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 Neural correlates of attention and streaming 
 

 
 

In a complex acoustic environment, acoustic cues and attention interact in the formation of streams 18 

within the auditory scene. In this study, a variant of the ‘octave illusion’ [Deutsch, D. (1974). “An 19 

auditory illusion,” Nature, 251, 307–309] was used to investigate the neural correlates of auditory 20 

streaming, and to elucidate the effects of attention on the interaction between sequential and 21 

concurrent sound segregation in humans. By directing subjects’ attention to different frequencies 22 

and ears, it was possible to elicit several different illusory percepts with the identical stimulus. The 23 

first experiment tested the hypothesis that the illusion depends on the ability of listeners to 24 

perceptually stream the target tones from within the alternating sound sequences. In the second 25 

experiment, concurrent psychophysical measures and EEG recordings provided neural correlates 26 

of the various percepts elicited by the multistable stimulus. The results show that the perception 27 

and neural correlates of the auditory illusion can be manipulated robustly by attentional focus and 28 

that the illusion is constrained in much the same way as auditory stream segregation, suggesting 29 

common underlying mechanisms. 30 

 31 

PACS numbers: 43.25.Nm, 43.66.Ba 32 

 33 

 34 

 35 

 36 

 37 
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I. INTRODUCTION 38 

 Making sense of the acoustic environment is a complex but crucial task of the 39 

auditory system. The perceptual organization of complex acoustic environments into coherent 40 

auditory scenes is often discussed in terms of auditory grouping (the binding of simultaneous 41 

acoustic features into a single auditory “object”) and streaming (the organizing of successive 42 

sounds into a unitary percept) (e.g. Bregman, 1990; Darwin and Carlyon, 1995). The acoustical 43 

properties that influence auditory grouping and streaming have been explored using several 44 

behavioral as well as electrophysiological methods (Alain, 2007; Billig et al., 2013; Denham et 45 

al., 2010; Elhilali et al., 2009; Gutschalk et al., 2005; Micheyl et al., 2007, 2013a, 2013b; 46 

Pressnitzer and Hupé, 2006; Shamma and Micheyl, 2010). With few exceptions (e.g. Darwin et 47 

al., 1995; Shinn-Cunningham et al., 2007), most studies have investigated simultaneous grouping 48 

and sequential streaming separately, despite the fact that sound sources in the natural environment 49 

overlap as well as unfold over time. 50 

In addition to acoustic cues, attention, expectation, and other “top-down” influences have 51 

been found to play a key role in how complex auditory scenes are processed and perceived 52 

(Carlyon et al., 2001; Cusack et al., 2004; Elhilali and Shamma, 2008; Moore and Gockel, 2012; 53 

Winkler et al., 2012). Perceptually ambiguous or multistable stimuli can be useful in elucidating 54 

the mechanisms of perception, and in dissociating the neural responses to physical stimuli from 55 

the neural correlates of perception (Leopold and Logothetis, 1999; Schwartz et al., 2012). 56 

The experiments described here address the interaction between sequential and concurrent 57 

sound segregation, as well as the interactions between acoustic and attentional manipulations on 58 

the perception of sound sequences. The experiments exploit a stimulus paradigm similar to the one 59 
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used to elicit Deutsch’s “octave illusion” (Deutsch, 1974). In this illusion, most listeners report 60 

hearing an alternating pattern of low and high tones, with all the low tones lateralized to one side 61 

and all the high tones lateralized to the other side, even though the actual stimulus has alternating 62 

low and high tones in both ears (Figure 1).  63 

 Deutsch's (1974) stimuli and the robustness of the elicited percepts have been investigated 64 

over a wide range of parameters. The illusion has been shown to be robust to changes in tone 65 

duration (Zwicker, 1984), intensity (Deutsch, 1978), frequency separation (Brancucci et al., 2009), 66 

and timbre (McClurkin and Hall, 1981) and can also be elicited by aperiodic stimuli such as band-67 

pass noise (Brännström and Nilsson, 2011). It was noted by Deutsch and Roll (1976), and later 68 

confirmed by Brancucci et al. (2009), that the illusion is not dependent on the tones being in an 69 

exact octave relationship, although Brancucci et al. (2009) noted that the illusion became less 70 

compelling at musical intervals much less than an octave. Since its introduction, this stimulus has 71 

been shown to be multistable, in that it can be perceived in multiple ways (Brancucci et al., 2014; 72 

Brancucci and Tommasi, 2011; Chambers et al., 2002; Deutsch and Gregory, 1978). Deutsch and 73 

Roll (1976) suggested that most listeners report hearing the tone frequencies that were presented 74 

to their “dominant” ear (usually the right), through suppression of the non-dominant ear. Such 75 

suppression was postulated not to occur for sound localization, but instead the localization of the 76 

tone heard was thought to depend upon the physical location of the higher frequency tone at any 77 

given time interval, regardless of the ear of presentation. Subsequently, it was noted that not all 78 

participants perceived the illusion in the same fashion (the pattern may differ from high tones in 79 

right ear and low tones in left ear to the opposite pattern) and that the percept also depended on 80 

the length of stimulus presentation, such that the illusion did not occur for very short presentations 81 

of the stimulus (Christensen and Gregory, 1977; Deutsch and Gregory, 1978). 82 
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Bregman and Steiger (1980) had suggested that in the case of the classic octave illusion 83 

(see Fig. 1), the auditory system treated the 800-Hz tone as a harmonic of the 400-Hz tone and 84 

thus localized the percept of the tone at the ear receiving the “more reliable higher harmonic”. 85 

Chambers et al. (2002) suggested that the octave illusion percept was based on dichotic fusion, 86 

which meant that the percept was made of the tones from both the ears fusing to form a percept 87 

that varied very slightly in overall perceived frequency or pitch. Although the Chambers et al. 88 

(2002) study highlighted the aspect of bilateral grouping of tones, it has since been established that 89 

the tones perceived do not sound like a fused auditory image, and in fact correspond to the pitch 90 

of the component high- and low-frequency tones (Deutsch, 2004).  91 

 92 

FIGURE 1: (Color online) The stimulus pattern used in the original experiment of Deutsch (1974) 93 

describing the octave illusion, together with the percept most commonly obtained. Boxes labelled 94 

‘A’ indicate tones at 400 Hz, and boxes labelled ‘B’ indicate tones at 800 Hz. 95 

 96 
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Although the illusion has received considerable attention, it remains unclear whether it can 97 

be manipulated via directed attention or experimenter instructions. Such manipulation could be 98 

useful in exploring the neural bases of the illusion, as different percepts might be elicited with 99 

physically identical sounds. Some neuroimaging studies have been carried out in an effort to 100 

understand the neural bases of the illusion (Brancucci et al., 2009, 2011; Lamminmäki et al., 2012; 101 

Lamminmäki and Hari, 2000). However, in all these neuroimaging studies, subjects’ spontaneous 102 

percepts were either tested beforehand, with the recordings obtained while the subjects were 103 

listening passively (Brancucci et al., 2012; Lamminmäki et al., 2012; Lamminmäki and Hari, 104 

2000), or the response measures for a task-based study were mainly focused on the participants’ 105 

subjective reports of their percept (Brancucci et al., 2014). None of these studies attempted to 106 

record the neural responses while simultaneously actively manipulating, or objectively measuring, 107 

the participants’ percepts. 108 

This study investigated sequences of simultaneous alternating high and low pure tones, as 109 

shown in Fig. 1, in the context of auditory streaming. Although the illusion has not been explicitly 110 

studied in this context before, several of its properties suggest that it may reflect the same 111 

underlying mechanisms as streaming. For instance, it has been reported that the illusion may not 112 

be as strong when the frequency separation between the two tones becomes too small (Brancucci 113 

et al., 2009), as is also observed in streaming studies for both frequency (e.g. van Noorden, 1975) 114 

and pitch (e.g. Vliegen and Oxenham, 1999). Furthermore, the combination of sequential 115 

organizing with simultaneously presented sounds provides an opportunity to study the interaction 116 

between simultaneous grouping and sequential streaming. The study described here also 117 

investigated whether the perception and neural correlates of the illusion can be manipulated via 118 

selective attention, based on priming and experimenter instructions. More specifically, the 119 
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experiments described in this study test the following hypotheses: (1) that the illusion occurs 120 

within the parameter ranges that induce auditory streaming, (2) that priming listeners with auditory 121 

cues affects their perception of the octave illusion, and (3) that the corresponding neural activity 122 

obtained via EEG reflects the perception of the illusion, as manipulated by the priming cues. 123 

 124 

II. METHODS 125 

A. Participants 126 

Fifteen participants (eleven female and four male, aged 20-29 years) took part in the first 127 

experiment, which involved only behavioral measures. Ten participants (four female and six male, 128 

aged 20-29 years) took part in the second experiment, which involved simultaneous behavioral 129 

and EEG measurements. All participants tested were naïve to the aims of the study, and there was 130 

no overlap of participants between the experiments. All participants had normal hearing, defined 131 

as audiometric hearing thresholds no more than 15 dB Hearing Level (HL) at octave frequencies 132 

from 250 Hz to 4 kHz, with no history of hearing or neurological disorders. Participants provided 133 

written informed consent and were compensated for their participation. Experiment 1 was carried 134 

out at University College London and experiment 2 was carried out at the University of Maryland. 135 

The University College London Ethics Committee and the University of Maryland Institutional 136 

Review Board approved the procedures for experiments 1 and 2, respectively. 137 

 138 

B. Experiment 1: Stimuli and procedure  139 
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Experiment 1 tested the first two of the hypotheses listed above, that (1) the stimulus parameters 140 

of the octave illusion correspond to those of stream segregation, and (2) priming cues affect 141 

listeners’ perception of the illusion. In this experiment, alternating sequences of low and high tones 142 

were presented to each ear in opposite phase, such that the sequence in the left ear could be a High-143 

Low-High… pattern while the sequence in the right ear could be a Low-High-Low… pattern (see 144 

Fig. 2). Participants were cued to attend to a particular ear (R or L) and frequency (termed Hi or 145 

Lo), as indicated by a priming sequence of three pure tones that were presented either to the left 146 

or right ear and were either all low or all high in frequency (i.e., all R/Lo, R/Hi, L/Lo, or L/Hi). 147 

All tones were 100 ms in duration, with 10-ms raised-cosine onset and offset ramps. Within the 148 

priming and the main sequence, the tones were separated from each other by a 50-ms silent period. 149 

The silent period between the priming sequence and the test sequence was 500 ms. The sequences 150 

were generated in MATLAB (MathWorks Inc. Natick, MA, USA) and were presented at a 151 

sampling rate of 44.1 kHz. The experiment was presented using the Psychophysics Toolbox 152 

extension in MATLAB (Brainard, 1997; Pelli, 1997) through Sennheiser HD 215 headphones (Old 153 

Lyme, CT, USA).  154 

 155 
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FIGURE 2: (Color online) Schematic representation of the stimuli. Boxes labelled ‘Lo’ and ‘Hi’ 156 

indicate pure tones of low and high frequencies. Each ear receives an alternating sequence of Hi-157 

Lo tones. The example trial shown in the figure has a precursor sequence of low frequency tones 158 

in the right ear indicating the attended stream. The amplitude deviant in the Right-Low tones thus 159 

becomes the target deviant among the other distractor deviants. 160 

 161 

Each ear of a listener was presented with alternating sequences of 12 pure tones per trial – six 162 

high and six low tones in each ear (see Fig. 2). Each of the four tone streams (R/Lo, R/Hi, L/Lo, 163 

and L/Hi) could have one deviant tone (amplitude increase by 7 dB on one of the tones) that 164 

occurred either early, mid, or late in the particular stream. The reason for having deviants was to 165 

use an objective measure of segregation (Micheyl and Oxenham, 2010; Thompson et al., 2011). 166 

Each stream had a randomized arrangement of the location of the targets and distractor deviants. 167 

The deviants did not occur simultaneously in more than one stream. It was ensured that an equal 168 

number of early, mid, and late deviants were presented across the test blocks. Depending on the 169 

priming sequence, the deviant in the primed stream was the target deviant, and the deviants in the 170 

other streams were termed distractor deviants. An example trial is shown in Figure 2, where the 171 

priming sequence is for the right ear and low tones (R/Lo), so the target is the deviant in the R/Lo 172 

stream and the distractors are deviants in any of the other streams (as indicated in Figure 2). The 173 

participants were required to detect the target deviant while ignoring all other distractor deviants. 174 

They responded via button press at the end of each trial to indicate whether a target deviant had 175 

been presented. All the deviants used in the test sessions were 7 dB higher than the other tones in 176 

the sequence, based on listeners achieving a sensitivity index (d') of 1.0 or higher in pilot 177 

experiments with that increment level. Each stream had a 0.5 probability of including a deviant, 178 
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hence listeners could not simply count the number of deviants and respond accordingly. In 179 

addition, the positions of the distractor and target deviants were randomized.  180 

Four different frequency separations between the high and low tones were used: 1, 6, 15 and 181 

20 semitones (ST). The frequency of the low tone was fixed at 1000 Hz while the frequency of the 182 

high tone varied between trials. For the 1 and 6 ST conditions, both tones were presented at 70 dB 183 

SPL. For the 15 and 20 ST conditions, the higher tone was presented at 70 dB SPL, and the level 184 

of the lower frequency tone was adjusted according to the ISO 226:2003 equal-loudness contours 185 

to be the same loudness as the higher (70 dB SPL) tone (1.5 dB lower). Within a block, the order 186 

of presentation of trials was randomized for the four frequency separations and the four probe 187 

types. Participants received visual feedback at the end of each trial.  188 

Each participant undertook an initial session with 5 repetitions of the test sequence without 189 

any priming tone sequence at the maximum frequency separation of 20 ST. For each trial, their 190 

unbiased percept (i.e., when they were not provided with instructions on what to attend to within 191 

the sound sequences) was noted. For this, the participants were asked to simply listen to the sound 192 

sequence and report what they heard. The subjective percepts were collected as free responses. 193 

Participants were not informed of what the expected percept was and new naïve participants were 194 

recruited for each experiment. All participants who were tested in the experiments spontaneously 195 

reported either the percept of Right-Low and Left-High or the percept of Right-High and Left-196 

Low. None of the participants reported any of the other irregular percepts described by Deutsch 197 

(1981). Hence, the un-cued spontaneous percepts were classified as either one of the two possible 198 

percepts. At no point in the experiment were the listeners told how the illusion was thought to 199 

occur or what the stimulus configuration was. Participants were presented with all the frequency 200 

separations (1, 6, 15 and 20 ST) with the different priming sequences (high and low frequency 201 
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priming tones in the right and left ear) to check if the priming sequence had an effect on their 202 

percept of the illusion. For example, the participants were primed to L/Hi tones and their percept 203 

at the end of the test sequence was noted. The participants carried out 40 trials of this subjective 204 

block where each trial had one of the four cues. Following this block, they carried out one practice 205 

block of the deviant detection task. 206 

For the actual test conditions, each participant completed 20 blocks of the task. Each block 207 

consisted of 96 trials. For each frequency separation, there were three deviant (where the deviants 208 

were in early/mid/late positions) and three non-deviant trials per block. The order of all trials was 209 

fully randomized. Each block took approximately 10 minutes, depending on the participants’ 210 

response times. The testing was broken up into two sessions of approximately two hours each. 211 

 212 

C. Experiment 2: Stimuli and procedure  213 

The second experiment combined EEG and psychophysical measurements to investigate the 214 

perception and neural representation for a stimulus similar to that used in experiment 1. The 215 

primary difference was that EEG was only carried out for one frequency separation, where the 216 

frequencies of the low and high tones were fixed at 1000 and 3000 Hz, respectively (~19 ST). The 217 

level of each tone was 70 and 68.5 dB SPL respectively to ensure equal loudness. As in experiment 218 

1, each ear was presented with an alternating sequence of 12 pure tones per trial (see Figure 2). 219 

One amplitude deviant was placed on at least three of the four types of tones (R/Lo, R/Hi, L/Lo 220 

and L/Hi) either at the start, middle, or at the end of the sequence. The sequences were again 221 

generated in MATLAB at a sampling rate of 44.1 kHz. The stimuli were presented using E-prime 222 

(Psychology Software Tools, Inc. Sharpsburg, PA, USA) through Etymotic Research ER-2 insert 223 
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transducers (Etymotic Research, Elk Grove Village, IL, USA) in a sound-treated room. Depending 224 

on the priming sequence, one of the deviants would be the target deviant and others would be 225 

distractor deviants for that particular trial. Each stream had a 0.5 probability of including a deviant. 226 

The participants were required to detect the amplitude deviants in the stream of sounds that they 227 

were cued to (target deviants) and ignore the others, responding via button press at the end of each 228 

trial. Feedback was given at the end of each trial. Each listener was presented with 160 trials per 229 

priming condition during the test session.  230 

EEG was acquired continuously using a 64-channel BrainVision system consisting of a Brain-231 

Vision™ recorder (Version 1.01b) and a Brain-Vision professional BrainAmp™ integrated 232 

amplifier system (Brain Products GmbH, Germany). The signal was digitally sampled at an A/D 233 

rate of 1000 Hz (32-bit resolution). Participants were fitted with an electrode cap fitted with 64 234 

silver/silver chloride scalp electrodes positioned in an electrode ‘Easy Cap’ (Falk Minow Services, 235 

Herrsching-Breitbrunn, Germany). Electrode impedance was monitored and maintained at a 236 

minimum (typically below 5 kΩ). 237 

D. EEG Analysis 238 

EEG pre-processing, epoching, and averaging was carried out using the EEGLAB toolbox 239 

(Delorme and Makeig, 2004).  Data was down-sampled and then filtered using a zero-phase-shift 240 

bandpass filter from 0.1 Hz to 30 Hz. Baseline was corrected to -100 ms before stimulus onset, 241 

followed by artefact rejection at +/- 150 microvolts.  Independent component analysis (ICA) was 242 

used to remove artefacts related to eye movements and blinks. 243 

The EEG signal for each attention condition (R/Lo, R/Hi, L/Lo, and L/Hi) was separated 244 

into epochs 2850 ms long (corresponding to the length of one stimulus sequence including a 100-245 
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ms baseline). These were then grouped separately for correct trials (where the target deviants were 246 

correctly detected) and for incorrect trials (targets were either not detected or with false positive 247 

behavioral results). As most of the participants had d' values greater than 1.0, there were more 248 

correct epochs than incorrect epochs. Hence, for the second half of the analysis between correct 249 

and incorrect trials, a random subset of the correct trials was chosen to equal the number of 250 

incorrect trials in that condition.  251 

The EEG activity was averaged individually for each of the four primed attention conditions: 252 

attend to R/Lo, R/Hi, L/Lo, and L/Hi (separately for correct and incorrect trials). Next, the 253 

responses were averaged within each pair of conditions that involved attention to tones that were 254 

presented synchronously. For example, for priming conditions of R/Lo and L/Hi, the evoked 255 

response waveform would show the same effect of attention, as the R/Lo and L/Hi tones are 256 

synchronous. In other words, the responses to the R/Lo and L/Hi conditions were averaged, as 257 

were the responses to the L/Lo and R/Hi conditions. Finally, the responses to the two pairs of 258 

conditions (R/Lo-L/Hi and L/Lo-R/Hi) were subtracted from each other in order to cancel out the 259 

common (in-phase) 6-Hz activity (as the tone presentation rate in each ear was 6 Hz) and hence to 260 

potentially enhance the relative level of the 3-Hz activity (due to attention to alternate tones). 261 

Spectral analysis using a short-time Fourier transform was carried out on the resultant waveforms 262 

in order to examine the power spectrum of the EEG waveforms. 263 

 264 
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III. RESULTS 265 

A. Experiment 1: Behavioral results 266 

Subjective reports obtained from participants when listening to a sequence with a large 267 

frequency separation (greater than 6 ST) between the low and high tones indicated that the 268 

spontaneous percept for the majority of participants (10/15) was of the high tone in the right ear 269 

alternating with the low tone in the left ear (R/Hi-L/Lo). The remaining five participants reported 270 

hearing the low tone in the right ear, alternating with a high tone in the left ear (R/Lo-L/Hi). No 271 

other perceptual configuration was reported by any of the 15 subjects. Next, for the subjective 272 

reports of the cued percepts, all 15 subjects reported perceiving the illusion for all the trials as 273 

predicted. For example, in the condition where the cue was L/Lo, all subjects spontaneously 274 

responded to report the low tone in the left ear and the high tone in the right ear. This observation 275 

was reliable and consistent across all subjects. It should be noted that at no point were the listeners 276 

told what the expected percept could be (the instructions for the free report were simply “What do 277 

you hear?”).  278 

For the 15- and 20-ST frequency separations, the subjective reports after priming indicated that 279 

the priming sequence was indeed able to effectively manipulate the percept. For example, 280 

participants with the spontaneous perception of R/Lo-L/Hi reported hearing the reversed percept 281 

of R/Hi-L/Lo if the priming sequence was either high tones in the right ear or low tones in the left 282 

ear. In contrast, the subjective reports for the two smaller frequency separations (1 and 6 ST) 283 

suggested that participants perceived a fused stream and that they were not able to precisely locate 284 

the ear in which they heard the low and high tones.  285 
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In the detection tasks, the participants’ sensitivity to the deviant target was estimated by 286 

calculating d' for the detection of deviants for all conditions. The value of d' here and elsewhere 287 

was calculated by subtracting the inverse cumulative standard normal distribution function of the 288 

proportion of false alarms (participant responses to trials in which there was no deviant in the target 289 

stream, as a proportion of all trials with no deviant in the target stream) from the inverse standard 290 

normal cumulative distribution function of the proportion of hits (participant responses to trials in 291 

which there was a deviant in the target stream, as a proportion of all trials in which a deviant was 292 

present in the target stream): d' = z(H) – z(F).  293 

 294 
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FIGURE 3: (Color online) Average deviant detection scores across four different frequency 295 

separations from behavioral data obtained in Experiment 1. The three bars per frequency 296 

separation indicate the detection scores (d') for the early, mid and late deviants respectively. For 297 

the higher frequency separations, a significant increase in the detection scores of the late deviants 298 

compared to the early deviants was found. Error bars indicate 1 standard error from the mean. 299 

Asterisks indicate a significant difference of p<0.001. 300 

 301 

The data, averaged across the different priming conditions, are shown in Fig. 3. The use of d’ 302 

measures in such a deviant detection paradigm has been used previously (e.g., Thompson et al., 303 

2011). However, it should be noted that calculating d’ measures in such a paradigm make 304 

assumptions about equal variance of the distributions of the responses, which may not be justified, 305 

as has previously been discussed (Swets, 1986a, 1986b; Verde et al., 2006). 306 

 Two predictions can be made if stream segregation plays a role in determining performance 307 

in this task. First, segregation is known to increase with increasing frequency separation (Miller 308 

and Heise, 1950; van Noorden, 1975); therefore, improved performance would be expected with 309 

increasing frequency separation between the two tones. Second, stream segregation tends to build 310 

up over time (Anstis and Saida, 1985; Bregman, 1978); therefore, performance should improve 311 

over the duration of each sequence, at least for frequency separations at which build-up is expected. 312 

The data are consistent with the first prediction, with overall performance increasing with 313 

increasing frequency separation from 1 to 20 ST (Fig. 3). The data are also consistent with the 314 

second prediction, with better performance observed during the latest than the earliest time periods, 315 

at least at the two larger frequency separations (Fig. 3). These trends were confirmed by a repeated-316 
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measures ANOVA on the values of d', with three main factors: type of priming cue, frequency 317 

separation, and position of deviant. No main effect for type of priming cue was seen 318 

[F(3,30)=1.33,p=0.284] which indicates that there was no significant difference in the performance 319 

on the task for all four cue conditions. A main effect of frequency separation was observed 320 

[F(3,30)=758, p<0.0001], along with a main effect of position of deviant [F(2,20)=81.2, p<0.001]. 321 

Mauchly's test of sphericity indicated that the assumption of sphericity had not been violated for 322 

any of the above three factors (cue type: χ2(5)=2.86, p =.723; frequency separation: χ2(5)=3.47, p 323 

=.629; deviant position: χ2(2)=4.94, p =.0.08). A significant interaction between frequency 324 

separation and deviant position was also observed [F(6,60)=58.2, p<0.001]. Post hoc tests for 325 

frequency separation indicated that the 1 and 6 ST conditions did not significantly differ from one 326 

another (p =0.58), but did differ from the 15- and 20-ST conditions (p<0.001), which also did not 327 

differ from each other (p=0.07). Post hoc tests also indicated a significant difference in the d' scores 328 

for early deviants compared to mid and late deviants in the 15- and 20-ST conditions (p<0.001). 329 

 330 

B. Experiment 2: Behavioral and EEG results 331 

The behavioral results, averaged across the four conditions (R/Lo, R/Hi, L/Lo, L/Hi) for the 332 

single frequency separation (1000 and 3000 Hz), are shown in Fig. 4. Similar to the results obtained 333 

in experiment 1, a significant difference was observed between the deviant detection d' scores for 334 

the early and late target positions [F(1,9)=9.56, p<0.01]. 335 
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 336 

FIGURE 4: (Color online) Average deviant detection results from behavioral data obtained in 337 

Experiment 2 averaged over 10 participants. The three bars per frequency separation indicate the 338 

detection scores (d') for the early, mid and late deviants respectively. Data showed a significant 339 

difference between d' scores for early and late deviants. Error bars indicate 1 standard error from 340 

the mean. Asterisks indicate a significant difference of p<0.001. 341 

 342 

 As described in the methods, the EEG signals from two of the conditions (R/Lo and L/Hi) 343 

were averaged and subtracted from the sum of the EEG signals from the other two conditions (R/Hi 344 

and L/Lo) to enhance the difference between conditions in which participants attended to different 345 

time epochs. The prediction was that high activity at 3 Hz (the repetition rate of the target tones) 346 

would indicate enhancement of the attended tones. It was found that for the correct trials (all 347 

correct trials as well as the subset of correct trials taken to match the number of incorrect trials; 348 

see Fig. 5 and top panel of Fig. 6), activation around 3Hz emerged prominently during stimulus 349 
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presentation, whereas it was markedly reduced during the trials that were incorrectly responded to 350 

(Fig. 6, middle panel).  351 

 352 

FIGURE 5: (Color online) Spectral analysis of all correct data indicating a 3 Hz pattern (data 353 

combined across all 10 participants and all conditions). The spectral analysis was carried out on 354 

the averaged waveform across the four priming conditions as described in the methods section 355 

(the averaged waveform of conditions R/Lo and L/Hi were subtracted from the averaged 356 

waveforms of R/Hi and L/Lo). The color bar indicates power (µV2 ). 357 



 Neural correlates of attention and streaming 
 

 
 

 358 

FIGURE 6: (Color online) Subtracted waveforms Spectral analysis of equal number of correct 359 

and incorrect trials indicating a 3 Hz pattern (data combined across all participants and all 360 

conditions) for the correct trials (top panel) but not for the incorrect trials (middle panel). Bottom 361 
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panel shows the narrowband power in the region of 3 Hz for the correct and incorrect trials. The 362 

black bars show the temporal windows of significant difference (p<0.001). The color bar indicates 363 

power (µV2 ). 364 

 365 

To further characterize the reliability of the 3-Hz activation in the spectrograms shown in 366 

Figures 6A and 6B, the individual narrowband power for an equal number of correct and incorrect 367 

trials was analyzed using a repeated-measures analysis. This repeated-measures analysis is derived 368 

from the cluster-based statistics approach described by Maris and Oostenveld (2007) and has been 369 

previously used with EEG measures (for e.g. Kouider et al., 2015). The analysis was carried out 370 

using the FieldTrip toolbox (Oostenveld et al., 2010) and is a non-parametric method similar to 371 

bootstrapping but it systematically controls for the problem of multiple comparisons. The black 372 

bars in Figure 6c show the time points where significant clusters of the difference between 373 

conditions were present (Monte-Carlo P value<0.05).  374 

 375 

IV. DISCUSSION 376 

The present study investigated the percept elicited by a complex stimulus of alternating high 377 

and low tones played in opposite presentation phases in the two ears, known as Deutsch’s octave 378 

illusion (Deutsch, 1974). The hypotheses tested were (1) that the illusion could be understood in 379 

terms of the basic principles of auditory streaming, (2) that the perception of the illusion could be 380 

manipulated by directed attention by changes in listening instructions provided via auditory 381 
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priming cues, and (3) that the corresponding neural activity would mirror the changes in the 382 

perception of the illusion. The results provide support for all three hypotheses. 383 

A. Role of stream segregation 384 

The octave illusion is thought to arise from mechanisms involving concurrent and sequential sound 385 

segregation. As noted earlier, there are certain key distinct properties of stream segregation that 386 

we could tap into to assess the critical role of streaming in establishing the illusion. They include 387 

the build-up of segregation over time and the effect of frequency separation on streaming. As 388 

previously noted by (Brancucci et al., 2009), the fact that the illusion breaks down at smaller 389 

frequency differences, in case of the current experiments, between 6 ST and 15 ST,  suggests that 390 

it is mediated at least in part by auditory streaming constraints (van Noorden, 1975). The 391 

behavioral results from experiment 1 confirm and extend these observations by showing a 392 

deterioration in a performance-based task in conditions with a small frequency difference between 393 

the low and high tones (of 6 ST or less), suggesting a lack of stream segregation that results in an 394 

inability to “hear out” and follow a subset of tones within the complex sequence.  395 

Another key indicator of streaming is a build-up of segregation over time as the sequence 396 

unfolds (Anstis and Saida, 1985). A build-up effect was observed when the frequency separation 397 

between the tones was large enough for participants to perform well in the deviant detection task 398 

(15- and 20-ST conditions). The build-up appears more rapid in the 20- than the 15-ST condition, 399 

in line with earlier work showing a very rapid build-up at large separations (Micheyl et al., 2007).  400 

Thus the behavioral results are consistent with the hypothesis that the Deutsch illusion is sub 401 

served by the same mechanisms that govern auditory streaming. This is based on two 402 
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characteristics observed for the octave illusion (frequency-separation dependence and build-up) 403 

that are consistent with the characteristics of auditory streaming.  404 

 405 

B. Effects of priming and directed attention on perception and EEG responses 406 

In Deutsch's (1974) octave illusion, the alternating sequence of low and high tones in both ears 407 

were heard as a series of low tones in one ear alternating with the high tones in the other ear, and 408 

both heard at a rate that was half that of the actual presentation rate (Fig. 1, Percept). Thus, it 409 

appeared as if only the two tones from one ear were being perceived, with one of those two tones 410 

mis-located to the opposite ear (Deutsch, 1974; Deutsch and Gregory, 1978; Deutsch and Roll, 411 

1976). Our stimuli in experiment 1 broadly evoke similar percepts but in a manner that could be 412 

manipulated by instructing participants, via a priming sequence, to attend specifically to one tone 413 

and ear or another. For example, if a participant’s unbiased percept of the illusion involves hearing 414 

the low tones in the right ear and high tones in the left ear, the participant can, with apparent ease, 415 

perceive the opposite percept of the low tones in the left ear and high tones in the right ear, if cued 416 

appropriately. This outcome shows that the illusion is robust but malleable to instructions and 417 

attention. 418 

The simultaneously gathered data from EEG activity also indicated that participants were able 419 

to attend to the target tones in the correct ear, which were presented at half the rate of the stimulus, 420 

i.e., 3 Hz. Thus, consistent with the reported perception, in trials where the participants were able 421 

to detect the deviant in the target stream, neural activity at the target repetition rate (around 3 Hz) 422 

was enhanced, in phase with the target presentation times. Perhaps as expected, in trials where the 423 

participants were not successful in following the target tones (as evidenced by failure to detect the 424 
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target deviant), activation around 3 Hz was markedly reduced, leading to a significant difference 425 

in the activation around 3 Hz between incorrect and correct trials, even when the same numbers of 426 

trials were evaluated in both correct and incorrect categories (see Fig. 6). The enhancement of 427 

EEG activity associated with the attended stream of tones is consistent with a growing body of 428 

literature showing enhanced responses to attended (and detected) streams in a background of other 429 

streams (Alain et al., 2001; Alain and Izenberg, 2003; Carlyon, 2004; Carlyon et al., 2001; Cusack 430 

et al., 2004; Dyson and Alain, 2004; Gutschalk et al., 2005, 2007, 2008; Hillyard et al., 1973; 431 

Zion Golumbic et al., 2013).  432 

 433 

C. The octave illusion as a probe of multistable perception and perceptual organization 434 

Studies of the perception of, and neural responses to, perceptually multistable stimuli can help 435 

explain how objects or sources in the environment with conflicting or ambiguous cues are grouped 436 

according to specific characteristics to form a coherent representation of our surroundings 437 

(Schwartz et al., 2012). Several theories regarding the principles underlying perceptual bistability 438 

and multistability have been put forward. Leopold and Logothetis (1999) have suggested that a 439 

‘central, supramodal mechanism’ underlies the perceptual decision making in multistable stimuli. 440 

Tong et al. (2006) proposed another model using multistable stimuli in the visual domain with a 441 

focus on the idea of distributed competition and have suggested that it is essential to understand 442 

the underlying neural mechanism involved in the processing of multistable stimuli, perceptual 443 

grouping and the effect of attention on them.  444 

The multistable stimulus, used initially by Deutsch (1974), has been studied in various contexts 445 

and over a range of parameters using behavioral as well as neuroimaging techniques (Brancucci et 446 
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al., 2009, 2012, 2014; Brännström and Nilsson, 2011; Deutsch, 1978; Deutsch and Roll, 1976; 447 

Lamminmäki et al., 2012; Lamminmäki and Hari, 2000; McClurkin and Hall, 1981). Our findings 448 

extend these results over wider parameter variations and, more specifically, focus on the role of 449 

auditory streaming and attention in this multistable illusion. In contrast to previous studies, we 450 

have sought to actively guide the subjects’ percepts of the stimulus, thus inducing different 451 

perceptual organizations that could be measured objectively. We have found that the 452 

spontaneously experienced and widely reported perceptual organization was quite malleable to 453 

instructions or priming tones which obviated the advantages of any of the alternative percepts, as 454 

evidenced by equivalent performance across all different conditions. Indeed, the malleability of 455 

the percept of this ambiguous stimulus renders it as a highly promising tool with which to study 456 

further the perception and neural correlates of auditory stream segregation, as it involves both 457 

sequential as well as synchronous sound segregation.  458 

 459 

D. What mechanisms induce the illusion?  460 

We have shown that the “octave illusion” is a robust percept that can be controlled by attention 461 

and persists over a wide range of frequencies and rates that closely parallel those observed in 462 

studies of streaming and auditory scene analysis. How can the emergence of this percept from 463 

these relatively simple stimuli be explained?  Many explanations over the years have been based 464 

on a dual mechanism model in which the pitch and location of the tones are processed 465 

independently and then combined to give the percept (Deutsch, 1981; Lamminmäki et al., 2012). 466 

This mechanism and more elaborate versions of it (Chambers et al., 2002) have been shown to be 467 

inadequate as new experiments demonstrated the persistence of the illusion regardless of the octave 468 
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(or any exact frequency) relationship between the tones or their spatial bilateral grouping 469 

(Brancucci et al., 2009; Brännström and Nilsson, 2011; Bregman and Steiger, 1980; Chambers et 470 

al., 2002; Deutsch, 2004). Furthermore, the dual mechanism model asserts that the pitch percept 471 

of the illusion corresponds to the frequency sequence present in the ‘dominant’ ear of the 472 

individual. If this were the case, then directing attention to the non-dominant ear of the listeners 473 

should not change the percept of the listeners. However, we find that the percept for all listeners 474 

can be manipulated by a simple precursor sequence (as indicated by the results of Experiments 1 475 

and 2). Consequently, since the percept is malleable, it is not possible to explain the illusion based 476 

solely on theories involving a dominant ear, or on theories in which localization is dominated by 477 

the higher-frequency tone. Our results thus provide new constraints for future theories and models 478 

surrounding this long-established illusion. 479 

 480 

V. SUMMARY AND CONCLUSIONS 481 

The purpose of this study was to investigate whether the octave illusion could be used as a potential 482 

tool to study the behavioral and neural effects of attention on concurrent as well as sequential 483 

stream segregation. Our results suggest that the illusory percepts seem to have common underlying 484 

mechanisms with auditory stream segregation. Furthermore, the percept can be manipulated by 485 

selective attention, which can be measured objectively using psychophysics as well as EEG. The 486 

methods introduced here therefore provide a potentially useful tool in the search for neural bases 487 

of auditory steaming and attention. 488 

 489 
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