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Abstract. We design and analyse a Nitsche method for contact problems. Compared to the
seminal work of Chouly and Hild [SIAM J. Numer. Anal., 51 (2013), pp. 1295–1307], our method is
constructed by expressing the contact conditions in a nonlinear function for the displacement variable
instead of the lateral forces. The contact condition is then imposed using the nonsymmetric variant
of Nitsche’s method that does not require a penalty term for stability. Nonconforming piecewise
affine elements are considered for the bulk discretization. We prove optimal error estimates in the
energy norm.
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1. Introduction. We consider the Signorini problem. Find u such that

(1.1)

−∆u = f in Ω
u = 0 on ΓD

∂nu = 0 on ΓN
u ≤ 0, ∂nu ≤ 0, u∂nu = 0 on ΓC ,

where f ∈ L2(Ω) and Ω ⊂ Rd, d = 2, 3 is a convex polygonal (polyhedral) domain
with boundary ∂Ω, and ΓD ∪ ΓN ∪ ΓC = ∂Ω. We assume that ΓC coincides with one
of the sides of the polygon. We write ∂nu := n · ∇u, where n denotes the outwards-
pointing normal of ∂Ω. We present the problem here with homogeneous boundary
data for simplicity, but the arguments below can be extended to the nonhomogeneous
case after minor modifications.

It is well known that this problem admits a unique solution u ∈ H1(Ω). This
follows from the theory of Stampacchia applied to the corresponding variational in-
equality (see, e.g., [19]). We will also assume the additional regularity u ∈ H 3

2 +ν(Ω)
0 < ν ≤ 1

2 . There exists a large body of literature treating finite element methods
for contact problems. In general, however, it has proven difficult to prove optimal
error estimates without making assumptions on the regularity of the exact solution
on the contact zone. In the pioneering work of Scarpini and Vivaldi [28], O(h

3
4 )

convergence was proved in the energy norm for solutions in H2(Ω). Brezzi, Hager,
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2524 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

and Raviart [9] then proved O(h) convergence under the additional condition that
the solution was in W 1,∞(Ω) or that the number of points where the contact condi-
tion changes from binding to nonbinding is finite. These initial works were followed
by a series of papers where the scope was widened and sharper estimates obtained
[26, 18, 5, 4, 6, 31, 22, 12]. Discretization of (1.1) is usually performed on the vari-
ational inequality or using a penalty method. The first case, however, leads to some
nontrivial choices in the construction of the discretization spaces in order to satisfy
the nonpenetration condition, and only recently has optimal error estimates been de-
rived [16]. The latter case leads to the usual consistency and conditioning issues of
penalty methods. A detailed analysis of the penalty method was recently performed
by Chouly and Hild [12]. Another approach proposed by Hild and Renard [21] is to
use a stabilized Lagrange multiplier in the spirit of Barbosa and Hughes [3], using the
reformulation of the contact condition

(1.2) ∂nu = −γ−1[u− γ∂nu]+, γ > 0,

where [x]± = ±max(0,±x) proposed by Alart and Curnier [2] in an augmented
Lagrangian framework. Using the close relationship between the Barbosa and Hughes
method and Nitsche’s method [27] as discussed by Stenberg [29], this method was
then further developed in the elegant Nitsche-type formulation introduced by Chouly,
Hild, and Renard [11, 13]. In these works, optimal error estimates for solutions in
H

3
2 +ν(Ω) to the above model problem were obtained for the first time. Their method

was proposed in a nonsymmetric and a symmetric version similar to Nitsche’s method
for the imposition of boundary conditions; it has, however, been observed that in their
framework, there was no equivalent to the penalty-free nonsymmetric Nitsche method
proposed in [10]. Our aim in this work is to fill this gap, rather adding a piece to the
puzzle than pretending to propose a method superior to the previous variants.

2. Nitsche’s method for the Signorini problem. We will first discuss an
alternative route to Nitsche-type methods for the contact problem that allows us
to formulate the nonsymmetric penalty-free Nitsche method that will be the main
concern of this work. The penalty-free Nitsche method can be interpreted as a La-
grange multiplier method where the multiplier and the corresponding test function
have been replaced by the normal flux of the solution variable and of its test function,
respectively. To design this method for contact problems, we take a slightly different
approach than in [11]. Instead of working on the formulation (1.2) for the lateral
forces, we use a similar relation on the displacement:

(2.1) u = −γ[∂nu− γ−1u]+, γ > 0.

Setting Pγ(u) = γ∂nu− u, we may write this relation as

(2.2) u = −[Pγ(u)]+.

It is straightforward to show that this is equivalent to the contact condition of equation
(1.1). First assume that (2.1) holds. Then by construction u ≤ 0. Assume that
∂nu > 0. Then u = −γ(∂nu − γ−1u) < u, which is a contradiction; hence, ∂nu ≤ 0.
Assuming now u < 0 and ∂nu < 0 implies that u = −γ[∂nu − γ−1u]+ > u, also a
contradiction, and it follows that u∂nu = 0. On the other hand, if u∂nu = 0, u ≤ 0,
and ∂nu ≤ 0, we see that where u < 0, (2.1) becomes u = −γ[−γ−1u]+, and where
∂nu < 0, (2.1) becomes [∂nu]+ = 0, both which are true.
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PENALTY-FREE NITSCHE METHOD FOR CONTACT PROBLEMS 2525

We multiply the first equation of (1.1) by a function v with zero trace on ΓD and
apply Green’s formula to obtain

a(u, v)− 〈∂nu, v〉ΓC = (f, v)Ω,

where (·, ·)Ω and 〈·, ·〉ΓC denote the L2-scalar product on Ω and ΓC , respectively, and
a(u, v) := (∇u,∇v)Ω. We then add a term imposing (2.1) on the form

(2.3)
〈
u+ γ[∂nu− γ−1u]+, θ1∂nv + θ2γ

−1v
〉

ΓC
,

resulting in family of Nitsche formulations defined by two parameters θ1 and θ2:

a(u, v)− 〈∂nu, v〉ΓC + θ1 〈∂nv, u〉ΓC + θ2γ
−1 〈u, v〉ΓC

+
〈
γ[∂nu− γ−1u]+, θ1∂nv + θ2γ

−1v
〉

ΓC
= (f, v)Ω.

Taking θ1 ∈ {−1, 0, 1} and θ2 = 1 results in Nitsche methods on the form

(2.4)
(∇u,∇v)Ω − 〈∂nu, v〉ΓC + θ1 〈u, ∂nv〉ΓC +

〈
γ−1u, v

〉
ΓC

+
〈
[Pγ(u)]+, γ−1v + θ1∂nv

〉
ΓC

= (f, v)Ω.

From this expression, we deduce that the linear part of the formulation coincides with
the classical version of Nitsche’s method, and the constraint is then imposed exactly
as a nonhomogeneous Dirichlet condition in Nitsche’s method. We will now show
that the formulation (2.4) is equivalent with the formulation proposed in [13] that is
derived using the condition (1.2) and may be written formally: find u such that

(∇u,∇v)Ω + γ−1 〈[u− γ∂nu]+, v + θ1γ∂nv〉ΓC + θ1γ 〈∂nu, ∂nv〉ΓC = (f, v)Ω.

(2.5)

Before proceeding, we prove equivalence of (2.4) and (2.5).

Proposition 2.1. The formulations (2.4) and (2.5) are equivalent.

Proof. We will show that the left-hand side of the expression (2.4) is equivalent
to that of (2.5). To this end, first observe that

(2.6) [Pγ(u)]+ + u− γ∂nu = [−(u− γ∂nu)]+ + u− γ∂nu = [u− γ∂nu]+

and that

− 〈∂nu, v〉ΓC + θ1 〈∂nv, u〉ΓC + γ−1 〈u, v〉ΓC −
〈
u− γ∂nu, γ−1v + θ1∂nv

〉
ΓC

(2.7)

= θ1γ 〈∂nu, ∂nv〉ΓC .

Then add and subtract u − γ∂nu in the last term in the left-hand side of (2.4),
resulting in〈

[Pγ(u)]+ + (u− γ∂nu)− (u− γ∂nu), γ−1v + θ1∂nv
〉

ΓC

= γ−1 〈[u− γ∂nu]+, v + θ1γ∂nv〉ΓC − γ
−1 〈u− γ∂nu, v + θ1γ∂nv〉ΓC ,

where we used the relation (2.6). The claim follows by applying (2.7).
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2526 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

A similar approach to the analysis that we propose below in the case of the
penalty-free Nitsche method can also be applied to (2.4), using standard conforming
finite elements, and in that case it offers an alternative analysis of the method (2.4),
(2.5), resulting in the same bounds as those proven in [13].

Herein we will consider the method obtained when θ1 = 1 and θ2 = 0, in which
case the term imposing the contact condition reduces to〈

u+ γ[∂nu− γ−1u]+, ∂nv
〉

ΓC
.

Observe that the two terms differ only by the exclusion of the last term, which corre-
sponds to a penalty, and in that sense the latter variant is penalty free.

It follows that the penalty-free version leads to the following formal restatement
of (1.1) for smooth u:

(2.8) (∇u,∇v)Ω − 〈∂nu, v〉ΓC + 〈u, ∂nv〉ΓC + 〈[Pγ(u)]+, ∂nv〉ΓC = (f, v)Ω.

Observe that the linear part of the system is equivalent to that proposed in [10] for
Dirichlet boundary conditions but that here this is used to enforce the condition (2.2)
on u.

For the discretization of (2.8), we will use the Crouzeix–Raviart nonconforming
piecewise affine element with midpoint continuity on element edges (or continuity
of averages over faces in three dimensions). As we shall see below, this element is
advantageous for the formulation proposed since the necessary stability results are
relatively straightforward to prove. The nonconforming finite element space has been
analyzed for the Signorini problem by Hua and Wang [24]. They prove optimal
convergence up to a logarithmic factor for H2(Ω) solutions under the assumption
that the number of points where the constraint changes from binding to nonbinding
is finite. In this work, we prove the same optimal results for solutions in H

3
2 +ν(Ω),

ν > 0 as those obtained in [11, 13].
To handle the nonconformity error, we need to make an additional mild assump-

tion on the source term: the trace of f must be well defined in the vicinity of the
contact boundary ΓC . To make this precise, we let ‖ · ‖X denote the L2-norm over
the domain X, which may be a subset of either Rd or Rd−1, and define

ΩtC := {x ∈ Ω̄ : x = y − nyt, where y ∈ ΓC and 0 ≤ t ≤ tC},

where ny denotes the outward-pointing normal on ΓC at the point y. For a fixed t,
we then define

∂tΩ := {x ∈ Ω̄ : x = y − nyt, where y ∈ ΓC}.

Observe that for any function v ∈ Hs(ΩtC ) with s > 1
2 , there holds

(2.9) ‖v‖ΩtC . t
1
2
C sup

0≤t≤tC
‖v‖∂tΩ.

We introduce the norm ‖v‖L2
∞(Ω) := ‖v‖L2(Ω) + sup0≤t≤tC ‖v‖∂tΩ and assume that

(2.10) ∃ tC > 0 such that ‖f‖L2
∞(Ω) <∞.

3. The nonconforming finite element method. To simplify the analysis be-
low, we will work with the nonconforming finite element space proposed by Crouzeix
and Raviart in [14]. Let {Th}h denote a family of shape regular and quasi-uniform
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tessellations of Ω into nonoverlapping simplices such that for any two different sim-
plices κ, κ′ ∈ Th, κ ∩ κ′ consists of either the empty set, a common face or edge, or
a common vertex. The diameter of a simplex κ will be denoted hκ and the outward-
pointing normal nκ. The family {Th}h is indexed by the maximum element size of Th,
h := maxκ∈Th hκ. We denote the set of element faces in Th by F and let Fi denote
the set of interior faces and FΓ the set of faces in some Γ ⊂ ∂Ω. We will assume
that the mesh is fitted to the subsets of ∂Ω representing the boundary conditions ΓD,
ΓN , and ΓC so that the boundaries of these subsets coincide with the boundaries of
element faces. To each face F , we associate a unit normal vector, nF . For interior
faces, its orientation is arbitrary but fixed. On the boundary ∂Ω, we identify nF with
the outward-pointing normal of ∂Ω. The subscript on the normal is dropped in cases
where it follows from the context.

We define the jump over interior faces F ∈ Fi by

JvK|F := lim
ε→0+

(v(x|F − εnF )− v(x|F + εnF )),

and for faces on the boundary, F ∈ ∂Ω, we let JvK|F := v|F . Similarly, we define the
average of a function over an interior face F by

{v}|F := 1
2 lim
ε→0+

(v(x|F − εnF ) + v(x|F + εnF )),

and for F on the boundary, we define {v}|F := v|F . The classical nonconforming
space of piecewise affine finite element functions (see [14]) then reads

Vh := {vh ∈ L2(Ω) :
∫
F

JvhK ds = 0, ∀F ∈ Fi ∪ FΓD and vh|κ ∈ P1(κ), ∀κ ∈ Th},

where P1(κ) denotes the set of polynomials of degree less than or equal to one re-
stricted to the element κ.

The finite element method takes the following form: find uh ∈ Vh such that

(3.1) Ah(uh; vh) = L(vh) ∀vh ∈ Vh,

where L(vh) := (f, vh)Ω and

(3.2) Ah(uh; vh) := ah(uh, vh) + 〈uh + [Pγ(uh)]+, ∂nvh〉ΓC

with Pγ(uh) = γ∂nuh − uh and γ > 0 a parameter to determine. The linear form
ah(·, ·) coincides with the consistent part of Nitsche’s method,

ah(uh, vh) := a(uh, vh)− 〈∂nuh, vh〉ΓC ,

where we have redefined a(u, v) :=
∑
κ∈Th(∇uh,∇vh)K . To see the effect of the

nonlinear term, let Γ+
C denote the part of the contact zone where γ[∂nu− γ−1u]+ > 0

and Γ0
C = ΓC \ Γ+

C . We may then write the form A(·, ·)

a(uh, vh)− 〈∂nu, vh〉ΓC + 〈∂nv, uh〉Γ0
C

+ 〈γ∂nu, ∂nv〉Γ+
C
.

This corroborates the naive idea that the method should impose a Dirichlet condition
on Γ0

C , here using the penalty-free Nitsche method, and a Neumann condition on Γ+
C ,

here in the form of a penalty term. Observe that the continuity of the form that is
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2528 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

obvious in the formulation (3.2) (by the continuity of [·]+; see more details below) is
no longer clear in this latter expression.

For comparison, in the method of Chouly, Hild, and Renard [13], the form (2.4)
A(·, ·) takes the form

a(uh, vh) − 〈∂nu, vh〉Γ0
C

+ θ1 〈∂vn, uh〉Γ0
C

+
〈
uh, γ

−1vh
〉

Γ0
C

+ θ1 〈γ∂nu, ∂nv〉Γ+
C
,

where θ takes the values −1 or 1 for the symmetric and nonsymmetric versions,
respectively. Clearly in this case, the Dirichlet condition on Γ0

C is imposed using the
classical Nitsche method and the Neumann condition on Γ+

C is imposed either weakly
or with an additional penalty term (in the symmetric case, this term has the wrong
sign and does not stabilize the boundary condition).

3.1. Preliminary results. For the analysis below, we will use some elementary
tools that we collect here. We will use the notation a . b for a ≤ Cb, where C is a
constant independent of h.

The following norm and semi-norm onH
3
2 +ν(Ω)+Vh will be used below to simplify

the notation

‖v‖h :=

(∑
κ∈Th

‖v‖2κ

) 1
2

, ‖v‖h,ΓC :=

 ∑
F∈FΓC

‖v‖2F

 1
2

.

We also define the broken H1-norms:

‖v‖1,h := ‖∇v‖h + ‖v‖h
and

‖v‖1,C := ‖v‖1,h + γ
1
2 ‖∂nv‖h,ΓC + γ−

1
2 ‖v‖h,ΓC .

We recall, for future reference, the following inequalities:
• Poincaré inequality (see [8, Theorems 6.2 and 7.2]). There exists α > 0 such

that

(3.3) α‖v‖21,h ≤ ‖∇v‖2h ∀v ∈ Vh +H1(Ω).

• Inverse inequality (see [15, section 1.4.3]):

(3.4) |v|H1(κ) ≤ CIh−1
κ ‖v‖L2(κ) ∀v ∈ P1(κ).

• Trace inequalities (see [15, section 1.4.3]):

(3.5) ‖v‖L2(∂κ) ≤ CT
(
h
− 1

2
κ ‖v‖L2(κ) + h

1
2
κ |v|H1(κ)

)
∀v ∈ H1(κ)

and

(3.6) ‖v‖L2(∂κ) ≤ Cth
− 1

2
κ ‖v‖L2(κ) ∀v ∈ P1(κ).

For the analysis below, we also need a quasi-interpolation operator that maps piece-
wise linear nonconforming functions into the space of piecewise linear conforming
functions. Let Icf : Vh 7→ Vh ∩H1(Ω) denote a quasi-interpolation operator [23, 1, 25]
such that

(3.7) ‖Icfvh − vh‖Ω + h‖∇(Icfvh − vh)‖h . ‖h 1
2 JvhK‖Fi . h‖∇vh‖h.

Stability is based on the fact that we can construct a function that is zero in the bulk
of the domain and with a certain value of the flux on the boundary. We make this
precise in the following lemma.
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Lemma 3.1. Let r : ΓC 7→ R be a face-wise constant function such that r|F =
rF ∈ R for all F ∈ FΓC . There exists vh ∈ Vh such that

∂nvh|F = rF for F ∈ FΓC ,(3.8) ∫
F

{vh} ds = 0 for F ∈ Fi ∪ FΓD ∪ FΓN ,(3.9)

and

(3.10) ‖vh‖Ω . h
3
2 ‖r‖ΓC .

Proof. For a given simplex κ with one face in FΓC , assume that x1, . . . , xd are
the vertices in ΓC and x0 is the vertex in the bulk. Define vκ ∈ P1(κ) by vκ(xi) = 1,
i = 1, . . . , d, and vκ(x0) = 1− d. Then it follows that for F ⊂ ∂κ ∩ Ω,∫

F

vκ dx = 0

and ∇vκ := |∇vκ|n∂Ω, where n∂Ω is the normal to Ω on ∂κ∩ ∂Ω and |∇vh| = cκh
−1
κ ,

where cκ is a positive constant that depends only on the shape regularity of κ. For
the remaining simplices κ that do not have a face in ΓC , we define vκ ≡ 0. It follows
that

vh :=
∑
κ∈Th

vκ ∈ Vh.

We conclude by multiplying vh in each element with hκc−1
κ rF . Then, by construction,

(3.8) and (3.9) are satisfied. The stability (3.10) is a consequence of an inverse trace

inequality. For κ such that vκ 6= 0, there holds ‖vκ‖κ ≤ h
1
2
κ ‖vκ‖∂κ∩ΓC . This follows

by mapping to the reference element, norm equivalence, and a scaling argument. As
a consequence, we have

‖vh‖Ω .

 ∑
F∈FΓC

hκ‖hκc−1
κ rF ‖2F

 1
2

. h
3
2 ‖r‖ΓC .

The nonlinearity satisfies the following monotonicity and continuity properties.

Lemma 3.2. Let a, b ∈ R. Then there holds

([a]+ − [b]+)2 ≤ ([a]+ − [b]+)(a− b),
|[a]+ − [b]+| ≤ |a− b|.

Proof. Developing the left-hand side of the expression, we have

[a]2+ + [b]2+ − 2[a]+[b]+ ≤ [a]+a+ [b]+b− a[b]+ − [a]+b = ([a]+ − [b]+)(a− b).

The second claim follows from the first by taking absolute values on the factors in the
right-hand side and dividing by |[a]+ − [b]+|.

Lemma 3.3 (Continuity of Ah). Let v1, v2 ∈ H
3
2 +ν + Vh and wh ∈ Vh. Then

there holds

|Ah(v1;wh)−Ah(v2;wh)| . ‖v1 − v2‖1,C‖wh‖1,C . Θ(h, γ)2‖v1 − v2‖Ω‖wh‖Ω.
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Proof. By the Cauchy–Schwarz inequality, we have

|ah(v1 − v2, wh)| ≤ ‖v1 − v2‖1,C‖wh‖1,C .

For the nonlinear term, the following bound holds as a consequence of the third
inequality of Lemma 3.2 and the inequalities (3.4)–(3.6):〈

γ([∂nv1 − γ−1v1]+ − [∂nv2 − γ−1v2]+, ∂nwh
〉

ΓC

≤
〈
|γ 1

2 ∂n(v1 − v2)− γ− 1
2 (v1 − v2)|, γ 1

2 |∂nwh|
〉

ΓC

. ‖v1 − v2‖1,C‖wh‖1,C

. Θ(h, γ)2‖v1 − v2‖Ω‖wh‖Ω

with Θ(h, γ) := 1 + h−1(CI + CtCIγ
1
2h−

1
2 + Ctγ

− 1
2h

1
2 ).

4. Existence and uniqueness of discrete solutions. In this section, we will
prove that the finite dimensional nonlinear system (3.1) admits a unique solution
under suitable assumptions on the parameter γ. First, with NV := dim Vh, define the
mapping G : RNV 7→ RNV by

(4.1) (G(U), V )RNV := Ah(uh; vh)− L(vh),

where U = {ui} with ui denoting the degrees of freedom of Vh associated with the
Crouzeix–Raviart basis functions {ϕi}NVi=1 and similarly V = {vi} denotes the vector
of degrees of freedom associated with the test function vh. The nonlinear system
associated to (3.1) may then be written: find U ∈ RNV such that G(U) = 0.

Let us next prove a positivity result for the formulation (3.1) that will be useful
when proving existence and uniqueness.

Proposition 4.1. Assume that γ = γ0h with γ0 large enough. Then for u1, u2 ∈
Vh, there exists vh ∈ Vh such that

α

2
‖u1 − u2‖21,h + γ−1‖u1 − u2 + [Pγ(u1)]+ − [Pγ(u2)]+‖2ΓC
. Ah(u1; vh)−Ah(u2; vh),(4.2)

where α is the constant from (3.3). Moreover, for γ0 large enough, there exists B ∈
RNV ×NV such that for X with |X|RNV large enough,

(G(X), BX)RNV > 0,

and there exists b1, b2 > 0 associated to B such that

b1|X|RNV ≤ |BX|RNV ≤ b2|X|RNV .

Proof. Let wh := u1−u2. Observe that by Lemma 3.1, we can choose ξh(wh) ∈ Vh
such that

(4.3) ∂nξh|F = γ−1|F |−1
∫
F

wh ds =: γ−1w̄|F , for F ∈ FΓC

and

(4.4)
∫
F

{ξh} ds = 0 for F ∈ Fi ∪ FΓD ∪ FΓN .
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It follows using integration by parts that for all yh ∈ Vh, there holds

(∇yh,∇ξh)− 〈∂nyh, ξh〉ΓC = 0.

Now taking vh = wh + ξh leads to

Ah(u1; vh)−Ah(u2; vh) = ‖∇wh‖2h + (∇wh,∇ξh)h − 〈∂nwh, ξh〉ΓC +
〈
γ−1w̄, wh

〉
ΓC

+
〈
[Pγ(u1)]+ − [Pγ(u2)]+, ∂nwh + γ−1w̄.

〉
ΓC
.

Then by adding and subtracting γ−1wh in the right slot of the last term in the right-
hand side, we obtain

Ah(u1; vh)−Ah(u2; vh) = ‖∇wh‖2Ω +
〈
γ−1w̄, wh

〉
ΓC

+
〈
[Pγ(u1)]+ − [Pγ(u2)]+, ∂nwh − γ−1wh

〉
ΓC

+
〈
[Pγ(u1)]+ − [Pγ(u2)]+, γ−1(wh + w̄)

〉
ΓC

= ‖∇wh‖2Ω +
〈
γ−1wh, wh

〉
ΓC

+
〈
[Pγ(u1)]+ − [Pγ(u2)]+, ∂nwh − γ−1wh

〉
ΓC

+ 2
〈
[Pγ(u1)]+ − [Pγ(u2)]+, γ−1wh

〉
ΓC

+
〈
[Pγ(u1)]+ − [Pγ(u2)]+ + wh, γ

−1(w̄ − wh)
〉

ΓC
.

To obtain the last equality we once again added and subtracted γ−1wh, this time in
the term

〈
γ−1w̄, wh

〉
ΓC

. Applying the monotonicity

γ−1‖[Pγ(u1)]+ − [Pγ(u2)]+‖2ΓC ≤
〈
[Pγ(u1)]+ − [Pγ(u2)]+, ∂nwh − γ−1wh

〉
ΓC
,

we see that

γ−1‖[Pγ(u1)]+ − [Pγ(u2)]+ + wh‖2ΓC ≤
〈
[Pγ(u1)]+ − [Pγ(u2)]+, ∂nwh − γ−1wh

〉
ΓC

+
〈
γ−1wh, wh

〉
ΓC

+ 2
〈
[Pγ(u1)]+ − [Pγ(u2)]+, γ−1wh

〉
ΓC
.

Then using the arithmetic-geometric inequality together with the approximation
properties of the piecewise constant approximation w̄ and an element-wise trace in-
equality to get the bound〈

[Pγ(u1)]+ − [Pγ(u2)]+ + wh, γ
−1(w̄ − wh)

〉
ΓC

≤ 1
2
γ−1‖[Pγ(u1)]+ − [Pγ(u2)]+ + wh‖2ΓC +

1
2
γ−1Ch‖∇wh‖2Ω,

we finally obtain(
1− 1

2
γ−1Ch

)
‖∇wh‖2h +

1
2
γ−1‖[Pγ(u1)]+ − [Pγ(u2)]+ + wh‖2ΓC

≤ Ah(u1; vh)−Ah(u2; vh).

We conclude by choosing γ > Ch and applying (3.3).
For the second claim, first consider equation (4.2) with u1 = uh, u2 = 0:

(4.5)
α

2
‖uh‖21,h + γ−1‖uh − [Pγ(uh)]+]+‖2ΓC . Ah(uh;uh + ξh(uh)).
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Let the positive constants ch and Ch denote the square roots of the smallest and the
largest eigenvalues, respectively, of the matrix given by (ϕi, ϕj)Ω, 1 ≤ i, j ≤ NV such
that

ch|U |RNV ≤ ‖uh‖Ω ≤ Ch|U |RNV .

Let B denote the transformation matrix such that the finite element function cor-
responding to the vector BU is the function uh + ξh(uh). First, we show that for
γ sufficiently large, there are constants b1 and b2 such that b1|U |RNV ≤ |BU |RNV ≤
b2|U |RNV . This can be seen by observing that

‖uh‖Ω ≤ ‖uh + ξh‖Ω + ‖ξh‖Ω ≤ Ch|BU |RNV + Cγ−1h‖uh‖Ω

so that
ch(1− Cγ−1h)|U |RNV ≤ (1− Cγ−1h)‖uh‖Ω ≤ Ch|BU |RNV .

Similarly, we may prove the upper bound using ch|BU |RNV ≤ ‖uh + ξh‖Ω so that

ch|BU |RNV ≤ ‖uh‖Ω + ‖ξh‖Ω ≤ ‖uh‖Ω +Cγ−1h‖uh‖Ω ≤ Ch(1 +Cγ−1h)|U |RNV .

Then there holds, using (4.5),

(G(U), BU)RNV = Ah(uh;uh + ξh(uh))− L(uh + ξh(uh))

≥ α

4
‖uh‖21,h −

C2
∗
α
‖f‖2Ω ≥

α

4
λ1|U |2RNV −

C2
∗
α
‖f‖2Ω,

where C∗ is the constant such that L(uh + ξh(uh)) ≤ C∗‖f‖Ω‖uh‖1,h and λ1 is the
smallest eigenvalue of the matrix defined by (∇ϕi,∇ϕj)h + (ϕi, ϕj)Ω, 1 ≤ i, j ≤ NV .
We conclude that for

|U |RNV >
2C∗

αλ
1
2
1

‖f‖Ω,

there holds
(G(U), BU)RNV > 0.

Proposition 4.2. The formulation (3.1) admits a unique solution for γ = γ0h,
with γ0 large enough.

Proof. The proof of existence uses Brouwer’s fixed point theorem in a classical
way (see, e.g., [30, Lemma 1.4, Chapter 2].) Fix h > 0. Observe that G defined by
(4.1) is continuous since by Lemma 3.3,

|G(U1)−G(U2)|RNV = sup
W∈RNV :|W |=1

(G(U1)−G(U2),W )RNV

= sup
w∈Vh

(Ah(u1;wh)−Ah(u2;wh))

. Θ(h)2‖u1 − u2‖Ω‖wh‖Ω ≤ Θ(h)2C2
h|U1 − U2|RNV .

By the second claim of Proposition 4.1, we may fix q ∈ R+ such that for X ∈ RNV
with |X| ≥ q, there holds

(4.6) (G(X), BX)RNV > 0.

Assume that there exists no X ∈ RNV such that G(X) = 0 and define the function
φ(X) = −q/b1BTG(X)/|G(X)|RNV . Since G(X) 6= 0 and by the continuity of G(X),
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φ(·) is well defined and continuous. The transpose of B satisfies the same bounds as
B, and therefore φ maps the ball of radius qb2/b1 in RNV into itself. It then follows
by Brouwer’s fixed point theorem that φ admits a fixed point: there exists Z ∈ RNV
such that

Z = φ(Z) = −q/b1BTG(Z)/|G(Z)|RNV ,
and, since |BTG(Z)|/|G(Z)|RNV ≥ b1, it follows that |Z| ≥ q. By definition then,
|Z|2RNV = −q/b1(G(Z), BZ)RNV /|G(Z)|RNV , which contradicts the assumption (4.6).
It follows that there exists at least one U ∈ RNV such that G(U) = 0.

Uniqueness of the discrete solution is an immediate consequence of Proposition
4.1. Indeed, assume that both u1 and u2 are solutions to (3.1); then for vh chosen as
in the proposition,

α‖u1 − u2‖21,h . Ah(u1; vh)−Ah(u2; vh) = (f, vh)Ω − (f, vh)Ω = 0.

5. A priori error estimates. A priori error estimates may now be derived
by combining the techniques of the uniqueness argument above with the Galerkin
perturbation arguments.

Theorem 5.1. Assume that u ∈ H 3
2 +ν(Ω), with 0 < ν ≤ 1

2 is the solution of the
problem (1.1). Assume that uh denotes the solution of (3.1)–(3.2), where γ = γ0h.
If γ0 is chosen sufficiently large and h ≤ tC , where tC is the constant of assumption
(2.10), then there holds, with e := u− uh,

α
1
2 ‖e‖1,h + γ−

1
2 ‖[Pγuh]+ + uh‖ΓC . inf

vh∈Vh
(‖u− vh‖1,C + h

1
2 ‖∂n(u− vh)‖Fi)

+ h‖f‖L2
∞(Ω).

Proof. Using the definition of the form a(·, ·), we have

(5.1) ‖∇e‖2h ≤ a(e, e) = a(e, u− vh) + a(e, vh − uh).

For the first term, we have

(5.2) a(e, u− vh) ≤ 1
2
‖∇e‖2h +

1
2
‖∇(u− vh)‖2h.

Considering the second term, we see that by integrating by parts in the term a(u, vh−
uh) to obtain the conformity error term 〈{∂nu}, Jvh − uhK〉F\FΓC

, we have the con-
sistency relation

a(e, vh − uh) = 〈{∂nu}, Jvh − uhK〉F\FΓC
+ 〈∂ne, vh − uh〉ΓC

− 〈∂n(vh − uh), e〉ΓC
− 〈[Pγu]+ − [Pγuh]+, ∂n(vh − uh)〉ΓC .(5.3)

Using that

〈∂ne, vh − uh〉ΓC − 〈∂n(vh − uh), e〉ΓC = 〈∂ne, vh − u〉ΓC − 〈∂n(vh − u), e〉ΓC
and

〈[Pγu]+ − [Pγuh]+, ∂n(vh − uh)〉ΓC = 〈[Pγu]+ − [Pγuh]+, ∂n(vh − u)〉ΓC
+ 〈[Pγu]+ − [Pγuh]+, ∂ne〉ΓC

= 〈[Pγu]+ − [Pγuh]+, ∂n(vh − u)〉ΓC
+ γ−1 〈[Pγu]+ − [Pγuh]+, Pγe〉ΓC
+ γ−1 〈[Pγu]+ − [Pγuh]+, e〉ΓC ,
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we arrive at the identity

a(e, vh − uh) = 〈{∂nu}, Jvh − uhK〉F\FΓC
+ 〈∂ne, vh − u〉ΓC

− 〈∂n(vh − u), e+ ([Pγu]+ − [Pγuh]+)〉ΓC
− γ−1 〈[Pγu]+ − [Pγuh]+, Pγ(u− uh)〉ΓC
− γ−1 〈e, [Pγu]+ − [Pγuh]+〉ΓC .(5.4)

Observe now that the following relation holds using monotonicity and the elementary
relation a2 + b2 + 2ab = (a + b)2, with a = γ−1/2(u − uh) and b = γ−1/2([Pγu]+ −
[Pγuh]+):

− γ−1‖e‖2ΓC − γ
−1 〈[Pγu]+ − [Pγuh]+, Pγe〉ΓC − γ

−1 〈[Pγu]+ − [Pγuh]+, 2e〉ΓC
≤ −γ−1‖e‖2ΓC − γ

−1‖[Pγu]+ − [Pγuh]+‖2ΓC − γ
−1 〈[Pγu]+ − [Pγuh]+, 2e〉ΓC

≤ −‖γ− 1
2 ([Pγuh]+ + uh)‖2ΓC .

We deduce the following bound:

a(e, vh − uh) ≤ 〈{∂nu}, Jvh − uhK〉F\FΓC
+ 〈∂ne, vh − u〉ΓC

− 〈∂n(vh − u), e+ ([Pγu]+ − [Pγuh]+)〉ΓC
− ‖γ− 1

2 ([Pγuh]+ + uh)‖2ΓC + γ−1 〈e, [Pγu]+ − [Pγuh]+〉ΓC
+ γ−1‖e‖2ΓC .(5.5)

Choosing now ξh(u−uh) ∈ Vh constructed in the same fashion as the special function
vh of Lemma 3.1 but with ∂nξh|F = γ−1(ū− ūh)|F = γ−1ē|F on faces F ⊂ ΓC as test
function in (3.1), we obtain

ah(e, ξh)− 〈{∂nu}, JξhK〉F + γ−1‖ē‖2ΓC +
〈
[Pγu]+ − [Pγuh]+, γ−1ē

〉
ΓC

= 0.

Here arguments similar to those of (5.3) were used together with the property that
∂nξh|F = γ−1ē|F . Note that using orthogonality on the faces of e− ē, we have

γ−1‖ē‖2ΓC = γ−1‖e‖2ΓC − γ
−1‖ē− e‖2ΓC ,

and once again using orthogonality and also the contact condition,〈
[Pγu]+ − [Pγuh]+, γ−1ē

〉
ΓC

=
〈
[Pγu]+ − [Pγuh]+ + e, γ−1e

〉
ΓC

−
〈
[Pγuh]+ + uh, γ

−1ē− γ−1e
〉

ΓC

− γ−1‖ē− e‖2ΓC .

For the last term in the right-hand side, we may add and subtract vh − v̄h and use
the triangle inequality followed by the interpolation properties of the projection onto
piecewise constants and a trace inequality to obtain

γ−1‖ē− e‖2ΓC ≤ C(γ−1‖u− vh‖2ΓC + γ−1h−1h2‖∇(vh − uh)‖2h)

≤ C(‖u− vh‖21,C + γ−1h−1h2‖∇e‖2h).(5.6)
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As a consequence,

γ−1‖e‖2ΓC +
〈
[Pγu]+ − [Pγuh]+, γ−1e

〉
ΓC
≤ 1

4
‖γ− 1

2 ([Pγuh]+ + uh)‖2ΓC
+ C(‖u− vh‖21,C + γ−1h−1h2‖∇e‖2h)

− ah(e, ξh) + 〈{∂nu}, JξhK〉F .(5.7)

Collecting the results of equations (5.1), (5.2), (5.5), and (5.7) and applying the
Poincaré inequality (3.3) leads to

α

(
1
2
− Ch

γ

)
‖e‖21,h +

1
2γ
‖([Pγuh]+ + uh)‖2ΓC ≤ − a(e, ξh) + 〈∂ne, vh − u〉ΓC

− 〈[Pγuh]+ + uh, ∂n(vh − u)〉ΓC
+ 〈{∂nu}, Jvh − uhK〉Fi
+ 〈{∂ne}, JξhK〉F

+ C

(
1 +

h

γ

)
‖u− vh‖21,ΓC .(5.8)

Observe that a(uh, ξh) − 〈{∂nuh}, JξhK〉F = 0 using integration by parts and the
construction of ξh. Then, once again by integration by parts, we have

a(e, ξh)− 〈{∂ne}, JξhK〉F = (−∆u, ξh)ΩC ≤ ‖∆u‖ΩC‖ξh‖ΩC ,

where ΩC is the set of elements with one face on ΓC . Let hC > 0 be the largest value
such that ∂hCΩ∩ΩC 6= ∅ and assume that hC ≤ tC . Observe that by the construction
of ξh and adding and subtracting vh, there holds

‖ξh‖ΩC . h
1
2hγ−1‖ē‖ΓC . h

1
2hγ−1‖e‖ΓC

. h
1
2 (hγ−1)(‖u− vh‖ΓC + ‖uh − vh‖ΓC ).

Let wh = uh−vh; then, by adding and subtracting Icfwh and applying the local trace
inequality (3.6) and the standard global trace inequality for functions in H1(Ω), we
obtain

‖wh‖ΓC ≤ ‖wh − Icfwh‖ΓC + ‖Icfwh‖ΓC
. h−

1
2 ‖wh − Icfwh‖h + ‖wh − Icfwh‖1,h + ‖wh‖1,h.

Applying the discrete interpolation estimate (3.7), we then have

‖wh‖ΓC . ‖wh‖1,h,

from which it follows that

(hγ−1)‖uh − vh‖ΓC . (hγ−1)(‖e‖1,h + ‖u− vh‖1,h).

For the factor ‖∆u‖ΩC , we use (2.9) to obtain the bound

‖∆u‖ΩC . h
1
2 sup

0≤t≤hC
‖∆u‖∂tΩ ≤ h

1
2 ‖f‖L2

∞(Ω).

It follows that

(5.9) ah(e, ξh)− 〈{∂ne}, JξhK〉F . h‖f‖L2
∞(Ω)(hγ−1)(‖e‖1,h + ‖u− vh‖1,h).
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For the remaining terms of (5.8), we have, by first adding and subtracting vh and
using the mean value property of the space Vh and then applying the Cauchy–Schwarz
inequality followed by the arithmetic–geometric inequality,

(5.10)

〈∂ne, vh − u〉ΓC − 〈[Pγuh]+ + uh, ∂n(vh − u)〉ΓC + 〈{∂nu}, Jvh − uhK〉F
= 〈∂n(u− vh), vh − u〉ΓC + 〈∂n(vh − uh), vh − u〉ΓC
−〈[Pγuh]+ + uh, ∂n(vh − u)〉ΓC + 〈{∂n(u− vh)}, Jvh − uhK〉Fi
≤ Cε−1‖u− vh‖21,C + γ‖∂n(u− vh)‖2Fi + 1

4γ
−1‖[Pγuh]+ + uh‖2ΓC

+ε(γ‖∂n(vh − uh)‖2ΓC + γ−1‖Jvh − uhK‖2Fi).

Using the zero average property of the nonconforming space, element-wise trace in-
equalities, and a triangular inequality, we obtain

γ‖∂n(vh − uh)‖2ΓC + γ−1‖Jvh − uhK‖2Fi ≤ Cγ0‖vh − uh‖21,h
≤ 2Cγ0(‖e‖21,h + ‖vh − u‖21,h).

Observe that Cγ0 is constant for γ0 = γ/h fixed, but it cannot be made small by
choosing γ0 large (or small). Instead, we choose ε < α/(16Cγ0) to obtain the bound

(5.11) 〈∂ne, vh − u〉ΓC − 〈[Pγuh]+ + uh, ∂n(vh − u)〉ΓC + 〈{∂nu}, Jvh − uhK〉F

≤ C‖u− vh‖21,C + γ‖∂n(u− vh)‖2Fi +
1

4γ
‖([Pγuh]+ + uh)‖2ΓC +

α

8
‖e‖21,h.

Collecting the above bounds (5.8), (5.9), and (5.11), choosing hγ−1 and ε small enough
(i.e., γ0 large enough), we conclude that for all vh ∈ Vh,

α
1
2 ‖e‖1,h + γ−

1
2 ‖[Pγuh]+ + uh‖ΓC . (‖u− vh‖1,C + h

1
2 ‖∂n(u− vh)‖Fi)

+
h

α
1
2
‖f‖L2

∞(Ω).

Corollary 5.2. Under the assumptions of Theorem 5.1, there holds

(5.12) α
1
2 ‖e‖1,h + γ−

1
2 ‖[Pγuh]+ + uh‖ΓC . h

1
2 +ν‖u‖

H
3
2 +ν(Ω)

+
h

α
1
2
‖f‖L2

∞(Ω).

Proof. This is immediate from the best approximation result of Theorem 5.1 and
the existence of an optimal approximation of u in Vh. Since the Crouzeix–Raviart
space contains the H1-conforming space of piecewise affine functions, we may take
the standard Lagrange interpolant ihu for which there holds (see [17, 13])

‖u− ihu‖1,C + h
1
2 ‖∂n(u− ihu)‖Fi . h

1
2 +ν‖u‖

H
3
2 +ν(Ω)

.

6. Numerical example. Here we will consider two examples on the unit square,
Ω = [0, 1]2. We have used the package FreeFEM++ for the computations [20]. We
let ΓD = [0, 1] × {1}, ΓN = {0} × [0, 1] ∪ {1} × [0, 1], and ΓC = [0, 1] × {0}. Since
the exact solution is not known, we solve the problem on a mesh with h = 2

√
2 · 10−3

(a 500× 500 mesh), using the nonsymmetric Nitsche method from [13] and piecewise
quadratic conforming approxmation to obtain a reference solution. In all cases, we
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Fig. 1. The fine mesh solution using (6.1).
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Fig. 2. Convergence plots of the two numerical examples. Left: the problem from section 6.1.
Right: the problem from section 6.2. Dotted lines are reference curves. Upper O(h), lower O(h2).
Square markers: H1-error; circle markers: L2-error; triangle markers: satisfaction of the contact
condition, ‖uh + [Pγ(uh)]+‖ΓC . In the right plot, white markers indicate N = 3, and black markers
indicate N = 5.

use a fixed point iteration to compute the solution, and we iterate until the relative
H1-error of the increment is smaller than a tolerance TOL.

In the graphics below, the H1-error is marked with squares, the L2-error with
circles, and finally the residual quantity ‖uh + [Pγ(uh)]+‖ΓC by triangles. Dotted
lines are reference lines for first- (upper) and second- (lower) order convergence.

6.1. Problem with one contact zone. We first consider an example from
[5] that results in a solution where the contact condition is active in one-half of the
boundary y = 0, and so the solution changes from contact to noncontact in one point.
The right-hand side is chosen to be

(6.1) f = −2π sin(2πx).

We solve it on a sequence of Union Jack–style meshes with h/
√

2 ∈ {2−(i+4)}4i=0.
An elevation of the solution is presented in Figure 1. The tolerance was set to TOL=
10−7. The fine-scale solution required 127 fixed point iteration to reach the required
accuracy, and the solves using the penalty-free method required 79, 84, 66, 54, and
58 iterations, respectively. Convergences are reported in the left graphic of Figure 2.
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As expected, we observe first-order convergence of the relative H1-error and second-
order convergence of the relative L2-error, and the residual quantity measuring the
satisfaction of the contact condition has a convergence close to O(h

3
2 ).

6.2. Problem with several contact zones. Here we increase the number of
contact zones by taking the right-hand side to be

(6.2) f = (2πN)2 cos(2πNx), N ∈ {3, 5}.

As N increases, so does the number of contact zones on y = 0; the solution changes
from contact to noncontact in N + 1 points. We solve the problem for h/

√
2 ∈

{2−(i+4)}4i=0 and compute the same quantities as in the previous case. The conver-
gences are reported in the right graphic of Figure 2. The cases N = 3 and N = 5
are distinguished by the use of white and black markers, respectively; similar conver-
gence orders were observed in both cases. First-order convergence is observed for the
error in the H1-norm and second-order convergence in the L2–error. As before, the
convergence of ‖uh + [Pγ(uh)]+‖ΓC is approximately O(h

3
2 ).

7. Conclusion. We have proved that the nonsymmetric Nitsche method of [10]
may be applied in the framework of [11, 13] for the approximation of unilateral contact
problems. An optimal error estimate for a method using a nonconforming finite
element space was derived combining tools from the inf-sup analysis of [10] with the
monotonicity argument of [11, 13]. The theoretical results were illustrated in two
numerical examples. Herein, we considered only the simplified case of the Signorini
problem based on Poisson’s equation, but the extension to linearized elasticity may
be feasible using the results from [7]. Another natural question is if the above analysis
can be extended to the case of standard conforming elements. The difficulty here is
to handle the nonlocal character of the function necessary for the stability argument,
adding a layer of terms that must be estimated. Numerical experiments not reported
here indicate that the conforming method also performs well.

Acknowledgments. We wish to thank the reviewers of this manuscript whose
careful reading and constructive remarks helped improve the presentation.
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