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Haemodynamics-based neuroimaging is widely used to study brain function. Regional blood flow
changes characteristic of neurovascular coupling provide an important marker of neuronal activation.
However, changes in systemic physiological parameters such as blood pressure and concentration of CO2

can also affect regional blood flow and may confound haemodynamics-based neuroimaging. Measure-
ments with functional near-infrared spectroscopy (fNIRS) may additionally be confounded by blood flow
and oxygenation changes in extracerebral tissue layers. Here we investigate these confounds using an
extended version of an existing computational model of cerebral physiology, ‘BrainSignals’. Our results
show that confounding from systemic physiological factors is able to produce misleading haemodynamic
responses in both positive and negative directions. By applying the model to data from previous fNIRS
studies, we demonstrate that such potentially deceptive responses can indeed occur in at least some
experimental scenarios. It is therefore important to record the major potential confounders in the course
of fNIRS experiments. Our model may then allow the observed behaviour to be attributed among the
potential causes and hence reduce identification errors.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Neuroimaging techniques relying on changes in tissue hae-
modynamics and oxygenation, such as functional near-infrared
spectroscopy (fNIRS) and blood oxygen level dependent (BOLD)
based functional magnetic resonance imaging (fMRI), have been
widely and productively used to investigate cerebral function.
Regional haemodynamic changes provide a marker of neuronal
activation due to tight neurovascular coupling (Logothetis et al.,
2001; Gagnon et al., 2015; Weber, 2015).

It is well known that a variety of systemic physiological factors
also significantly affect cerebral blood flow (Rostrup et al., 2002;
Ainslie and Duffin, 2009; Battisti-Charbonney et al., 2011; Sobczyk
et al., 2016). Changes to these factors can occur in the course of
functional experiments. Such changes may, of course, be unrelated
to the experimental procedure, but may also arise more system-
atically (Tachtsidis and Scholkmann, 2016). For example, task-
evoked changes in mean blood pressure have been demonstrated
Inc. This is an open access article

).
in protocols including anagram solving (Tachtsidis et al., 2009),
visual stimulation (Minati et al., 2009) and video gaming (Tacht-
sidis and Papaioannou, 2013). Similarly, changes to blood CO2

concentration have been observed in tasks involving speaking
(Scholkmann et al., 2013a) and mental arithmetic (Scholkmann
et al., 2013b). In the case of fNIRS, there is further scope for con-
founds arising from haemodynamic/oxygenation changes in the
extracerebral compartment of the head. Near-infrared light passes
through the overlying scalp and skull tissue layers in order to in-
terrogate the cerebral tissues underneath, and significant optical
absorption and scattering can occur in these layers (Franceschini
et al., 1998; Kirilina et al., 2012; Erdoğan et al., 2014).

It is important to understand and account for such potential
confounds in order to reach reliable conclusions (Minati et al.,
2011; Scholkmann et al., 2014b; Tachtsidis and Scholkmann, 2016).
Numerous approaches have been proposed, ranging from purely
statistical signal processing to biophysical modelling at various
levels of detail.

Statistical models rest on the identification of shared varia-
tional relationships between different contributory elements in
the measured signals. Importantly, systemic factors such as blood
pressure and heart rate, along with contaminant estimators such
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Main structure of the BSX model. Model inputs are represented as circles,
the main dynamic compartments as rectangles and outputs as ellipses. Two distinct
NIRS outputs are simulated: haemoglobin-based measurements (labelled Hb), es-
timated from the blood flow compartments, and measurements of the cytochrome
c oxidase redox state (labelled CCO), estimated from the metabolic model. Elements
shown in orange are new to BSX, while those in blue are modified from the pre-
viously published model B1M2 in Caldwell et al. (2015). The remaining elements
are adopted unchanged. (A more detailed diagram showing the relationships be-
tween all variables and parameters in the model can be found in Supplementary
Fig. 1.).
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as fNIRS recordings with short channel separations, may be in-
cluded as additional regressors (Saager et al., 2011; Gagnon et al.,
2012; Goodwin et al., 2014; Brigadoi and Cooper, 2015; Yücel et al.,
2015).

In contrast, biophysical modelling approaches constrain system
behaviour based on knowledge of the underlying physiology.
Cerebral haemodynamics are affected by both active regulation
and the passive biomechanics of the blood vessels and surround-
ing tissue, in turn constrained by the rigid enclosure of the skull
(Zhang, 2002; Hu et al., 2006; Tzeng and Ainslie, 2013; Ainslie,
2014). Interactions between these elements and the response to
neuronal activation are complex (e.g. (Maggio et al., 2014)) and
have been modelled in numerous ways.

The system is usually considered as one or more conductive
compartments that offer some resistance to flow and have some
capacity to distend. A convenient analogy is to an electrical circuit,
with blood flow corresponding to electrical current through re-
sistors and volume to charge stored on capacitors. The Balloon
(Buxton et al., 1998; Friston et al., 2000; Buxton et al., 2004) and
Windkessel (Mandeville et al., 1999; Olufsen et al., 2002; Boas
et al., 2003) models are archetypes of this form. Resistances and
capacitances are not fixed and may have functional dependencies
on flow, volume and other stimuli. An important foundation for
treatments of the latter is the Ursino-Lodi family of models (Ursino
and Lodi, 1997, 1998; Ursino et al., 2000), which are based on si-
milar principles to the Balloon and Windkessel models but include
influences from systemic factors such as blood pressure and blood
CO2 concentration, as well as the production and reabsorption of
cerebrospinal fluid. These models originate in the study of auto-
regulation and intracranial pressure rather than neuroimaging.

Modelled haemodynamics relate to fNIRS data via the quan-
tities of marker species, particularly oxyhaemoglobin (HbO2) and
deoxyhaemoglobin (HHb), present in the imaged volume. The
amounts of each change with blood flow in and out of the tissue
and also with oxygen diffusion and consumption. Typically fNIRS-
oriented models treat the imaged tissue as effectively homo-
genous, simply estimating the NIRS measurements from relative
blood volume, but there have been a number of attempts to give a
more detailed characterisation of the relationships between blood
flow, tissue oxygenation and the optical signals (Fantini, 2002,
2013, 2014; Diamond et al., 2006, 2009).

In this paper we use a modified version of the BrainSignals
biophysical model (Banaji et al., 2008; Caldwell et al., 2015) to
investigate confounding by systemic and extracerebral factors,
with particular reference to the issue of misleading ‘false positive’
results, which have the appearance of activation when in fact none
occurred, and ‘false negative’ results, which do not show evidence
of activation even though it was actually present (Tachtsidis and
Scholkmann, 2016). The existing model, a simplified descendant of
the earlier BrainCirc (Banaji et al., 2005), addresses the cerebral
compartment only. It incorporates both a haemodynamic compo-
nent that models autoregulation and CO2 reactivity (drawing on
(Ursino and Lodi, 1998)) and a model of a portion of the mi-
tochondrial metabolism (drawing on (Korzeniewski and Zoladz,
2001)) to model oxygen consumption. Here we extend this with
an additional compartment to model scalp haemodynamics.

The purpose of the joint model is to provide a tool by which the
potential contributions to measured fNIRS signals can be under-
stood and to assist the interpretation of experimental data that
may be subject to confounding. This is in contrast to more ‘model-
free’ denoising approaches, in which the systemic factors are di-
rectly regressed out of the measurements. While these approaches
can be very successful (Saager and Berger, 2005; Tachtsidis et al.,
2010b; Gagnon et al., 2014b), the implicit assumption that con-
founds map linearly to fNIRS artefacts may fail to capture more
complex or interacting effects. Moreover, if the systemic changes
are correlated to the cerebral activation there is a risk that some of
the functional brain activity may be regressed out along with
systemic contributions. A more explicit modelling approach allows
the inclusion and exploration of key interactions governing system
behaviour from known physiology. As the relationship between
fNIRS measurements and systemic physiological parameters is
often non-linear and non-stationary, this approach allows a better
description of this complexity. In addition to providing a tool of
data integration and denoising, this approach provides a test base
platform for computational simulation investigations of various
physiological scenarios such as the ones presented in this paper.
2. Methods

2.1. Modelling

The model used here, termed BSX (from BrainSignals eX-
tended), derives from earlier models described in Caldwell et al.
(2015) and Banaji et al. (2008). The overall structure shared by all
these models is depicted in Fig. 1. There are two main interacting
functional compartments: a haemodynamic compartment re-
presenting blood flow and oxygen delivery to the brain tissue, and
a metabolic compartment, representing oxygen consumption in
the neuronal mitochondria. There are important feedback re-
lationships between the two compartments, since metabolism
depends on the supply of O2, while O2 concentration and meta-
bolic demand are among the modulators of blood flow. The state
variables in the two compartments are used to predict NIRS
measurements of haemoglobin and cytochrome c oxidase (CCO).

In the haemodynamic compartment, blood flow is driven by,
and regulated in response to three systemic inputs—mean arterial
pressure (Pa), arterial partial pressure of carbon dioxide ( P COa 2)
and arterial oxygen saturation ( S Oa 2)—together with an explicit
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control parameter (u) representing relative metabolic demand.
The latter may be increased to represent functional activation. The
regulatory effects of the inputs follow the normal physiological
responses: cerebral autoregulation to maintain blood flow as
pressure varies, vasoconstriction and vasodilation in response to
CO2 and O2 changes. The blood flow modelling is dynamic, but
does not attempt to capture fast (intra-beat) behaviour in any
detail—this is reflected in the use of mean pressure as an input
rather than the full pressure waveform. The input signals are not
independently modelled—if not specified they remain at constant
default values—so the model does not spontaneously produce
behaviour such as slow pressure oscillations.

In the metabolic compartment, activity centres on a sequence
of three redox reactions at the end of the mitochondrial electron
transport chain, which may be limited by the oxygen supply. Im-
portantly, the demand parameter u also affects these reactions via
an influence on the electrochemical gradient for protons across the
inner mitochondrial membrane.

The earlier publications described a number of variants within
this overall structure, with the different elements represented in
somewhat greater or lesser detail. BSX is largely based on the
variant denoted B1M2 in Caldwell et al. (2015). In that variant,
some of the biomechanical terms underlying the regulation of
blood flow were substituted with a fitted linear model. This sub-
stitution is retained in BSX because it correctly reproduces the
required behaviour in a tractable form (Fig. 2). However, the other
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correspond well with those of BrainSignals for the first three inputs, but the responses to
are important for modelling functional activation, the metabolic submodel in BSX has b
simplification made in that version, to the metabolic submodel,
did not produce the correct responses to variations in the demand
parameter u (Fig. 2, right hand column). Since this is an important
factor in the coupling between neuronal activity and blood flow,
that modification was revised for BSX to produce the desired
behaviour.

The core reactions of the metabolic submodel are those by
which electrons are transferred (1) from a reducing substrate to
the CuA centre of CCO; (2) from CuA to the a3 centre; and finally (3)
to O2. Each of these reactions has an associated rate (denoted f1, f2
and f3, respectively) and these rates jointly determine the overall
rate of oxygen consumption and energy production. Each rate
depends on the availability of the electron donor and acceptor
species for the reaction. Since the reactions entail the transfer of
protons out of the mitochondrial matrix, the rates are also
modulated by the proton motive force, Δp. For the BSX metabolic
submodel, we define the rates using the following linear relations:
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The coefficients λ(·) represent the level of dependence on each
variable, with the intercept λ (·)f representing the level independent
of those influences. Note that the other variables have a non-zero
contribution at baseline, so the intercept is not itself the baseline
rate. All three rates include an indirect dependence on u via Δp.
We have omitted a dependence on substrate supply on the as-
sumption that it is not limiting; this should be reasonable for
functional experiments with healthy volunteers. Coefficients were
fitted as in Caldwell et al. (2015), but using expanded simulation
data that included more extensive sampling of variations in u; for
consistency, the unmodified parts of the model were also refitted
from this data.

As shown in Fig. 2, the new model closely approximates
BrainSignals behaviour for changes in u, as well as retaining the
earlier version's simulation of responses to the other model inputs.

Scalp blood flow is known to vary with a number of factors,
including cardiac output, ambient temperature, blood CO2 con-
centration and, most strongly, sympathetic nervous system (SNS)
activity (Low et al., 1983; Khan et al., 1991; Drummond, 1991, 1996,
1997; Kashima et al., 2012). A degree of blood pressure auto-
regulation may occur, but much more weakly than in the cerebral
vasculature (Wilson et al., 2005). Flow is not directly related to
neural activity, although there may be indirect effects via the SNS,
for example if the functional task is challenging or stressful
(Kenney and Johnson, 1992; Hirasawa et al., 2015). A detailed
model of scalp behaviour would need to account for many or all of
these factors. However, the underlying processes are poorly un-
derstood and we do not in general have a sound basis for for-
mulating or parameterising such a model. Moreover, doing so
would certainly increase the data requirements of the model and
place a greater burden on fNIRS experimenters.

In practice, the purpose of our modelling is not to predict scalp
blood flow from first principles. Rather, we wish to estimate the
contribution of that flow, regardless of its underlying causes, to the
fNIRS signals. To do so we make a number of simplifying
assumptions.

The scalp is modelled as a separate tissue compartment in
parallel to the brain. Blood flow through this compartment is as-
sumed to be dependent on a subset of the same systemic variables
as the cerebral compartment, but conditionally independent of it
—that is, behaviour of the cerebral compartment does not influ-
ence behaviour of the scalp compartment, and vice versa.

The relationships between pressure, flow and volume take a
Windkessel-like form. Flow is assumed to be driven by pressure, P,
across a variable conductance, G, with a relationship analogous to
Ohm's Law:

= ( )F PG 4

The conductance, G, is assumed to be determined by blood vessel
geometry, with the bulk of the resistance—and all its variability—
exerted in the arterial/arteriolar vessels. This resistance is ex-
pressed in terms of a characteristic vessel radius, r, whose effect
goes by Poiseuille's Law:

∝ ( )G r 54

We assume that the overall volume of arterial blood in the tissue,
Va, scales according to the vessel cross-sectional area:

∝ ( )V r 6a
2

The venous vessels, conversely, are assumed to contribute a rela-
tively small fixed resistance, but function primarily as a volume
store via the portion of the blood pressure, Pv, acting over a con-
stant venous compliance Cv:

= ( )V P C 7v v v
This venous pressure, and consequently the volume of venous
blood, varies over time with the applied systemic arterial pressure
and the overall conductance.
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We assume that the scalp arterial pressure is the same as the
systemic arterial pressure Pa and that the post-venous pressure is
negligible. Venous compliance is based on an estimate from Olsen
and Länne (1998). A control parameter, Volc frac, , specifies how
much of the baseline venous volume is due to compliance. A
second control parameter, Rfrac v, , is used to specify the fraction of
overall vascular resistance we expect to reside in the venous
compartment at baseline. By default both parameters are set to 0.1
(10%). In practice, the dynamic behaviour of the model is relatively
insensitive to these values provided that the general scale as-
sumptions are preserved—i.e., ≪P Pv a.

In order to calculate G, we require an estimate of the blood flow
F. We adopt two distinct approaches for F, depending on the in-
strumental data available.

In the case where we do not have a direct measure of flow, we
make the assumption that the flow is directly dependent on the
pressure via the linear relation

λ λ= + ( )F P 9x F F ax x p,

We refer to this as the ‘pressure-based’ scalp model, and add the
subscript x to distinguish variables and parameters specific to it.
This is clearly a very substantial simplification relative to the
possible driving factors discussed above and we would expect to
produce only a partial approximation of the true flow. Never-
theless it captures at least some of the scalp susceptibility to
systemic drivers without adding to the data burden, since Pa is
already required by the scalp model. Additional systemic variables
could be added to this model if sufficient data were available for
parameterisation. In this case, the parameters λFx and λFx p, were
determined by fitting the linear model to experimental data
published in Gagnon et al. (2014a).

The second approach applies when scalp flow has been mea-
sured by laser Doppler (LD) as part of the experimental protocol.
The LD measurement, often referred to as ‘flux’, does not provide
an absolute measure of flow, so for the purposes of the model it is
normalised to an initial baseline level determined from the data.
We assume the resulting quantity represents flow changes, such
that an estimate of flow can be obtained by multiplication with a
‘normal’ value:

= × ( )F Flux F 10y y y n,

We refer to this as the ‘flux-based’ scalp model, and use the sub-
script y to distinguish its variables and parameters. The normalised
value, Fluxy, is added as a new model input, while the normal
value, Fy n, , is a parameter. For the purposes of simulations in this
paper, we have chosen a value that matches the baseline value
arising from the fit of the pressure-based model. This simplifies
comparison between the models, but may be a source of errors in
the predictions from individual data.

No attempt is made to model metabolism in the scalp com-
partment and oxygen consumption is assumed to be fixed. Arterial
and venous volumes are considered homogenous, with no spatial
variation or transit time. Oxygen saturation throughout the arterial
volume is assumed equal to the systemic arterial saturation, while
venous saturation is equal to the baseline venous saturation of the
cerebral model. Both arterial and venous volumes are normalised
to a reference volume such that at baseline conditions the total
volume is 1 and the venous-arterial ratio is at a set level, by default
3:1. Variations in both volumes are used to estimate the NIRS
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haemoglobin outputs HHb and HbO2 by scaling for haemotocrit
and blood vessel density. These parameters are set to be consistent
with those in the cerebral model.

To represent the effect of extracerebral confounding for the
NIRS signals, we add new merged HbO2 and HHb outputs, which
are simply a weighted sum of the corresponding outputs from the
cerebral and scalp models. These are primarily for use during
model optimisation for ‘false negative’ and ‘false positive’ scenar-
ios (Section 3.2) and do not affect the model behaviour. Separate
NIRS signals for each compartment are also generated, and these
are used in analysis and attribution of experimental data in Sec-
tions 3.3 and 3.4.

All models were implemented using the Brain/Circulation
Model Developer (BCMD) environment (https://github.com/bcmd/
BCMD). The complete model definition in textual form, with all
equations and parameters, is provided in Supplementary Data 1,
and its structure depicted graphically in Supplementary Fig. 1.
Model implementation files, data files and the scripts used for
analysis are freely available from http://dx.doi.org/10.5281/zeno
do.56569.
Table 1
Systemic input variable ranges for simulations. Step inputs in Fig. 3 are from the
baseline to the upper bound of each range.

Input Description Units Baseline Lower Upper

Pa Mean arterial pressure mmHg 100 75 125
P COa 2 Partial pressure of CO2 mmHg 40 37.5 42.5
S Oa 2 Arterial oxygen saturation % 96 90 100n

u Demand – 1.0 0.75 1.25
Fluxy Normalised LD flux – 1.0 0.75 1.25

n Spontaneous increase in arterial saturation was deemed implausible in ty-
pical functional activation experiments, so the baseline value of 96% was used as
the upper bound when optimising this parameter for the scenarios in Fig. 5.
2.2. fNIRS data

The model was applied to example functional NIRS data drawn
from earlier studies by Kolyva et al. (2012) and Scholkmann et al.
(2013a). Here we summarise the salient experimental features; for
more detailed descriptions of the methods, see the cited papers.

In the 2012 study, 11 healthy adult subjects attempted to solve
a sequence of anagrams presented on computer screen, without
verbalising their answers. The active period of the task was 6 min,
with 2 min baseline recording before and after. Arterial blood
pressure and heart rate were measured with a Portapres monitor
(Finapres Medical Systems, Netherlands), and scalp blood flow
with a laser Doppler probe (Moor Instruments, UK) placed on the
forehead. NIRS data were recorded using a custom hybrid optical
spectrometer including both frequency domain (FD) and broad-
band components (Tachtsidis et al., 2010a). The broadband chan-
nels included source–detector separations of 2.0, 2.5, 3.0 and
3.5 cm, while the FD used only 3.0 and 3.5 cm. Optodes were
placed on the right side of the forehead, over prefrontal cortex,
region Fp2 in the 10–20 placement system. Relative tissue con-
centrations of oxygenated and deoxygenated haemoglobin (ΔHbO2

and ΔHHb) were fitted from the NIRS measurements with the
UCLn algorithm (Matcher et al., 1995). All data were resampled to a
uniform sampling interval of 3 s.

The 2013 data were obtained from 24 healthy adult subjects
performing (on separate days) 3 different speech tasks and one
mental arithmetic task. Tasks were performed for two 5 min per-
iods, with an initial baseline recording period of 8 min, a 5 min
recovery interval between the two task periods, and final recovery
period of 20 min. Heart rate was recorded with a Medilog AR12
Plus monitor (Schiller AG, Switzerland) and P COet 2 with a Nellcor
N1000 gas analyser (Covidien Medtronic, MN, USA). NIRS data
were recorded with an OxiplexTS FD spectrometer (ISS, IL, USA).
Optodes were placed on both right and left sides of the forehead,
in 10–20 placement regions Fp2–4 and Fp1–3 respectively, with
source–detector separations of 2.0, 2.5, 3.0 and 4.0 cm. Hae-
moglobin signals were calculated in the OxiplexTS software using
the frequency domain multi-distance method (Hueber et al.,
2001). The multi-distance geometry was also used to compensate
for confounding from superficial layers (Franceschini et al., 1998;
Choi et al., 2004) and to reduce movement artefacts (Scholkmann
et al., 2014c).
2.3. Signal processing and data analysis

Model simulations based on synthetic input data were run with
an output sampling rate of 1 Hz and no filtering was performed on
the generated signals. Systemic and NIRS data from Scholkmann
et al. (2013a) were supplied in group averaged form at a sampling
interval of 1 min. This was upsampled to 1 Hz by linear inter-
polation. Model outputs were again generated at 1 Hz and not
post-filtered. Systemic and NIRS data from Kolyva et al. (2012)
were provided at a sampling interval of 3 s. These were not re-
sampled and model outputs were generated at the same 3 s in-
terval. In the original 2012 analysis these data were smoothed
with a 1 min sliding window average, which also served to reduce
a prominent Mayer wave component at ∼0.1 Hz (Julien, 2006).
Both for consistency with the original data and because this
component could obscure underlying functional responses in
some records, the same 1 min moving average smoothing was
applied to model outputs for these data sets. Of the 11 subjects
recorded in the original study, 3 were excluded because systemic
data were not recorded. In contrast to the original analysis, sub-
jects were not excluded based on the absence of an identifiable
functional activation response.

Laser Doppler flux measurements were normalised to a base-
line calculated as the median value during the initial 2 min re-
cording period prior to the start of the anagram task. Dynamic
Time Warping was performed using the R dtw package (Giorgino,
2009). Model optimisation for false positives and false negatives
was done using the Galileo genetic algorithm in OpenOpt (http://
openopt.org) via the batch facilities of BCMD. A model extension to
generate the step inputs was implemented for this purpose; this
extension and the accompanying optimisation scripts are included
with the model distribution (http://dx.doi.org/10.5281/zenodo.
56569). Attribution of NIRS signals to the brain and scalp com-
ponents was performed using the optim function in R to minimise
the Euclidean error, imposing non-negativity constraints with the
L-BFGS-B method.

All new data analysis, signal processing and plotting was per-
formed in R (Team, 2013). Experimental data from Scholkmann
et al. (2013a) and Kolyva et al. (2012) had previously been pro-
cessed using equivalent methods in Matlab (Mathworks, Natick,
MA, USA). Figures were assembled in Illustrator CC 2015 (Adobe,
San Jose, CA, USA) and the text was prepared using LATEX (http://
tug.org).
3. Results

3.1. Simulations with synthetic data

BSX (Fig. 1) defines five input variables to represent systemic
factors. These are listed in Table 1, together with their baseline
values and the range of values admitted in our simulations as

https://github.com/bcmd/BCMD
https://github.com/bcmd/BCMD
dx.doi.org/10.5281/zenodo.56569
dx.doi.org/10.5281/zenodo.56569
http://openopt.org
http://openopt.org
http://dx.doi.org/10.5281/zenodo.56569
http://dx.doi.org/10.5281/zenodo.56569
http://tug.org
http://tug.org


M. Caldwell et al. / NeuroImage 143 (2016) 91–10596
‘normal’.
To illustrate the basic responses of the different model com-

partments, the model was first driven with synthetic inputs con-
sisting of isolated step changes in each of the systemic variables.
Such changes are non-physiological but provide a useful reductive
test of model behaviour. In each case, the input variable was
stepped from the baseline to the upper level listed in Table 1, and
then back to the baseline. Plots of the resulting changes in HbO2

and HHb are shown in Fig. 3.
The responses to the stimuli reflect the different features of the

models. In the cerebral model, a change in blood pressure is
quickly compensated by autoregulation, which decreases con-
ductance to reduce flow. This results in a reduction in arterial
volume and hence a relative decrease in HbO2. The increases in u
and P COa 2 both drive an increase in conductance, with some delay,
which then reduces again more slowly as the increased flow leads
to a rise in tissue oxygen. A saturation increase appears in the
simulated NIRS immediately, since the arterial vessels are assumed
all to be at the same saturation, but again the conductance is
slowly reduced in response to increasing tissue oxygen until
supply and demand are in balance.

Since the scalp models do not include any regulation, their time
courses are simpler. Saturation changes again appear immediately,
producing a simple step response. Flux and pressure changes are
buffered by venous compliance, converging exponentially to a new
steady state value. It should be noted that, because the flux model
assumes that flow is driven by pressure, an increase in pressure
with no accompanying change in flux is interpreted as a reduction
in conductance. As seen in the bottom left plot of Fig. 3, this
manifests as a drop in the haemoglobin signals. However, this
behaviour is primarily an artefact of the isolated changes in these
simulations, which we would not expect to see in practice.

In practice, systemic factors are unlikely to vary in isolation,
and a more interesting test scenario is that presented in Fig. 4. All
five inputs were varied simultaneously to illustrate the different
responses of the model compartments. The input waveforms are
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given in Table 1. Modelled responses are shown separately for the cerebral compartment
extracerebral model (bottom row).
depicted in the top row of the figure. The oscillatory segment of
each input has a different frequency, so the inputs are linearly
independent.

Because each blood flow model is driven differently by the
inputs, the outputs generated (bottom row of Fig. 4) are also lin-
early independent. In such a case, the signals should be separable
and we ought to be able to estimate their relative contributions in
measured data. In practice, the inputs are unlikely to be in-
dependent and the data will also be noisy and incomplete, so true
separability is unlikely. Nevertheless, we may be able to produce
an approximate attribution in some cases.

3.2. Systemic factors can mask or mimic functional activation

Given that systemic factors can have opposing effects on cer-
ebral haemodynamics and oxygenation, it has been suggested that
experimental data may be susceptible to artefacts open to mis-
interpretation (Tachtsidis et al., 2009; Scholkmann et al., 2013a;
Tachtsidis and Scholkmann, 2016). To investigate the plausibility of
this concern, we applied the model to see whether and how such
misleading outputs could be generated.

Functional activation is classically associated with a haemody-
namic response like the one depicted in Fig. 5A: a rise in HbO2

accompanied by a decrease in HHb (Scholkmann et al., 2014b).
This plot is indeed the response produced by the model in re-
sponse to an increase in the demand u with no accompanying
change the systemic inputs. Without such a response, conversely,
no functional activation will be detected. For optimisation pur-
poses we specify three different scenarios that would typically be
classified as a lack of activation, shown in Fig. 5B. In the first and
simplest case, there is no haemodynamic change at all, while in
the second and third there is an increase in HbO2 but HHb either
does not change (scenario 2) or also increases (scenario 3). His-
torically, some investigators have chosen to use only the HbO2

signal (for recent examples see Balconi et al. (2015) and Brucker
et al. (2015)), and might thus interpret the latter cases as evidence
150 250

aO2

ime (s)

150 250
ime (s)

150 250
ime (s)

50 150 250

0
1

u

Time (s)

H
b 

(μ
M

)

50 150 250

−1
0

1
−1

0
1

Time (s)

50 150 250
Time (s)

50 150 250

−1
0

1

Fluxy

Time (s)

H
b 

(μ
M

)

H
b 

(μ
M

)

H
b 

(μ
M

)

H
b 

(μ
M

)

H
b 

( μ
M

)

50 150 250

−1
0

1

Time (s)

50 150 250

0
1

2
3

Time (s)

∆HHb

y column, left to right): mean arterial pressure (Pa); arterial partial pressure of CO2
flux (Fluxy). In each case, the step is between the baseline and upper bound values
(top row), the pressure-based extracerebral model (middle row) and the flux-based



0 100 200 300

80
10

0
12

0
Arterial Pressure

Time (s)

P
a 

(m
m

 H
g)

0 100 200 300

38
40

42

Arterial CO2

Time (s)

P a
C

O
2 

(m
m

 H
g)

0 100 200 300

92
96

10
0

Arterial O2 Saturation

Time (s)

S
aO

2 
(%

)

0 100 200 300

0.
8

1.
0

1.
2

Metabolic Demand

Time (s)

u

0 100 200 300

0.
8

1.
0

1.
2

Normalised Flux

Time (s)

Fl
ux

y

0 50 100 150 200 250 300

−1
0

−5
0

5
10

Cerebral

Time (s)

H
b 

(μ
M

)

0 50 100 150 200 250 300

−1
0

1

Pressure-based

Time (s)

H
b 

(μ
M

)

0 50 100 150 200 250 300

−2
0

2
4

Flux-based

Time (s)

H
b 

(μ
M

)

∆HbO2 ∆HHb

Fig. 4. Simulated haemodynamic responses when all model inputs are varied simultaneously. The time course of each input is shown in the upper row, while the modelled
haemoglobin signals for the cerebral and scalp compartments are shown in the lower row. The modelled compartments exhibit markedly different haemodynamic responses
due to the differing input dependencies and interactions. We would expect the differences to be less obvious in real experimental data but some degree of separability is
plausible.

M. Caldwell et al. / NeuroImage 143 (2016) 91–105 97
of activation. However, the HHb response is generally acknowl-
edged to have greater specificity and the use of both signals in
conjunction is preferred (Tachtsidis and Scholkmann, 2016).

Numerical optimisation was performed to find combinations of
input changes that could generate false positive (FP) outputs—re-
sembling Fig. 5A despite the absence of genuine functional acti-
vation—and false negative (FN) outputs—resembling the scenarios
of Fig. 5B despite an actual increase in metabolic demand. Some
example results are shown in Fig. 5C. Note that these optimisa-
tions are not convex and the genetic algorithm is non-determi-
nistic, so the results are neither unique nor necessarily optimal.
Similar responses could be obtained in other ways.

It can be seen that both FP and FN responses can be provoked
by changes in P COa 2 and arterial pressure, although optimisation
has only managed to mimic FN type 1 and the approximation is
imperfect. If a scalp contribution is also included (Fig. 5C, bottom
row) then all three FN scenarios are reproduced persuasively.

Note that the idealised nature of the simulations—in-
stantaneous, synchronous step changes, with no filtering, jitter or
noise—in some cases leads to transients or other temporal fea-
tures that might seem, at least in principle, to allow the different
cases to be distinguished. However, in practice instantaneous
changes will not occur, and such markers are unlikely to be
identifiable against the background of physiological and instru-
mental variation.

To investigate further which changes in blood pressure and
P COa 2 might lead to misleading responses, additional step change
simulations were performed across the ‘normal’ ranges of both
inputs, both with and without a corresponding change in u. The
changes were again simultaneous, but the transient time course
details were ignored and only the final steady-state values of
ΔHbO2 and ΔHHb after the step taken into account. Outputs were
classified according to their proximity (lowest total absolute error)
to the target signals of Fig. 5A–B. The results are shown in Fig. 6.

Increasing arterial pressure leads to a reduction in both HbO2

and HHb (we assume the pressure remains within the range of
functioning autoregulation), while increasing P COa 2 increases HbO2

and decreases HHb. The latter profile corresponds to what we look
for as characteristic of functional activation, so it appears that
hypercapnia alone may be sufficient to generate FP results, while
pressure changes alone cannot (Fig. 6A).
In the presence of true functional activation (Fig. 6B), the ef-

fects of P COa 2 and arterial pressure are similar but the response
surfaces are shifted. Since a false negative may arise in more than
one way—by suppressing the functional HbO2 increase, or the HHb
decrease, or both—we conclude that both P COa 2 and pressure
could in principle lead to FNs.

3.3. Systemic confounding in experimental data

As a practical example of systemic confounding in a functional
setting, we used our model to re-examine data from Scholkmann
et al. (2013a). In that study, end-tidal CO2 (P COet 2, a widely-used
non-invasive surrogate for the arterial CO2) was measured along-
side fNIRS during a number of spoken language tasks. A number of
investigators had previously observed uncharacteristic fNIRS and
BOLD-fMRI responses during speech tasks and it was hypothesised
that CO2 confounding might underlie those results.

For the data examined here, both the fNIRS and CO2 signals
were averaged over many subjects, and NIRS also over left and
right brain hemispheres, leading to significant smoothing of these
time profiles compared to the sharper profile of the synthetic in-
put. Nevertheless it is striking that the haemodynamic behaviour
is not what we would expect for functional activation.

Measured HbO2 and HHb for one of the tasks (prose recitation)
are shown Fig. 7A. If we attempt to model this behaviour with an
increase in metabolic demand (Fig. 7B), the results are entirely
unlike the data, with haemoglobin changes in the opposite di-
rection. However, the data can be relatively well modelled using
the measured CO2 (Fig. 7C). Adding increased demand as a factor
alongside CO2 makes some difference, though it is relatively
marginal (Fig. 7D).

It should be noted that the modelled variability closely re-
sembles that of the CO2 data itself (Fig. 7E). The aggregation and
timescale of the data relative to the CO2 response mean that
temporal differences are relatively insignificant. In the absence of
additional inputs there are also no interactions such as those be-
tween blood pressure and CO2 in the previous section. A similar
profile could be obtained by attempting to fit the NIRS signals to
the CO2 data by linear regression. However, this would only
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identify the correlations—it would still be necessary to explain
them.

It is clear that the NIRS data in this case cannot reasonably be
explained by functional activation. An interpretation which at-
tempted to do so without taking into account the effects of CO2

would certainly be misleading. The evidence of the model re-
inforces the original paper's contention that recording CO2 levels
in such experiments is advisable if incorrect inferences are to be
avoided.

3.4. Extracerebral confounding in experimental data

To investigate extracerebral confounding with the model, we
used data from a study published by Kolyva et al. (2012), in which
(for 8 of the 11 subjects) the mean arterial pressure and LD flux
were recorded in addition to broadband NIRS at multiple source–
detector separations, during an anagram-solving task. As reported
in the original paper, the subjects in this study exhibited hetero-
geneous responses, so we examined individual data sets rather
than group averages.
The model was driven using the recorded systemic data for
each individual, together with a defined increase in demand dur-
ing the task period. We did not attempt to quantify a difference in
demand between the alternating 4-letter and 7-letter anagram
phases within the task. Since LD data were available, we used the
flux-based version of the scalp model. Model outputs were com-
pared with the NIRS measurements at the shortest and longest
source–detector separations (2.0 and 3.5 cm respectively). It was
expected that the longer distance data would include a greater
contribution from cerebral tissue and less from the scalp (Saager
and Berger, 2005; Brigadoi and Cooper, 2015).

Similarity between the modelled and measured signals was
assessed by several measures. The Pearson correlation coefficient
is a convenient indicator of similarity when signals are well
aligned. In practice, the physiology can introduce variable delays
that the model does not capture. To obtain a broader measure of
the signal similarity, cross correlation was performed, noting the
maximum correlation for each signal and the lag at which it oc-
curred. As a further test, we applied the more flexible Dynamic
Time Warp (DTW) method, in which signals are aligned using
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non-constant lags to minimise the distance between them (Gior-
gino, 2009). The similarity of signal ‘shape’ was assessed by the
degree of warping required for this minimisation (computed as the
mean distance between the two index vectors) as well as the final
distance achieved. These metrics are non-negative by definition,
with smaller values better; zero for both would indicate a perfect
match.

It must be noted that there are differences of scale between the
signals, both in the measurements at different distances, arising
from the different tissue volumes interrogated, and in the cerebral
and scalp compartment models, due to differences in the modelled
behaviour and to uncertainties in some parameters. While corre-
lations are insensitive to scale, this is not the case for DTW. In
order to ensure that signals were compared on an equal footing,
the modelled signals were rescaled into the same value range as
the measurements before the DTW was performed.
For subjects exhibiting the characteristic haemodynamics of
functional activation, there is a broad agreement between the
model predictions and the measured signals, although the varia-
bility in all measurements leads to many differences in detail. An
example individual is shown in Fig. 8. As expected, the measure-
ments made with shorter source–detector separation more closely
resemble the scalp compartment, whereas at the longer distance
there appears to be more contribution from the cerebral tissue.

Because the scalp model does not include active consumption it
is unable to produce opposing changes in HbO2 and HHb without
changes in saturation, which are not recorded here (and in any
case unlikely). Thus, ΔHHb in the scalp model cannot fit the profile
for functional activation and is anti-correlated with the recorded
data for subjects like S8. Because the blood saturation is normally
high (and is assumed to be so here, since we do not have explicit
measurements), the HHb changes in the scalp compartment are
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smaller than those for HbO2. Nevertheless, the effect of extra-
cerebral confounding would be to obscure the cerebral HHb drop.

Fig. 9 shows results from a subject classified as not exhibiting
functional activation. In this case the ΔHbO2 response is consistent
with both the scalp and cerebral models. Measured HHb does not
show substantial changes, but is somewhat better modelled by the
scalp compartment. It is thus possible that the lack of an identified
HHb response is an example of a false negative. In the absence of
additional data we cannot conclude one way or the other, but the
uncertainty is illustrative.

In general, NIRS measurements interrogate a volume including
both scalp or cerebral components in unknown proportion. To
attempt to assess the relative contributions in these recordings,
the measurements were fitted as a non-negative weighted sum of
the modelled signals, minimising the total error over both the
HbO2 and HHb signals, with no lag or warping. We assumed both
signals would be contaminated by scalp to the same degree. Ex-
amples of this attribution for the subjects of Figs. 8 and 9 are
shown in Fig. 10.

Because of uncertainties in scaling and timing of the modelled
signals, as well as the simplistic cost function, these results must
be treated with caution. It is unlikely, for example, that the short
distance measurements in Fig. 10A truly contain only scalp chan-
ges. The estimate indicates only that whatever improvement
might be achieved in the HHb signal by adding a contribution from
the cerebral model would be outweighed by a simultaneous
worsening of HbO2. Nevertheless, it is notable that in each case the
fit identifies a lower scalp contribution at longer source–detector
separation. In the context of the possibility that the S2 data shows
a false negative, it is suggestive that the fit at both distances
(Fig. 10B) includes a non-zero contribution from a cerebral model
in which activation actually occurs. Again, we cannot infer that this
is a genuine FN case but we also cannot rule it out.
4. Discussion

We have used a modified version of the BrainSignals physio-
logical model, termed BSX, to investigate the susceptibility of
functional neuroimaging to confounding by systemic factors and
extracerebral tissues. While extracerebral influences are particu-
larly relevant to fNIRS, systemic confounding is also of utmost
concern for other haemodynamics-based modalities such as
BOLD-fMRI.

The BSX model includes a representation of several factors that
modulate cerebral blood flow, including systemic blood pressure
and CO2 concentration. It is known that variations in such systemic
factors can occur during functional experiments (Tachtsidis and
Scholkmann, 2016). Moreover, in some cases there may be causal
relationships between such variations and the performance of
particular kinds of task, such as speech, which could give rise to
systematic confounding.

We have used BSX to demonstrate that variations in systemic
factors are able to induce haemodynamic responses that both
mimic functional activation in its absence, to produce a false po-
sitive (FP) identification, and mask its occurrence when present, to
produce a false negative (FN) result. These false outcomes occur
over a range of possible values for the driving factors that remain
well within the bounds of their normal physiological variability.
Our simulated scenarios are idealised and limited by the simpli-
fications inherent in the model, but arguably the additional be-
havioural complexity and sources of variation in real experimental
data make false identifications even more difficult to exclude.

By definition, the extent to which FP and FN results occur in
real experiments is not known. But as a concrete example we
applied the model to group average data from Scholkmann et al.
(2013a), a study in which the confounding influence of CO2 was
specifically addressed. Our model results closely accord with the
conclusions of that paper. The recorded haemodynamics appear to
have been driven almost entirely by respiratory changes, to the
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extent that any neurovascular coupling that may also have oc-
curred could not be identified.

For fNIRS experiments, it is plausible that blood flow in the
scalp and superficial tissues may also contribute to FP and FN re-
sults. To allow investigation of this, BSX incorporates a rudimen-
tary model of such extracerebral blood flow. Applying the model
to individual data from Kolyva et al. (2012), we found that a
variable but significant fraction of the observed haemodynamic
behaviour could be attributed to the extracerebral compartment.
Our results suggest that the HHb signal may be particularly sus-
ceptible to such contamination, because its response to activation
is smaller and may be more easily obscured by parallel changes to
superficial blood flow. However, the lack of active consumption in
the scalp model may lead it to overestimate the impact on the
HbO2 signal and underestimate that on HHb.
These results are only partial, because neither data set includes
all of the important systemic variables. It is possible that blood
pressure may also play a role in the speech results, although the
respiratory impact of vocalisation provides a plausible explanation
for the involvement of CO2. Similarly, we cannot rule out a role for
CO2 in the anagram results. While it is not immediately obvious
what that role might be, it is known that unvocalised language
tasks can induce changes in blood oxygenation and CO2 (Scholk-
mann et al., 2014a). In either case, more complete systemic data
would allow a better assessment to be made of the extent to which
these factors play a role in the fNIRS signals.

The impact of blood pressure and CO2 on haemodynamics-
based functional measurements is likely to vary substantially be-
tween different experimental procedures, but it is clear that they
have the potential to exert a powerful influence. Both factors may
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be recorded relatively easily with modern instrumentation. Our
model results support the argument that such recording is desir-
able to identify potential confounding. In the context of fNIRS, a
similar case can be made for recording Laser Doppler flux mea-
surements, since superficial blood flow effects are a recognised
potential confounder.

Some aspects of the BSX model are deliberately simplistic and
there is plenty of scope for future development. In particular, the
scalp blood flow model neglects the influence of numerous factors
that may impact on skin blood flow, notably the influence of the
autonomic nervous system, an important factor affecting skin
blood flow. A number of surrogates for autonomic activity, in-
cluding heart rate, breathing rate and skin temperature, can be
monitored, and inclusion of such factors in the model might allow
for improved behavioural simulation in this compartment. The
addition of an oxygen extraction function in the scalp may be
beneficial to mitigate the risk of overestimating the effect on HbO2

relative to HHb. Both scalp and cerebral compartments currently
make use of a simple homogenous measurement model. Much
more detailed models of the relationship between optics, blood
flow and oxygenation are available and might productively be
incorporated into BSX.

While we have used the model to identify likely confounding
and attribute behaviour among different causes, one potential use
that has yet to be explored is that of explicit artefact-removal or
denoising. Regression-based approaches to the removal of sys-
temic or superficial confounds from fNIRS data have been de-
monstrated previously (Saager and Berger, 2005; Tachtsidis et al.,
2010b; Gagnon et al., 2014b), but are limited in their ability to
detect interacting and non-linear effects. Combining such methods
with our model's ability to account for the ‘normal’ behaviour
arising from systemic factors should allow researchers to focus
more clearly on the experimentally-relevant functional compo-
nents of the fNIRS data and thus better interrogate its neurophy-
siological significance.

In addition, we have so far only demonstrated this approach
using data from studies with healthy adult volunteers. It is worth
noting that the model's capacity to simulate physiological
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mechanisms such as cerebral autoregulation and metabolic activ-
ity may also be potentially useful in the context of patient func-
tional studies, in which some derangement of those mechanisms
may make it more difficult to fit neuroimaging data. We have re-
cently demonstrated the use of another variant of our brain model
in premature infants undergoing fNIRS monitoring during visual
activation. In that case the model's prediction of the cerebral au-
toregulatory capacity in these infants could explain the sometimes
inverted deoxyhaemoglobin response (Hapuarachchi et al., 2016).
In the future, we aim to expand this work to other patient popu-
lations such as those with traumatic brain injury, and by fitting the
data to the model parameters identify potential biomarkers of
cerebrovascular disease processes.

In conclusion, despite its limitations the model provides useful
information concerning the possible confounding of fNIRS mea-
surements when appropriate input data are recorded. It allows for
some attribution between the compartments and may help to
identify misleading cases. A full software implementation is freely
available (https://github.com/bcmd), so other researchers can use
it in conjunction with their own experimental data. With model
development ongoing, the ability to better extract relevant
meanings from fNIRS and fMRI data will further improve.
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