
FLIP the (Flow) Table:
Fast LIghtweight Policy-preserving SDN Updates

Stefano Vissicchio∗, Luca Cittadini†
∗Université catholique de Louvain †RomaTre University

Abstract—We propose FLIP, a new algorithm for SDN network
updates that preserve forwarding policies. FLIP builds upon the
dualism between replacements and additions of switch flow-table
rules. It identifies constraints on rule replacements and additions
that independently prevent policy violations from occurring dur-
ing the update. Moreover, it keeps track of alternative constraints,
avoiding the same policy violation. Then, it progressively explores
the solution space by swapping constraints with their alternatives,
until it reaches a satisfiable set of constraints. Extensive simula-
tions show that FLIP outperforms previous proposals. It achieves
a much higher success rate than algorithms based on rule
replacements only, and massively reduces the memory overhead
with respect to techniques solely relying on rule additions.

I. INTRODUCTION AND RELATED WORK

Consider an SDN network where the forwarding has to
be updated, as can often happen, e.g., to better balance
traffic load, steer some flows through virtualized functions
or accommodate new security policies. The forwarding is
determined by per-flow rules that SDN switches apply to
packets. In the update, the controller has to instruct switches to
add, change or remove some rules. To avoid service disruption,
both forwarding correctness (i.e., packet delivery) and policies
(i.e., requirements on forwarding paths) have to be preserved
throughout the update. Moreover, the update strategy must be
robust with respect to factors (unpredictable to the controller)
like non-deterministic processing time on the switch to install
or modify rules, or delayed messages between the controller
and the switches. This excludes naive strategies like pushing
the final rules to the switches at the same time. Rather,
the controller has to apply a carefully-computed sequence of
operations, so that any single operation can be independently
rolled forward or back with no impact on policies.

Despite the abundance of literature on this topic, none
of the existing techniques supports policy-preserving updates
efficiently. Some proposals focus on congestion avoidance [5],
[3], [10] or forwarding correctness [12], [22], and do not
support policy preservation at all. Among the previous con-
tributions that do preserve policies, ordered replacement tech-
niques [13], [11] compute a specific order to replace rules.
They are efficient but their applicability is limited: It is known
that an order that guarantees both forwarding and policy
preservation might not exist [11]. Another approach [18], [7],
[6] consists in installing both the initial and final rules on all
switches, and tagging packets to signal which rules should
be applied. We refer to this approach as two-phase commit.

Stefano Vissicchio is a postdoctoral researcher of the Belgian fund for
scientific research (F.R.S.-FNRS)

While this natively preserves both correctness and policies, it
is highly inefficient, to the point to be unpractical [7], [14].
Its main drawback is that it doubles the number of rules
on every switch, wasting precious TCAM memory which is
a scarce, expensive, and power-hungry resource [9]. Switch
memory may be rather needed to deal with the always growing
number of services or to guarantee good network performance,
e.g., implementing (i) fine-grained traffic engineering, (ii) fast
reaction to security attacks, or (iii) fast failure recovery [17].

In this paper, we study how to compute operational se-
quences that preserve forwarding correctness and policies,
using additional rules only when necessary. We unveil the
degrees of freedom opened by the inter-changeability between
rule replacements and additions in preventing a correctness or
policy violation. Moreover, we show that combining replace-
ments and additions is more powerful than restricting to either
of the two, as all previous techniques do. Such combinations,
indeed, enable new ways to meet correctness and policy
requirements, e.g., by temporarily admitting forwarding paths
with loops that are traversed only once by packets before they
are correctly delivered to the destination.

Unsurprisingly, this additional expressiveness comes at the
cost of making the safe update problem more challenging.
First, it significantly increases the search space, e.g., because
a much higher number of solutions are possible (all com-
binations between rule replacements and additions). Second,
finding a safe sequence implies understanding the interactions
between rule replacements and additions applied to different
switches (e.g., distinguishing loops that are crossed only a
finite number of times from those disrupting connectivity).

We address those challenges with an original algorithm,
FLIP. To compactly represent the search space and quickly
compute an operational sequence, FLIP formalizes possibili-
ties to avoid correctness violations as constraints on rule re-
placements and additions. Moreover, it discovers relationships
between those constraints. Notably, it identifies alternative
constraints. For example, given a potential policy violation,
FLIP can determine that either constraints A and B need to be
enforced for certain rule replacements, or constraint C must
hold for a given rule addition. FLIP then explores the search
space by swapping constraints with their alternatives, until it
ends up with a satisfiable set of constraints.

The rest of the paper details the following contributions.

Analysis (§II). We detail how combining rule replacements
and additions opens additional degrees of freedom in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79539704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


w

u v z

P(fu,d) = [[v, z], [z, v]]

state:
init final

LEGEND:

policy:

d
switch dest

source

Fig. 1. An update scenario with a policy to be preserved.

policy-preserving update problem. Also, we show how they
enable us to overcome limitations of prior techniques.

Modeling (§III). We formalize the safe update problem when
operational sequences can include rule replacements and ad-
ditions. We also describe how FLIP models the solution space
in terms of constraints on operations and their relationships.

Algorithms (§IV-V). We walk through the execution of FLIP,
and detail its core procedures to extract constraints, identify
relationships between them, and compute safe sequences.

Experimental evaluation (§VI). We evaluate our implemen-
tation of FLIP by simulating 50, 000 update scenarios for real-
istic networks. Our results show that FLIP hugely outperforms
previous techniques in terms of efficiency and success rate.

II. UNEXPLORED DEGREES OF FREEDOM

FOR SDN UPDATES

Fig. 1 shows a case where the SDN controller (not depicted
for brevity) has to update the controlled network. For the sake
of the example, the controller has to modify the forwarding
only for the flow fu,d of packets sourced at u and destined to
d. Dashed and solid arrows respectively represent the initial
and final states, i.e., the paths used before and after the update.

To perform the update, the controller can apply atomic
operations to switches. Specifically, it can add, modify or
delete flow rules used by a switch to process packets belonging
to fu,d. We distinguish three types of operations. A rule

replacement operation rep(s, f) instructs a switch s to replace
its current rules for flow f with the final rule. A tagging

operation tag(s, f, θ) requires switch s to mark packets in
flow f with a tag θ. A matching operation match(s, f, θi, θf )
requests switch s to install both the initial and final rules for
flow f , and apply the initial (final, resp.) rule to packets tagged
as θi (θf , resp.). In our notation, ∅ is a valid value for any tag θ,
and represents the absence of a tag. Both rule replacement and
tagging operations modify an existing rule, hence the number
of installed rules does not change after the operation is applied.
Conversely, a matching operation involves adding a new rule,
and consumes an additional slot in the TCAM memory of the
affected switch. We denote with app(op) the time at which
operation op is applied.

We say that the controller produces a safe update if (i) pack-
ets are guaranteed to be delivered to d; and (ii) policies are
satisfied throughout the update. In our case, the policy P(fu,d)
(see left side of Fig. 1) imposes that packets belonging to fu,d
must traverse link (v, z) in either of the two directions.

Despite both the initial and final states guarantee packet
delivery and satisfy P(fu,d), those properties can be violated
during the update, depending on the order in which operations
are applied to switches. In Fig. 1, for example, if the first
operation is replacing the rule on z, rep(z, fu,d), then packets
for flow fu,d are trapped in a permanent loop between v (that
applies its initial rule) and z (that applies its final rule) after
app(rep(z, fu,d)). The loop persists until app(rep(v, fu,d)).
Similarly, if rep(u, fu,d) is the first operation, then fu,d is
forwarded over path [u, z, w, d], hence violating the policy.

A. Previous techniques have limitations

Prior work achieves safe updates by either (i) computing a
proper sequence of rule replacements, when it exists (e.g., [13],
[11]); or (ii) applying matching operations on all switches
and progressively applying tagging operations on flow entry
points (u in our example) in order to make all the switches use
final rules (e.g., [18], [7], [6]). We refer to those approaches
as ordered replacement and two-phase commit respectively.
Unfortunately, they are limited or inefficient, because they
focus either only on rule replacements or exclusively on tag-
and-match operations.

Ordered replacement cannot always be applied. In Fig. 1,
an ordering of rule replacements that preserves both forward-
ing correctness and the given policy does not exist. In fact, we
need to replace rules on u, v, and z, and we cannot assume
simultaneous operations, because of uncontrolled factors like
different rule installation time across switches [6] or delayed
message delivery between the controller and the switches.
Thus, we have three cases. If we start from u and rep(u, fu,d)
is the first operation to be scheduled by the controller, then
fu,d is forwarded on path [u, z, w, d] upon app(rep(u, fu,d)).
This produces a violation of Pu,d. Otherwise, if we start
from v, then fu,d is forwarded on path [u, v, w, d] upon
app(rep(v, fu,d)), which also violates the policy. Finally, if
rep(z, fu,d) is the first operation in the update, packets of
fu,d are trapped in a permanent loop between v and z.

Two-phase commit techniques are inefficient. They are
based on applying tagging and matching operations on all
switches in the network, hence doubling memory utilization
at each switch. This comes with two possible consequences.
First, the technique may simply not be applicable if the
memory of a single switch (say, u) is fully used, e.g., by rules
for other flows or for backup paths [17]. Second, even if the
technique is applicable, it generates a huge overhead which
can make it impossible to install new rules, e.g., to deal with
traffic surges or security attacks during the update.

B. Combining operations is more powerful

The key intuition exploited by FLIP is that we can profitably
combine rule replacements, tagging and matching operations
on different switches. To this end, it builds upon basic proper-
ties verified if given operations are applied in a certain order. In
the example of Fig. 1, for instance, FLIP detects that matching
on z ensures that the (v, z) link is traversed at least once,



u

w

v z

d

tag(v, fu,d, τ),FLIP
match(z, fu,d, τ, ∅)

rep(w, fu,d), ⇒ rep(u, fu,d)⇒ rep(v, fu,d)⇒rep(z, fu,d)

step 1 step 2 step 3 step 4

(a) t < step2

∅ τ

τ

(b) step2 ≤ t < step3 (c) t ≥ step3

∅

packet tag

}{

τ

τ

∅

∅
u

w

v z

d

∅

∅u

w

v z

d

sequence:

Fig. 2. FLIP operational sequence for the scenario in Fig. 1: The overhead
is only one additional rule (due to matching operation on z) versus the four
additional rules needed by [18], [7].

while tagging on v with z matching v’s tags ensures that
packets exit the loop between v and z after traversing z at
most twice. Hence, FLIP produces a safe update in which z
matches throughout the process, v starts tagging before any
rule replacement, and replacements are carefully ordered.

FLIP hugely reduces the number of added rules. When run
on the example in Fig. 1, FLIP’s overhead is a single additional
rule on z. This is much more efficient (66% additional rule
saving) than two-phase commit techniques that would install
additional rules on u, v, and z. The operational sequence
computed by FLIP is reported at the top of Fig. 2. It consists
of a sequence of update steps, so that operations in one step
have to be applied after those in the previous step. This means
that the controller must send operations in a step to switches
only after it is sure that operations in the previous step are
applied (e.g., after receiving an acknowledgment from the
switches [8]). In contrast, operations in the same step can be
sent simultaneously by the controller: This does not mean that
they are executed simultaneously; rather, it implies that their
relative order does not matter.

FLIP admits correct paths discarded by other approaches.
The bottom part of Fig. 2 provides an illustration of the paths
followed by packets of fu,d in any possible state explored
during the application of the FLIP sequence. It visually proves
that both packet delivery and policy compliance (i.e., traversal
of link (v, z)) are guaranteed. Indeed, packets either follow the
initial or final paths (see Fig. 2(a) and Fig. 2(c)), or traverse
link (v, z) in both directions before exiting the loop between
v and z after one lap (see Fig. 2(b)). Note that the path in
Fig. 2(b) would have been discarded by ordered replacement
techniques, since it contains a loop.

FLIP efficiently supports strong consistency, that is, policies
imposing that either the initial or the final paths have to be kept
for every flow throughout the update. Even in this case, FLIP
generally uses fewer rules than two-phase commit techniques.
In Fig. 1, for instance, it duplicates only on v and z, achieving
a 33% rule saving. Indeed, packets in fu,d are forwarded on
either the initial or the final path if v and z apply the initial
or final rule consistently with u. This can be ensured if v and
z match and u tags throughout the update, so that v and z
apply their respective final rules when u sets a given tag θf
to signal that it is in its final state.

extract
constraints

Linear
Program LP

solve
yes

swap
constraints

no

constraint
relations

sequence

update
problem

divide
problem

. . . merge
sequences

operational
sequence

(input) (output)

(§4 )

(§5 )

flow1

sequence
flown

problem
flow1

problem
flown

. . .

compute
sequence

per-flow
problem

per-flow
sequence

compute
sequence

Fig. 3. High-level view of FLIP algorithm. Non-boxed text are used for FLIP
internal procedures, and text boxes for the corresponding input and output.

III. FLIP OVERVIEW

Fig. 3 overviews FLIP. We now describe FLIP’s input
(§III-A), output (§III-B), and algorithmic core (§III-C). Since
we publicly released a FLIP implementation [21], we omit
its formalization (i.e., pseudo-code) and provide a plain-text
description. We use the terms switch and node interchangeably.

A. FLIP Input

FLIP takes as input an update problem, which is defined by
the pair of initial and final states, and the properties that have
to preserved during the update.

Initial and final states are defined by per-flow rules used by
switches before and after the update, respectively. We consider
the concept of flow in its broadest sense, as the collection of all
packets whose headers match a specific bitmask consistently
across switches. In Fig. 1, all switches match packets based
on a bitmask that captures the source address u and the des-
tination address d. Hence, packets sourced at u and destined
to d belong to the same flow fu,d. Each flow is associated to
a destination to which packets have to be delivered and a set
of sources, i.e., switches attached to the origin of the packets.
We define forwarding paths for a flow f as the network paths
[s0, s1, s2, . . . , d], where s0 is a source, each si is a switch, and
d is the destination. We admit equal-cost multipath (ECMP),
implying that multiple forwarding paths can exist between a
source and a destination for the same flow.

Properties to be guaranteed include forwarding correctness
and preservation of input policies.

Forwarding correctness means that every packet is eventu-
ally delivered to the destination. Even assuming that the initial
and final states are forwarding correct, two types of incorrect-
ness can be triggered in intermediate states. A blackhole occurs
when a forwarding path is [s, . . . , b] terminates in a switch b
different from the destination and without a rule to forward
the packet further. An evil loop can occur when packets of a
given flow are bounced back and forth indefinitely, among a
finite number of switches. In other words, a forwarding path
is infinite. Note that the loop in Fig. 2(b) is not evil since the
forwarding path used for fu,d, i.e., [u, z, v, z, w, d], is finite.
In the following we use the term loop to indicate an evil loop
occurring during the update, unless otherwise specified.



Policy preservation means that a set of input policies, satis-
fied in both the initial and final states, are not violated in any
intermediate state generated during the update. With respect
to previous works that either support strong consistency [6],
[18] or single-node traversal [11], FLIP supports a larger
variety of practical policies. Supported policies indeed include
traversal of single nodes or links (e.g., for firewalling [18]),
but also of sub-paths (e.g., for distributed middleboxing [16],
service chaining [4] or QoS-based traffic engineering [1]).
Generalizing the notation in Fig. 1, we indeed define a policy
as a set of non-empty paths, called policy paths. An input
policy P({f1, . . . , fk}) = [P1, . . . , Pm], with k,m ≥ 1,
imposes that every forwarding path of any flow fi, with
i = 1, . . . , k, includes one among policy paths P1, . . . , Pm.
If this condition holds, we say that the policy is satisfied;
otherwise, we say that it is violated. We assume that only one
policy is defined for any flow. This, however, does not prevent
us from forcing the same flow through multiple sub-paths (e.g.,
for service chaining). For example, if we want a given flow
to traverse both sub-paths P1 and P2, we can express this
requirement with a single policy including all paths P1QiP2,
where Qi is a path between P1 and P2.

B. FLIP Output

FLIP returns a partial order between operations. This par-
tial order represents an operational sequence, including rule
replacement, tagging and matching operations. This sequence
[G1, . . . , Gn] is such that (i) every Gi, with i = 1, . . . , n, is a
group of operations; (ii) operations in each group Gi guarantee
input property preservation independently of the relative order
in which they are actually applied by switches, hence they
can be sent by the controller in any order or in parallel; and
(iii) no operation of a group Gi+1 can be executed before any
operation in Gi. We refer to Gi as i-th update step.

To achieve maximum robustness, we assume that messages
between the controller and switches can be subject to an
arbitrary large but finite delay (they will be retransmitted if
lost), and that a switch can take a non-deterministic time [6]
to apply an operation once the message has been received. This
implies that the operational sequence produced by FLIP does
not rely on the simultaneous application of multiple operations.

C. Algorithmic Overview

At a high-level, FLIP adopts a divide-and-conquer approach
(see Fig. 3). It divides the input update problem into sub-
problems, one per impacted flow. For every sub-problem, FLIP
independently computes a sequence. Per-flow sequences are
finally merged into the output operational sequence.

Problem decomposition and solution composition are easy.
Flows are by definition independent of each other, so we
decompose the problem by simply tackling one flow at a time.
For the same reason, per-flow sequences can be arbitrarily
merged without impacting forwarding correctness and policy
preservation. FLIP relies on a simple yet generic strategy in
which per-flow sequences are merged on a per-step basis.
Starting from a set of per-flow sequences, FLIP computes the

i-th step of the final operational sequence as the union of the
i-th step of all per-flow sequences with at least i steps. This
implies that the final sequence is as long as the longest per-
flow sequence. Note that more sophisticated merging strategies
are possible. For example, we could treat each of the per-flow
sequences to be merged as a set of dependencies and use a
scheduling algorithm as in [6] to optimize update speed.

Computation of policy-preserving per-flow sequences is the
most novel part of FLIP. It is based on two core procedures.

The constraint extraction procedure takes as input a per-
flow problem and performs two tasks.

First, for each possible forwarding incorrectness or policy
violation, the procedure identifies the constraints that ensure
a safe update (if satisfied). We distinguish between replace-
ment and tag-and-match constraints. A replacement constraint

imposes a certain ordering between rule replacements. A
tag-and-match constraint imposes that some switches have
to tag packets consistently with the applied rule (initial or
final) and another switch has to match those tags during
the update. For example, to avoid the loop between v and
z in Fig. 1, the replacement constraint generated by FLIP
is app(rep(v, fu,d)) < app(rep(z, fu,d)). The corresponding
tag-and-match constraint imposes that z matches throughout
the update. To setup packet tagging and matching, it requires
that tag(v, fu,d, τ),match(z, fu,d, τ, ∅) are in the first update
step G1. Moreover, to stop matching only at the end of the
update, it mandates app(rep(z, fu,d)) > app(rep(n, fu,d)) for
any non-matching switch n.

Second, the constraint extraction procedure infers relation-

ships between constraints, namely it pinpoints alternative and
dependent constraints. A set of constraints A is alternative to
another set of constraints B if satisfying A prevents all the
potential correctness violations that would be prevented by
satisfying B. For example, applying a rule replacement on v
before z, applying a matching operation on z (with v tagging),
and applying a matching operation on v (while z tags) are all
alternative constraints to avoid the evil loop between z and
v in Fig. 1. In contrast, one constraint c1 depends on another
constraint c2 if every time we want to impose c1 we must also
impose c2. We will discuss dependencies in more detail in §V.

After having extracted constraints, FLIP selects all rule
replacement constraints and marks them active. FLIP tries
to compute a solution that satisfies all active constraints by
translating the set of active constraints into a linear program
(LP) where the objective function is to minimize the number
of update steps. FLIP then tries to solve this LP with standard
optimization algorithms. If a solution can be found, FLIP
outputs the corresponding operational sequence. Otherwise,
FLIP applies the constraint swapping procedure to replace
some active constraints with alternative ones (and their de-
pendencies). Since a matching constraint is always satisfiable,
FLIP eventually reaches a combination of active matching and
replacement constraints for which a solution exists.

In the following sections, we provide more details on both
constraint extraction and swapping.



w

v z

d state: initial final

e c b a

g lh

P(f) = [[a, b, c, e], [a, b, h, c, z, w], [l, g, h]]]policies:

LEGEND:

Fig. 4. An instance of our update problem.

IV. FLIP CONSTRAINT EXTRACTION

We now describe the constraint extraction procedure using
Fig. 4 for illustration.

We start by defining the concept of crucial predecessors,
which is used in the entire procedure. Intuitively, crucial
predecessors of a node n are the nodes that can interrupt
an initial or final forwarding path traversing n depending on
whether they are updated or not. More precisely, given a node
n, a flow f , and a state σ, with σ ∈ {init, fin}, we define
crucial predecessors of n for f in σ as a set C of nodes such
that for every forwarding path Q = [s . . . n . . . d] in σ (i) Q can
be written as [s . . . p,m . . . n . . . d] with p ∈ C and m next-hop
of p in σ (possibly,m = n); and (ii) m is not a next-hop of p in
any forwarding path for f in the state {init, fin}\{σ}. Crucial
predecessors are initial if σ = init, and final otherwise. In
Fig. 4, a set of initial crucial predecessors of w for flow f
is {z}. Indeed, all initial paths [s . . . w, d], with s ∈ {l, a},
can be rewritten as [s . . . z, w, d] and w is not the next-hop of
z in the final state. A node can have multiple sets of crucial
predecessors. For example, {z} and {c} are two distinct sets
of initial crucial predecessors of w for f in Fig. 4. Whenever
this case holds, we always consider a specific set of crucial
predecessors which we denote as cpreds(n, f,σ). This set
has the additional property that for every forwarding path
Q = [s . . . p . . . n . . . d], with p ∈ cpreds(n, f,σ), every node
in the sub-path of Q from p to n uses the same next-hop
in both the initial and the final states for f . As a result,
cpreds(w, f, init) = {z} in Fig. 4. FLIP computes crucial
predecessors with a single backward visit (from n to flow
sources) of the graph associated to σ.

We also denote the graphs corresponding to the initial and
final state for a flow f respectively as Gi

f and Gt
f .

A. Forwarding correctness constraints

A blackhole is defined as the absence of rules for a flow
f on a switch b traversed by a forwarding path. Given that
the initial and final states are forwarding correct, blackholes
can occur during an SDN update if and only if (i) b has
no rule for f in either the initial or final state, and (ii) in
an intermediate state, a forwarding path for f traverses b
while it has no rule for f . Following this observation, for
each node b with no rule for a flow f in the state SB ∈
{init, fin} but with a rule only in S̃B = {init, fin} \ SB ,
we generate a replacement constraints of the form ∀p ∈

cpreds(b, f, S̃B) app(rep(b, f)) < app(rep(p, f)) if SB =
init and app(rep(b, f)) > app(rep(p, f)) otherwise. This
ensures that (i) if b has no rule before the update (SB = init),
it is ready to apply its final rule when any of its final crucial
predecessors has installed its final rule, hence whenever a
forwarding path can cross n; and (ii) if b has no rule after the
update (SB = fin), it keeps its initial rule until all its initial
crucial predecessors apply their respective final rules, and a
forwarding path cannot cross b anymore. In contrast, FLIP
generates no tag-and-match constraint to avoid blackholes.
Indeed, since switches responsible for blackholes do not have
rules in the initial or final states, matching operations on them
coincide with replacement constraints, forcing the application
of that single rule throughout the update.

Extracting constraints to avoid evil loops is also quite
intuitive. Consider any potential evil loop L for flow f , as
obtained by enumerating cycles in the graph Gi

f ∪ Gt
f . For

replacement constraints, we adopt an approach similar to [20]:
We identify the set Linit of nodes such that their respective
next-hops in L are next-hops in the initial but not in the final
state. Similarly, the set Lfin includes nodes whose next-hop
in L is a final but not initial next-hop for the considered flow.
In Fig. 1, v ∈ Linit since z is an initial but not final next-hop
of v, and z ∈ Lfin for symmetrical reasons. We then generate
a replacement constraint forcing any of the nodes in Linit to
be updated before any of the nodes in Lfin. This has already
been proved to prevent evil loops during the update [20]. Also,
we generalize the intuition used in Fig. 2, and generate tag-
and-match constraints imposing that one node in Linit ∪Lfin

matches tags used by its crucial predecessors. Indeed, since
both the initial and final states are correct, matching on a
single node m in Linit ∪ Lfin provably avoids the evil loop
corresponding to L, since m will force packets out of the loop
after at most one lap in the loop (as in Fig. 2(b)).

B. Policy preservation constraints

Policy-preservation constraints are the trickiest to identify:
No previous work actually provides means to enumerate
and formalize them. Abstractly, for every flow subject to an
input policy, FLIP separately colors Gi

f and Gt
f . We then

generate constraints based on those colors. In the following,
we textually explain how constraints are extracted for any flow
f subject to a policy P(f) and why they are semantically
correct. As a reference for explanations, colors assigned by
FLIP for cases in Fig. 1 and 4 are reported in Fig. 5 and 6.

Node coloring. Given any graph G, with G = Gi
f or G = Gt

f ,
colors are assigned by FLIP using the following algorithm.
First, it identifies all the nodes not having a rule for f in G,
and colors them as blue. Moreover, by analyzing forwarding
paths for f in G, it assigns the yellow color to nodes that
are not part of any forwarding path (from any source of the
flow) even if they have a rule for f . For instance, in the initial
graph of Fig. 4, e is blue since it has no rule for f , as shown
by Fig. 6. Moreover, v is yellow since it has a rule for f
but it is not traversed by any path from any path from a or



w

v z

d

initial state Gi
f final state Gt

f

u v zu

P(f) = [[v, z], [z, v]]POLICY:

wd

Fig. 5. Coloring for the update scenario in Fig. 1.

w

v z

e

c b a

g lh

initial state Gi
f

final state Gt
f

POLICY:

w

v z

e

c b a

g lh

P(f) = [[a, b, c, e], [a, b, h, c, z, w], [l, g, h]]]

Fig. 6. Coloring for the update scenario in Fig. 4.

l (sources of the flow) to d. To determine other colors, FLIP
removes from G all the edges part of a satisfied policy path
for f (e.g., (v, z) in Fig. 5). Since policies must be satisfied
by any path in G, this disconnects G, separating sources and
destination into different connected components. FLIP colors
all the nodes reachable from any source as green, and all the
nodes in the connected component of the destination as white.
Consistently, Fig. 5 shows that FLIP colors u and v as green
in the initial graph, while z and w are white. By definition,
a node g is green if and only if all the paths from g to the
destination satisfy P(f). Symmetrically, a node w is white if
and only if all the paths from a source of f to w satisfy P(f).
All the nodes in a connected component that does not include
neither sources nor the destination are colored as cyan. For
example, nodes that are in the middle of a policy path (i.e.,
excluding the first and the last ones) used to satisfy P(f) from
some sources are cyan. Consistently, Fig. 6 shows that g, h,
b, c and z are cyan in Gi

f for the example in Fig. 4.

Constraint extraction from colored graphs. Starting from
node-colored graphs, FLIP extracts multiple sets of constraints
for P(f), according to Table I. In the table, we use expressions
like n < cpreds(n, f, S) instead of ∀p ∈ cpreds(n, f, S)
app(rep(n, f)) < app(rep(p, f)) for brevity.

Table I shows that FLIP does not generate constraints for
nodes which are either (i) green in both Gi

f and Gt
f , or

(ii) white in both Gi
f and Gt

f . The rationale is that those nodes
cannot be responsible for possible policy violations. Consider

green cyan white, yellow

green -
n>cpreds(n,f,Gt

f
) n>cpreds(n,f,Gt

f
)

match on n match on n

cyan
n<cpreds(n,f,Gi

f
)

enum
n>cpreds(n,f,Gt

f
)

match on n match on n

white, n<cpreds(n,f,Gi
f

) n<cpreds(n,f,Gi
f

)
-

yellow match on n match on n

n=analyzed node, f=flow, Gi
f

=initial state, Gt
f

=final state

TABLE I
FLIP CONSTRAINT EXTRACTION FOR ANY NODE n, WITH INITIAL AND

FINAL COLORS SPECIFIED BY ROWS AND COLUMNS, RESPECTIVELY. NO

CONSTRAINT IS GENERATED IF n IS BLUE IN THE INITIAL OR FINAL STATE.

a node g which is green in both Gi
f and Gt

f . By definition
of green node, P(f) has to be satisfied by successors of g in
both the initial and final state, hence updating g cannot create
policy violations. The same applies to any node w which are
white in both Gi

f and Gt
f , since P(f) has to be satisfied before

reaching w in both the initial and final state.
In contrast, some constraints are needed for nodes with

different colors in Gi
f and Gt

f . Consider, for example, any

node r which is white in Gi
f and green in Gt

f , like z in Fig. 5.
A rule replacement on r can induce a policy violation from a
given source s in Gi

f , as the initial policy path can be bypassed
via the final path from s to r (e.g., [u, z], and the final policy
path can be circumvented with the initial path from r to the
destination of the flow (e.g., [z, w, d]). To prevent this case,
we constrain the rule replacement on r to be applied before
those of all its initial crucial predecessors. This guarantees
that no source reaches r with the final path before r uses its
final rule. In our example, FLIP adds a replacement constraint
app(rep(z, f)) < app(rep(u, f)). If respected, this constraint
ensures that during the update either (i) u uses its initial rule,
and the initial, policy-compliant path is followed from u to
z; or (ii) u uses its final rule and z uses its own final rule as
well, hence the policy is satisfied after z (since it is green in
the final state). With a similar rationale, we generate a tag-
and-match constraints in which r matches tags added by its
initial and final crucial predecessors. Similar arguments apply
to other combinations of different colors in Gi

f and Gt
f .

Finally, nodes that are cyan in both Gi
f and Gt

f (like b
and c in Fig. 6) have to be treated differently. In this case,
even computing whether constraints are needed is not obvious.
Indeed, there is no simple condition to check whether switches
in the middle of a policy path can be part of paths violating
P(f) in intermediate states, since it depends on possible next-
hops of both their respective predecessors and successors. For
those nodes, FLIP enumerates paths in Gi

f ∪Gt
f that contain

at least one node which is cyan in both states. Note that this is
a sort of limited path enumeration, which is restricted on the
basis of potentially-dangerous nodes (cyan in both states) due
to complex policy paths (with more than two nodes). FLIP
then pinpoints those among the enumerated paths that violate
P(f). This way, it detects that [a, b, c, z, w, d] is a possible
forwarding path for f which violates P(f) in Fig. 4. Once a
policy-violating path V is found, FLIP generates a replacement
constraint on a specific node s, such that the sub-path of V



ending in a next-hop of s is not included in any policy path for
the considered flow. In Fig. 4, c is the constrained switch for
V = [a, b, c, z, w, d], since no policy path in P(f) starts with
[a, b, c, z]. In particular, FLIP constrains c’s rule replacement
to be applied before its crucial predecessor on V , that is b
in our case. With a similar rationale, FLIP also adds a tag-
and-match constraint in which the same switch used for the
replacement constraint (c in our example) matches and all its
crucial predecessors in both Gi

f and Gt
f tag.

C. Tracking relationships between constraints

FLIP also identifies alternative and dependent constraints.

FLIP stores constraints generated by the same potential
violation as alternative. This generalizes the intuition used in
§II to produce the operational sequence reported in Fig. 2. In
the generation of that sequence, a key observation is that the
evil loop between v and z can be broken by either (i) replacing
v’s rule before z’s one, (ii) tagging on v and matching on z,
or (iii) tagging on z and matching on v. Consistently, FLIP
records those constraints as alternative. More in general, for
every potential blackhole, loop and policy violation, the dif-
ferent constraints generated by FLIP are stored as alternative.

FLIP tracks dependencies between constraints generated
by different violations and involving the same nodes. For
example, consider again Fig. 1, and assume that the policy
is to preserve strong consistency, i.e., ensure that either the
initial path [u, v, z, w] or the final one [u, z, v, w] is followed.
A tag-and-match constraint in which v tags and z matches still
avoids the evil loop between v and z. However, if we match on
z we must also match on v to avoid paths different from both
the initial and final ones (like the one in Fig. 2(b)). Hence,
FLIP stores the tag-and-match constraint which matches on
v as dependent on the tag-and-match constraint on z. Such
a dependency is identified during the enum procedure in the
policy constraint extraction (see Table I), when considering
nodes cyan in both the initial and final state, and involved in
the same loop (like v and z in the example just discussed).

V. FLIP CONSTRAINT SWAPPING

Starting from a set of active constraints, this procedure
swaps an active constraint with one of its alternatives. Select-
ing the constraints to swap can be done in different ways. FLIP
is tailored to efficiently find a safe sequence with few matching
operations, to limit the memory overhead of the update.

FLIP always swaps replacement constraints with tag-and-
match ones, never the opposite. This means that replacement
constraints are never added back, i.e., swapping a replacement
constraint translates into permanently discarding it. This strat-
egy is guaranteed to eventually converge because all matching
constraints are set as active in an extreme case. Also, it implies
that FLIP is complete. Indeed, FLIP always finds a solution to
its input problems since it falls back to the always-applicable
two-phase commit approach [18] in the worst case.

At each invocation of the constraint swapping procedure, we
select constraints to be swapped using a heuristic targeted to

quickly find a solvable set of constraints. Indeed, FLIP selects
a pair of constraints (R,M), where R is the replacement
constraint to be swapped with the M tag-and-match one,
in such a way that (i) R is in an Irreducible Infeasible
Set [2], a minimal set of active constraints that cannot be
satisfied simultaneously; and (ii) M has the minimal number
of dependent constraints among alternatives for R.

After having selected the pair of constraints (R,M) to be
swapped, FLIP updates all active constraints to take into ac-
count the effect of the swap. First, it removes any replacement
constraint R′ that has M as alternative from the set of active
constraints: Indeed, the potential incorrectnesses that R′ is
meant to avoid are now prevented by M . Second, FLIP adds
all M ’s dependencies to the set of active constraints, i.e.,
respecting the definition of dependent constraints (see §IV).
Third, FLIP rewrites existing replacement constraints. Let r
be the switch matching in M . For each replacement constraint
C = app(rep(x, f)) < app(rep(r, f)), FLIP replaces C with
a set of constraints C ′

i = app(rep(x, f)) < app(rep(y, f)) for
every crucial predecessor y of r. This is needed to preserve the
semantics of C after we have decided that switch r will have
to match. Indeed, applying a matching operation to r implies
that r uses its initial or final rule depending on the tag in the
traversing packets. Since the original intent for constraint C
was to prevent r from using its final rule if x was still using its
initial one, we need to transfer C on the crucial predecessors
of r, which add tags to packets. With the rewritten constraints
C ′

i, we indeed impose that the final rule is installed on x
before one of the crucial predecessors of r installs its final rule
(and adding final tags), therefore indirectly forcing r to use
its final rule too. We apply a similar rewriting for constraints
app(rep(x, f)) > app(rep(r, f)).

An example of constraint swapping for the case in Fig. 1 is
reported in Fig. 7. This constraint swap leads to the solution
displayed in Fig. 2. In the figure, the first set of constraints (top
left of the figure) is the one extracted by FLIP from the original
update problem. Initially, all and only replacement constraints
are active. This translates to an infeasible LP, where rx
stands for app(rep(x, fu,d)), with x = u, v, z. The swapping
procedure selects app(rep(v, fu,d)) < app(rep(z, fu,d)) as
constraint to be swapped, since it is in the set of contradictory
constraints. Hence, it updates the set of active constraints by
removing the constraint to be swapped and adding one of its
alternatives, namely match on z. Further, app(rep(z, fu,d)) <
app(rep(u, fu,d)) is also removed from the active constraints,
since match on z was an alternative to it. No other constraint
is added or modified because match on z does not have
dependencies and z is not involved in any other replacement
constraint. The LP deriving from the new set of active con-
straints is shown in the bottom right part of the figure. In
this LP, rz > ru, rv, rw derives from the formalization of the
match-and-tag constraints on z, as discussed in §III-C. Note
that match on z also implies other constraints, imposing that
tag(v, fu,d, τ) and match(z, fu,d, τ, ∅) have to be in the first
update step. Since they do not impose constraints on any other
operation, FLIP does not include them into the LP but post-



app(rep(v, fu,d)) < app(rep(z, fu,d))loop (v, z)

app(rep(u, fu,d)) < app(rep(v, fu,d))

active constraints

policy P

alternatives

rv < rz
ru < rv

min ru + rv + rz + rw

ru, rv, rz, rw integerapp(rep(z, fu,d)) < app(rep(u, fu,d))

match on z

match on v

match on v

match on z

cause

LPconstraints

swap app(rep(v, fu,d)) < app(rep(z, fu,d))

rz < ru

loop (v, z)

app(rep(u, fu,d)) < app(rep(v, fu,d))

active constraints

policy P

alternatives

match on z

match on v

cause
ru < rv

min ru + rv + rz + rw

ru, rv, rz, rw integer
rz > ru, rv, rw

with match on z

Fig. 7. A constraint swapping solving the scenario in Fig. 1.

processes the LP solution by simply adding those operations
to the very first element of the returned sequence.

VI. EVALUATION

We evaluate FLIP by performing 50, 000 experiments. In
each experiment, we generate an update problem on which
we run our FLIP implementation, available at [21]. We verify
that the operational sequence computed by FLIP is correct
by simulating its application to the corresponding network.
To this end, we apply one operation at the time, following
the sequence generated by FLIP, and we check forwarding
correctness and policy preservation after each operation. For
efficiency reason, we apply operations in the same step in
a random order rather than simulating all possible permuta-
tions. While this can theoretically lead to false positives (i.e.,
sequences accidentally considered correct), the sheer number
of experiments provides statistical confidence on the absence
of false positives. We focus on single-flow updates, since FLIP
works on a per-flow basis (see Fig. 3).

As dataset, we use the publicly-available Rocketfuel topolo-
gies [19]. We select uniformly at random a node as destination,
and a random 10% of the nodes as sources. All the equal-cost
(ECMP) shortest paths from any node to the destination in
the original topology are taken as the initial state. To simulate
significant forwarding changes, we then pick 80% of the links
at random, and replace their weight with a value chosen uni-
formly at random among the weights of the original topology.
The ECMP shortest paths in the reweighted graph constitute
the final state. Finally, we add random policies so that every
path from a source to the destination is compliant with at least
one policy. We choose non-trivial policies composed of paths
longer than 2 nodes, to show FLIP’s support for more complex
policies than single-node traversal ones considered by [11].

FLIP always computes safe updates and prevents any possi-
ble blackhole, evil loop or policy violation in each and every
experiment. FLIP’s 100% success rate marks an important
difference with previous techniques based on ordered rule
replacement, e.g., [13]. Those techniques can preserve policies
only by ensuring strong consistency, i.e., using either the initial
or the final paths for each flow. We run an exhaustive search
approach to compute the number of cases in which strong
consistency can be guaranteed by ordered rule replacements.

Results are displayed in Fig. 8(a). They show that ordered
replacement techniques cannot find an operational sequence in
more than ≈ 25% of the experiments on any topology. Even
worse, their success rate greatly depends on the specific topol-
ogy, and larger topologies (e.g., 1239) are virtually impossible
to tackle. In contrast, FLIP finds a safe sequence in all our
update scenarios. This is because FLIP explores a much larger
solution space, including operational sequences tailored to
guarantee the input policy (rather than strong consistency) and
combining rule replacements with match-and-tag operations
(rather than restricting to the former ones).

FLIP hugely reduces the number of added rules. The 99.9th

percentile of additional rules is 8.7% of the total number
of rules, that is, one rule has to be added for 8.7% of the
nodes. We now compare FLIP’s overhead with the one of
two-phase commit techniques [18]. For each experiment, we
compute the number NDUP of additional rules added by [18],
the number NFLIP of additional rules added by FLIP. We
compare those numbers, calculating the percentage of saved
rules as NDUP−NFLIP

NDUP
× 100. To be fair, we assumed that the

two-phase commit approach does not match on nodes with
the same next-hops in the initial and final states, as suggested
in [18] to reduce the number of additional rules. Fig. 8(b)
shows the Cumulative CDF of the results. A data point (x, y)
on the plot indicates that, for a fraction y of the experiments,
FLIP saved at least x% of the flow rules that would be used
by [18]. Across all topologies, the figure highlights that in

98% of the experiments (y = 0.98) FLIP saves at least

94% (x = 94) of the rules added by [18]. Across all our
experiments, at least 87.8% of the rules are saved by FLIP.

FLIP’s savings are fundamentally different from those of
previous variants of two-phase commit techniques. Promi-
nently, [7] proposes to reduce the update overhead by updating
groups of flows in different rounds. In contrast to FLIP, this
workaround does not avoid rule additions, but only distributes
them over time. Moreover, it degenerates to [18] in our
experiments, since a single flow is updated in them.

FLIP computes fast updates. In all our experiments, the
median number of update steps is 5, the 95th percentile is
8, and the 99.9th percentile 12. This distribution does not vary
significantly across different topologies. The only exception
is represented by 1221, the smallest topology, where FLIP’s
sequences have less than 4 steps in 95% of the experiments.

FLIP often terminates in sub-seconds. FLIP’s median exe-
cution time across all our experiments is 0.176 seconds when
run on a commodity server (8-core 2.66GHz CPU1 and 16
GB of RAM). Moreover, 94% of the instances are solved
in less than 1 second, and 99% in less than 4 seconds. The
topology showing the worst performance is 1239, the largest
one, where the 95th percentile of the execution time was 3.38
seconds and the 99th was 15 seconds. Those results show
that FLIP readily supports realistic SDN-update scenarios,

1Our FLIP implementation is single-threaded, but the used LP solver
libraries rely on parallel code



Topology

%
 o

f 
so

lv
e

d
 in

st
a

n
ce

s

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

1221 1239 1755 3257 3967 6461

ordered replacement FLIP

(a) Success rate of FLIP and of ordered replacement
techniques like [13].

90 92 94 96 98 100

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

Percentage of flow rules saved

C
C

D
F

1221
1239
1755
3257
3967
6461

(b) Additional rules that FLIP saves relatively to two-phase
commit techniques like [18], [6].

Fig. 8. Comparison between FLIP and state-of-the-art approaches.

ranging from accommodation of new policy changes to online
traffic engineering (typically performed at the timescale of few
minutes [4]) and pre-computation of failure reaction.

VII. CONCLUSIONS

In this paper, we present FLIP, an algorithm to compute
operational sequences for safe updates of SDN networks. By
design, FLIP enables updates that preserve both forwarding
correctness and forwarding policies. Thanks to its novel way
to systematically combine rule replacements and additions,
FLIP’s updates are fast and lightweight. Indeed, as shown by
our extensive simulations, they tend to terminate in a very
limited number of steps and with minimal overhead on the
memory of the switches. Our evaluation also shows that FLIP
outperforms previous approaches: In our experiments, it saves
more than 90% of the additional rules needed by two-phase
commit techniques, and supports 90% more update scenarios
than ordered replacement ones.

The model that FLIP uses to reason about the dualism
between rule replacement and additions makes FLIP exten-
sible. For instance, FLIP can easily support domain-specific
constraints such as memory restrictions on specific switches.
We indeed successfully tested one of such cases, in which we
prevented any rule addition on a specific switch by manually
injecting an additional constraint to FLIP’s model. As future
work, we plan to provide better support for domain-specific
constraints, and to investigate FLIP’s extensions for additional
types of operations (e.g., time-based rule modifications [15]).

ACKNOWLEDGEMENTS

This work has been partially supported by ARC grant 13/18-
054 from Communauté française de Belgique.

REFERENCES

[1] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou. A Roadmap for
Traffic Engineering in SDN-OpenFlow Networks. Computer Network,
71:1–30, 2014.

[2] J. W. Chinneck. Feasibility and Infeasibility in Optimization: Algorithms
and Computational Methods. Springer, 2007.

[3] S. Ghorbani and M. Caesar. Walk the line: Consistent network updates
with bandwidth guarantees. In HotSDN, 2012.

[4] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois. A Declarative and Expressive Approach
to Control Forwarding Paths in Carrier-Grade Networks. In SIGCOMM,
2015.

[5] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving High Utilization with Software-driven
WAN. In SIGCOMM, 2013.

[6] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic Scheduling of Network
Updates. In SIGCOMM, 2014.

[7] N. P. Katta, J. Rexford, and D. Walker. Incremental Consistent Updates.
In HotSDN, 2013.

[8] M. Kuzniar, P. Peresini, and D. Kostić. Providing Reliable FIB Update
Acknowledgments in SDN. In CoNEXT, 2014.

[9] A. Liu, C. Meiners, and E. Torng. TCAM Razor: A Systematic Ap-
proach Towards Minimizing Packet Classifiers in TCAMs. IEEE/ACM
Transactions on Networking, 18(2):490–500, April 2010.

[10] H. Liu, X. Wu, M. Zhang, L.Yuan, R. Wattenhofer, and D. Maltz. zUp-
date: Updating Data Center Networks with Zero Loss. In SIGCOMM,
2013.

[11] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good Network
Updates for Bad Packets: Waypoint Enforcement Beyond Destination-
Based Routing Policies. In HotNets, 2014.

[12] R. Mahajan and R. Wattenhofer. On Consistent Updates in Software
Defined Networks. In HotNets, 2013.

[13] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient Synthesis of
Network Updates. In PLDI, 2015.

[14] R. McGeer. A Safe, Efficient Update Protocol for Openflow Networks.
In HotSDN, 2012.

[15] T. Mizrahi, O. Rottenstreich, and Y. Moses. TimeFlip: Scheduling
Network Updates with Timestamp-based TCAM Ranges. In INFOCOM,
2015.

[16] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying Middlebox Policy Enforcement Using SDN. In SIGCOMM, 2013.

[17] M. Reitblatt, M. Canini, A. Guha, and N. Foster. FatTire: Declarative
Fault Tolerance for Software-defined Networks. In HotSDN, 2013.

[18] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, 2012.

[19] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In SIGCOMM, 2002.

[20] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure.
Seamless Network-Wide IGP Migrations. In SIGCOMM, 2011.

[21] S. Vissicchio. FLIP Web site. http://inl.info.ucl.ac.be/softwares/flip.
[22] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Vanbever.

On the Co-Existence of Distributed and Centralized Routing Control-
Planes. In INFOCOM, 2015.


