2 × 2 = 4
BVs to be projected from each IR.

The basis vectors generated for Γ1 using the standard trial
vectors 𝜙1 = (1, 0, 0), 𝜙2 = (0, 1, 0), 𝜙3 = (0, 0, 1) are listed in
Table 1, using the following notation:

𝜓𝑛𝑖𝑗 (𝑥, 𝑦, 𝑧) = (𝑎0𝑏0𝑐0)𝐴0 + ⋅ ⋅ ⋅ (11)

BV 𝜓𝑛𝑖𝑗(𝑥, 𝑦, 𝑧) has been projected from IR Γ𝑛, using
the 𝑖𝑗th matrix element of each matrix and the trial vector(𝑥, 𝑦, 𝑧) at the position 𝐴0 = (0, 0, 0). It consists of a series
of vectors (𝑎𝑛, 𝑏𝑛, 𝑐𝑛), defined with respect to the crystal-
lographic axes, at the positions 𝐴𝑛. Projection using the
standard trial functions generates six apparently distinct BVs,
rather than the four required by the reduction formula; clearly
one of the trial functions is superfluous. It can be shown
that 𝜓111(0, 0, 1) = 𝑒(2/3)𝜋⋅𝑖𝜓111(1, 0, 0) + 𝑒(−2/3)𝜋⋅𝑖𝜓111(0, 1, 0);
however, this solution is neither apparent on inspection nor
simple to determine.

Following the strategy of Section 4.2, we seek to deter-
mine a set of symmetry-adapted trial functions to simplify the
BV relationships.The stabilizer group of the position𝐴0 is the
group of 𝐶3 rotations about (1, 1, 1). The invariant subspaces
of this group are the line (1, 1, 1) and the perpendicular plane[1, 1, 1].Thuswe select one trial vector to lie along (1, 1, 1) and
the other two to lie in [1, 1, 1] chosen to form right-hand sets𝜙1 = (1, 1, 1), 𝜙2 = (1, −1, 0), and 𝜙3 = (1, 1, 2). As presented
in Table 2, these trial vectors have been renormalized to
have modulus 1. Also listed are the BVs generated from
the symmetry-selected set of trial functions. By inspection,(1/√2)𝜓111(1, −1, 0) = −𝑖 ⋅ (1/√6)𝜓111(1, 1, −2), and we can
eliminate either 𝜙2 = (1, −1, 0) or 𝜙3 = (1, 1, −2) from our
projection. Thus by suitable selection of trial functions we
have produced a set of BVs in which excess solutions are
readily discernible.
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Table 1

BV 𝐴0 = (0, 0, 0) 𝐴1 = (1/2, 1/2, 0) 𝐴2 = (0, 1/2, 1/2) 𝐴3 = (1/2, 0, 1/2)
𝜓111(1, 0, 0) ( 1−0.183 − 0.683𝑖−0.183 + 0.683𝑖) ( 0 + 𝑖−0.683 + 0.183𝑖0.683 + 0.183𝑖 ) ( 00.683 − 0.183𝑖−0.183 + 0.683𝑖) ( 00.183 + 0.683𝑖−0.683 − 0.183𝑖)
𝜓111(0, 1, 0) (−0.183 + 0.683𝑖1−0.183 − 0.683𝑖) (−0.683 − 0.183𝑖0 − 𝑖−0.683 + 0.183𝑖) (−0.183 + 0.683𝑖0−0.683 + 0.183𝑖) ( 0.683 + 0.183𝑖0−0.183 − 0.683𝑖)
𝜓111(0, 0, 1) (−0.183 − 0.683𝑖−0.183 + 0.683𝑖1 ) (0.683 − 0.183𝑖0.683 + 0.183𝑖0 − 𝑖 ) (−0.683 + 0.183𝑖0.183 − 0.683𝑖0 ) (0.183 + 0.683𝑖0.683 + 0.183𝑖0 )
𝜓112(1, 0, 0) ( 0−0.183 − 0.683𝑖−0.683 − 0.183𝑖) ( 0−0.683 + 0.183𝑖−0.183 + 0.683𝑖) ( 1−0.683 + 0.183𝑖0.683 + 0.183𝑖 ) ( 0 − 𝑖−0.183 − 0.683𝑖−0.183 + 0.683𝑖)
𝜓112(0, 1, 0) (−0.683 − 0.183𝑖0−0.183 − 0.683𝑖) ( 0.183 − 0.683𝑖0−0.683 + 0.183𝑖) (0.683 + 0.183𝑖−10.683 − 0.183𝑖) (0.183 − 0.683𝑖0 − 𝑖0.183 + 0.683𝑖)
𝜓112 (0, 0, 1) (−0.183 − 0.683𝑖−0.683 − 0.183𝑖0 ) ( 0.683 − 0.183𝑖−0.183 + 0.683𝑖0 ) ( 0.683 − 0.183𝑖−0.683 − 0.183𝑖1 ) (−0.183 − 0.683𝑖0.183 − 0.683𝑖0 + 𝑖 )

Table 2

BV 𝐴0 = (0, 0, 0) 𝐴1 = (1/2, 1/2, 0) 𝐴2 = (0, 1/2, 1/2) 𝐴3 = (1/2, 0, 1/2)1√3𝜓111 (1, 1, 1) (0.3660.3660.366) ( 0.366𝑖−0.366𝑖−0.366𝑖) (−0.5 + 0.5𝑖0.5 − 0.5𝑖−0.5 + 0.5𝑖) ( 0.5 + 0.5𝑖0.5 + 0.5𝑖−0.5 − 0.5𝑖)1√2𝜓111 (1, −1, 0) ( 0.837 − 0.483𝑖−0.837 − 0.483𝑖0 + 0.966𝑖 ) ( 0.483 + 0.837𝑖−0.483 + 0.837𝑖0.966 ) (0.129 − 0.483𝑖0.483 − 0.129𝑖0.354 + 0.354𝑖) (−0.483 − 0.129𝑖0.129 + 0.483𝑖−0.354 + 0.354𝑖)1√6𝜓111 (1, 1, −2) (0.483 + 0.837𝑖0.483 − 0.837𝑖−0.966 ) (−0.837 + 0.483𝑖−0.837 − 0.483𝑖0 + 0.966𝑖 ) ( 0.483 + 0.129𝑖0.129 + 0.483𝑖−0.354 + 0.354𝑖) ( 0.129 − 0.483𝑖−0.483 + 0.129𝑖−0.354 − 0.354𝑖)
Further, our example is split into two orbits, the second

orbit being related to the previously considered set of atomic
positions by the following operation:

𝑔5 = (0 1 0 0.251 0 0 0.750 0 −1 0.750 0 0 1 ),
ℎ5 = (0 1 01 0 00 0 −1) .

(12)

Using (9), the following trial functions are generated
for the second orbit: 𝜙1 = (1, 1, −1), 𝜙2 = (−1, 1, 0), and𝜙3 = (1, 1, 2) should generate BVs with the desired linear
relationships. The BVs for the second orbit, using this set of
trial functions, are presented in Table 3. Inspection reveals
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Table 3

BV 𝐴0 = (1/4, 3/4, 3/4) 𝐴1 = (3/4, 3/4, 1/4) 𝐴2 = (3/4, 1/4, 3/4) 𝐴3 = (1/4, 1/4, 1/4)1√3𝜓111 (1, 1, −1) ( 1.3661.366−1.366) ( 1.366𝑖−1.366𝑖1.366𝑖 ) (−0.5 − 0.5𝑖0.5 + 0.5𝑖0.5 + 0.5𝑖 ) (−0.5 + 0.5𝑖−0.5 + 0.5𝑖−0.5 + 0.5𝑖)1√2𝜓111 (−1, 1, 0) (−0.224 + 0.129𝑖0.224 + 0.129𝑖0.259𝑖 ) (−0.129 − 0.224𝑖0.129 − 0.224𝑖0.259 ) (−0.483 − 0.129𝑖−0.129 − 0.483𝑖−0.354 + 0.354𝑖) (−0.129 + 0.483𝑖0.483 − 0.129𝑖−0.354 − 0.354𝑖)1√6𝜓111 (1, 1, 2) (0.129 + 0.224𝑖0.129 − 0.224𝑖0.259 ) (−0.224 + 0.129𝑖−0.224 + 0.129𝑖−0.259𝑖 ) (−0.129 + 0.483𝑖−0.483 + 0.129𝑖0.354 + 0.354𝑖 ) ( 0.483 + 0.129𝑖−0.129 + 0.483𝑖−0.354 + 0.354𝑖)
that (1/√2)𝜓111(−1, 1, 0) = 𝑖 ⋅ (1/√6)𝜓111(1, 1, 2), and again we
are free to eliminate either 𝜙2 or 𝜙3. We note that this method
is also applicable to orbits joined under corepresentations.

5. Undergeneration

Undergeneration is the apparent inability to fully span a sys-
tem’s decomposition using the BVs generated by the method
of projection operators. For the projection operator 𝑊𝜇𝑖𝑗
changing 𝜇 generates a basis set with a different symmetry;
hence the only free variable with which to resolve under-
generation is 𝑖𝑗. This problem has been thoroughly explored
by Stokes et al. [23], who define that when varying the column
index 𝑗 will generate inequivalent BVs. It is useful to discuss
this problem using basis sets to demonstrate the power of
this concept in understanding the method of projection
operators.

Basis vectors occur in basis sets which transform under
two relations:

𝑔𝜓𝜇𝑖 = 𝑑𝜇∑
𝑗

d
𝜇
𝑗𝑖 (𝑔) 𝜓]

𝑗 ,𝑊𝜇𝑖𝑗𝜓𝜇𝑗 = 𝜓𝜇𝑖 . (13)

It is apparent from consideration of these two equations
that the enumeration of BVs is not arbitrary; it defines how
BVs interrelate within the basis set to which they belong.
Further, the number of basis sets of a symmetry Γ𝜇 is exactly𝐶𝜇, and within each set the BVs will be labelled 1, 2, . . . , 𝑑].
Thus, while the numbering is not arbitrary it is not unique
either. The action of 𝑊𝜇𝑖1 on a general vector 𝜓 is to project
the component along 𝜓𝜇1 into 𝜓𝜇𝑖 . Similarly, the action of 𝑊𝜇𝑖2
is to project the component along 𝜓𝜇2 into 𝜓𝜇𝑖 . However, there
is no restriction that 𝜓1 and 𝜓2 are from the same basis set.

Thus, we conclude that varying the row-index 𝑖 generates
another member of the same basis set, while varying the
column index 𝑗 generates a BV from a different basis set
(which may be equivalent).

6. Unitary Check

In Section 3 it was emphasised that the projection and reduc-
tion operators are normally encountered in a form which
restricts the IRs to being unitary. Their use with nonunitary
IRs would generate BVs lacking the correct symmetry prop-
erties. The absence of symmetry relations between the BVs
could be realized as under- or overgeneration; therefore it is
key to discuss possible sources of IRs for these calculations.

IRs derived from Zak’s method [26] are, by derivation,
unitary; the IRs outputs by the computer codes KAREP [27]
and REPRES [28] are examples of such. However, when
using IRs from collated tables the unitary properties must be
confirmed explicitly.This was done for Kovalev’s tables (1991)
by Davies and Wills [29], and we reproduce an outline of the
method here.

The method of verification was brute-force calculation.
Our algorithm determined for each symmetry element 𝑔1,
some symmetry element 𝑔2 for which 𝑔1𝑔2 is an identity-
translation, represented by a complex number 𝐶. If the IR is
a unitary homomorphism then 𝐶∗ will transform d(𝑔2) into
the conjugate transpose of d(𝑔1) as follows:

T (𝑔1) ×T (𝑔2) =

1 0 0 𝑇𝑥0 1 0 𝑇𝑦0 0 1 𝑇𝑧0 0 0 1

 ,
d
† (𝑔1) = d (𝑔2) × exp(−2𝜋 × (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) ⋅ (𝑇𝑥𝑇𝑦𝑇𝑧)).

(14)

The matrices T(𝑔𝑖) are the normal 4 × 4 matrix repre-
sentation of the affine operation 𝑔𝑖. The vector (𝑘𝑥, 𝑘𝑦, 𝑘𝑧),
termed the 𝑘-vector, defines the translational periodicity of a
modulated structure, and the representation of a translation
is a function of its dot-product with the 𝑘-vector.

This work showed that the IRs presented in Kovalev’s
tables are indeed unitary and validate the projection and
reduction techniques used in the computer codes based upon
them, such as SARAh [1].
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7. Conclusions

A common problem in the application of projection tech-
niques to physical problems in crystallography is the over-
and undergeneration of basis vectors. Understanding the
method in terms of basis sets allows a solution to overgen-
eration to be constructed through use, and subsequent elim-
ination, of symmetry-adapted trial functions. This technique
ensures that the solution is a set of basis sets and has all the
required symmetry properties.

Further we show that the unitary nature of the IRs
presented by Kovalev follows the restrictions placed upon
the IRs by the projection operator and that any difficulties
in the projection of a minimal spanning set of BVs are a
consequence of this structure.
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