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Algebraic flows on abelian varieties
By Emmanuel Ullmo at Bures-sur-Yvette and Andrei Yafaev at London

Abstract. Let A be an abelian variety. The abelian Ax–Lindemann theorem shows that
the Zariski closure of an algebraic flow in A is a translate of an abelian subvariety of A. The
paper discusses some conjectures on the usual topological closure of an algebraic flow in A.
The main result is a proof of these conjectures when the algebraic flow is given by an algebraic
curve.

1. Introduction

The purpose of this paper is to study algebraic flows on abelian varieties. We formulate
two (interrelated) conjectures, prove a rather general statement concerning these conjectures
and provide examples where our statement applies. Let A be a complex abelian variety of
dimension g. Let � be a lattice in Cg such that A ' Cg=� and let

� W Cg
! A ' Cg=�

be the uniformizing map. A complex algebraic subvarietyZ of A is said to be weakly special if
Z D P C B for an abelian subvariety B and a point P of A. If moreover P is a torsion point,
then Z D B C P is said to be special.

The following abelian version of Ax–Lindemann theorem is due to Ax (see [1] and [2])
and plays an important role in the new proof by Pila and Zannier of the Manin–Mumford
conjecture [6]. Note that the paper [6] provides a different proof of the abelian Ax–Lindemann
theorem. Yet another proof was given by Orr (see [4]).

Theorem 1.1 (Abelian Ax–Lindemann). Let ‚ be a complex algebraic subvariety
of Cg . Then any component of the Zariski closure of �.‚/ is weakly special.

In this paper, instead of looking at the Zariski closure of �.‚/, we attempt to characterise
the usual topological closure �.‚/ of �.‚/.

LetW � Cg be a R-vector space such that �W WD � \W is a lattice inW . ThenW=�W
is a real torus and is a closed real analytic subset of A. A real analytic subvariety Z of A is
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2 Ullmo and Yafaev, Algebraic flows on abelian varieties

said to be real weakly special if Z D P CW=�W for a point P and a real subtorus W=�W
of A. A real affine subspace of Cg ' R2g of the form W CQ where Q is a point in Cg and
W is a R-vector subspace of Cg ' R2g is said to be real weakly pre-special if �.Q/C �.W /
is real weakly special. By definition, QCW is real weakly pre-special if and only if W \ �
is a lattice in W .

We will study the following conjecture.

Conjecture 1.2. Let A be a abelian variety of dimension g. Let ‚ be a complex ir-
reducible algebraic subvariety of Cg . Then there exists a finite number Z1; : : : ; Zr of real
weakly special subvarieties of A such that

�.‚/ D �.‚/ [

r[
kD1

Zk :

Let Z D W=�W be a real subtorus of A. Then the normalized Lebesgue measure on W
induces a canonical probability measure �Z on A. The support Supp.�Z/ of �Z is Z. Using
the description of a real weakly special subvariety Z of A of the form Z D P CW=�W ,
we see that we have also a canonical probability measure �Z on A such that Supp.�Z/ D Z.

Let ! be the canonical translation invariant positive .1; 1/-form on Cg . We fix a C-basis
of Cg with associated complex coordinates .z1; : : : ; zg/ with zk D xk C iyk for 1 � k � g.
Then we may choose

! D
i

2

gX
kD1

dzk ^ dzk D

gX
kD1

dxk ^ dyk :

For R > 0, we let B.0;R/ D ¹.z1; : : : ; zg/ 2 Cg W jzkj < Rº.
By slight abuse of notations we will often identify functions on A with �-invariant func-

tions on Cg .
Assume that ‚ is an algebraic subvariety of Cg of dimension d . Define, for all R big

enough, the probability measure �‚;R on Cg such that for any continuous function f on Cg ,

�‚;R.f / D
1

VR

Z
‚\B.0;R/

f!d ;

where VR D
R
‚\B.0;R/ !

d .
The pushforward of �‚;R (that we will still, by abuse of notation denote �‚;R) to A

induces a probability measure on A with support contained in �.‚/.
The measure theoretical version of the topological Conjecture 1.2 is

Conjecture 1.3. Let A be a abelian variety of dimension g. Let ‚ be an irreducible
complex algebraic subvariety of Cg . Then there exists a finite number of real weakly special
subvarieties Z1; : : : ; Zr and some positive real numbers c1; : : : ; cr such that �‚;R converges
weakly to the measure

Pr
kD1 ck�Zk . This means that for any continuous function f on A we

have

�‚;R.f /!

rX
kD1

ck�Zk .f /

as R!1.
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Ullmo and Yafaev, Algebraic flows on abelian varieties 3

The main result of this paper is the proof of these conjectures for the image �.C / of
a curve C in Cg . In this case, the real weakly special subvarieties Z1; : : : ; Zr appearing in the
statements of Conjectures 1.2 and 1.3 are described simply in terms of � and the geometry at
infinity of C . The precise version of this result is given in the statement of Theorem 2.4.

In Sections 2 and 3 we define the Mumford–Tate torus of an algebraic subvariety of Cg .
We also define the asymptotic Mumford–Tate torus of an infinite branch of a curve contained
in Cg . We prove a certain number of properties of these objects that we use later on. We
then review characters of these Mumford–Tate tori and the Weyl criterion. Section 4, which
is the main technical part of the proof of Theorem 2.4, concerns itself with the estimation of
some oscillatory integrals. After proving the main result in Section 5, we provide enlightening
examples where the conclusion of Conjecture 1.2 holds.

The hyperbolic version of the Ax–Lindemann theorem for Shimura varieties had been
proven (see [8], [5] and[3]). Conjectures 1.2 and 1.3 have natural and interesting formulations
in this context. These questions will be studied in further works.

Acknowledgement. We are extremely grateful to James Wright who provided very
detailed answers to our questions regarding oscillatory integrals. We would like to extend our
thanks to the referee for his careful reading and his detailed comments which helped us improve
the presentation of the paper.

2. Mumford–Tate and asymptotic Mumford–Tate tori

2.1. Mumford–Tate tori. Let ‚ be an irreducible algebraic subvariety of Cg contain-
ing the origin O of Cg . The Mumford–Tate group MT.‚/ of ‚ is defined as the smallest
Q-vector subspace W of � ˝Q such that ‚ � W ˝R. More generally, let ‚ be an irre-
ducible algebraic subvariety of Cg and P 2 ‚. Then we define MT.‚/ as MT.‚ � P /. One
can check that the definition is independent of the choice of P 2 ‚. Let W‚ WD MT.‚/˝R
and T‚ D W‚=.W‚ \ �/. We denote by T 0‚ the real weakly-special subvariety of A,

T 0‚ D �.P /C T‚:

Then T 0‚ is independent of P and T 0‚ is the smallest real weakly special subvariety of A
containing �.‚/. Then we have the first natural upper bound for the topological closure of
�.‚/ in A,

(2.1) �.‚/ � T 0‚:

2.2. Asymptotic Mumford–Tate tori for curves. Let C be a curve in Cg . Let C � be
the Zariski closure of C in P1.C/g . Then C � � C is a finite set of points ¹P1; : : : ; Psº. For
each i 2 ¹1; : : : ; sº we can fix a neighbourhood Ui of Pi such that the connected components
of C \ Ui have a parametrization by power series. A infinite branch C˛ of C near a point at
infinity Pi is a complex analytic connected component of C \ Ui . We assume that for all i
and j we have Ui \ Uj D ;.

Let C˛ be such a branch. Let .z1; : : : ; zg/ be the coordinates on Cg . Then there exists at
least one coordinate z D zi which is unbounded when Z D .z1; : : : ; zg/ varies in C˛.

We say that a real weakly pre-special subvariety QCW is asymptotic to C˛ if the
Euclidean distance from a point Z D .z1; : : : ; zg/ of C˛ to QCW tends to 0 as z D zi tends
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4 Ullmo and Yafaev, Algebraic flows on abelian varieties

to1. Note that by definition if P is a point of C , then P CMT.C /˝R is asymptotic to C˛
for all infinite branches C˛ of C .

Lemma 2.1. An intersection of two real weakly pre-special subvarieties which are
asymptotic to C˛ is real weakly pre-special and asymptotic to C˛.

Proof. Let P CW and QCW 0 be two real weakly pre-special subvarieties which
are asymptotic to C˛. Then the distance between P CW and QCW 0 is zero. Therefore
.P CW /\ .QCW 0/ is not empty. Let R 2 .P CW /\ .QCW 0/. Then P CW D RCW
and QCW 0 D RCW 0. As a consequence,

.P CW / \ .QCW 0/ D RCW \W 0:

The lattice � defines a Q-structure on Cg ' R2g . By definition,W andW 0 are defined over Q
for this Q-structure. ThereforeW \W 0 is defined over Q andRCW \W 0 is real weakly pre-
special. Let Zn be a sequence of points of C˛ tending to the point at infinity. Then there exist
Pn 2 W , Qn 2 W 0 and two sequences �n and �0n of points in Cg tending to O such that

Zn D RC Pn C �n D RCQn C �
0
n:

Therefore we have kPnk ! 1 and d.Pn; W 0/! 0 as n!1. It follows that

lim
n!1

d.Zn; RCW \W
0/ D 0:

To see this we may write ¹fi D 0º; i D 1; : : : ; s, and ¹gi D 0º; i D 1; : : : ; r , the linear equa-
tions defining W and W 0 respectively. Then fi .Pn/ D 0 and gi .Pn/! 0. By extracting from
the system ¹fi D 0; gi D 0º a maximal free subsystem that we call ¹hiº; i D 1; : : : ; t , we
obtain a system of equations defining W \W 0. By the above, hi .Pn/! 0. We can make
a change of variables .z1; : : : ; z2g/ (which does not affect the property of convergence of dis-
tances to zero) so that zi D hi for i 2 ¹1; : : : ; tº. This shows that d.Pn; W \W 0/! 0 and
therefore d.Zn; RCW \W

0/! 0.
As the property d.Zn; RCW \W

0/! 0 is true for all sequences .Zn/ of points of C˛
tending to the point at infinity, we get that RCW \W 0 is asymptotic to C˛.

Let P˛ CW˛ be the smallest real weakly pre-special subvariety of Cg which is asymp-
totic to C˛. Let T˛ D W˛=W˛ \ � and T 0˛ D �.P˛/C T˛. We say that T 0˛ is the asymptotic
Mumford–Tate torus ofC˛. By definition, for all ˛ we have the inclusion T 0˛ � T 0C . We remark
that even if the infinite branches of C depend on the choice of some small enough neighbour-
hood of some point at infinity of the curve, the associated asymptotic Mumford–Tate tori does
not depend of this choice.

Lemma 2.2. We have
�.C˛/ � �.C˛/ � T 0˛:

Proof. Let P1 be a point of �.C˛/ � �.C˛/. There exists a sequence Qn of points
of C˛ tending to the point at infinity of C˛ such that Pn WD �.Qn/ tends to P1. By hypothesis,
d.Qn; P˛ CW˛/ tends to 0 as n tends to1. Therefore d.Pn;T 0˛/ tends to 0. As T 0˛ is a closed
subset of A, we find that P1 2 T 0˛.
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Ullmo and Yafaev, Algebraic flows on abelian varieties 5

The following proposition summarizes what we have obtained so far.

Proposition 2.3. Let C be a curve in Cg . Let C1; : : : ; Cr be the set of all branches of C
through all points at infinity. Let T 01; : : : ;T

0
r be the associated asymptotic Mumford–Tate tori.

Then

�.C / � �.C / [

r[
˛D1

T 0˛ � T 0C :

The main result of the paper is the following theorem.

Theorem 2.4. Let C be a curve in Cg . Let C1; : : : ; Cr be the set of all branches of C
through all points at infinity. Let T 01; : : : ;T

0
r be the associated asymptotic Mumford–Tate tori.

(i) We have

�.C / D �.C / [

r[
˛D1

T 0˛:

(ii) Let �˛ be the canonical probability measure on T 0˛. There exists positive real numbers
c1; : : : ; cr such that �C;R converges weakly to

Pr
˛D1 c˛�˛.

The first part of the theorem is a consequence of Proposition 2.3 and the second part
of the theorem. In the rest of the paper we will give a proof of the second part of the theo-
rem using some tools from harmonic analysis. Note also that very often at least one of the
asymptotic Mumford–Tate tori of C is just the Mumford–Tate torus of C . In this case, we
have �.C / D T 0C . General examples of this type will be given in Section 6.

3. Weyl criterion and Mumford–Tate tori

3.1. Weyl criterion. Let h � ; � i be the canonical Hermitian scalar product on Cg . For
any vectors z, z0 of Cg , we denote by .z; z0/ WD Re.hz; z0i/ the real part of hz; z0i. Then . � ; � /
is the usual Euclidean product on Cg ' R2g . For any subset E of R2g we write E? for the
orthogonal complement of E with respect to the Euclidean product . � ; � /.

For any � 2 Cg , we denote by �� the function on Cg such that �� .z/ D exp.2�i.�; z//.
Let b� be the dual lattice of � defined asb� D ¹� 2 Cg

W .�; / 2 Z for all  2 �º:

The group of characters X�.A/ of the abelian variety A viewed as a real torus of dimension
2g is a free Z-module of rank 2g. We denote by 1A the trivial character of A. We have an
isomorphism b� ' X�.A/
given by � 7! �� . The Weyl criterion says that a sequence of probability measures �n on A
converges weakly to a probability measure � if and only if for all � 2 b� we have

�n.�� /! �.�� / as n!1:

Let T D WT=.� \WT / be a real subtorus of A. Let X�.T / be the set of characters
of T . We denote by 1T the trivial character of T . Let � 2 b� . The restriction .�� /jT of �� to T
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6 Ullmo and Yafaev, Algebraic flows on abelian varieties

is a character of T . Let N.T / be the free Z-submodule of X�.A/ defined by

N.T / WD ¹�� 2 X
�.A/ W .�� /jT D 1T º:

We have an exact sequence

0! N.T /! X�.A/! X�.T /! 0:

If we identify b� and X�.A/, we can realize N.T / as a subset of Cg ' R2g . Then N.T / is
a lattice in

N.T /˝R ' W ?T � R2g

andN.T / D b� \ .N.T /˝R/. Let T_ be the real torus A=T . Then T_ ' N.T /˝R=N.T /
and we have an identification N.T / D X�.T_/.

Let P be a point of Cg . Let T 0 D �.P /C T . Let �T 0 be the canonical probability
measure on T 0. Then for all � in b� , we have

(3.1)
Z
A

��d�T 0 D

Z
A

exp.2�i.�; z// d�T 0 D exp.2i�.P; �// if � 2 N.T /

and

(3.2)
Z
A

��d�T 0 D

Z
A

exp.2�i.�; z// d�T 0 D 0 if � … N.T /:

As the proof of Theorem 2.4 is an application of the Weyl criterion, we will need to
understand the group of characters of the Mumford–Tate torus of an algebraic subvariety of
Cg and of the asymptotic Mumford–Tate tori of a branch of a curve in Cg . The relevant results
are given in the next two subsections.

3.2. Characters of the Mumford–Tate torus. Let ‚ be an irreducible subvariety
of Cg . Let P be a point of ‚. Let

W‚ D MT.‚ � P /˝R

and T‚ D W‚=.� \W‚/. The Mumford–Tate torus of ‚ is T 0‚ D �.P /C T‚. By the dis-
cussion of the previous subsection we have

N.T‚/ D X
�.A=T‚/ D W

?
‚ \

b�:
We will need the following lemma.

Lemma 3.1. We have

N.T‚/ D ¹�� ; � 2 b� \ .‚ � P /?º ' b� \ .‚ � P /?:
Proof. Let N �.T‚/ D b� \ .‚ � P /?. As ‚ � P � W‚, we get

N.T‚/ � N
�.T‚/:

Moreover, N �.T‚/ is a saturated Z-submodule ofb� in the sense that if there exists � 2 b� and
a non-zero integer n such that n� 2 N �.T‚/ then � 2 N �.T‚/. As a consequence there is
a real subtorus T�‚ of A and an exact sequence

0! N �.T‚/! b� ' X�.A/! X�.T�‚/! 0:

By definition, �.‚ � P / � T�‚ and as N.T‚/ � N �.T‚/, we have T�‚ � T‚. By the defini-
tion of the Mumford–Tate tori of ‚ � P , we find that T�‚ D T‚ and N �.T‚/ D N.T‚/.
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Ullmo and Yafaev, Algebraic flows on abelian varieties 7

3.3. Characters of the asymptotic Mumford–Tate Tori of the branches of a curve.
Let C be an irreducible algebraic curve in Cg , and let C˛ be an infinite branch of C . Let
P˛ CW˛ be the smallest real weakly pre-special subvariety which is asymptotic to C˛, and
let T 0˛ D �.P˛/C T˛ be the associated asymptotic torus.

Let Z D .z1; : : : ; zg/ be a system of coordinates on C˛. We fix a coordinate z D zi
which is unbounded as Z varies in C˛. For all j 2 ¹1; : : : ; gº we have a Puiseux expansion of
the form

zj D
X
n�0

an;j z
j̨�

n
ej

for some j̨ 2 Q and some ej 2 N� (see [9, Chapter 4]). The sequence of complex numbers
an;j is such that the power series

P
n�0 an;jX

n has a radius of convergence �j > 0.
Let a0.zj / be the constant term of zj in this expansion. Note that a0.zj / D 0 if and only

if j̨ �
n
ej
¤ 0 for all n 2 N, or if there exists n0 2 N such that j̨ �

n0
ej
D 0 and an0;j D 0.

Let Q˛ be the point of Cg such that

Q˛ D .a0.z1/; : : : ; a0.zg//:

Let N˛ be the Z-submodule of b� consisting of the � D .�1; : : : ; �g/ 2 b� such that the
function

 � .Z/ D .Z; �/ D Re

 
gX
kD1

�kzk

!
is bounded onC˛. ThenN˛ is a saturated submodule ofb� . There exists therefore a real subtorus
S˛ of A and an exact sequence

0! N˛ ! b� ' X�.A/! X�.S˛/! 0:

Lemma 3.2. We have T˛ D S˛, N.T˛/ D N˛ and

T 0˛ D �.Q˛/C S˛ D �.P˛/C S˛:

Proof. Let � D .�1; : : : ; �g/ 2 b� . Let H� be the real hyperplane of Cg ' R2g with
equation

Re

 
gX
kD1

�kzk

!
D 0:

Then �� WD � \H� is a lattice in H� .
If there exists a pointQ such that C˛ is asymptoticQCH� , then the distance d.Z;H� /

is bounded as Z varies in C˛. By the computation of the distance of a point to a hyperplane
this implies that the function Re.

Pg

kD1
�kzk/ is bounded when Z varies in C˛.

If Re.
Pg

kD1
�kzk/ is bounded when Z varies in C˛, the coefficients of the positive

powers of z in the Puiseux expansion of

 � .Z/ D Re

 
gX
kD1

�kzk

!
are vanishing. Moreover, the function  � .Z �Q˛/ tends to zero as z tends to1. As a conse-
quence, C˛ is asymptotic to Q˛ CH� and

P˛ CW˛ � Q˛ CH� D P˛ CH� :

Brought to you by | UCL - University College London
Authenticated

Download Date | 10/10/16 11:59 AM



8 Ullmo and Yafaev, Algebraic flows on abelian varieties

If W˛ ¤ Cg , then W˛ is the intersection of the hyperplanes H� with � 2 b� such that C˛
is asymptotic to P˛ CH� . By the previous discussion, we have

W˛ D
\
�2N˛

H� :

This shows that
T˛ D S˛ D W˛=.� \W˛/

and that
T 0˛ D �.Q˛/C S˛ D �.P˛/C S˛:

If W˛ D Cg , then there is no hyperplane H� such that C˛ is asymptotic to P˛ CH� for
some point P˛. Therefore N˛ is trivial and

S˛ D Cg
D T˛:

4. Local computations for oscillatory integrals in the complex plane

In this section we give the computations for oscillatory integrals which are relevant for
the application of the Weyl criterion in the proof of Theorem 2.4.

We consider a function � of a complex variable z defined for jzj > A for a suitable real
number A. We assume moreover that we have an expansion of the form

�.z/ D
X
n�0

anz
˛�n

e ;

where e is a positive integer, 0 � ˛ is a rational number and .an/n2N is a sequence of complex
numbers such that the power series

P
anT

n has a positive radius of convergence �. If ˛ ¤ 0,
we assume that a0 ¤ 0. By making A larger we may and do assume that A > 1 and if � ¤1
that

(4.1)
1

A
1
e

<
�

2
:

For a complex number z D r exp.i�/ with � 2 Œ0; 2�Œ and a positive integer k we define

z
1
k WD r

1
k exp

�
i�

k

�
:

The purpose of this part is to study the behaviour for large R of the integral

(4.2) J�.R/ D

Z
A<jzj<R

exp.i Re.�.z///
i dz ^ dz

2R2
:

Theorem 4.1. For any function � satisfying the previous properties

(i) If ˛ > 0, then
J�.R/! 0

as R!1.

(ii) If ˛ D 0, then
J�.R/! � exp.i Re.a0//

as R!1.
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Ullmo and Yafaev, Algebraic flows on abelian varieties 9

We write z D r exp.i�/, an D An exp.in/. Then

 .r; �/ WD Re.�.z// D
X
n�0

Anr
˛�n

e bn.�/

with

bn.�/ WD cos
��
˛ �

n

e

�
� C n

�
:

With these notations we find that

J�.R/ D

Z 2�

0

Z 1

A
R

exp.i .Rt; �//t dt d�:

We fix � 2 Œ0; 2��. For t 2 ŒA
R
; 1� we define

f�;R.t/ WD  .Rt; �/ D
X
n�0

AnR
˛�n

e t˛�
n
e bn.�/:

The main input in the proof of the first part of Theorem 4.1 is the Van der Corput lemma
that can be stated in the following way.

Lemma 4.2 (Van der Corput lemma). Let k � 2 be an integer. There exists a con-
stant C D Ck such that for any real numbers a < b, any functions f 2 C k.Œa; b�/ such that
jf .k/.x/j > � > 0 on Œa; b� and any function  2 C 1.Œa; b�/,ˇ̌̌̌Z b

a

exp.if .x// .x/ dx
ˇ̌̌̌
� Ck.k kL1.Œa;b�/ C k 

0
kL1.Œa;b�//�

� 1
k :(4.3)

If k D 1 and f 0 is monotone, the conclusion also holds.

A proof of this result is given in [7]. The next lemma summarizes what we need in order
to be able to apply the Van der Corput lemma.

Lemma 4.3. The following statements hold.

(i) We have

f 0�;R.t/ D
X
n�0

�
˛ �

n

e

�
AnR

˛�n
e t˛�1�

n
e bn.�/

and

f 00�;R.t/ D
X
n�0

�
˛ �

n

e

��
˛ � 1 �

n

e

�
AnR

˛�n
e t˛�2�

n
e bn.�/:

(ii) Assume that ˛ D 1. Let � be a positive real number such that � < 1
2e

. There exists
a positive constant c1 D c1.�/ such that the following holds. For R big enough, for all
� 2 Œ0; 2�� such that jA0b0.�/j > R�� and for t 2 Œ A

R1=2
; 1� we have

jf 0�;R.t/j > c1R
1��:
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10 Ullmo and Yafaev, Algebraic flows on abelian varieties

(iii) Assume ˛ > 0. If ˛ D 1, assume that the smallest positive integer n0 such that An0 ¤ 0
verifies n0 < e. There exist real numbers ˇ > 0, 1

2
> ı > 0 and � > 0 such that for all

t 2 Œ A
Rı
; 1� and all � 2 Œ0; 2�� such that

R�ˇ <

´
j˛.˛ � 1/A0b0.�/j if ˛ ¤ 1;

j
n0
e
.1 � n0

e
/An0bn0.�/j if ˛ D 1;

we have
jf 00�;R.t/j > c2R

�

for a constant c2 > 0.

(iv) Assume ˛ D 0 or ˛ D 1 and for all k > 0 such that 0 < k < e we have Ak D 0. Let
n0 be the smaller positive integer k such that ak ¤ 0. There exist real numbers ˇ > 0
and ı > 0 such that for t 2 Œ A

Rı
; 1� and all � 2 Œ0; 2�� such that jAn0bn0.�/j > R

�ˇ

the function f 00
�;R
.t/ is non-vanishing.

Proof. To prove (i) we remark that for t 2 ŒA
R
; 1� and n big enough we haveˇ̌̌̌�

˛ �
n

e

�
AnR

˛�n
e t˛�1�

n
e bn.�/

ˇ̌̌̌
� 2njAnjRA

˛�1

�
1

A
1
e

�n
:

The series with general term

Bn D 2njAnjRA
˛�1

�
1

A
1
e

�n
is convergent as the power series

P
AnT

n has a convergence radius � > 0 and as by hypothesis
1

A1=e
< �
2

. This shows the validity of the expression for f 0
�;R
.t/. The proof for f 00

�;R
.t/ is done

in the same way.
To prove (ii) we assume that ˛ D 1. We use for t 2 Œ A

R1=2
; 1� the upper boundˇ̌̌̌�

1 �
n

e

�
AnR

1�n
e t�

n
e bn.�/

ˇ̌̌̌
� .nC 1/jAnjR

1� 1
2e

�
1

A
1
e

�n
for all n > 0:

Let cn WD .nC 1/jAnj. The power series
P
cnT

n has a radius of convergence � and is there-
fore bounded for jT j � �

2
. By hypothesis, 1

A1=e
< �
2

. Therefore ifR is large enough, as � < 1
2e

,
if jA0b0.�/j > R�� and t 2 Œ A

R1=2
; 1�, we get

jf 0�;R.t/j > c1.�/R
1��:

For part (iii) we assume first that 0 < ˛ ¤ 1. Let ˇ D min.˛
2
; 1
4e
/. Let ı > 0. If ˛ > 2,

assume that

(4.4) ı.˛ � 2/ �
1

4e
< 1:

Assume that
j˛.˛ � 1/A0b0.�/j > R

�ˇ :

Then for all t 2 Œ A
Rı
; 1� we have

(4.5) j˛.˛ � 1/R˛A0b0.�/t
˛�2
j � R˛�ˇ if ˛ � 2
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Ullmo and Yafaev, Algebraic flows on abelian varieties 11

and

(4.6) j˛.˛ � 1/R˛A0b0.�/t
˛�2
j � A�2R˛�ˇ�ı.˛�2/ if ˛ > 2:

Let � D max.˛
2
; ˛� 1

2e
/. Remark that if ˛ � 2, then ˇ D 1

4e
and � D ˛ � 1

2e
. Using the upper

bound (4.4) for ı when ˛ > 2 shows that for all ˛ > 0 with ˛ ¤ 1 we have

(4.7) j˛.˛ � 1/R˛A0b0.�/t
˛�2
j � A�2R�:

Assume moreover that ı > 0 satisfies

(4.8)
1

2e
< ˛ı C

1

e
.1 � ı/ � 2ı;

and ı < 1
2

. Remark that such a ı exists as the limit when ı tends to zero of the right-hand side
of the equation is 1

e
> 1
2e

.
For all t 2 Œ A

Rı
; 1� and all n � 1 such that ˛ � 2 � n

e
< 0 we haveˇ̌̌̌�

˛ �
n

e

��
˛ � 1 �

n

e

�
AnR

˛�n
e t˛�2�

n
e bn.�/

ˇ̌̌̌
� R�1.nC 1/2jAnjA

˛�2

�
1

A
1
e

�n
:

with
�1 D ˛.1 � ı/ �

1

e
.1 � ı/C 2ı < �

by our choice of ı.
For all t 2 Œ A

Rı
; 1� and all n � 1 such that ˛ � 2 � n

e
� 0 we haveˇ̌̌̌�

˛ �
n

e

��
˛ � 1 �

n

e

�
AnR

˛�n
e t˛�2�

n
e bn.�/

ˇ̌̌̌
� R�2.nC 1/2jAnj

with �2 D ˛ � n
e
< �. Let � D max.�1; �2/. Then � < �.

Let dn WD .nC 1/2jAnjA˛�2. The power series
P
dnT

n has a radius of convergence �
and is therefore bounded for jT j � �

2
. By hypothesis, 1

A1=e
< �
2

. Therefore there exists a posi-
tive constant c such that for all R big enough,ˇ̌̌̌X

n�1

�
˛ �

n

e

��
˛ � 1 �

n

e

�
AnR

˛�n
e t˛�2�

n
e bn.�/

ˇ̌̌̌
� cR�:

In view of equation (4.7) and of the expression for f 00
�;R
.t/ obtained in part (i) of the lemma

this finishes the proof of part (iii) when ˛ ¤ 1.
The proof of part (iii) when ˛ D 1 is obtained by considering the function

g�;R.t/ D f�;R.t/ � A0Rtb0.�/:

We have g00
�;R
.t/ D f 00

�;R
.t/ and g�;R.t/ has an expansion of the form

g�;R.t/ D
X
n�0

AnCn0R
˛1�

n
e t˛1�

n
e bnCn0.�/

with ˛1 D 1 � n0
e
> 0 and An0 ¤ 0. Therefore g�;R.t/ satisfies the hypothesis of part (iii)

with ˛1 ¤ 1. This finishes the proof of part (iii) of the lemma.
Part (iv) of the lemma is proven similarly. We may assume as previously that ˛ D 0 by

considering the function
g�;R.t/ D f�;R.t/ � A0Rtb0.�/:
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12 Ullmo and Yafaev, Algebraic flows on abelian varieties

In the case ˛ D 0 we choose ˇ D 1
2e

. Assume thatˇ̌̌̌
n0

e

�
n0

e
C 1

�
An0bn0.�/

ˇ̌̌̌
> R�ˇ :

Then for all t 2 ŒA
R
; 1� we have

(4.9)
ˇ̌̌̌
n0

e

�
n0

e
C 1

�
An0bn0.�/R

�
n0
e t�2�

n0
e

ˇ̌̌̌
� R�

n0
e
�ˇ
D R�

n0C 1
2

e :

Let ı > 0 such that .n0C1
e
C 2/ı < ˇ D 1

2e
. For all t 2 Œ A

Rı
; 1� and all n � n0 C 1 we

have ˇ̌̌̌
n

e

�
1C

n

e

�
AnR

�n
e t�2�

n
e bn.�/

ˇ̌̌̌
� R�.nC 1/2jAnjA

�2

�
1

A
1
e

�n
:

with

� D �
n0 C 1

e
.1 � ı/C 2ı < �

n0 C 1

e
C ˇ D �

n0 C
1
2

e

by our choice of ı.
Let dn WD .nC 1/2jAnjA�2. The power series

P
dnT

n has a radius of convergence �
and is therefore bounded for jT j � �

2
. By hypothesis, 1

A1=e
< �
2

. Therefore there exists a posi-
tive constant c such that for all R big enough,ˇ̌̌̌ X

n�n0C1

n

e

�
1C

n

e

�
AnR

�n
e t�2�

n
e bn.�/

ˇ̌̌̌
� cR�:

This shows that

f 00�;R.t/ D
X
n�n0

n

e

�
1C

n

e

�
AnR

�n
e t�2�

n
e bn.�/

is non-vanishing if t 2 Œ A
Rı
; 1�. This finishes the proof of the lemma.

We first prove the first part of Theorem 4.1. Let ˇ be the constant defined in part (iii) of
the lemma if ˛ ¤ 1 and let ˇ be the constant defined in part (iii) (resp. part (iv)) if ˛ D 1 and
the hypothesis of part (iii) (resp. part (iv)) holds.

If ˛ ¤ 1, let E1 be the subset of � 2 Œ0; 2�Œ such that

j˛.˛ � 1/A0b0.�/j > R
�ˇ :

If ˛ D 1, let n0 be the integer defined in part (iii) or in part (iv) of the lemma. Let E1 be the
subset of � 2 Œ0; 2�Œ such that jA0b0.�/j > R�ˇ and such thatˇ̌̌̌

n0

e

�
1 �

n0

e

�
An0bn0.�/

ˇ̌̌̌
> R�ˇ

if the hypothesis of part (iii) holds and such that

jAn0bn0.�/j > R
�ˇ

if the hypothesis of part (iv) holds.
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Ullmo and Yafaev, Algebraic flows on abelian varieties 13

Let E2 such that Œ0; 2�Œ is a disjoint union of E1 and E2. Then there exists �1 > 0 such
that E2 is of Lebesgue measure bounded by R��1 for R big enough. We have

J�.R/ D J
1
� .R/C J

2
� .R/

with

J 1� .R/ D

Z
�2E1

Z 1

A
R

exp.i. .Rt; �//t dt d�

and

J 2� .R/ D

Z
�2E2

Z 1

A
R

exp.i. .Rt; �//t dt d�:

Then for all R big enough jJ 2� .R/j � R
��1 by the previous discussion.

Let ı be the constant defined in part (iii) if ˛ ¤ 1 or if the hypothesis of part (iii) holds.
If ˛ D 1 and the hypothesis of part (iv) holds, let ı be the constant defined in part (iv).

We then write
J 1� .R/ D J

3
� .R/C J

4
� .R/

with

J 3� .R/ D

Z
�2E1

Z A

Rı

A
R

exp.i. .Rt; �//t dt d�

and

J 4� .R/ D

Z
�2E1

Z 1

A

Rı

exp.i. .Rt; �//t dt d�:

Then

jJ 3�; .R/j < 2�
A2

R2ı
:

If ˛ ¤ 1 or ˛ D 1 and the hypothesis of part (iii) holds, then using the result of part (iii)
of the lemma and the Van der Corput lemma with k D 2 and � D c2R� we find that for all R
big enough

jJ 4� .R/j � R�
�
2 :

Assume finally that ˛ D 1 and the hypothesis of part (iv) hold. Using the result of
part (iv), of part (ii) and the Van der Corput lemma with k D 1 and dividing into t > A

R1=2

and t � A
R1=2

in the computation of J 4� .R/, shows that there exists �2 > 0 such that

jJ 4� .R/j � R��2 :

This finishes the proof to the first part of Theorem 4.1

For the proof of the second part of Theorem 4.1, we assume ˛ D 0. Therefore we have
an expansion of �.z/ of the form

�.z/ D a0 C
X
n�1

anz
�n
e :

As previously, we write
f�;R.t/ D

X
n�0

AnR
�n
e t�

n
e bn.�/

and

J�.R/ D

Z 2�

0

Z 1

A
R

exp.if�;R.t//t dt d�:
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14 Ullmo and Yafaev, Algebraic flows on abelian varieties

Lemma 4.4. There exists a positive constant c such that

(4.10)
ˇ̌̌̌X
n�1

AnR
�n
e t�

n
e bn.�/

ˇ̌̌̌
� cR�

1
2e

for all t 2 Œ A
R1=2

; 1� and all � 2 Œ0; 2��.

Proof. For all n � 1 and all t 2 Œ A
R1=2

; 1� we have

jAnR
�n
e t�

n
e bn.�/j � R

� 1
2e jAnj

�
1

A1=e

�n
:

This finishes the proof as the power series
P
AnT

n has radius � > 0 and 1
A1=e
�
�
2

.

Lemma 4.5. There exists a positive constant c0 such thatˇ̌̌̌
exp

�
i
X
n�1

AnR
�n
e t�

n
e bn.�/

�
� 1

ˇ̌̌̌
� c0R�

1
2e

for all t 2 Œ A
R1=2

; 1� and all � 2 Œ0; 2��.

Proof. Let  .t; R; �/ D
P
n�1AnR

�n
e t�

n
e bn.�/. We have

jexp.i .t; R; �// � 1j D
q
.cos. .t; R; �// � 1/2 C sin. .t; R; �//2:

This finishes the proof using the inequality of Lemma 4.4 for t 2 Œ A
R1=2

; 1� and � 2 Œ0; 2��.

We can now give the proof of the second part of Theorem 4.1. Let

J 0�.R/ D

Z 2�

0

Z 1

0

exp.if�;R.t//t dt d�:

Then J�.R/ � J 0�.R/! 0 as R!1. We just need to prove that

J 0�.R/! � exp.i Re.a0//

as R!1. We have

J 0�.R/ � � exp.i Re.a0// D
Z 2�

0

Z 1

0

exp.i Re.a0//.exp.if�;R.t// � 1/t dt d� D J1 C J2

with

J1 D

Z 2�

0

Z A

R1=2

0

exp.i Re.a0//.exp.if�;R.t// � 1/t dt d�

and

J2 D

Z 2�

0

Z 1

A

R1=2

exp.i Re.a0//.exp.if�;R.t// � 1/t dt d�:

Then jJ1j � 2�A2

R
and J2 ! 0 as R!1 by Lemma 4.5.
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5. Proof of Theorem 2.4

Let C be a curve in Cg . Let C1; : : : ; Cr be the branches at infinity of C . We recall that
we defined

! WD
i

2

gX
kD1

dzk ^ dzk

and the hypercube

B.0;R/ D ¹.z1; : : : ; zg/ 2 Cg
W jzkj < R for all k 2 ¹1; : : : ; gºº:

Lemma 5.1. There exists a positive constant a such thatZ
C\B.0;R/

!

R2
! a

as R!1.

Proof. The question only depends on the behaviour of C near the points at infinity. We
therefore just need to show that for each branch Cˇ of C there exists a positive constant aˇ
such that

(5.1)
Z
Cˇ\B.0;R/

!

R2
! aˇ :

We fix a branch Cˇ of C and to simplify notations we write D D Cˇ . We just need to show
that for all j 2 ¹1; : : : ; gº there exists a non-negative constant aj such that

 j .R/ WD

Z
D\B.0;R/

i dzj ^ dzj

2R2
! aj

and that there exists a j 2 ¹1; : : : ; gº such that aj > 0.
If zj is bounded when Z D .z1; : : : ; zg/ varies on D, then  j .R/! 0. Let j be such

that zj is unbounded. Writing z D zj as in the previous section and using the theory of Puiseux
expansions (see [9, Chapter 4]) we have

(5.2) zk D
X
n�0

ak;nz
˛k�

n
ek

with ak;0 ¤ 0, ˛k 2 Q and ek 2 N�.
If there exists a k 2 ¹1; : : : ; gº such that ˛k > 1 D j̨ , then for jzj tending to infinity

jzj D

ˇ̌̌̌
zk

ak;0

ˇ̌̌̌ 1
˛k

.1C o.1//:

Then for Z D .z1; : : : ; zg/ 2 D \ B.0;R/, we have

jzj � R
1
˛k

and
j j .R/j � R

2
˛k
�2
:

In this case,  j .R/! 0.
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16 Ullmo and Yafaev, Algebraic flows on abelian varieties

If j̨ D maxk.˛k/, we define

Ej D ¹k 2 ¹1; : : : ; gº W ˛k D 1 D j̨ º:

When Z D .z1; : : : ; zg/ varies in D \ B.0;R/, the function z D zj varies in

(5.3)
²
z 2 C W Aj < jzj <

1

maxk2Ej .jak;0j/
R.1C o.1//

³
for some positive constant Aj . In this situation there exists a positive constant dj such that

(5.4)  j .R/ D
�dj

maxk2Ej .jak;0j/
.1C o.1//:

Let Cˇ be a branch of C and let

T 0ˇ D �.Pˇ /C Tˇ

be the associated asymptotic Mumford–Tate torus. Let �ˇ be the normalized Haar measure
on T 0

ˇ
. Let �ˇR and �0

ˇR
be the measures on A such that for all continuous �-invariant func-

tions f on Cg ,

�ˇ;R.f / D

R
Cˇ\B.0;R/

f!R
Cˇ\B.0;R/

!

and

�0ˇ;R.f / D

R
Cˇ\B.0;R/

f!

R2
:

Theorem 2.4 is now a consequence of the following proposition.

Proposition 5.2. The measures�ˇ;R converge weakly to�ˇ asR!1. There is a pos-
itive constant cˇ such that �0

ˇ;R
converges weakly to cˇ�ˇ as R!1.

Proof of Theorem 2.4. Let us first verify that the proposition implies Theorem 2.4.
Let f be a continuous �-invariant function on Cg and

If .R/ D

R
C\B.0;R/ f!R
C\B.0;R/ !

:

By Lemma 5.1,

If .R/ D

R
C\B.0;R/ f!

aR2
C o.1/ D

rX
ˇD1

Z
Cˇ\B.0;R/

f!

aR2
C o.1/:

Using the proof of Lemma 5.1, we get the existence of positive constants aˇ for ˇ 2 ¹1; : : : ; rº
such that

If .R/ D

rX
ˇD1

aˇ�ˇ;R.f /C o.1/:

Then by Proposition 5.2 we see that

If .R/!

rX
ˇD1

aˇ�ˇ .f /:

This finishes the proof of Theorem 2.4 assuming Proposition 5.2.
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Proof of Proposition 5.2. By equation (5.1) in proof of Lemma 5.1, the two statements
of Proposition 5.2 are equivalent.

Let Cˇ be a branch of C . Let
T 0ˇ D �.Pˇ /C Tˇ

be the associated asymptotic torus. Let N.Tˇ / be as previously the subset of b� ' X�.A/
consisting of characters of A which have a trivial restriction to Tˇ . Let � 2 b� , we recall that

�ˇ .�� / D 0 if � … N.Tˇ /

and
�ˇ .�� / D exp.2i�.Pˇ ; �// if � 2 N.Tˇ /:

By Lemma 3.2, N.T˛/ is the subset ofb� consisting of all � D .�1; : : : ; �g/ such that the
function

 � .z/ WD Re.�� .z//

(where �� .z/ D
Pg

kD1
�kzk) is bounded as Z D .z1; : : : ; zg/ varies in Cˇ .

By the Weyl criterion we must check that there is a positive constant cˇ independent of �
such that

�0ˇ;R.�� /! 0 if � … N.Tˇ /

and
�0ˇ;R.�� /! cˇ exp.2i�.Pˇ ; �// if � 2 N.Tˇ /:

For k 2 ¹1; : : : ; gº, let �0
ˇ;k;R

be the measure on A such that for all continuous �-invar-
iant function f we have

�0ˇ;k;R.f / D

R
Cˇ\B.0;R/

f i dzk ^ dzk

2R2

By definition,

�0ˇ;R D

rX
kD1

�0ˇ;k;R:

By the proof of Lemma 5.1, if zj is a coordinate which is bounded on Cˇ , then

�0ˇ;j;R.�� /! 0 for all � 2 b� .

If z D zj is unbounded on Cˇ , we use the notations of the Puiseux expansions given in
equation (5.2). Then, if there is a k 2 ¹1; : : : ; gº such that ˛k > 1 D j̨ , once more as in the
proof of Lemma 5.1 we have

�0ˇ;j;R.�� /! 0 for all � 2 b� .

Let z D zj be unbounded on Cˇ and assume that j̨ D 1 D maxk.˛k/. Then �� .z/
admits a Puiseux expansion of the form considered in Section 4

�� .z/ D
X
n�0

anz
˛�n

e

with ˛ � 1. Then �� .z/ is unbounded if ˛ > 0 and bounded if ˛ � 0. By the proof of Lem-
ma 5.1 we have

�0ˇ;j;R.�� / D

Z
A<jzj<cR

exp.i Re.�� .z//
i dz ^ dz

2R2
C o.1/

for some positive constants A D Aˇ;k and c D cˇ;k .
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18 Ullmo and Yafaev, Algebraic flows on abelian varieties

By the first part of Theorem 4.1, if � … N.Tˇ /, then

�0ˇ;j;R.�� /! 0:

Let a0.zk/ be the constant term in the Puiseux expansion of zk given by equation (5.2).
Let Qˇ be the point of Cg with coordinates Qˇ D .a0.z1/; : : : ; a0.zg//. Let a0. � / be the
real part of the constant term in the Puiseux expansion of �� .z/. Then

a0. � / D Re

 
gX
iD1

�ka0.zk/

!
D .�;Qˇ /:

By the second part of Theorem 4.1, if � 2 N.Tˇ /, using equation (5.4) we obtain that
there exists a positive constant dˇ;j such that

�0ˇ;j;R.�� /! dˇ;j exp.ia0. � // D dˇ;j exp.i.Qˇ ; �//:

By Lemma 3.2, we have
.Qˇ ; �/ D .Pˇ ; �/:

This finishes the proof of Proposition 5.2 and of Theorem 2.4.

6. Examples

We give in this part three examples illustrating the results of this paper.

6.1. Complex geodesic flows on abelian varieties. As in the previous section, A is
a complex abelian variety of dimension g. We fix a lattice � such that A ' Cg=� and we
denote by � W Cg ! A the uniformizing map. Conjectures 1.2 and 1.3 for ‚ a complex linear
subspace of Cg are simple applications of Weyl’s criterion. In this case,‚ is a totally geodesic
subvariety of Cg .

Let V be a C-vector space of dimension 2 and let .e1; e2/ be a C-basis of V . Let � be
the lattice

� WD Ze1 ˚ Z
p
�1e1 ˚ Ze2 ˚ Z

p
�5e2:

Then A WD A=� is an abelian variety of dimension 2. In fact, A is a product of two elliptic
curves. Let W be a sub-vector space C.e1 C e2/ of V . Then the Mumford–Tate group of W is

MT.W / D Q.e1 C e2/CQ
p
�1e1 CQ

p
�5e2

and
MT.W /˝R D R.e1 C e2/CR

p
�1e1 CR

p
�5e2:

As a consequence, MT.W /˝R=� \MT.W /˝R is a real torus of real dimension 3. This
shows that we can not expect that in Conjecture 1.2 the analytic closure of �.‚/ has a complex
structure.

6.2. The curve Z1Z2 D 1. Let A be a complex abelian surface and let

� W C2
! A D C2=�

be the uniformizing map. Let C be the curve in C2 with equation

Z1Z2 D 1:
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There are two branches

C1 D

²�
Z1;

1

Z1

�
W jZ1j > 1

³
and

C2 D

²�
1

Z2
; Z2

�
W jZ2j > 1

³
:

Let T 01 D �.P1/C T1 and T 02 D �.P2/C T2 be the asymptotic Mumford–Tate tori associ-
ated to C1 and C2.

Suppose A is a product of two elliptic curves E1 �E2. Then there are some lattices �1
and �2 in C such that E1 D C=�1 and E2 D C=�2 and � D �1 � �2. Then b� D b�1 �b�2.

We know by Lemma 3.2 that a character �� with

� D .�1; �2/ 2 b� D X�.A/
is trivial on T1 if and only if Re.�1Z1 C �2Z2/ is bounded on C1. This is equivalent to saying
that � D .0; �2/ 2 ¹0º �b�2. Then we have the exact sequence

0! ¹0º �b�2 ! X�.A/ D b�1 �b�2 ! X�.T1/ D b�1 � ¹0º D X�.E1 � ¹0º/! 0:

As a consequence, the asymptotic torus T1 associated to C1 is E1 � ¹0º and the same proof
shows that the one associated to C2 is ¹0º �E2. In this case,

�.C / D �.C / [E1 � ¹0º [ ¹0º �E2:

If b� has no vector of the form � D .0; �2/ with �2 ¤ 0, then the only character of A
which is trivial on T1 is 1A. In this situation, �.C / D A. This is the generic situation.

It is also possible to construct examples of lattices � 2 C2 where the set of � 2 b� of
the form � D .0; �2/ is a rank one Z-submodule of b� . In this situation, T1 is a real torus of
dimension 3.

If there is no element � 2 b� of the form � D .�1; 0/ with �1 ¤ 0, then T2 D A and
�.C / D A but the sequence �C;R does not converge to �A. In fact, by Theorem 2.4, we have
�C;R ! a�A C b�T1 for some positive real constants a and b.

If there is some � 2 b� of the form � D .�1; 0/ with �1 ¤ 0, then T2 will be also a real
torus of dimension 3 and

�.C / D �.C / [ T1 [ T2:

6.3. Hyperelliptic curves in C2. Let A be a complex abelian surface and let

� W C2
! A D C2=�

be the uniformizing map. Let C be an hyperelliptic curve in C2 with equation

Z22 D Z
r
1 C ar�1Z

r�1
1 C � � � C a0

for some integer r � 3 and some complex numbers a0; : : : ; ar�1.

Proposition 6.1. We have �.C / D A and �C;R converges weakly to the normalized
Haar measure �A of A.
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Proof. For any branch C˛ of C we have

jZ2j ' jZ1j
r
2 :

Let T 0˛ D �.P /C T˛ be the asymptotic torus associated to C˛. We know by Lemma 3.2 that
a character �� with � D .�1; �2/ 2 b� D X�.A/ is trivial on T˛ if and only if Re.�1Z1C�2Z2/
is bounded on C˛. This is only possible if �1 D �2 D 0. Therefore T˛ D A and the result is
a consequence of Theorem 2.4.
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