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Abstract

We develop a cut finite element method for the Bernoulli free boundary problem.
The free boundary, represented by an approximate signed distance function on a fixed
background mesh, is allowed to intersect elements in an arbitrary fashion. This leads
to so called cut elements in the vicinity of the boundary. To obtain a stable method,
stabilization terms are added in the vicinity of the cut elements penalizing the gra-
dient jumps across element sides. The stabilization also ensures good conditioning
of the resulting discrete system. We develop a method for shape optimization based
on moving the distance function along a velocity field which is computed as the H1

Riesz representation of the shape derivative. We show that the velocity field is the
solution to an interface problem and we prove an a priori error estimate of optimal
order, given the limited regularity of the velocity field across the interface, for the
the velocity field in the H1 norm. Finally, we present illustrating numerical results.
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1 Introduction

In this paper we consider the application of the recently developed cut finite element
method (CutFEM) [5, 7] to the Bernoulli free boundary problem. This problem appears
in a variety of applications such as stationary water waves (Stokes waves) and the optimal
insulation problem. The Bernoulli free boundary problem is very well understood from
the mathematical point of view, see [4, 15, 27] and the references therein, and it also
serves as a standard test problem for different optimization and numerical methods, see
e.g. [19, 22, 23] among others. When numerically solving free boundary problems it is
highly beneficial to avoid updating the computational mesh when updating the boundary,
since large motions of the boundary may require complete remeshing. This can be achieved
by the use of fictitious domain methods, which, however, are known not to perform very
well for shape optimization or free surface problems due to their lack of accuracy close to
the boundary [18]. An exception is the least squares formulation suggested in [14], where
similarly as in [7] the formulation is restricted to the physical domain.

A fictitious domain method which does not lose accuracy close to the boundary is
the recently developed CutFEM method, see [5]. CutFEM uses weak enforcement of the
boundary conditions and a sufficiently accurate representation of the domain together with
certain consistent stabilization terms to guarantee stability, optimal accuracy, and condi-
tioning independent of the position of the boundary in the background mesh. Furthermore,
no expensive and complicated mesh operations (edge split, edge collapse, remeshing, etc.)
need to be performed when updating the boundary. This is a significant gain especially for
complicated boundaries and for 3D applications. CutFEM has successfully been applied
for problems with unknown or moving boundaries in, e.g., [9, 17].

As in [1, 2] we consider a shape optimization approach to solve the Bernoulli free
boundary problem using sensitivity analysis and a level set representation [25] to track
the evolution of the free boundary. In the sensitivity analysis we do not use the standard
Hadamard structure of the shape functional, i.e., we do not express the shape functional
as a normal perturbation of the boundary. Instead we use a volume representation which
requires less smoothness and has proved to possess certain superconvergence properties
compared to the boundary formulation [21], see also [20, 24]. To obtain a velocity field
from the shape derivate, we use the Hilbertian regularization suggested in [13], where we
essentially let the velocity field on the domain be defined as the solution to the weak elliptic
problem associated with the H1 inner product with right hand side given by the shape
derivative functional. We may thus view the velocity field as the H1 Riesz representation
of the shape derivative functional acting on H1. This procedure leads to an elliptic interface
problem for the velocity field. The free boundary is then updated by moving the level set
along the velocity field.

We derive a priori error estimates for the CutFEM approximation of the primal problem
and the dual problem, involved in the computation of the shape derivative in the W 1

p norm,
2 ≤ p < ∞, and then we use these estimates to prove an a priori error estimate for the
discrete approximation of the velocity field in the H1 norm. In the error estimates for
the primal and dual problems we use inverse estimates, for 2 < p < ∞, which leads to
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suboptimal convergence rates, but it turns out these bounds are indeed sharp enough to
prove optimal order estimates for the discrete velocity field.

An outline of the paper is as follows: in Section 2 we present the model problem
and CutFEM discretization, in Section 3 we use sensitivity analysis to derive the shape
derivative, in Section 4 we discuss how to compute a regularized descent direction from the
shape derivative, in Section 5 we present a level set representation of the free boundary and
method for computing its evolution, in Section 6 we present an optimization algorithm, in
Section 7 we present a priori error estimates of the CutFEM approximation of the primal
and dual problems as well as for the discrete approximation of the velocity field, and finally,
in Section 8 we present numerical experiments to verify the convergence rates and overall
behavior of the optimization algorithm.

2 Model Problem and Finite Element Method

2.1 Model Problem

We consider the Bernoulli free boundary value problem:

−∆u = f in Ω (2.1)

u = gD on ∂Ω (2.2)

n · ∇u = gN on Γ (2.3)

where Γ ⊂ ∂Ω is the free and ∂Ω \ Γ is the fixed part of the boundary, gD = 0 and gN
is constant on Γ. Note the double boundary conditions on Γ. We seek to determine the
domain Ω such that there exist a solution u to (2.1)–(2.3). For f = 0 we refer to [4, 15, 27]
and the references therein for theoretical background of the Bernoulli free boundary value
problem and for f 6= 0 we assume that f is such that there exist a unique solution.

In order to obtain a formulation which is suitable as a starting point for a numerical
algorithm we recast the overdetermined boundary value problem as a constrained mini-
mization problem as follows [29]. We seek to minimize the functional

J(Ω) := J(Ω;u(Ω)) = min
Ω

1

2

∫
Γ

u2 dΓ (2.4)

where the function u solves the boundary value problem

−∆u = f in Ω (2.5)

u = gD on Γfix := ∂Ω \ Γ (2.6)

n · ∇u = gN on Γ (2.7)

Note that we keep the Neumann condition on the free boundary and enforce the Dirichlet
condition through the minimization of the functional J(Ω).
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The weak formulation of (2.5)–(2.7) reads: find u ∈ VgD(Ω) := {v ∈ H1(Ω) : v|Γfix
=

gD} such that

a(Ω;u, v) :=

∫
Ω

∇u · ∇v dΩ =

∫
Ω

f dΩ =: F (Ω; v) ∀v ∈ V0(Ω) (2.8)

Let O be the set of admissible domains; then the constrained minimization problem reads:
find Ω ∈ O such that

J(Ω) = min
Ω∈O

J(Ω; v) (2.9)

for u ∈ VgD(Ω) s.t. a(Ω;u, v) = F (Ω; v) ∀v ∈ V0(Ω) (2.10)

To solve the minimization problem (2.9)-(2.10), we define the corresponding Lagrangian
as

L(ω, v, q) := J(ω;u)− a(ω; v, q) + F (ω; q) (2.11)

That is, we seek the domain Ω such that

Ω = arg min{ω ∈ O | min
v∈VgD (ω)

max
q∈V0(ω)

L(ω, v, q)} (2.12)

2.2 Cut Finite Element Method

We will use a cut finite element method to discretize the boundary value problem (2.8).
Before formulating the method we introduce some notation.

The Mesh and Finite Element Space. Let Ω0 be a polygonal domain such that all
admissible domains Ω ∈ O are subsets of Ω0, i.e. Ω ⊂ Ω0. Let Th,0 denote a family of quasi-
uniform triangulations of Ω0 with mesh parameter h ∈ (0, h0] and define the corresponding
space of continuous piecewise linear polynomials

Vh(Ω0) = {v ∈ H1(Ω0) : v|T ∈ P1(T ), ∀T ∈ Th,0} (2.13)

Given Ω ∈ O we define the active mesh

Th = {T ∈ Th,0 : T ∩ Ω 6= ∅} (2.14)

the union of the active elements
Ωh = ∪T∈ThT (2.15)

and the finite element space on the active mesh

Vh(Ω) = Vh(Ω0)|Ωh (2.16)

Also, let Fh denote the set of interior faces in Th such that at least one of its neighboring
elements intersect the boundary ∂Ω,

Fh = {F : T+
F ∩ ∂Ω 6= ∅ or T−F ∩ ∂Ω 6= ∅} (2.17)
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Ω

Mϑ(Ω, t)

Figure 1: Illustration of the mapping Mϑ(Ω, t).

where, T+
F and T−F are the two elements sharing the face F . On a face F we define the

jump
JvK = v|T+

F
− v|T−F (2.18)

where T+
F is the element with the higher index.

The Method. We define the forms

Ah(Ω; v, w) := ah(Ω; v, w) + sh(Ω; v, w) (2.19)

ah(Ω; v, w) := (∇v,∇w)Ω − (∂nv, w)Γfix
− (∂nw, v)Γfix

+ (γDh
−1v, w)Γfix

sh(Ω; v, w) :=
∑
F∈Fh

(γ1hJ∂nvK, J∂nwK)F (2.20)

Fh(Ω;w) := (f, w)Ω + (gD, γDh
−1w − ∂nw)Γfix

+ (gN , w)Γ (2.21)

were (u, v)ω :=
∫
ω
u · v dω is the L2 inner product over the set ω equipped with the

appropriate measure. Our method for the approximation of (2.5)–(2.7) takes the form:
find uh ∈ Vh(Ω) such that

Ah(Ω;uh, v) = Fh(Ω; v) ∀v ∈ Vh(Ω) (2.22)

We recognize the weak enforcement of Dirichlet boundary conditions by Nitsche’s method,
cf. [16]. Furthermore, the term sh, first suggested in this context in [7], is added to stabilize
the method in the vicinity of the boundary.

3 Shape Derivative

3.1 Definition of the Shape Derivative

For O ∈ O we let W (Ω,Rd) denote the space of sufficiently smooth vector fields and for a
vector field ϑ ∈ W we define the map

Mϑ : Ω× I 3 (x, t) 7→ x+ tϑ(x) ∈Mϑ(Ω, t) ⊂ Rd (3.1)
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where I = (−δ, δ), δ > 0. The variable t is in pseudo-time, but for simplicity it will be
referred to as the time t. For small enough δ, the mapping Ω 7→ Mϑ(Ω, t) is a bijection
and Mϑ(Ω, 0) = Ω. The map is illustrated in Figure 1. We also assume that the vector
field ϑ is such that Mϑ(Ω, t) ∈ O for t ∈ I with δ small enough.

Let J(Ω) be a shape functional, i.e., a mapping J : O 3 Ω 7→ J(Ω) ∈ R. We then have
the composition I 3 t 7→ J ◦M(Ω, t) ∈ R and we define the shape derivative DΩ,ϑ of J in
the direction ϑ by

DΩ,ϑJ(Ω) =
d

dt
J ◦Mϑ(Ω, t)|t=0 = lim

t→0

J(Mϑ(Ω, t))− J(Ω)

t
(3.2)

Note that ifMϑ(Ω, t) = Ω we have DΩ,ϑJ = 0, even ifMϑ change points in the interior of
the domain.

We finally define the shape derivative DΩJ |Ω : W (Ω,Rd)→ R by

DΩJ |Ω(ϑ) = DΩ,ϑJ(Ω) (3.3)

In cases when the functional J depend on other arguments we use ∂Ω to denote the partial
derivative with respect to Ω and ∂Ω,ϑ to denote the partial derivative with respect to Ω in
the direction ϑ.

3.2 Leibniz Formulas

For v : Ω× I → Rd we define the material pseudo-time derivative in the direction ϑ by

Dt,ϑv = lim
t→0

v(Mϑ(x, t), t)− v(x, 0)

t
(3.4)

and the partial pseudo-time derivative by

∂tv = lim
t→0

v(x, t)− v(x, 0)

t
(3.5)

From the chain rule it follows that

Dt,ϑv = ∂tv + ϑ · ∇v (3.6)

The material derivative does not commute with the gradient and we have the commutator

[Dt,ϑ,∇]v = Dt,ϑ(∇v)−∇(Dt,ϑv) = −(Dϑ)T∇v (3.7)

where Dϑ = V ⊗ ∇ is the derivative (or Jacobian) of the vector field ϑ, and the usual
product rule

Dt,ϑ(vw) = (Dt,ϑv)w + v(Dt,ϑw) (3.8)

holds. To derive a expression of the shape derivative, the following lemma will be used
frequently.
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Lemma 3.1. Let f, g : Rd → R be functions smooth enough for the following expressions
to be well defined. Then the following relationships hold

DΩ,ϑ

∫
Ω

f dΩ =

∫
Ω

(Dt,ϑf + (∇ · ϑ)f) dΩ (3.9)

DΩ,ϑ

∫
Γ

g dΓ =

∫
Γ

(Dt,ϑg + (∇Γ · ϑ)g) dΓ (3.10)

where ∇Γ · v = ∇ · v − n ·Dϑ · n and n is the unit normal to Γ.

Proof. The proof can e.g. be found in [28].

Remark 3.1. An alternative definition of the surface divergence is ∇Γ · ϑ = tr(ϑ ⊗ ∇Γ)
where ∇Γv = (1− n⊗ n)∇v is the tangent gradient.

3.3 Shape Derivative of the Lagrangian formulation

Recall the Lagrangian

L(ω, v, q) = J(ω; v)− a(ω; v, q) + F (ω; q) (3.11)

For a fixed Ω ∈ O we take the Fréchet derivative DL(Ω, ·, ·) : V0(Ω)× V0(Ω)→ R of L,

DL|(Ω,u,p)(δu, δp) =
〈
DL|(Ω,u,p), (δu, δp)

〉
=
〈
∂vL|(Ω,u,p), δu

〉︸ ︷︷ ︸
=0

+
〈
∂qL|(Ω,u,p), δp

〉︸ ︷︷ ︸
=0

= 0 (3.12)

for any direction δu, δp ∈ V0(Ω) and use the following identities

〈∂vL|(Ω,u,p), δu〉 = 〈∂vJ(Ω;u), δu〉 − a(Ω, δu, p) = 0 (3.13)

which hold if p solves the dual problem

a(Ω, v, p) = m(v) := 〈∂vJ(Ω;u), v〉 ∀v ∈ V0(Ω) (3.14)

where 〈∂vJ(Ω;u), v〉 = (u, v)Γ and

〈∂qL|(Ω,u,p), δp〉 = F (Ω; δp)− a(Ω;u, δp) = 0 (3.15)

which holds since u is the solution to the primal problem (2.8). The Correa-Seeger theorem
[11] states that

DΩ,ϑ

(
min

v∈VgD (Ω)
max
q∈V0(Ω)

L(Ω, v, q)

)
= ∂Ω,ϑL(Ω, u, p) (3.16)

and we obtain the shape derivative

DΩ,ϑJ(Ω) = ∂Ω,ϑL(Ω, u, p) (3.17)
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Lemma 3.2. For u and p solving (2.8) and (3.14), respectively, the shape derivative of
L(ω, v, q) in the point (Ω, u, p) is given by

∂Ω,ϑL|(Ω,u,p) = −
∫

Ω

∇u · (Dϑ+ (Dϑ)T ) · ∇p dΩ (3.18)

+

∫
Ω

(ϑ · ∇f)p dΩ

+

∫
Ω

(∇ · ϑ) (f −∇u · ∇p) dΩ

+

∫
Γ

(∇Γ · ϑ)
(
2−1u2 + gNp

)
dΓ

Proof. This is a well known result but we include the proof for the convenience of the
reader. We have

∂Ω,ϑL(Ω, u, p) = ∂Ω,ϑJ(Ω;u)− ∂Ω,ϑa(Ω;u, p) + ∂Ω,ϑF (Ω; p) (3.19)

Using Lemma 3.1 we obtain the identities

∂Ω,ϑJ(Ω;u) =

∫
Γ

1

2
(∇Γ · ϑ)u2 dΓ

∂Ω,ϑa(Ω;u, p) =

∫
Ω

(Dt,ϑ(∇u · ∇p) + (∇ · ϑ)∇u · ∇p) dΩ

=

∫
Ω

(
∇u · (Dϑ+ (Dϑ)T ) · ∇p+ (∇ · ϑ)∇u · ∇p

)
dΩ

∂Ω,ϑF (Ω; p) =

∫
Γ

(Dt,ϑ(gNp) + (∇Γ · ϑ)(gNp)) dΓ +

∫
Ω

(Dt,ϑ(fp) + (∇ · ϑ)(fp)) dΩ

=

∫
Γ

(∇Γ · ϑ)(gNp) dΓ +

∫
Ω

(∇ · ϑ)(fp) dΩ

Inserting these expressions into (3.19) we arrive at (3.18).

3.4 Finite Element Approximation of the Shape Derivative

In order to compute an approximation of the shape derivatives we need approximations
of the solutions to the primal equation (2.8) and the dual equation (3.14). We employ
CutFEM formulations: find uh ∈ Vh(Ω) such that

Ah(Ω;uh, w) = Fh(Ω;w) ∀w ∈ Vh(Ω) (3.20)

and ph ∈ Vh(Ω) such that

Ah(Ω; ph, w) = mh(w) := (uh, w)Γ ∀w ∈ Vh(Ω) (3.21)
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The discrete approximation of the shape derivative is obtained by inserting the discrete
quantities uh, ph into (3.18), i.e.,

DΩ,ϑL|(Ω,uh,ph) = −
∫

Ω

∇uh · (Dϑ+ (Dϑ)T ) · ∇ph dΩ (3.22)

+

∫
Ω

(ϑ · ∇f)ph dΩ

+

∫
Ω

(∇ · ϑ) (f −∇uh · ∇ph) dΩ

+

∫
Γ

(∇Γ · ϑ)
(
2−1u2

h + gNph
)

dΓ

4 Velocity Field

4.1 Definition of the Velocity Field

Different possibilities exist when defining the velocity field with which to drive a level set
function defining the boundary of the domain. A discussion of some of these are given by
de Gornay [13] who also suggests to define a velocity field β given the shape derivative, an
approach that we follow here. We then seek β such that we obtain the largest decreasing
direction of DΩ,βL|(Ω,u,p) under some regularity constraint. For instance, assuming that the
velocity field is in [H1

0 (Ω0)]d we obtain

β = arg min
‖ϑ‖

[H1
0(Ω0)]d

=1

DΩ,ϑL|(Ω,u,p) (4.1)

Let b be the [H1
0 (Ω0)]d inner product

b(v, w) :=

∫
Ω0

(Dv : Dw + v · w) dΩ (4.2)

An equivalent formulation of the minimization problem (4.1) is: find β′ ∈ [H1
0 (Ω0)]d such

that
b(β′, ϑ) = −DΩ,ϑL|(Ω,u,p) ∀ϑ ∈ [H1

0 (Ω0)]d (4.3)

and set

β =
β′

‖β′‖[H1
0 (Ω0)]d

(4.4)

It is then clear that β is a descent direction since

DΩ,βL|(Ω,u,p) = −b(β′, β) = −‖β′‖[H1
0 (Ω0)]d ≤ 0 (4.5)

Remark 4.1. To prove the equivalence between the minimization problem (4.1) and (4.3)–
(4.4) we compute the saddle point to the Lagrangian corresponding to (4.1). We obtain
the Lagrangian

K(τ, λ) = DΩ,τL|(Ω,u,p) + λ
(

(τ, τ)[H1
0 (Ω0)]d − 1

)
(4.6)
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In the saddle point (τ, λ), we have that

0 =
〈 ∂
∂τ
K(τ, λ), φ

〉
= DΩ,φL|(Ω,u,p) + 2λ(τ, φ)[H1

0 (Ω0)]d (4.7)

and

0 =
∂

∂λ
K(τ, λ) = (τ, τ)[H1

0 (Ω0)]d − 1 (4.8)

holds. From (4.3) and (4.4) we see that β′ = 2λτ where

β =
β′

‖β′‖[H1
0 (Ω0)]d

=
2λτ

‖2λτ‖[H1
0 (Ω0)]d

= τ (4.9)

and λ = ‖β′‖[H1
0 (Ω0)]d/2. Hence the two formulations are equivalent.

4.2 Regularity of the Velocity Field

Next we investigate the regularity of the velocity field β. For smooth domains and under
stronger regularity requirements the shape derivative can be formulated using Hadamard’s
structure theorem as an integral over the boundary,

DΩ,ϑL(Ω, u, p) = (G, n · ϑ)L2(Γ) (4.10)

where G is a function of the primal and dual solutions u and p, the right hand side, the
boundary condition, and the mean curvature. We thus note that the velocity field β is a
solution to the problem: find β ∈ [H1(Ω0)]d such that

b(β, ϑ) = −(G, n · ϑ)L2(Γ) ∀ϑ ∈ [H1(Ω0)]d (4.11)

The corresponding strong problem for each of the components βi, 1 = 1, . . . , d of β is

−∆βi = 0, in Ω0 \ Γ (4.12)

βi = 0, on ∂Ω0 (4.13)

[βi] = 0, on Γ (4.14)

[n · ∇βi] = Gni, on Γ (4.15)

which is an interface problem. Given that Γ is smooth and G ∈ H1/2(Γ), we have the
regularity estimate

‖βi‖H1(Ω0) + ‖βi‖H2(Ω0\Γ) . ‖G‖H1/2(Γ) (4.16)

see [10], and hence β ∈ [H1(Ω0)]d ∩ [H2(Ω0 \ Γ)]d.
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4.3 Finite Element Approximation of the Velocity Field

We define a discrete velocity field using a standard finite element discretization of (4.3) with
piecewise linear continuous trial and test functions Vh(Ω0) on Ω0. The discrete problem
takes the form: find β′h ∈ [Vh(Ω0)]d such that

b(β′h, ϑ) = −DΩ,ϑL|(Ω,uh,ph) ∀ϑ ∈ [Vh(Ω0)]d (4.17)

and set

βh =
β′h

‖β′h‖[H1
0 (Ω0)]d

(4.18)

5 Level Set Representation of the Free Boundary

5.1 Definition and Evolution of the Level Set Representation

A level set function describing an interface needs to be evolved in order to find a minimum
to (2.9)-(2.10). Let ρ(x,Γ) be a distance function defined as the minimal Euclidean distance
between x and Γ. The level set function is the signed distance function

φ(x) =


ρ(x,Γ) x ∈ Ω0 \ Ω

0 x ∈ Γ

−ρ(x,Γ) x ∈ Ω

(5.1)

This function is moved by solving a Hamilton–Jacobi equation of the form

∂tφ+ β · ∇φ = 0 (5.2)

After some time φ no longer resembles a discrete signed distance function and so called
reinitialization needs to be performed to restore the distance properties. Reinitialization
can be done by solving the Eikonal equation{

∂tϕ+ sign(φ)(|∇ϕ| − 1) = 0 t ∈ (0, T ]

ϕ = φ t = 0
(5.3)

for the unknown ϕ. Setting φ = limT→∞ ϕ(·, T ) yields a signed distance function on Ω. In
the present paper we use a fast sweeping method to approximate (5.3) as suggested in [12].

5.2 Finite Element Approximation of the Level Set Evolution

The level set function is, for convenience, usually defined on the same computational mesh
as the primal problem, cf. Allaire, Jouvé, and Toader [3]. Here we also use the same mesh
for computing β; by having the level set and velocity field defined on the same mesh as
the solution to the primal problem we avoid having to perform any interpolation between
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different meshes. In [3] an upwind method was used to stabilize the evolution problem for
the level set function; here we instead use a standard finite element discretization of (5.2),
using the space Vh(Ω0) of continuous piecewise linear elements on Ω0, with symmetric inte-
rior penalty stabilization, see [6], in space and a Crank–Nicolson scheme in time. Given a
time t0 we first determine a suitable time T such that we may use βh(t0) as an approxima-
tion of βh(t) on the interval [t0, t0 + T ), then we divide [t0, t0 + T ) into N Crank-Nicolson
steps of equal length. This procedure is repeated until a stopping criteria is satisfied.

The time T may be estimated using Taylor’s formula

L(Mβh(Ω,∆t), uh ◦M−1
βh

(Ω,∆t), ph ◦M−1
βh

(Ω,∆t))

≈ L(Ω, uh, ph)|t=t0 +Dt,βhL(Ω, uh, ph)|t=t0∆t (5.4)

Given a damping parameter α ∈ [0, 1) we set L(Ωt,βh , uh ◦ M−1
βh

(Ω, t), ph ◦ M−1
βh

(Ω, t)) =
αL(Ω, uh, ph) which yields the estimate

T =
(α− 1)L(Ω, uh, ph)

Dt,βL(Ω, uh, ph)
(5.5)

To formulate the finite element method we divide [t0, t0+T ) into N time steps [tn−1, tn),
of equal length k = T/N and we use the notation φnh = φh(tn) for the solution at time tn.
Given φ0

h ∈ Vh(Ω0), find φnh ∈ Vh(Ω0) for n = 1, . . . , N, such that(
φnh − φn−1

h

k
, w

)
Ω0

+

(
βh(t0) · ∇φ

n
h + φn−1

h

2
, w

)
Ω0

+rh

(
φnh + φn−1

h

2
, w

)
= 0 ∀w ∈ Vh(Ω0)

(5.6)

where rh is the stabilization term

rh(v, w) =
∑

F∈Fh,0

(γ2h
2[∂nv], [∂nw])L2(F ) (5.7)

where γ2 > 0 is a parameter and Fh,0 is the set of interior faces in the background mesh
Th,0.

6 Optimization Algorithm

In this section we summarize the optimization procedure and propose an algorithm to solve
(2.9)-(2.10). During the optimization procedure we use sensitivity analysis to compute the
discrete shape derivate (3.22), see Section 3. From the discrete shape derivate we compute
a velocity field βh (4.17) using a H1(Ω0) regularization, which corresponds to the the
greatest descent direction of the shape derivative in H1(Ω0), see Section 4. The velocity
field is then used to move the level set and update the free boundary, see Section 5. These
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steps are presented in Algorithm 1. As a stopping criterion we require that the residual
indicator

RΓ(uh) = ‖uh‖Γ ≤ TOL (6.1)

for some tolerance 0 < TOL.

Algorithm 1 Bernoulli free boundary value problem

Input: A initial level set φh, a damping parameter α, and a tolerance TOL.
Compute primal solution uh (3.20) and the residual indicator RΓ(uh) (6.1)
while RΓ(uh) > TOL do

Compute the dual solution ph (3.21)
Compute the discrete shape derivative DΩ,ϑL(Ωh,uh,ph) (3.22)
Compute the velocity field βh (4.17)
Move the interface (5.6)
Compute the primal solution uh (3.20)
Compute the residual indicator RΓ(uh) (6.1)

end while

7 A Priori Error Estimates

In this section we derive an a priori error estimate for the velocity field in the H1(Ω0) norm.
Recall that the regularity of the velocity field is given by (4.16) and thus the best possible
order of convergence is O(h1/2) in the H1(Ω0) norm and O(h3/2) in the L2(Ω0) norm, since
we use a standard finite element method to approximate the velocity field. To prove the
error estimate for the velocity field we will need bounds for the discretization error of
the primal and dual solutions in L4 norms since the right hand side of the problem (4.3)
defining the velocity field is the shape derivative functional (3.18), which is a trilinear form,
depending on the primal and dual solutions as well as the test function. For simplicity, we
derive error estimates in Lp norms for the primal and dual solutions using inverse bounds
in combination with L2 error estimates. These bounds are of course not of optimal order
but, in the relevant case d ≤ 3, they are sharp enough to establish optimal order bounds
for the velocity field, given the restricted regularity of the velocity field. We employ the
notation a . b to abbreviate the inequality a ≤ Cb where the constant 0 ≤ C is a generic
constant independent of the mesh size.

7.1 The Energy Norm

Definition of the Energy Norm. For 2 ≤ p <∞ we define the energy norm

|||v|||pp,h = ‖∇v‖pLp(Ω) + h‖n · ∇v‖pLp(Γfix) + h1−p‖v‖pLp(Γfix) + h|||v|||pLp(Fh) (7.1)

where
|||v|||pLp(Fh) =

∑
F∈Fh

‖[n · ∇v]‖pLp(F ) (7.2)

13



An Inverse Estimate. We have the inverse estimate: for all v ∈ Vh(Ω) it holds

|||v|||h,p . hd(1/p−1/2)|||v|||h,2 (7.3)

To verify (7.3) we first note that using the inverse estimate

h1/p‖n · ∇v‖Lp(F ) . ‖∇v‖Lp(T ) (7.4)

where F is a face on the boundary of T , and the fact that the mesh Th (which we recall
consists of full elements) covers Ω we have

|||v|||h,p . ‖∇v‖Lp(Th) + h1/p−1‖v‖Lp(Γfix) (7.5)

Next using the inverse estimates

‖∇v‖Lp(T ) . hd(1/p−1/2)‖∇v‖T (7.6)

h1/p−1‖v‖Lp(F ) . h1/p−1h(d−1)(1/p−1/2)‖v‖F . hd(1/p−1/2)h−1/2‖v‖F (7.7)

to pass from Lp to L2 norms we obtain

|||v|||h,p . ‖∇v‖Lp(Th) + h1/p−1‖v‖Γfix
(7.8)

. hd(1/p−1/2)
(
‖∇v‖Th + h−1/2‖v‖Γfix

)
(7.9)

. hd(1/p−1/2)|||v|||h,2 (7.10)

where in the last step we used the estimate

‖∇v‖Th . ‖∇v‖Ω + h1/2|||v|||Fh (7.11)

see [5].

7.2 Interpolation

Definition of the Interpolation Operator. We recall that there is an extension op-
erator E : W s

p (Ω)→ W s
p (Ωδ), for 0 ≤ s and 1 ≤ p ≤ ∞, where Ωδ = Ω ∪ Uδ(Γ) with Uδ(Γ)

the tubular neighborhood {x ∈ Rd : ρ(x,Γ) < δ}. For h ∈ (0, h0], with h0 small enough,
we have Ω ⊂ Ωh ⊂ Ωδ. Let πh : L1(Ωh) → Vh(Ω) be a Scott-Zhang type interpolation
operator, see [26], and for u ∈ L1(Ω) we define πhv = πh(Ev). For convenience we will use
the simplified notation v = Ev on Ωδ.

Interpolation Error Estimates. We have the elementwise interpolation estimate

h−1‖v − πhv‖Lp(T ) + ‖∇(v − πhv)‖Lp(T ) . h‖v‖W 2
p (N(T )) (7.12)

where N(T ) is the the set of neighboring elements in Th to element T . Summing over the
elements and using the stability of the extension operator we obtain the interpolation error
estimate

h−1‖v − πhv‖Lp(Ωh) + |||v − πhv|||p,h . h‖v‖W 2
p (Ωh) . h‖v‖W 2

p (Ω) (7.13)

We also have the following interpolation error estimate in the energy norm

|||v − πhv|||h,p . h‖v‖W 2
p (Ω) (7.14)
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Verification of (7.14). Using the element wise trace inequality

‖w‖pLp(F ) . h−1‖w‖pLp(T ) + hp−1‖∇w‖pLp(T ) (7.15)

where F is a face on ∂T , to estimate the terms on Γfix,

h‖n · ∇w‖pLp(Γfix) . ‖∇w‖
p
Lp(Th(Γfix)) + hp‖∇ ⊗∇w‖pLp(Th(Γfix)) (7.16)

h1−p‖w‖pLp(Γfix) . h−p‖w‖pLp(Th(Γfix)) + ‖∇w‖pLp(Th(Γfix)) (7.17)

and the face stabilization term

h|||w|||pFh . ‖∇w‖
p
Th(Fh) + hp‖∇ ⊗∇w‖pTh(Fh) (7.18)

We thus conclude that

|||w|||ph,p . ‖∇w‖pTh + h−p‖w‖pLp(Th(Γfix)) + ‖∇w‖pLp(Th(Γfix)) + hp‖∇ ⊗∇w‖pLp(Th(Γfix))

(7.19)

+ ‖∇w‖pTh(Fh) + hp‖∇ ⊗∇w‖pTh(Fh)

Setting w = v − πhv and using the interpolation error estimate (7.12) and the identity
hp‖∇ ⊗ ∇(v − πhv)‖pLp(T ) = hp‖∇ ⊗ ∇v‖pLp(T ), which holds since we consider piecewise
linear elements, we conclude that

|||v − πhv|||h,p . h‖v‖W 2
p (Ω) (7.20)

7.3 Error Estimates for the Primal and Dual Solutions

Lemma 7.1. The finite element approximation uh defined by (2.22) of the solution u to
the primal problem (2.8) satisfies the a priori error estimate

h−1‖u− uh‖Lp(Ω) + |||u− uh|||p,h ≤ h1+d(1/p−1/2)‖u‖W 2
p (Ω) (7.21)

for 2 ≤ p <∞.

Proof. Using the triangle inequality we obtain

|||u− uh|||p,h ≤ |||u− πhu|||p,h + |||πhu− uh|||p,h (7.22)

. h‖u‖W 2
p (Ω) + |||πhu− uh|||p,h (7.23)

where we employed the energy norm interpolation estimate (7.13). For the second term on
the right hand side of (7.23) we employ the inverse inequality (7.3) with v = πhu− uh,

|||πhu− uh|||p,h . hd(1/p−1/2)|||πhu− uh|||2,h (7.24)

. hd(1/p−1/2) (|||u− πhu|||2,h + |||u− uh|||2,h) (7.25)

. hd(1/p−1/2)h‖u‖H2(Ω) (7.26)

. hd(1/p−1/2)h‖u‖W 2
p (Ω) (7.27)
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where in (7.25) we added and subtracted u and used the triangle inequality, in (7.26) we
used the interpolation error estimate (7.14) with p = 2 together with the standard error
estimate

|||u− uh|||2,h . h‖u‖H2(Ω) (7.28)

see [7], and in (7.27) we used the fact that p > 2.
Finally, we estimate h−1‖u−uh‖Lp(Ω) using a standard duality argument. Let φ ∈ V0(Ω)

be the solution to the dual problem

a(Ω; v, φ) = (ψ, v) ∀v ∈ V0(Ω) (7.29)

with ψ ∈ Lq(Ω) and 1/p+1/q = 1. Then we have the elliptic regularity estimate ‖φ‖W 2
q (Ω) .

‖ψ‖Lq(Ω), and using concistency we conclude that

Ah(Ω; v, φ) = (ψ, v)Ω ∀v ∈ Vh(Ω) + V0(Ω) (7.30)

Setting ψ = (u− uh)|u− uh|p−2 and v = u− uh we obtain

‖u− uh‖pLp(Ω) = a(Ω;u− uh, φ) (7.31)

= Ah(Ω;u− uh, φ) (7.32)

= Ah(Ω;u− uh, φ− πhφ) (7.33)

≤ |||u− uh|||p,h|||φ− πhφ|||q,h (7.34)

. h|||u− uh|||p,h‖φ‖W 2
q (Ω) (7.35)

. h|||u− uh|||p,h‖u− uh‖p/qLp(Ω) (7.36)

where we used the identity ‖ψ‖Lq(Ω) = ‖u− uh‖p/qLq(Ω), and thus we conclude that

‖u− uh‖Lp(Ω) . h|||u− uh|||p,h (7.37)

since p− p/q = 1.

Lemma 7.2. The finite element approximation ph defined by (3.21) of the solution p to
the dual problem (3.14) satisfies the a priori error estimate

h−1‖p− ph‖Lp(Ω) + |||p− ph|||p,h . h1+d(1/p−1/2)
(
‖u‖W 2

p (Ω) + ‖p‖W 2
p (Ω)

)
(7.38)

for 2 ≤ p <∞.

Proof. We proceed as in the proof of Lemma 7.1, with the difference that we need to
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account for the error in the right hand side. We obtain

|||πhp− ph|||2p,h . h2d(1/p−1/2)|||πhp− ph|||22,h (7.39)

. h2d(1/p−1/2)Ah(Ω;πhp− ph, πhp− ph) (7.40)

. h2d(1/p−1/2) (Ah(Ω;πhp− p, πhp− ph) + a(Ω, p− ph, πhp− ph)) (7.41)

. h2d(1/p−1/2)
(
|||πhp− p|||2,h|||πhp− ph|||2,h (7.42)

+ |m(πhp− ph)−mh(πhp− ph)|
)

. h2d(1/p−1/2)
(
h|p|H2(Ω)|||πhp− ph|||2,h (7.43)

+ h‖u‖H2(Ω)|||πhp− ph|||2,h
)

. h1+d(1/p−1/2)
(
|p|H2(Ω) + |u|H2(Ω)

)
|||πhp− ph|||p,h (7.44)

where we used a trace inequality and (7.21) to conclude that

m(v)−mh(v) = (u− uh, v)Γ = ‖u− uh‖H1(Ω)‖v‖H1(Ω) . h‖u‖H2(Ω)|||v|||2,h (7.45)

To bound ‖p− ph‖Lp(Ω) we use a duality argument as in the proof of Lemma 7.1.

Remark 7.1. Lemma 7.1 and 7.2 are suboptimal for p > 2. Numerical test shows that
the optimal error estimates, obtained by setting d = 0 in the bounds (7.21) and (7.45),
hold for sufficiently smooth u and p.

Remark 7.2. In the analysis we have for simplicity assumed that the boundary is exact.
The discrete approximation of the boundary may, however, be taken into account in the
analysis using the techniques in [8], under the assumption that the piecewise linear level set
representation of the boundary is second order accurate and that the associated discrete
normal is first order accurate. Such an analysis shows that the geometric error is of order
O(h2) and thus of optimal order.

7.4 Error Estimate for the Velocity Field

Theorem 7.3. Let d ≤ 3, β be the solution to (4.3), and βh be the solution to (4.17), then

‖β − βh‖H1(Ω0) ≤M1/2h1/2 (7.46)

where
M = ‖β‖2

H2(Ω0\Γ) + ‖u‖4
W 2

4 (Ω) + ‖p‖4
W 2

4 (Ω) + ‖f‖4
L4(Ω) + ‖gN‖4

L4(Γ) (7.47)
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Proof. Adding and subtracting a Scott-Zhang interpolant πhβ and using the weak formu-
lations (4.3) and (4.17) we obtain

‖β − βh‖2
H1(Ω0) = (β − βh, β − πhβ)H1(Ω0) + (β − βh, πhβ − βh)H1(Ω0) (7.48)

= (β − βh, β − πhβ)H1(Ω0) +DΩ,ehL(Ω, u, p)−DΩ,ehL(Ω, uh, ph) (7.49)

where eh = πhβ − βh. Estimating the right hand side we arrive at the bound

‖β − βh‖2
H1(Ω0) . ‖β − πhβ‖2

H1(Ω0)︸ ︷︷ ︸
I

+|DΩ,ehL(Ω, u, p)−DΩ,ehL(Ω, uh, ph)︸ ︷︷ ︸
II

| (7.50)

Here Term I is an interpolation error term which needs special treatment due to the
limited regularity (4.16) of β across the interface Γ and Term II accounts for the error in
the velocity field that emanates from the approximation of the primal and dual solutions
in the discrete problem (4.17).

Term I. Let Th,0(Γ) be the set of all elements T ∈ Th,0 such that N(T ) ∩ Γ 6= ∅, where
N(T ) is the set of all elements that are neighbors to T . Then we have the estimates

‖β − πhβ‖H1(T ) . h‖β‖H2(N(T )) T ∈ Th \ Th(Γ) (7.51)

and
‖β − πhβ‖H1(T ) . ‖β‖H1(N(T )) T ∈ Th (7.52)

see [26]. Summing over all elements we obtain

I = ‖β − πhβ‖2
H1(Ω0) (7.53)

.
∑

T∈Th,0\Th,0(Γ)

h2‖β‖2
H2(N(T )) +

∑
T∈Th,0\Th,0(Γ)

‖β‖2
H1(N(T )) (7.54)

. h2
(
‖β‖2

H2(Ω1) + ‖β‖2
H2(Ω2)︸ ︷︷ ︸

=‖β‖2
H2(Ω\Γ)

=:M1

)
+ ‖β‖2

H1(Uδ(Γ))︸ ︷︷ ︸
F

(7.55)

where Ω1 = φ−1((−∞, 0]), Ω2 = φ−1([0,∞)), and Uδ(Γ) = ∪x∈ΓBδ(x) is the tubular
neighborhood of Γ of thickness δ.

Observing that δ ∼ h we may estimate F by taking the L∞ norm in the direction
orthogonal to Γ, in the following way

F = ‖β‖2
H1(Uδ(Γ)) . h sup

t∈(−δ,δ)
‖β‖2

H1(Γt)
(7.56)

where Γt = φ−1(t). Next, we note that defining the domains

Ω1,t = φ−1((−∞, t]), Ω2,t = φ−1([t,∞)) (7.57)
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we have
Ω1,t ⊆ Ω1,0 = Ω1 t ∈ (−δ, 0], Ω2,t ⊆ Ω2,0 = Ω2 t ∈ [0, δ) (7.58)

Therefore we have the trace inequalities

‖v‖H1(Γt) . ‖v‖H2(Ω1,t) . ‖v‖H2(Ω1) t ∈ (−δ, 0] v ∈ H1(Ω1) (7.59)

‖v‖H1(Γt) . ‖v‖H2(Ω2,t) . ‖v‖H2(Ω2) t ∈ [0, δ) v ∈ H1(Ω2) (7.60)

which we may use to conclude that

sup
t∈(−δ,0]

‖β‖2
H1(Γt)

. ‖β‖2
H2(Ω1), sup

t∈[0,δ)

‖β‖2
H1(Γt)

. ‖β‖2
H2(Ω2) (7.61)

Thus we obtain the estimate

sup
t∈(−δ,δ)

‖β‖2
H1(Γt)

. ‖β‖2
H2(Ω1) + ‖β‖2

H2(Ω2) = M1 (7.62)

which together with (7.56) gives
F .M1h (7.63)

Finally, combining estimates (7.55) and (7.63) we obtain

I = ‖β − πhβ‖2
H1(Ω0) .M1(h+ h2) .M1h (7.64)

for 0 < h ≤ h0. Similar bounds are used in [8].

Term II. Using the notation eh = πhβ − βh and B = Deh + (Deh)
T , we decompose

Term II as follows

II = DΩ,ehL(Ω, u, p)−DΩ,ehL(Ω, uh, ph) (7.65)

=

∫
Ω

(B∇u · ∇p−B∇uh · ∇ph) dΩ (7.66)

+

∫
Ω

(∇ · eh)(∇u · ∇p−∇uh · ∇ph) dΩ

+

∫
Ω

(∇ · eh)f(p− ph) dΩ

+

∫
Γ

(∇Γ · eh)
1

2
(u2 − u2

h) dΓ

+

∫
Γ

(∇Γ · eh)gN(p− ph) dΓ

= II1 + II2 + II3 + II4 + II5 (7.67)
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Utilizing the a priori error estimates (7.21) and (7.38) for the primal and dual problems
we obtain the following bounds

II1 . δ‖eh‖2
H1(Ω0) + δ−1(h2 + h4−d)

(
‖u‖4

W 2
4 (Ω) + ‖p‖4

W 2
4 (Ω)

)
(7.68)

II2 . δ‖eh‖2
H1(Ω0) + δ−1(h2 + h4−d)

(
‖u‖4

W 2
4 (Ω) + ‖p‖4

W 2
4 (Ω)

)
(7.69)

II3 . δ‖eh‖2
H1(Ω0) + δ−1h(8−d)/2

(
‖f‖4

L4(Ω) + ‖p‖4
W 2

4 (Ω)

)
(7.70)

II4 . δ‖eh‖2
H1(Ω0) + δ−1h(5−d)/2‖u‖4

W 2
4 (Ω) (7.71)

II5 . δ‖eh‖2
H1(Ω0) + δ−1h(5−d)/2

(
‖gN‖4

L4(Γ) + ‖u‖4
W 2

4 (Ω)

)
(7.72)

Detailed derivations of estimates (7.68) -(7.72) are included in Appendix A. Collecting the
estimates (7.68)-(7.72), using the fact d ≤ 3, and defining

M2 = ‖u‖4
W 2

4 (Ω) + ‖p‖4
W 2

4 (Ω) + ‖f‖4
L4(Ω) + ‖gN‖4

L4(Γ) (7.73)

we obtain the bound

II . δ‖eh‖2
H1(Ω0) + δ−1M2h (7.74)

. δ‖β − βh‖2
H1(Ω0) + δ ‖β − πhβ‖2

H1(Ω0)︸ ︷︷ ︸
=I.M1h (7.64)

+δ−1M2h (7.75)

where we added and subtracted β in the first term.

Conclusion of the Proof. Starting from (7.50) and using the estimates (7.64) and
(7.75) of I and II we obtain

‖β − βh‖2
H1(Ω0) . δ‖β − βh‖2

H1(Ω0) + (1 + δ)M1h+M2δ
−1h (7.76)

and thus, taking δ = 1/2, we obtain

‖β − βh‖2
H1(Ω0) . (M1 +M2)h = Mh (7.77)

where M = M1 +M2, which completes the proof.

8 Numerical Examples

8.1 Model Problems

We use the following settings in the numerical examples

• Optimization algorithm

– α = 0.5: Damping parameter in (5.5)
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– N = 3: Number of time steps in (5.6)

– TOL = 10−5: Tolerance in (6.1)

• Finite element methods

– γ1 = 1: Penalty parameter for the gradient jump (2.20)

– γD = 10: Penalty parameter for the Dirichlet boundary condition (2.21)

– γ2 = 1: Penalty parameter for the gradient jump (5.7)

Model Problem 1. To define the domain Ω we let Ω0 = [0, 1]2 be the unit square and
Ω1 ⊂ Ω0 be a domain in the interior of Ω0 with boundary Γ, finally, let Ω = Ω0 \ Ω1. We
note that ∂Ω = Γ ∪ ∂Ω0 and that Γ ∩ ∂Ω0 = ∅.

With this set up we consider a Bernoulli free boundary value problem where the exact
position of the free boundary Γ is a circle of radius r = 0.25 centered in (0.5, 0.5) and the
exact solution is uref = 4((x− 0.5)2 + (y − 0.5)2)1/2 − 1 and right hand side f = −∆uref is
given by

f = −4x+ 4y + 8(x− 0.5)2 + 8(y − 0.5)2 − 4x2 − 4y2 − 2

((x− 0.5)2 + (y − 0.5)2)3/2
(8.1)

The corresponding Bernoulli free boundary problem takes the form

−∆u = f in Ω (8.2)

u = uref on ∂Ω0 (8.3)

n · ∇u = −4 on Γ (8.4)

u = 0 on Γ (8.5)

We will use a level set function corresponding to the domain displayed in Figure 2 (right
sub-figure) as an initial guess.

Figure 2: The final domain (left) and initial guess (right) for Model Problem 1. The gray
area is the computational domain Ω, the outer square boundary is fixed, and Γ is the free
boundary.
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Model Problem 2. Let Ω0 = [0, 1]2 be the unit square as before and Ω1 ⊂ Ω0 be a
subdomain in the interior of Ω0 with boundary Γ. Next let Ω2 and Ω3 be the balls of radius
R = 1/12 centered in the points (1/3, 2/3) and (2/3, 1/3). Finally, set Ω = Ω1 \ (Ω2 ∪Ω3),
the right hand side f = 0, and consider the boundary conditions

u = 1 on ∂Ω \ Γ (8.6)

n · ∇u = −3 on Γ (8.7)

u = 0 on Γ (8.8)

In this example there is no known exact position of the free boundary. We will use a level
set function corresponding to the domain Figure 3 (right sub-figure) as an initial guess.

Figure 3: The final domain (left) and initial guess (right) for Model Problem 2. The gray
area is the computational domain Ω, the outer square boundary and the two inner most
circles are fixed, and Γ is the free bondary.

8.2 Convergence of the Velocity Field

We investigate the convergence rate of the discrete velocity field for Model Problem 1. In
Figure 4 we display the error in the discrete velocity field in the H1-norm and L2-norm
where the reference solution βref is computed on a quasi-uniform mesh with 526338 degrees
of freedom. We obtain slightly better convergence rates than O(h1/2) and O(h3/2) in H1

and L2-norm, respectively, which is in agreement with Theorem 7.3.

8.3 Free Boundary Problem

In Figure 5 and Figure 6 we present the convergence history of RΓ, see (6.1), for Model
Problem 1 and 2. In Figure 7 we show the approximation of Ω obtained after 0, 5, 15,
and 46 iterations, where iteration 46 is the final domain. In Figure 7 we note that we
rapidly obtain a domain which resembles the final domain, but to straighten the kinks in
the boundary takes some extra effort.
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Figure 4: Convergence of the error in velocity field in Model Problem 1 in the H1 and
L2-norm.
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Figure 5: Convergence of RΓ for Model Problem 1.

9 Conclusion

We develop a finite element method for solution of the Bernoulli free boundary value
problem with the following key features:

• Representation of the geometry of the domain using a level set function.

• Formulation of the Bernoulli free boundary value problem as an optimization prob-
lem where we formulate the problem as a Neumann problem and seek to minimize
the residual of the Dirichlet boundary condition in order to satisfy both boundary
conditions on the free boundary. We discretize the Neumann problem using a cut
finite element method.
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Figure 6: Convergence of RΓ for Model Problem 2.

(a) Iteration 0. (b) Iteration 5.

(c) Iteration 15. (d) Iteration 46.

Figure 7: The computational domain for Model Problem 2 after 0, 5, 15, and 46 iterations.

• To update the geometry we solve a Hamilton-Jacobi equation with a velocity field
corresponding to the maximal descent direction of the shape derivative. We use
a variational (or volume) formulation of the shape derivative and solve an elliptic
problem to find the steepest descent direction in the space of H1 velocity vector
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fields that satisfy certain boundary conditions.

The cut finite element method completely avoids remeshing, is numerically stable, and
enjoys optimal order convergence and is therefore very attractive for shape optimization
problems.

We show an a priori convergence result for the discrete approximation of the velocity
field. The analysis utilizes the variational formulation of the shape derivative. We present
numerical examples which illustrates the performance of the method and confirms our
theoretical results. Future directions of research includes using higher order elements and
convergence analysis of the nonlinear free boundary value problem.

A Bounds for II1 − II5 in the Proof of Theorem 7.3

Term II1. Dividing II1 into three suitable terms and then using Hölder’s inequality we
obtain

II1 =

∫
Ω

(B∇u · ∇p−B∇uh · ∇ph) dΩ (A.1)

= (B∇(u− uh),∇p)L2(Ω) (A.2)

+ (B∇u,∇(p− ph))L2(Ω)

− (B∇(u− uh),∇(p− ph))L2(Ω)

≤ ‖B‖L2(Ω)‖∇(u− uh)‖L2(Ω)‖∇p‖L∞(Ω) (A.3)

+ ‖B‖L2(Ω)‖∇u‖L∞(Ω)‖∇(p− ph)‖L2(Ω)

+ ‖B‖L2(Ω)‖∇(u− uh)‖L4(Ω)‖∇(p− ph)‖L4(Ω)

≤ ‖eh‖H1(Ω)h‖u‖W 2
2 (Ω)‖p‖W 2

4 (Ω) (A.4)

+ ‖eh‖H1(Ω)‖u‖W 2
4 (Ω)h‖p‖W 2

2 (Ω)

+ ‖eh‖H1(Ω)h
(4−d)/2‖u‖W 2

4 (Ω)‖p‖W 2
4 (Ω)

. δ‖eh‖2
H1(Ω) + δ−1

(
h2 + h(4−d)

)
‖u‖2

W 2
4 (Ω)‖p‖2

W 2
4 (Ω) (A.5)

where in (A.4) we used the a priori error estimates (7.21) and (7.38), with p = 2 for the
first two terms and with p = 4 for the third term, and the Sobolev embedding theorem to
conclude that

‖∇v‖L∞(Ω) . ‖v‖W 2
4 (Ω) (A.6)

for v = p and v = u since d ≤ 3, and finally in (A.5) we used the basic bound ‖v‖W 2
2 (Ω) .

‖v‖W 2
4 (Ω) for v = p and v = u.

Term II2. Using the same approach as for Term II2 (with B replaced by ∇ · eh) we
obtain

II2 . δ‖eh‖2
H1(Ω) + δ−1h‖u‖2

W 2
4 (Ω)‖p‖2

W 2
4 (Ω) (A.7)
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Term II3. Using Hölder’s inequality

II3 =

∫
Ω

(∇ · eh)f(p− ph) dΩ (A.8)

≤ ‖∇ · eh‖L2(Ω0)‖f‖L4(Ω)‖p− ph‖L4(Ω) (A.9)

. ‖eh‖H1(Ω0)‖f‖L4(Ω)h
(8−d)/4‖p‖W 2

4 (Ω) (A.10)

. δ‖eh‖2
H1(Ω0) + δ−1h(8−d)/2‖f‖2

L4(Ω)‖p‖2
W 2

4 (Ω) (A.11)

Term II4. Using the conjugate rule followed by Hölder’s inequality,∫
Γ

(∇Γ · eh)(u2 − u2
h)) dΓ =

∫
Γ

(∇Γ · eh)(u+ uh)(u− uh)) dΓ (A.12)

≤ ‖∇Γ · eh‖L2(Γ)‖u+ uh‖L4(Γ)‖u− uh‖L4(Γ) (A.13)

≤ δh‖∇Γ · eh‖2
L2(Γ) + δ−1h−1‖u+ uh‖2

L4(Γ)‖u− uh‖2
L4(Γ) (A.14)

≤ δ‖eh‖2
H1(Ω0) + δ−1h(5−d)/2‖u‖4

W 2
4 (Ω) (A.15)

Here we used the trace inequality

‖v‖Lp(Γ) ≤ ‖v‖Lp(∂Ω) . ‖v‖1−1/p
Lp(Ω)‖v‖

1/p

W 1
p (Ω) v ∈ W 1

p (Ω) (A.16)

with p = 4 and v = u− uh followed by the a priori error estimate (7.21) to conclude that

‖u− uh‖L4(Γ) . ‖u− uh‖3/4

L4(Ω)‖u− uh‖
1/4

W 1
4 (Ω)

(A.17)

. (h(8−d)/4)3/4(h(4−d)/4)1/4‖u‖W 2
4 (Ω) (A.18)

. h(7−d)/4‖u‖W 2
4 (Ω) (A.19)

and the following estimate

‖u+ uh‖L4(Γ) . ‖u‖L4(Γ) + ‖u− uh‖L4(Γ) (A.20)

. ‖u‖L4(Γ) + ‖u− uh‖W 1
4 (Ω) (A.21)

. ‖u‖L4(Γ) + h(4−d)/4‖u‖W 2
4 (Ω) (A.22)

. ‖u‖W 2
4 (Ω) (A.23)

which holds since h ∈ (0, h0].

Term II5. Using Hölder’s inequality

II5 =

∫
Γ

(∇Γ · eh)gN(p− ph) dΓ (A.24)

≤ ‖∇Γ · eh‖L2(Γ)‖gN‖L4(Γ)‖p− ph‖L4(Γ) (A.25)

≤ δh‖∇Γ · eh‖2
L2(Γ) + δh−1‖gN‖2

L4(Γ)‖p− ph‖2
L4(Γ) (A.26)

≤ δ‖eh‖2
H1(Ω0) + h(5−d)/2‖gN‖2

L4(Γ)‖p‖2
W 2

4 (Ω) (A.27)
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where in (A.27) the first term was estimated using the inverse estimate

h‖v‖2
L2(Γ∩T ) . ‖v‖2

H1(T ) v ∈ P1(T ) (A.28)

for T ∈ Th such that Γ∩ T 6= ∅ with v = eh, and for the second term we used the estimate

‖p− ph‖L4(Γ) . h(7−d)/4‖p‖W 2
4 (Ω) (A.29)

which follows in the same way as in (A.17-A.19).
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