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Abstract We consider data assimilation for the heat equation using a finite element
space semi-discretization. The approach is optimization based, but the design of reg-
ularization operators and parameters rely on techniques from the theory of stabilized
finite elements. The space semi-discretized system is shown to admit a unique solu-
tion. Combining sharp estimates of the numerical stability of the discrete scheme and
conditional stability estimates of the ill-posed continuous pde-model we then derive
error estimates that reflect the approximation order of the finite element space and
the stability of the continuous model. Two different data assimilation situations with
different stability properties are considered to illustrate the framework. Full detail on
how to adapt known stability estimates for the continuous model to work with the
numerical analysis framework is given in “Appendix”.

Mathematics Subject Classification 65M12 · 65M15 · 65M30 · 65M32

1 Introduction

We consider two data assimilation problems for the heat equation

∂t u − �u = f, in (0, T ) × �, (1)
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where T > 0 and � ⊂ R
n is open. Let ω, B ⊂ � be open and let 0 < T1 < T2 ≤ T .

Both the data assimilation problems are of the following general form: determine the
restriction u|(T1,T2)×B of a solution to the heat equation (1) given f and the restriction
u|(0,T )×ω. The crucial difference between the two problems is that in the first problem
we do not make any assumptions on the boundary condition satisfied by u, whereas in
the second problem we assume that it satisfies the lateral Dirichlet boundary condition
u|(0,T )×∂� = 0.We emphasize that, in both the problems, no information on the initial
condition satisfied by u is assumed to be known.

For the first problem we assume the following geometry,

(A1) B is connected, ω ⊂ B, and the closure B is compact and contained in �, and
in the second case we may choose B = � while assuming that

(A2) � is a compact, convex, polyhedral domain.

The first problem is conditionally Hölder stable, and this stability is optimal. More
precisely, the following continuum stability estimate holds.

Theorem 1 Let ω ⊂ � be open and non-empty, and let 0 < T1 < T2 < T . Suppose
that an open set B ⊂ � satisfies (A1). Then there are C > 0 and κ ∈ (0, 1) such that
for all u in the space

H1(0, T ; H−1(�)) ∩ L2(0, T ; H1(�)), (2)

it holds that

‖u‖L2(T1,T2;H1(B)) ≤ C(‖u‖L2((0,T )×ω)

+ ‖Lu‖(0,−1))
κ (‖u‖L2((0,T )×�) + ‖Lu‖(0,−1))

1−κ ,

where L = ∂t − � and ‖ · ‖(0,−1) = ‖ · ‖L2(0,T ;H−1(�)).

In Theorem 1, the factor with the power κ can be viewed as the size of the data

q = u|(0,T )×ω, f = Lu, (3)

and the norm ‖u‖L2((0,T )×�) as an apriori bound for the unknown u. Let us also
emphasize that the assumption B ⊂ � is essential, indeed, if B ∩ ∂� �= ∅ then the
optimal stability is conditionally logarithmic. The second problem is stable.

Theorem 2 Let ω ⊂ � be open and non-empty, and let 0 < T1 < T . Suppose that
(A2) holds. Then there is C > 0 such that for all u in the space

H1(0, T ; H−1(�)) ∩ L2(0, T ; H1
0 (�)), (4)

it holds that

‖u‖C(T1,T ;L2(�)) + ‖u‖L2(T1,T ;H1(�)) + ‖u‖H1(T1,T ;H−1(�))

≤ C(‖u‖L2((0,T )×ω) + ‖Lu‖(0,−1)).
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The estimates in Theorems 1 and 2 are tailored to work well with the finite element
discretizations that are the main topic of the present paper. We review the literature
on continuum stability estimates and give the proofs bridging the gap between the
existing estimates and those in Theorems 1 and 2 in an “Appendix”.

In what follows, we call the two data assimilation problems the unstable and the
stable problem, respectively. We use the shorthand notation

a(u, z) = (∇u,∇z), G f (u, z) = (∂t u, z) + a(u, z) − 〈 f, z〉 , G = G0,

where (·, ·) is the inner product of L2((0, T )×�) and 〈·, ·〉 is the dual pairing between
L2(0, T ; H−1(�)) and L2(0, T ; H1

0 (�)). Note that for u ∈ H1((0, T ) × �), the
equations

G f (u, z) = 0, z ∈ L2(0, T ; H1
0 (�)), (5)

give theweak formulationof ∂t u−�u = f .Our approach to solve the data assimilation
problem, in both the cases, is based on minimizing the Lagrangian functional

Lq, f (u, z) = 1

2
‖u − q‖2ω + 1

2
s(u, u) − 1

2
s∗(z, z) + G f (u, z), (6)

where the data q and f are fixed. Here ‖ · ‖ω is the norm of L2((0, T )×ω), and s and
s∗ are symmetric bilinear forms, that are chosen differently in the two cases, and that
we call the primal and dual stabilizers, respectively. Note that minimizing Lq, f can
be seen as fitting u|(0,T )×ω to the data q under the constraint (5), z can be interpreted
as a Lagrange multiplier, and s/2 and s∗/2 as regularizing penalty terms.

In this paper we consider only semi-discretizations, that is, we minimize Lq, f on
a scale of spaces that are discrete in the spatial variable but not in the time variable.
The spatial mesh size h > 0 will be the only parameter controlling the convergence
of the approximation, and we use piecewise affine finite elements.

An important feature of the present work is that the choice of the regularizing
terms is driven by the analysis and designed to give error estimates that reflect the
approximation properties of the finite element space and the stability of the continuous
model. In particular, when the continuous model is Lipschitz stable, we obtain optimal
error estimates in the usual sense in numerical analysis, that is, the estimates are optimal
compared to interpolation of the exact solution. This is the case for the second model
problem introduced above. The regularization is constructed on the discrete level, that
is, s and s∗ are defined on the semi-discrete spaces, and in some cases, they may not
even make sense on the continuous level.

We show how the different stability properties of the two model problems lead to
different regularization operators. The choice for a given problem is not unique, and
the design of regularizing terms leading to optimal estimates can also be driven by
computational considerations, such as computational cost or couplings in the discrete
formulations. Therefore we present an abstract framework for the design of regular-
ization operators. When measurement errors are present we also show how to quantify
the damping of perturbations.
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For the unstable problem, under suitable choices of the semi-discrete spaces and
the regularization, we show that (6) has a unique minimizer (uh, zh), h > 0, satisfying
the following convergence rate

‖uh − u‖L2(T1,T2;H1(B)) ≤ Chκ(‖u‖∗ + ‖ f ‖), (7)

where u is the unique solution of the continuum data assimilation problem, κ ∈ (0, 1)
is the constant in Theorem 1, and the norms on the right-hand side capture the assumed
apriori smoothness, see Theorem 3 below for the precise formulation. For the stable
problem, we establish an analogous result but with κ = 1, that is, the convergence
rate reflects now the stability estimate in Theorem 2. Moreover, in the stable case, we
can replace the norm on the left-hand side of (7) with the stronger norm in Theorem
2, see Theorem 6 below for the precise formulation.

We consider the time discretization of the stable problem in a separate paper [10].
The approach there is an extension of the strategy in the present paper: a Lagrangian
of the form (6) is first discretized and then the stabilizers are chosen in the discrete
spaces. The main difference is that an additional stabilization in time is required. In
[10] we describe also two computational implementations of the method: one using
an off-the-self linear solver, and the other using an iterative scheme that is based on
the interpretation of the Euler–Lagrange equation for (6) as a system of two coupled
heat equations. Let us also remark that the convergence analysis of our method is
unchanged if the stabilizers in (6) are rescaled. We provide a computational study of
such rescaling in [10].

1.1 Previous literature

The classical approach to data assimilation and inverse problems is to introduce
Tikhonov regularization on the continuous level [2,15,26] and then discretize the
well-posed regularizedmodel. The use ofCarleman estimates for uniqueness of inverse
problems and the quantification of stability was first proposed in [7]. The use of con-
ditional stability to choose a Tikhonov regularization parameter has been explored in
[13]. Nevertheless a common feature of all methods where regularization takes place
on the continuous level is that the accuracy of the reconstruction will be determined by
the regularization error, leaving no room to exploit the interplay between discretization
and regularization.

The method we propose is an instance of the so-called 4DVAR method [21]. The
analysis in the present paper, which draws on previous ideas in the stationary case
[8,9,11], is to our best knowledge the first complete numerical analysis of a 4DVAR
type method. The main characteristic of our approach is to separate the numerical
stability and the stability of the continuous model, and use the continuous stability
estimate in the perturbation analysis.

In contrast, another recent approach to parabolic data assimilation problems is to
derive Carleman estimates directly on the discrete scheme [3,4], which may then be
used for convergence analysis. Other methods for data assimilation include the so
called back and forth nudging [1] and methods using null-controllability [18,23]. In
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the former case, forward and backward solves are combined with filtering techniques
(or penalty) to drive the approximate solution close to data, and the latter case leads
to an approximation algorithm which uses auxiliary optimal control problems. For
another example of a finite element method for identification of the initial data using
Tikhonov regularization see [12] and for a discussion of different approaches to numer-
ical approximation of control and inverse problems we refer to the monograph [17,
Chapter 5].

2 Spatial discretization

We begin by observing that we may assume without loss of generality that � ⊂ R
n

is a compact and connected polyhedral domain also in the case (A1). Indeed, we can
choose a compact and connected polygonal domain �̃ ⊂ � such that B ⊂ �̃ and then
replace � by �̃.

Consider a family T = {Th; h > 0} of triangulations of � consisting of simplices
such that the intersection of any two distinct simplices is either a common vertex, a
common edge or a common face.Moreover, assume that the family T is quasi uniform,
see e.g. [16, Def. 1.140], and indexed by

h = max
K∈Th

diam(K ).

The family T satisfies the following trace inequality, see e.g. [6, Eq. 10.3.9],

‖u‖L2(∂K ) ≤ C
(
h− 1

2 ‖u‖L2(K ) + h
1
2 ‖∇u‖L2(K )

)
, u ∈ H1(K ), (8)

where the constant C is independent of K ∈ Th and h > 0.
Let Vh be the H1-conformal approximation space based on the P1 finite element,

that is,

Vh = {
u ∈ C(�̄) : u|K ∈ P1(K ), K ∈ Th

}
, (9)

where P1(K ) denotes the set of polynomials of degree less than or equal to 1 on K .
We recall that the family T satisfies the following discrete inverse inequality, see e.g.
[16, Lem. 1.138],

‖∇u‖L2(K ) ≤ Ch−1‖u‖L2(K ), u ∈ P1(K ), (10)

where the constant C is independent of K ∈ Th and h > 0.
We choose an interpolator

πh : H1(�) → Vh, h > 0,
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that satisfies the following stability and approximation properties

‖πhu‖H1(�) ≤ C‖u‖H1(�), u ∈ H1(�), h > 0, (11)

‖u − πhu‖Hm (�) ≤ Chk−m‖u‖Hk (�), u ∈ Hk(�), h > 0, (12)

where k = 1, 2 and m = 0, k − 1, and that preserves vanishing Dirichlet boundary
conditions, that is, using the notation Wh = Vh ∩ H1

0 (�),

πh : H1
0 (�) → Wh, h > 0. (13)

A possible choice is the Scott–Zhang interpolator [25].

2.1 Spatial jump stabilizer

In the unstable case, the regularization will be based on the spatial jump stabilizer that
we will introduce next. We denote by Fh the set of internal faces of Th , and define for
F ∈ Fh ,

�n · u�F = n1 · u|K1 + n2 · u|K2 ,

where K1, K2 ∈ Th are the two simplices satisfying K1 ∩ K2 = F , and n j is the
outward unit normal vector of K j , j = 1, 2. We define the jump stabilizer

Jh(uh, uh) =
∑
F∈Fh

∫

F
h�n · ∇uh�

2
F ds, uh ∈ Vh, (14)

where ds is the Euclidean surface measure on F .

Lemma 1 (Discrete Poincaré inequality) There is C > 0 such that all uh ∈ Vh, and
h > 0 satisfy

‖uh‖L2(�) ≤ Ch−1
(
Jh(uh, uh)

1/2 + ‖uh‖L2(ω)

)
. (15)

Proof The original results on Poincaré inequalities for piecewise H1-functions may
be found in [5]. For a detailed proof of (15) see [11]. ��
Lemma 2 There is C > 0 such that all uh ∈ Vh, v ∈ H1

0 (�), w ∈ H2(�) and h > 0
satisfy

(∇uh,∇v)L2(�) ≤ CJh(uh, uh)
1/2

(
h−1‖v‖L2(�) + ‖v‖H1(�)

)
, (16)

Jh(πhw,πhw) ≤ Ch2‖w‖2H2(�)
. (17)
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Proof Towards (16) we integrate by parts and recall that uh is an affine function on
each element to obtain

(∇uh,∇v)L2(�) =
∑
K∈Th

∫

K
∇uh · ∇v dx = h−1/2

∑
F∈Fh

∫

F
h1/2�n · ∇uh�F v ds.

(18)

Thus by the Cauchy–Schwarz inequality

(∇uh,∇v)L2(�) ≤ h−1/2Jh(uh, uh)
1/2

⎛
⎝ ∑

F∈Fh

∫

F
v2ds

⎞
⎠

1/2

,

and the inequality (16) follows by applying (8) to the last factor.
Let us now turn to (17). As �n · ∇w�F = 0, we have using (8)

∫

F
h�n · ∇πhw�2F ds = h

∫

F
�n · ∇(πhw − w)�2F ds

≤ C
∑
j=1,2

(
‖n j · ∇(πhw − w)‖2L2(K j )

+ h2‖n j · ∇(πhw − w)‖2H1(K j )

)
.

Summing over all internal faces and observing that

‖∇(πhw − w)‖2H1(K j )
= ‖∇(πhw − w)‖2L2(K j )

+ ‖∇w‖2H1(K j )
,

we obtain

∑
F∈Fh

∫

F
h�n · ∇πhw�2F ds ≤ C

(
‖∇(πhw − w)‖2L2(�)

+ h2‖w‖2H2(�)

)
.

The first term on the right-hand side satisfies

‖∇(πhw − w)‖2L2(�)
≤ Ch2‖w‖2H2(�)

,

by (12). ��

3 The unstable problem

There are several possible choices for the primal and dual stabilizers s and s∗ in (6),
and different choices lead to numerical methods that may differ in terms of practical
performance. To illustrate the main ideas of our approach, we begin by considering
a concrete choice of the stabilizers in Sect. 3.1, and give an abstract framework in
Sect. 4.
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In what follows, we use the shorthand notations H (k,m) = Hk(0, T ; Hm(�)),

‖u‖(k,m) = ‖u‖Hk (0,T ;Hm (�)), k,m ∈ R,

and H (k,m)
0 = H (k,m) ∩ L2(0, T ; H1

0 (�)). We recall also that ‖u‖ = ‖u‖(0,0) and that
‖u‖ω is the norm of L2((0, T ) × ω).

3.1 A model case

We choose the following primal and dual stabilizers

sh(uh, vh) =
∫ T

0
Jh(uh, vh) dt + h2(∂t uh, ∂tvh), s∗

h (zh, wh) = (∇zh,∇wh),

(19)

defined on the respective semi-discrete spaces

Vh = H1(0, T ; Vh), Wh = L2(0, T ;Wh). (20)

We define also the semi-norm and norm

|uh |Vh = sh(uh, uh)
1/2, ‖zh‖Wh = s∗

h (zh, zh)
1/2, uh ∈ Vh, zh ∈ Wh, h > 0.

(21)

Recall that Wh = Vh ∩ H1
0 (�) and whence the Poincaré inequality

‖z‖L2(�) ≤ C‖∇z‖L2(�), z ∈ H1
0 (�), (22)

implies that ‖ · ‖Wh is indeed a norm on Wh .

Lemma 3 The semi-norm | · |Vh and norm ‖ · ‖Wh satisfy the following inequalities
with a constant C > 0 that is independent from h > 0: lower bounds

G(uh, z) ≤ C |uh |Vh

(
h−1‖z‖ + ‖z‖(0,1)

)
, uh ∈ Vh, z ∈ H (0,1)

0 , (23)

G(u, zh) ≤ C‖zh‖Wh

(‖u‖(1,0) + ‖u‖(0,1)
)
, u ∈ H (1,0) ∩ H (0,1), zh ∈ Wh,

(24)

upper bounds

|πhu|Vh ≤ Ch(‖u‖(1,1) + ‖u‖(0,2)), u ∈ H (1,1) ∩ H (0,2), (25)

‖πhz‖Wh ≤ C‖z‖(0,1), z ∈ H (0,1)
0 , (26)

and finally, for the semi-norm | · |Vh only, the Poincaré type inequality

‖uh‖ ≤ Ch−1(|uh |Vh + ‖uh‖ω), uh ∈ Vh . (27)
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Proof We have

G(uh, z) = (∂t uh, z) + a(uh, z) ≤ ‖h∂t uh‖h−1‖z‖
+C

∫ T

0
Jh(uh, uh)dt (h

−1‖z‖ + ‖z‖1),

where the bound for a(uh, z) follows from (18), analogously to (16), after integration
in time. This implies that (23) holds.

The lower bound (24) follows from the Cauchy–Schwarz inequality

(∂t u, zh) + a(u, zh) ≤ ‖∂t u‖‖zh‖ + a(u, u)1/2a(zh, zh)
1/2,

together with the Poincaré inequality (22).
Towards the upper bound (25), we have

|πhu|2Vh
=

∫ T

0
Jh(πhu, πhu) + h2‖∂tπhu‖2 ≤ Ch2‖u‖2(0,2) + Ch2‖u‖2(1,1),

where the bound for the first term follows from (17). The bound for the second term
holds by the H1-stability (11) of the interpolator πh .

The upper bound (26) follows immediately from the H1-stability of πh , and the
lower bound (27) follows from (15). ��

Observe that, by the lower bound (27),

|‖(uh, zh)‖|h = |uh |Vh + ‖uh‖ω + ‖zh‖Wh ,

is a norm on Vh × Wh .
Let q ∈ L2((0, T ) × ω) and f ∈ H (0,−1). The Lagrangian

Lq, f,h(uh, zh) = 1

2
‖uh − q‖2ω + 1

2
sh(uh, uh) − 1

2
s∗
h (zh, zh) + G f (uh, zh)

satisfies

Duh Lq, f,h vh = (uh − q, vh)ω + sh(uh, vh) + G(vh, zh),

Dzh Lq, f,h wh = −s∗
h (zh, wh) + G(uh, wh) − 〈 f, wh〉 ,

and therefore the critical points (uh, zh) ∈ Vh × Wh of Lq, f,h satisfy

Ah[(uh, zh), (vh, wh)] = (q, vh)ω + 〈 f, wh〉 , (vh, wh) ∈ Vh × Wh, (28)

where Ah is the symmetric bilinear form

Ah[(uh, zh), (vh, wh)]
= (uh, vh)ω + sh(uh, vh) + G(vh, zh) − s∗

h (zh, wh) + G(uh, wh). (29)
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Note that

Ah[(uh, zh), (uh,−zh)] = |uh |2Vh
+ ‖uh‖2ω + ‖zh‖2Wh

,

and therefore Ah is weakly coercive in the following sense

|‖(uh, zh)‖|h ≤ C sup
(vh ,wh)∈Vh×Wh

Ah[(uh, zh), (vh, wh)]
|‖(vh, wh)‖|h , (uh, zh) ∈ Vh × Wh .

(30)

The Babuska-Lax-Milgram theorem implies that the equation (28) has a unique solu-
tion in Vh × Wh .

3.2 Error estimates

In this sectionwe show that the solution (uh, zh)of (28) satisfiesuh → u in (T1, T2)×B
as h → 0, with the convergence rate (7). Here u is a smooth enough solution of the
unstable data assimilation problem in the continuum. We use the shorthand notation

‖u‖∗ = ‖u‖(1,1) + ‖u‖(0,2).

Lemma 4 Let u ∈ H (1,1) ∩ H (0,2) and define f = ∂t u − �u and q = u|(0,T )×ω. Let
(uh, zh) ∈ Vh × Wh be the solution of (28). Then there exists C > 0 such that for all
h ∈ (0, 1),

|‖(uh − πhu, zh)‖|h ≤ Ch‖u‖∗.

Proof The equations ∂t u − �u = f and u|ω = q are equivalent with

G(u, w) = 〈 f, w〉 , w ∈ L2(0, T ; H1
0 (�)),

(q − u, v)ω = 0, v ∈ L2((0, T ) × ω), (31)

and the Eqs. (28) and (31) imply for all vh ∈ Vh and wh ∈ Wh that

Ah[(uh − πhu, zh), (vh, wh)] = (u − πhu, vh)ω + G(u − πhu, wh) − sh(πhu, vh).

(32)

By (30) it is enough to show that

Ah[(uh − πhu, zh), (vh, wh)] ≤ Ch‖u‖∗|‖(vh, wh)‖|h .

We use (12) to bound the first term in (32),

(u − πhu, vh)ω ≤ ‖u − πhu‖ω‖vh‖ω ≤ Ch‖u‖(0,1)‖vh‖ω,
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for the second term we use (24) and (12),

G(u − πhu, wh) ≤ C
(‖u − πhu‖(1,0)

+‖u − πhu‖(0,1)
) ‖wh‖Wh ≤ Ch‖u‖∗‖wh‖Wh ,

and for the third term we use (25),

sh(πhu, vh) ≤ |πhu|Vh |vh |Vh ≤ Ch‖u‖∗|vh |Vh .

��
Theorem 3 Let ω, B ⊂ �, 0 < T1 < T2 < T and κ ∈ (0, 1) be as in Theorem
1. Let u ∈ H (1,1) ∩ H (0,2) and define f = ∂t u − �u and q = u|(0,T )×ω. Let
(uh, zh) ∈ Vh × Wh be the solution of (28). Then there exists C > 0 such that for all
h ∈ (0, 1)

‖uh − u‖L2(T1,T2;H1(B)) ≤ Chκ(‖u‖∗ + ‖ f ‖).

Proof We define the functional 〈r, w〉 = G(uh − u, w), w ∈ H (0,1)
0 . That is, r is the

residual r = (∂t −�)(uh −u) in the weak sense. The equation ∂t u−�u = f implies
that

〈r, w〉 = G(uh, w) − 〈 f, w〉 .

By taking vh = 0 in (28) we get G(uh, wh) = 〈 f, wh〉 + s∗
h (zh, wh), wh ∈ Wh , and

therefore

〈r, w〉 = G(uh, w) − 〈 f, w〉 − G(uh, πhw) + G(uh, πhw)

= G(uh, w − πhw) − 〈 f, w − πhw〉 + s∗
h (zh, πhw), w ∈ H (0,1)

0 . (33)

We arrive to the estimate

‖r‖(0,−1) ≤ C(|uh |Vh + ‖zh‖Wh + h‖ f ‖) (34)

after we bound the first term in (33) by using (23) and (11)–(12)

G(uh, w − πhw) ≤ C |uh |Vh

(
h−1‖w − πhw‖ + ‖w − πhw‖(0,1)

)

≤ C |uh |Vh‖w‖(0,1), (35)

the second term by using (12)

( f, w − πhw) ≤ ‖ f ‖‖w − πhw‖ ≤ Ch‖ f ‖‖w‖(0,1),
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and the last term by using (26)

s∗
h (zh, πhw) ≤ ‖zh‖Wh‖πhw‖Wh ≤ C‖zh‖Wh‖w‖(0,1).

We bound the first term in (34) by using Lemma 4 and (25)

|uh |Vh ≤ |uh − πhu|Vh + |πhu|Vh ≤ Ch‖u‖∗,

and observe that the analogous bound for the second term follows immediately from
Lemma 4. Thus

‖r‖(0,−1) ≤ Ch(‖u‖∗ + ‖ f ‖).

By applying Theorem 1 to uh − u, and using Lemma 4 and (12) to bound the term

‖uh − u‖ω ≤ ‖uh − πhu‖ω + ‖πhu − u‖ω ≤ Ch‖u‖∗ + Ch‖u‖(0,1)

we see that

‖uh − u‖L2(T1,T2;H1(B)) ≤ Chκ(‖u‖∗ + ‖ f ‖)κ(‖uh − u‖ + h(‖u‖∗ + ‖ f ‖))1−κ .

It remains to show the bound

‖uh − u‖ ≤ C‖u‖∗. (36)

The Poincaré type inequality (27) implies

‖uh − πhu‖ ≤ Ch−1|uh − πhu|Vh + Ch−1‖uh − πhu‖ω ≤ C‖u‖∗,

where we used again Lemma 4. The inequality (36) follows since ‖πhu − u‖ can be
bounded by ‖u‖∗, in fact, even by Ch2‖u‖∗. ��

3.3 The effect of perturbations in data

In practice the data f, q in (3) are typically polluted by measurement errors. Such
effects can easily be included in the analysis and we show in this section how the
above results must be modified to account for this case. We consider the case where
f, q in (28) are replaced by the perturbed counterparts

q̃ = u|(0,T )×ω + δq, f̃ = f + δ f, (37)

where u is the solution to the underlying unpolluted problem, that is, ∂t u − �u = f .
We assume that the perturbations δq, δ f satisfy δ f ∈ H−1(�) and δq ∈ L2(ω), and
use the following measure of the size of the perturbation

δ(q̃, f̃ ) = ‖δq‖L2(0,T ;L2(ω)) + ‖δ f ‖(0,−1).
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The critical points (uh, zh) ∈ Vh ×Wh of the perturbed Lagrangian Lq̃, f̃ ,h satisfy

Ah[(uh, zh), (vh, wh)] = (q̃, vh)ω + 〈 f̃ , wh〉, (vh, wh) ∈ Vh × Wh . (38)

We consider a perturbation of q in L2 since this is used in the data fitting term in
the Lagrangian. It should be noted that the formulation (38) remains well defined for
rougher perturbations δq, but they will lead to worse estimates in h.

First we consider again the residual quantities as in Lemma 4.

Lemma 5 Let u ∈ H (1,1)∩H (0,2) and define f̃ and q̃ by (37). Let (uh, zh) ∈ Vh×Wh

be the solution of (38). Then there exists C > 0 such that for all h ∈ (0, 1)

|‖(uh − πhu, zh)‖|h ≤ C(h‖u‖∗ + δ(q̃, f̃ )).

Proof Proceeding as in the proof of Lemma 4, the Eqs. (38) and (31) imply for all
vh ∈ Vh and wh ∈ Wh that

Ah[(uh − πhu, zh), (vh, wh)] = (u − πhu, vh)ω + (δq, vh)ω

+ G(u − πhu, wh) + 〈δ f, wh〉 − sh(πhu, vh). (39)

The only terms that are not covered by the previous analysis are those with the pertur-
bations, and we have

(δq, vh)ω + 〈δ f, wh〉 ≤ δ(q̃, f̃ )|‖(vh, wh)‖|h

The choice (19) of the dual stabilizer s∗ guarantees that ‖w‖(0,1) ≤ ‖w‖Wh . ��
The error estimate of Theorem 3may now be modified to include the perturbations.

Theorem 4 Let ω, B ⊂ �, 0 < T1 < T2 < T and κ ∈ (0, 1) be as in Theorem 1.
Let u ∈ H (1,1) ∩ H (0,2) and define f̃ and q̃ by (37). Let (uh, zh) ∈ Vh × Wh be the
solution of (38). Then there exists C > 0 such that for all h ∈ (0, 1)

‖uh − u‖L2(T1,T2;H1(B))

≤ C(h(‖u‖∗ + ‖ f ‖) + δ(q̃, f̃ ))κ(‖u‖∗ + h‖ f ‖ + h−1δ(q̃, f̃ ))(1−κ).

Proof We proceed as in the proof of Theorem 3, but due to the perturbation, the
Galerkin orthogonality (33) no longer holds exactly and we obtain

〈r, w〉 = G(uh, w − πhw) − 〈 f, w − πhw〉 + 〈δ f, πhw〉 + s∗
h (zh, πhw),

for w ∈ H (0,1)
0 . Analogously to the proof of Theorem 3, we obtain

‖r‖(0,−1) ≤ C(|uh |Vh + ‖zh‖Wh + h‖ f ‖ + ‖δ f ‖(0,−1)). (40)
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We bound the first term in (40) by using Lemma 5 and (25)

|uh |Vh ≤ |uh − πhu|Vh + |πhu|Vh ≤ C(h‖u‖∗ + δ(q̃, f̃ )),

and the second term by using again Lemma 5. Thus

‖r‖(0,−1) ≤ Ch(‖u‖∗ + ‖ f ‖) + Cδ(q̃, f̃ ).

As before, applying Theorem 1 to uh − u, and using Lemma 5 and (12) to bound the
term ‖uh − u‖ω leads to

‖uh − u‖L2(T1,T2;H1(B)

≤ C(h(‖u‖∗ + ‖ f ‖) + δ(q̃, f̃ ))κ(‖uh − u‖ + h(‖u‖∗ + ‖ f ‖) + δ(q̃, f̃ ))1−κ .

It remains to bound ‖uh − u‖. The Poincaré type inequality (27) implies

‖uh − πhu‖ ≤ Ch−1|uh − πhu|Vh + Ch−1‖uh − πhu‖ω

≤ C(‖u‖∗ + h−1δ(q̃, f̃ )),

where we used again Lemma 5. ��
According to Theorem 4, the error of the numerical approximation can diverge if

no function ũ exists such that ∂t ũ−�ũ = f̃ and ũ|(0,T )×ω = q̃ . On the other hand, in
the context of a specific application, an estimate on the noise level might be available,
and this can be used to choose a suitable mesh size. That is, assuming that there exists
h0 > 0 such that

δ(q̃, f̃ ) ≤ h0(‖u‖∗ + ‖ f ‖),
then for h > h0 there holds

‖uh − u‖L2(T1,T2;H1(B)) ≤ Chκ(‖u‖∗ + ‖ f ‖)κ .

4 A framework for stabilization

Before proceeding to the stable problem, we introduce an abstract stabilization frame-
work based on the essential features of the model case in Sect. 3.1.

Let sh and s∗
h be bilinear forms on the spaces Vh and Wh , respectively. Let | · |Vh

be a semi-norm on Vh and let ‖ · ‖Wh be a norm on Wh . We relax (21) by requiring
only that sh and s∗

h are continuous with respect to | · |Vh and ‖ · ‖Wh , that is,

sh(uh, uh) ≤ C |uh |2Vh
, s∗

h (zh, zh) ≤ C‖zh‖2Wh
, uh ∈ Vh, zh ∈ Wh, h > 0.

(41)

Let ‖ · ‖∗ be the norm of a continuously embedded subspace H∗ of the energy space
(2). The space H∗ encodes the apriori smoothness. We relax the lower bounds (23)
and (24) as follows
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G(uh, z − πhz) ≤ C |uh |Vh‖z‖(0,1), uh ∈ Vh, z ∈ H (0,1)
0 , (42)

G(u − πhu, zh) ≤ Ch‖zh‖Wh‖u‖∗, u ∈ H∗, zh ∈ Wh, (43)

where πh is an interpolator satisfying (11)–(13). We replace the upper bound (25) by
its abstract analogue

|πhu|Vh ≤ Ch‖u‖∗, u ∈ H∗, (44)

and require that (26) and (27) hold as before. Finally, in the abstract setting, we assume
that the weak coercivity (30) holds where Ah and |‖ · ‖|h are defined as above.

It can be verified that the following analogue of Theorem 3 holds under these
assumptions.

Theorem 5 Let ω, B ⊂ �, 0 < T1 < T2 < T and κ ∈ (0, 1) be as in Theorem 1.
Let u ∈ H∗ and define f = ∂t u − �u and q = u|ω. Suppose that the primal and
dual stabilizers satisfy (41)–(44), (26), (27) and (30). Then (28) has a unique solution
(uh, zh) ∈ Vh × Wh, and there exists C > 0 such that for all h ∈ (0, 1)

‖uh − u‖L2(T1,T2;H1(B)) ≤ Chκ(‖u‖∗ + ‖ f ‖).

5 The stable problem

Let us now consider the stable problem with the additional lateral boundary condition
u|(0,T )×∂� = 0. We may impose the boundary condition on the discrete level by
changing the space Vh , defined previously by (20), to

Vh = H1(0, T ;Wh).

In the stable case we do not need an inequality analogous to (36) since the estimate in
Theorem 2 does not contain an apriori term, that is, a term analogous to ‖u‖L2((0,T )×�)

inTheorem1. In the previous section, thePoincaré type inequality (27)was usedonly to
obtain (36), and whence we can relax the conditions there by dropping (27). However,
we still need to require that |‖ · ‖|h is a norm on Vh × Wh .

Wewill nowproceed to a concrete case. The choices in Sect. 4work also in the stable
case, however, the additional structure allows us to choose a weaker stabilization. The
use of a weaker stabilization is motivated by the fact that it leads to a weaker coupling
of the two heat equations in (28), which again can be exploited when solving (28) in
practice. See [10] for a computational implementation based on this.

The stabilizers and semi-norms are chosen as follows,

sh(uh, uh) = ‖h∇uh(0, ·)‖2L2(�)
, s∗

h (zh, zh) = (∇zh,∇zh), (45)

|uh |Vh = sh(uh, uh)
1/2 + ‖h∂t uh‖, ‖zh‖Wh = s∗

h (zh, zh)
1/2, (46)

and we define H∗ = H (1,1)
0 . To counter the lack of primal stabilization on most of the

cylinder (0, T )×�, we choose πh to be the orthogonal projection πh : H1
0 (�) → Wh

with respect to the inner product (∇u,∇v)L2(�). That is, πh is defined by
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(∇πhu,∇vh)L2(�) = (∇u,∇vh)L2(�), u ∈ H1
0 (�), vh ∈ Wh . (47)

As � is a convex polyhedron, this choice satisfies the estimates (11)–(12), see e.g.
[16, Th. 3.12-18].

Lemma 6 The choices (45)–(47) satisfy the properties (41)–(44), (26) and (30).More-
over, |‖ · ‖|h is a norm on Vh × Wh.

Proof It is clear that the continuities (41) hold. We begin with the lower bound (42).
By the orthogonality (47),

G(uh, z − πhz) = (∂t uh, z − πhz) ≤ ‖h∂t uh‖h−1‖z − πhz‖ ≤ C‖h∂t uh‖‖z‖(0,1).

Towards the lower bound (43), we use the orthogonality (47) as above,

G(u − πhu, zh) = (∂t u − πh∂t u, zh) ≤ Ch‖u‖(1,1)‖zh‖.

The bound (43) follows from the Poincaré inequality (22).
The bound (44) follows from the continuity of the trace

‖∇u(0, ·)‖L2(�) ≤ ‖u‖(1,1), (48)

and the continuity of the projection πh . The bound (26) follows immediately from the
continuity of πh .

We turn to the weak coercivity (30). The essential difference between the unstable
and the stable case is that in the latter case ∂t uh ∈ Wh when uh ∈ Vh . We have

Ah[(uh, zh), (0, ∂t uh)] = −s∗
h (zh, ∂t uh) + G(uh, ∂t uh)

= ‖∂t uh‖2 + a(uh, ∂t uh) − a(zh, ∂t uh),

and thus using bilinearity of Ah ,

Ah[(uh, zh), (uh, αh2∂t uh − zh)] = sh(uh, uh) + α‖h∂t uh‖2 + ‖uh‖2ω + s∗
h (zh, zh)

+ αh2a(uh, ∂t uh) − αh2a(zh, ∂t uh), (49)

where α > 0. We will establish (30) by showing that there is α ∈ (0, 1) such that

|‖(uh, wh − zh)‖|h ≤ C |‖(uh, zh)‖|h, (50)

|‖(uh, zh)‖|2h ≤ CAh[(uh, zh), (uh, wh − zh)], (51)

where wh = αh2∂t uh .
Towards (50) we observe that

|‖(uh, wh − zh)‖|2h = |‖(uh, zh)‖|2h − 2s∗
h (zh, wh) + s∗

h (wh, wh)

≤ 2|‖(uh, zh)‖|2h + 2s∗
h (wh, wh).
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We use the discrete inverse inequality (10) to bound the second term

s∗
h (wh, wh) = α2h4‖∂t∇uh‖2 ≤ Cα2h2‖∂t uh‖2 ≤ Cα2|‖(uh, zh)‖|2, α > 0.

It remains to show (51). Towards bounding the first cross term in (49) we observe
that

2a(uh, ∂t uh) =
∫ T

0
∂t‖∇uh(t, ·)‖2L2(�)

dt = ‖∇uh(T, ·)‖2L2(�)
− ‖∇uh(0, ·)‖2L2(�)

.

Hence αh2a(uh, ∂t uh) ≥ −αsh(uh, uh)/2. We use the arithmetic-geometric inequal-
ity,

ab ≤ (4ε)−1a2 + εb2, a, b ∈ R, ε > 0,

and the discrete inverse inequality (10) to bound the second cross term in (49),

αh2a(zh, ∂t uh) ≤ α(4ε)−1a(zh, zh) + αεh4‖∂t∇uh‖2
≤ α(4ε)−1a(zh, zh) + Cαε‖h∂t uh‖2.

Choosing ε = 1/(2C) we obtain

Ah[(uh, zh), (uh, wh − zh)]
≥ (1 − α/2)sh(uh, uh) + α‖h∂t uh‖2/2 + ‖uh‖2ω + (1 − Cα/2)s∗

h (zh, zh),

and therefore (51) holds with small enough α > 0.
Finally, using the Poincaré inequality (22), we see that |‖(uh, zh)‖|h = 0 implies

that zh = 0 and uh(0, ·) = 0. As also ∂t uh = 0, we have uh = 0, and therefore |‖ · ‖|h
is a norm. ��

In the stable case we have the following convergence rate.

Theorem 6 Let ω ⊂ � be open and non-empty and let 0 < T1 < T . Suppose that
(A2) holds. Let u ∈ H∗ and define f = ∂t u − �u and q = u|ω. Suppose that the
primal and dual stabilizers satisfy (41)–(44), (26) and (30). Then (28) has a unique
solution (uh, zh) ∈ Vh × Wh, and there exists C > 0 such that for all h ∈ (0, 1)

‖uh − u‖C(T1,T ;L2(�)) + ‖uh − u‖L2(T1,T ;H1(�)) + ‖uh − u‖H1(T1,T ;H−1(�))

≤ Ch(‖u‖∗ + ‖ f ‖).

The proof is analogous to that of Theorem 3, however, we give it here for the sake
of completeness.

Proof We begin again by showing the estimate

|‖(uh − πhu, zh)‖|h ≤ Ch‖u‖∗. (52)
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The weak coercivity (30) implies that in order to show (52) it is enough bound the
three terms on the right hand side of (32). For the first of them, that is, (u−πhu, vh)ω,
we use (12) as in the proof of Lemma 4. The lower bound (43) applies to the second
term G(u − πhu, wh), and for the third one we use the continuity (41) and the upper
bound (44),

sh(πhu, vh) ≤ C |πhu|Vh |vh |Vh ≤ Ch‖u‖∗|vh |Vh .

We define the residual r as in the proof of Theorem 3, and show next that (34) holds.
It is enough to bound the three terms on the right hand side of (33). The lower bound
(42) applies to the first term G(uh, w − πhw), for the second term ( f, w − πhw) we
use (12) as in the proof of Theorem 3, and for the third term we use the continuity
(41) and the upper bound (26)

s∗
h (zh, πhw) ≤ C‖zh‖Wh‖πhw‖Wh ≤ C‖zh‖Wh‖w‖(0,1).

The inequalities (34), (52) and (44) imply

‖r‖(0,−1) ≤ C(|uh − πhu|Vh + |πhu|Vh + ‖zh‖Wh + h‖ f ‖) ≤ Ch(‖u‖∗ + ‖ f ‖).

Finally, Theorem 2 implies that

‖uh − u‖C(T1,T ;L2(�)) + ‖uh − u‖L2(T1,T ;H1(�)) + ‖uh − u‖H1(T1,T ;H−1(�))

≤ C‖uh − u‖ω + Ch(‖u‖∗ + ‖ f ‖).

The claim follows by using (52) and (12),

‖uh − u‖ω ≤ ‖uh − πhu‖ω + ‖πhu − u‖ω ≤ Ch‖u‖∗.

Here we used also the assumption that H∗ is a continuously embedded subspace of the
energy space (2), namely, this implies that the embedding H∗ ⊂ H (0,1) is continuous.

��
Remark 1 If the data q, f is perturbed in the stable case, the data assimilation problem
behaves like a typical well posed problem, that is, the term δ(q̃, f̃ ) needs to be added
on the right-hand side of the estimate in Theorem 6, but this time without any negative
power of h.

6 Conclusion

In the present paper our aimwas to show howmethods known from the theory of stabi-
lized finite element methods can be applied to the design of computational methods for
non-stationary data assimilation problems by first discretizing and then regularizing
the corresponding 4DVAR optimization system.
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A key feature of this framework is that the error analysis is based on numerical
stability of residual quantities that are independent of the stability properties of the
continuous model. The residual quantities are then bounded by using conditional sta-
bility estimates, based on Carleman estimates, to derive error estimates that reflect the
approximation properties of the finite element space and the stability of the continuous
problem in an optimal way. An upshot of this approach is that it gives a clear lead on
how to design regularization for a given problem in order to obtain the best accuracy
of the approximation with the least effect of perturbations in data.

Observe that the stabilization operators proposed herein are not unique, for instance
it is straightforward to show that the dual stabilizer in Eq. (19) may be chosen as the
first part of the primal stabilizer, leading to similar error estimates for unperturbed
data. The error estimates also gives an indication on what form Carleman estimates
should take to make them immediately applicable for error analysis.
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Appendix: Continuum estimates

Theorem1 is a consequence of the so-called three cylinders inequality that goes back to
[19], see [27,28] for an overview of the related literature. The variant of the inequality,
needed in the above convergence analysis, seems not to appear in the literature, and
we prove it here by using the Carleman estimate [20].

Theorem 2 is a variant of [14], the difference being that in [14] the domain � is
assumed to have C2-smooth boundary. We outline below the modifications needed in
the case that � is a convex polyhedron.

We use the notation B(x, r) = {y ∈ �; d(y, x) < r}, x ∈ �, r > 0, where d is
the Euclidean distance.

Theorem 7 (Three cylinders inequality) Let x0 ∈ � and 0 < r1 < r2 < d(x0, ∂�).
Write B j = B(x0, r j ), j = 1, 2. Let T > 0 and 0 < ε < T/2. Then there are C > 0
and κ ∈ (0, 1) such that for all u ∈ C2(R × �)

‖u‖L2(ε,T−ε;H1(B2)) ≤ C(‖u‖L2(0,T ;H1(B1)) + ‖Lu‖L2((0,T )×�))
κ‖u‖1−κ

L2(0,T ;H1(�))
.

Proof Let 0 < r0 < r1 and r2 < r3 < r4 < d(x0, ∂�). Define Bj = B(x0, r j ),
j = 0, 3, 4. We choose non-positive ρ1 ∈ C∞(�) such that ρ1 > −r0 in B0 and that
ρ1(x) = −d(x, x0) outside B0. Define I1 = (ε, T − ε) and I2 = (ε/2, T − ε/2), and
choose non-positive ρ2 ∈ C∞(R) such that ρ2 ≤ −r3 outside I2 and ρ2 = 0 in I1.
We define ρ(t, x) = ρ1(x) + ρ2(t) and φ = eαρ where α > 0.
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We will apply [20, Th. 1.1] to the heat operator L = ∂t −�, with the above weight
function φ. Condition (1.5) in the theorem reduces to

D2φ(ζ, ζ ) > 0, ζ = ξ + iτ∇φ, |ξ | = τ |∇φ|, τ > 0, ξ ∈ R
n, (53)

where D2φ is the Hessian of φ with respect to x . We have ∇φ = αφ∇ρ and

D2φ(ζ, ζ ) = αφ(α|∇ρ · ζ |2 + D2ρ(ζ, ζ ))

≥ αφ(α(ταφ|∇ρ|2)2 − μ(ταφ|∇ρ|)2),

where μ is a constant depending only on ρ. As |∇ρ| = 1 outside B0, condition (53)
holds in B4 \ B0 for large enough α > 0. Let χ ∈ C∞

0 ((0, T ) × (B4 \ B0)) satisfy
χ = 1 in I2 × (B3 \ B1), and set w = χu. Then [20, Th. 1.1] implies that for large
τ > 0,

∫ T

0

∫

B4\B0
(τ |∇w|2 + τ 3|w|2)e2τφ dxdt ≤ C

∫ T

0

∫

B4\B0
|Lw|2e2τφ dxdt. (54)

We define �(r) = e−αr , I = (0, T ) and

Q1 = I2 × B1, Q2 = ((I \ I2) × B4) ∪ (I × (B4 \ B3)).

Observe that φ ≤ �(r3) in Q2, and that the commutator [L , χ ] vanishes outside
Q1 ∪ Q2. Hence the right-hand side of (54) is bounded by a constant times

∫

(0,T )×B4
|Lu|2e2τφdxdt +

∫

Q1∪Q2

|[L , χ ]u|2e2τφdxdt

≤ e2τ‖Lu‖2L2((0,T )×B4)
+ e2τ‖u‖2L2(0,T ;H1(B1))

+ e2τ�(r3)‖u‖2L2(0,T ;H1(B4))
.

(55)

The left-hand side of (54) is bounded from below by

∫

I1×(B2\B1)

(
τ |∇u|2 + τ 3|u|2

)
e2τφ dxdt ≥ e2τ�(r2)‖u‖2L2(ε,T−ε;H1(B2\B1)). (56)

The inequalities (54)–(56) imply

‖u‖L2(ε,T−ε;H1(B2)) ≤ eτ
(‖Lu‖L2((0,T )×B4) + ‖u‖L2(0,T ;H1(B1))

)

+e−pτ‖u‖L2(0,T ;H1(B4)).

where p = �(r2) − �(r3) > 0. The claim follows from [22, Lemma 5.2]. ��
Proof of Theorem 1 We use notation from the proof of Theorem 7. By replacing ω

with a smaller set wemay assumewithout loss of generality that it is a ball of the above
form B1. We will show a local version of the claimed estimate where B is replaced by
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a ball of the form B2. The general case follows by covering B by finite chains of balls
starting from ω, and by iterating the local result.

Let us first consider the case u ∈ C∞(R × �). We choose 0 < r0 < r1 and
r2 < r3 < d(x0,�) and write Bj = B(x0, r j ), j = 0, 3. Let 0 < ε0 < ε and choose
η ∈ C∞(R) such that η = 0 near the origin and η(t) = 1 for t > ε0. Let w be the
solution of

Lw = ηLu in (0, T ) × B3,

w|x∈∂B3 = 0, w|t=0 = 0,

and set v = u − w. Note that w ∈ C∞([ε0, T ] × �). Theorem 7 with u replaced by
v, B1 by B0, � by B3, and t = 0 by t = ε0 implies that

‖v‖L2(ε,T−ε;H1(B2)) ≤ C‖v‖κ
L2(ε0,T ;H1(B0))

‖v‖1−κ

L2(ε0,T ;H1(B3))

≤ C(‖u‖L2(ε0,T ;H1(B0)) + ‖Lu‖0,−1)
κ(‖u‖L2(ε0,T ;H1(B3)) + ‖Lu‖0,−1)

1−κ .

Here we have applied the energy estimate for the heat equation to w, see (57) below.
Moreover,

‖u‖L2(ε,T−ε;H1(B2)) ≤ ‖v‖L2(ε,T−ε;H1(B2)) + C‖Lu‖0,−1.

We choose χ ∈ C∞
0 ((0, T ) × B1) such that χ = 1 in (ε0, T − ε0) × B0. Then χu

satisfies

L(χu) = χLu + [χ, L]u, (χu)|x∈∂B1 = 0, (χu)|t=0 = 0,

and as the commutator [χ, L] is of first order in space and zeroth order in time,

‖u‖L2(ε0,T−ε0;H1(B0)) ≤ ‖χu‖L2(0,T ;H1(B1)) ≤ C‖Lu‖0,−1 + C‖u‖L2((0,T )×B1).

Analogously,

‖u‖L2(ε0,T−ε0;H1(B3)) ≤ C‖Lu‖0,−1 + C‖u‖L2((0,T )×�).

and we have shown the local estimate in the case that u is smooth. To conclude we
observe that smooth functions are dense in the space (2). ��

Let us now turn to Theorem 2. In the case of convex, polygonal �, the following
simple lemma gives a weight function satisfying Condition 1.1 of [14].

Lemma 7 Suppose that � ⊂ R
n is open and convex set and that ∂� is piecewise

smooth. Let x0 ∈ � and ε > 0 satisfy B(x0, ε) ⊂ �. Then there is ρ ∈ C∞(�)

satisfying ρ < 0 in �, |∇ρ| = 1 in � \ B(x0, ε) and ∂νρ ≤ 0 on ∂�.

Proof We choose a strictly negative ρ ∈ C∞(�) such that ρ(x) = −d(x, x0) outside
B(x0, ε). Then∇ρ = −(x−x0)/|x−x0| outside B(x0, ε). By convexity, (x−x0)·ν ≥
0 on ∂�, and therefore ∂νρ ≤ 0 on the boundary. ��
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Now [14, Lemma 1.3] can be written in the following form:

Lemma 8 (Global Carleman estimate by Imanuvilov) Let� ⊂ R
n, x0 ∈ � and ε > 0

be as in Lemma 7. Let ρ be the function given by Lemma 7. Let T > 0 and define
� = λh̄−1(eαρ − 1), where h̄ = t (T − t), α, λ > 0. Then there are C, α, λ0 > 0 such
that for all w ∈ C2([0, T ] × �) satisfying w = 0 on (0, T ) × ∂� and all λ > λ0 it
holds that

∫ T

0

∫

�

(
τ |∇w|2 + τ 3|w|2

)
e2�dxdt

≤ C
∫ T

0

∫

�

|Lw|2e2�dxdt + C
∫ T

0

∫

B(x0,ε)
τ 3|w|2e2�dxdt.

where τ = λh̄−1.

Proof of Theorem 2 We write C = C∞(0, T ;C∞
0 (�)) and denote by H the energy

space (4). Recall that H is continuously embedded in C(0, T ; L2(�)), see e.g. [24,
Lemma 11.4], and that C is dense in H. By density it is enough to consider the case
u ∈ C. Recall also the energy estimate for v ∈ H, see e.g. [24, Theorem 11.3],

‖v‖H ≤ C‖v(0)‖L2(�) + C‖Lv‖L2(0,T ;H−1(�)). (57)

We write f = ∂t − �u, let v ∈ H be the solution of

∂tv − �v = f, v|t=0 = 0,

and define w = u − v. Then w satisfies ∂tw − �w = 0. Choose x0 ∈ ω and ε > 0
such that B(x0, ε) ⊂ ω, and apply Lemma 8 on w. Note that τ 3e2� → 0 as t → 0 or
t → T . Let 0 < δ0 < δ, then e2� is strictly positive on [δ0, T − δ0]×�. In particular,

‖w‖L2((δ0,T−δ0)×�) ≤ C‖w‖L2((0,T )×ω).

The estimate (57) implies that

‖w(δ)‖2L2(�)
≤ C‖w(s)‖2L2(�)

, s ∈ (0, δ).

We integrate this over the interval (δ0, δ) to obtain

(δ − δ0)‖w(δ)‖2L2(�)
≤ C‖w‖2L2((δ0,T−δ0)×�)

.

By using (57) again, we have

‖v(δ)‖L2(�) + ‖v‖L2((0,T )×�) ≤ C‖ f ‖L2(0,T ;H−1(�)).
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Hence

‖u(δ)‖L2(�) ≤ C‖w‖L2((0,T )×ω) + C‖ f ‖L2(0,T ;H−1(�))

≤ C‖u‖L2((0,T )×ω) + C‖ f ‖L2(0,T ;H−1(�)).

The claim follows by applying (57) once more. ��
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