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Hybrid systems are dynamical systems characterized by the simultaneous presence of discrete and continuous variables.
Model-based control of such systems is computationally demanding. To this effect, explicit controllers which provide con-
trol inputs as a set of functions of the state variables have been derived, using multiparametric programming mainly for
the linear systems. Hybrid polynomial systems are considered resulting in a Mixed Integer Polynomial Programming prob-
lem. Treating the initial state of the system as a set of bounded parameters, the problem is reformulated as a multipara-
metric Mixed Integer Polynomial optimization (mp-MIPOPT) problem. A novel algorithm for mp-MIPOPT problems is
proposed and the exact explicit control law for polynomial hybrid systems is computed. The key idea is the computation of
the analytical solution of the optimality conditions while the binary variables are treated as relaxed parameters. Finally,
using symbolic calculations exact nonconvex critical regions are computed. VC 2016 The Authors AIChE Journal published

by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3441–3460, 2016
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Introduction

This article studies the optimal control of hybrid systems for
the case that the dynamics are expressed by discrete time poly-
nomial equations. Hybrid systems have attracted the interest of
the research community throughout the years but their online
optimal control remains a challenging task that gets exacerbat-
ed when nonlinear dynamics are considered. To this effect, we
propose a novel multiparametric algorithm for the offline solu-
tion of the optimal control problem of hybrid polynomial sys-
tems and thus alleviating the computational effort required.

Changes in thermodynamic equilibria, reaction kinetics that
change with respect to the temperature of the reactor, flow
regime changes from laminar to turbulent and vice versa, process
safety, and so forth are typical examples of hybrid process sys-
tems.1–3 Batch processes exhibit a hybrid nature which is more
related to the control system than the process itself; as the proce-
dures in a batch process are specific and in certain order, one
could identify the distinct regimes of the process and the logical
constraints that indicate the changes in their sequence. In gener-
al, propositional logic has been a way of integrating qualitative
knowledge in the optimization scheme.4–6 Modeling of hybrid
systems has gained the attention of researchers over the years.
An algorithm for modeling and dynamic optimization of hybrid

systems in continuous time domain, using differential/algebraic

equality and inequality constraints was presented in Avraam

et al.7 The mixed logical dynamical framework was introduced

in Bemporad and Morari,8 in which the logical components and

the propositional logic expressions are transformed into linear

constraints, resulting in a Mixed Integer Linear Programming

(MILP) problem. Because of their importance in process systems

engineering, a vast amount of research work on the optimal con-

trol of hybrid systems has been reported in the literature9–13 with

model predictive control (MPC) being one of them.
MPC has been developed and applied extensively in the

industry and academia and refers to a wide class of control

schemes that utilizes explicitly the model of the process so as

to compute the manipulated variable trajectory and optimize a

desirable performance index, subject to the system’s con-

straints over a prediction horizon.14,15 Typically, the perfor-

mance index to be minimized is a weighted quadratic error

function between the actual and the desirable state of the con-

trolled variables of the system. After the optimization problem

is solved, the first optimal control action is implemented on

the system and when the next measurements are available the

procedure is repeated in a receding horizon fashion as shown

in Figure 1. The main disadvantage of the MPC, especially

when one has to control processes with fast dynamics, is the

computational burden associated with the required repetitive

solution of an optimization problem at regular intervals.16

During the last 15 years, a significant amount of research

work has been presented on how to shift the computational

effort offline while preserving the benefits that MPC offers. In

Bemporad et al.,17 the authors proposed an algorithm for off-

line computation of the explicit solution to the MPC of
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systems with linear constraints using multiparametric quadratic
programming. Discrete time hybrid systems with linear
dynamics and performance index based on 1-norm or1-norm
were studied in Bemporad et al.,18 where the authors solved a
multiparametric (mp)-MILP problem19 to compute the explicit
optimal control law. In Sakizlis et al.,20 the use of parametric
programming was outlined, to compute the explicit control
law of linear hybrid systems for problems that also include
quadratic cost. All the aforementioned approaches indicate the
emergence of a new systematic way to solve offline the com-
putationally demanding closed loop MPC problem that result
in a “look-up table” with all the optimal future control moves,
which can be then implemented online. The general idea is to
solve the optimization problem offline and compute the vector
of optimization variables, that is, optimal future control inputs,
as explicit functions of the state of the system along with the
corresponding regions, known as critical regions (CRs), where
these functions are valid.17,21–26 Recently, an algorithm for
explicit MPC of hybrid systems exploiting the concepts of
constrained dynamical programming and multiparametric pro-
gramming was proposed.27 The authors focused on hybrid sys-
tems with linear cost function and piece-wise affine dynamics
that resulted in the solution of a mp-MILP dynamic program-
ming problem. Another algorithm for the explicit MPC of line-
ar hybrid systems, in which a preprocessing step is included in
order to avoid storing more than one solution in every CR was
presented in Oberdieck and Pistikopoulos.28

As mentioned above, the optimal control of linear hybrid

systems has been studied extensively, with emphasis given on

the ones with piece-wise affine dynamics. To accomplish
higher degree of controllability and avoid instabilities, nonli-

nearities that inherently exist in process systems, should be

considered. MPC of nonlinear hybrid systems results in the

solution of a Mixed Integer Nonlinear Programming (MINLP)
problem, which can be NP-hard and computationally prohibi-

tive for online implementation. The safety case of two aircraft

collision was presented in Lygeros et al.9 and the authors pro-

posed an algorithm for controller synthesis of nonlinear hybrid
systems. Their approach was based on the grounds of “hybrid

automata,”29 but its efficiency was strongly dependent on the

ability to solve the Hamilton-Jacobi equations that the prob-

lem involved. Multiple linearized models and an optimization
framework with fixed structure for the MPC of nonlinear

hybrid systems, was presented in Nandola and Bhartiya.30

Patil et al.31 suggested a global optimization algorithm for the

optimal control of nonlinear hybrid systems using Bernstein
polynomial form and a branch and bound procedure. Polyno-
mial parametric optimization techniques using algebraic
geometry techniques were presented in Fotiou et al.,32 in
which cylindrical algebraic decomposition and Gr€obner bases
theory are employed to solve the system of polynomial equa-
tions that arise in the MPC scheme.

In the present work, hybrid systems with polynomial
dynamics are considered. Recently, in Fotiou et al.33 the
authors dealt with the optimal control of piece-wise polynomi-
al hybrid systems and in order to efficiently compute the opti-
mal solution online they proposed an algorithm where
cylindrical algebraic decomposition to extract structural infor-
mation and then utilized it to speed up the online calculations.
Mixed Integer Polynomial Programming (MIPP) problems can
be a promising class of MINLPs because of the ability to solve
the system of polynomial equations analytically and compute
a closed form solution that entails a number of solutions.34

This can be achieved using, for example, the theory of Gro
€bner Bases, which transforms the system of equations into a

triangular format.34,35 The computational burden grows expo-
nentially with the number of variables36; however, current
developments such as parallel computing are expected to
improve the computational performance. The main contribu-
tion of this work is a novel multiparametric programming
algorithm for computation of the explicit control law of such
systems. A salient feature of the proposed algorithm is the fact
that, in the context of multiparametric programming theory,
nonconvex CRs are computed exactly and no convex-
approximation is employed.

The remainder of the article is organized as follows: in the
next section, the reader is given some preliminary information
about multiparametric programming and then the concept of
Mixed Integer Polynomial Programming is reviewed. Later,
we present the multiparametric Mixed Integer Polynomial Pro-
gramming; the proposed algorithm is outlined and the explicit
MPC of hybrid polynomial systems is illustrated. Then, in sec-
tion “Illustrative examples,” the proposed algorithm is first
applied on a numerical example and then the explicit control
of a hybrid two tanks system is examined. The results from the
application of the proposed algorithm for the design of an
explicit hybrid controller along with specific computational
issues are discussed in section “Results and Discussion.”
Finally, concluding remarks are drawn along with proposals
for future research directions.

Figure 1. The receding horizon approach in the MPC framework.16

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Problem Background

In this section, an overview of the main components of the

present work is given. First, the reader is introduced to the

notion of multiparametric programming; next, the general for-

mulation for MIPPs is presented along with a solution

approach for MIPPs as shown in Dua.37 Then, we introduce a

novel algorithm for multiparametric MIPPs where the general

principles and steps are given in detail and finally we show

how the proposed algorithm can be used for the explicit MPC

of hybrid polynomial systems.

Multiparametric programming

Generally, a multiparametric programming problem is of

the following form19,38–44

JðhÞ5 min
x

f ðx; hÞ

subject to : hðx; hÞ5 0

gðx; hÞ � 0 (1)

x 2 X � Rnx ; h 2 H � Rnh

where x is the vector of optimization variables and belongs to

the bounded set X 2 Rnx , h is the vector of uncertain parame-

ters and belongs to the bounded set H 2 Rnh . Solving the sys-

tem described in (1) results in a solution of the following

general structure

xðhÞ5

x1ðhÞ if h 2 CR1

x2ðhÞ if h 2 CR2

�

xnðhÞ if h 2 CRn

8>>>>><
>>>>>:

(2)

where xðhÞ, optimal vector of optimization variables, is

computed as explicit function of the problem’s parameters

along with a number of CRs in which each solution is opti-

mal. Graphically, this is shown in Figure 2a, where three

CRs have been computed and solution J1ðhÞ is valid in

CR1, J2ðhÞ is valid in CR2, and J3ðhÞ is valid in CR3 while

another graph in a two-parameters’ space is given in

Figure 2b. Note, in Figure 2 the illustrations of explicit sol-

utions in the parametric space, along with the CRs, are

schematic representations for the general case of arbitrary

nonconvex multiparametric programs.
Typically, h corresponds to uncertain parameters such as

production demand, reaction temperature, and machine

availability. For an extended discussion on this topic, the

interested reader is referred to the book of Pistikopoulos

et al.23

Mixed integer polynomial programming

In the general case, a Mixed Integer Polynomial Program-

ming problem can be formulated as follows37

Mixed Integer Polynomial Programming:

J15 min
x;y

f ðx; yÞ

subject to : hðx; yÞ5 0 (3)

gðx; yÞ � 0

x 2 R

y 2 f0; 1gny

where x is the vector of continuous variables with dimension-

ality nx, y is the vector of integer variables with dimensionality

ny, h is the vector of equality constraints and is nh dimension-

al, g is the vector of inequality constraints and is ng dimen-

sional, while f is a scalar objective function. The integer

variables of the MIPP are relaxed as continuous variables and

then by treating them as parameters a multiparametric pro-

gramming problem arises as follows:
Multiparametric polynomial programming:

J2ðyÞ5 min
x

f ðx; yÞ

subject to : hðx; yÞ5 0 (4)

gðx; yÞ � 0

x 2 Rnx

y 2 ½0; 1�ny

Problem (4) is now parametric in the relaxed integer variables,

that is, y. The first-order Karush-Kuhn-Tucker (KKT) condi-

tions of Problem (4) are given by the equality constraints (5)–

(7) and the inequality constraints (8) and (9).

Figure 2. Illustrations of arbitrary (multi)parametric programming solutions.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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First-order KKT condition of mp-PP

rxLðx; y; k; lÞ5 0 (5)

kjgjðx; yÞ50; 8j51; . . . ; ng (6)

hðx; yÞ5 0 (7)

gðx; yÞ � 0 (8)

kj � 0; 8j51; . . . ; ng (9)

where Lðx; y; k; lÞ5 f ðx; yÞ1
Pnh

i51 lihiðx; yÞ1
Png

j51 kjgj

ðx; yÞ is the Lagrange function of the system and it is paramet-

ric in y. Notice that in the KKT system, the equality con-

straints are parametric in y and polynomial in ½x; k; l�. Solving

the system of equality constraints analytically, with y being

relaxed, the optimal solution and the Lagrange multipliers are

computed as functions of y, that is, xðyÞ; kðyÞ; lðyÞ. The final

solutions of the MIPOPT problem are then computed by

imposing the integrality condition on y and then qualifying

with the inequality constraints, that is, (8) and (9), of the KKT

conditions along with Linear Independence Constraint Qualifi-

cation (LICQ).
Remark 1. Note that Gueddar and Dua,45 proposed a

Branch and Bound (B&B) algorithm for general MINLPs
using an approximate parametric solution, whereas KKT con-
ditions can be solved analytically for the case when nonli-
nearities are due to the presence of polynomial terms only.37

Using multiparametric programming in the

context of MPC

Consider the following discrete time MPC formulation where

the initial condition of the system is available at time t5 tk

FðxðtkÞÞ5 min
x

XN21

l 5 0

Lðxl; ulÞ1 EðxNÞ

subject to

x0 5 xðtkÞ
xt11 5 fðxt; utÞ t 5 0; 1; . . . ;N21 (10)

zt 5 hðxt; utÞ t 5 1; . . . ;N21

Axt � a t 5 0; 1; . . . ;N21

Bzt � b t 5 0; 1; . . . ;N21

Cut � c t 5 0; 1; . . . ;N21

where xt; ut; zt are the state, control input, and system output

vectors, respectively, at every sampling instance, t, and are nx;
nu; ny dimensional. A; B; C are matrices of appropriate dimen-

sions and a; b; c vectors of appropriate dimensions which rep-

resent inequality constraints for the state, output, and control

inputs while L : Rnx1 nu ! R is a stage cost and E : Rnx ! R

is a terminal cost function. N is the prediction horizon which

for the sake of notation simplicity is taken as equal to the con-

trol horizon. The repetitive solution of problem (10) provides

the optimal cost FðxðtkÞÞ and the optimization vector, which

in this case is the sequence of optimal control inputs u�5
u�1; u�2; . . . ; u�N21

� �
over the finite prediction horizon N. In

contrast with the conventional receding horizon policy, in

which the optimization problem has to be solved at every sam-

pling instance, according to the explicit MPC strategy, an

explicit control law is derived25,46

u�ðxÞ5 bðxÞ (11)

where b : Rnx ! Rnu . The way this is achieved is based on the
principles of multiparametric programming, where the initial
condition of the system at every sampling instance is consid-
ered as a vector of varying parameters, that is, h : 5 x0. The
solution of this multiparametric program results in the explicit
control law, that is, the optimal control sequence as an explicit
function of the initial state of the system at every sampling
instance. This way, the computational effort associated with
the online computations, which for systems with nonlinear
dynamics and discrete decisions can be prohibitive, is shifted
to an offline multiparametric step. In following section, an
algorithm for multiparametric Mixed Integer Polynomial opti-
mization (mp-MIPOPT) problems is presented and the explicit
MPC of hybrid polynomial systems is illustrated using the pro-
posed mp-MIPOPT algorithm.

Multiparametric Mixed Integer Polynomial
Programming

An algorithm for mp-MIPOPT problems

Consider the multiparametric polynomial programming
(mp-PP) problem presented in (4). In addition to the already
existing parameters of that problem, that is, the integer varia-
bles, a vector of parameters h 2 H � Rnh is introduced. Now
the resulting relaxed mp-MIPOPT problem is of the following
form

J3 ðy; hÞ5 min
x

f ðx; y; hÞ

subject to : hðx; y; hÞ50 (12)

gðx; y; hÞ � 0

x 2 X 2 Rnx

y 2 ½0; 1�ny

h 2 H � Rnh

The problem presented in (12) is a multiparametric program-

ming problem where h together with the relaxed y are consid-

ered as parameters. An outline of the proposed algorithm for

mp-MIPOPT problems is presented in Algorithm 1. The main

idea of the proposed algorithm is to exploit the ability of solving

analytically the system of equality constraints that arise from

Figure 3. Multiparametric Mixed Integer Polynomial
Programming algorithm outline.
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the first-order KKT conditions of problem (12). The equality

constraints of the KKT system are given by Eqs. (13)–(15).
KKT system of mp-MIPOPT

rxLðx; y; k; l; hÞ50 (13)

kjðhÞgjðx; y; hÞ50; 8j51; . . . ; ng (14)

hðx; y; hÞ50 (15)

gðx; y; hÞ � 0 (16)

kjðhÞ � 0; 8j51; . . . ; ng (17)

where Lðx; y; k; l; hÞ5 f ðx; y; hÞ1
Pnh

i51 liðhÞhiðx; y; hÞ1Png

j51 kjðhÞgjðx; y; hÞ is the Lagrange function of the system
and it is parametric in y and h. Again, the system of equality
constraints is polynomial in x; k; l½ � and parametric in y and h.
Solving analytically the system of Eqs. 13–15 using a symbolic
manipulation software, for example, MathematicaVC , we com-
pute the vector of optimization variables, that is, xðy; hÞ and the
Lagrange multipliers, that is, kðy; hÞ; lðy; hÞ, as functions of
the problem’s parameters, that is, y and h. At the next step, the
integrality condition on the integer variables is imposed and the
inequality constraints from the KKT system, that is, (16) and
(17), are evaluated. For the candidate solutions that the integral-
ity condition is satisfied (integer feasible solutions), the vector
of optimization variables and the Lagrange multipliers are left
as parametric in h; that is, xðhÞ; kðhÞ; lðhÞ. At this step, for the
integer feasible solutions (now parametric only in h), the CRs
are defined by the following set of parametric inequality con-
straints: gðhÞ � 0 and kjðhÞ � 0; 8j51; . . . ; ng along with cer-
tain Constraint Qualifications (CQ). The final solutions of the
mp-MIPOPT problem are those for which both the integrality
condition and the parametric inequality constraints are simulta-
neously satisfied. After the computation of the final explicit sol-
utions, it is possible that more than one solution is feasible
within the same parametric space; for those solutions, a compar-
ison procedure is followed (see Appendix) so as to keep only
one optimal solution per CR.

Notice that in the proposed algorithm, after computing the
continuous variables as functions of the uncertain parameters,
that is, xðhÞ, the explicit form of the objective function, that is,
JðhÞ, is also computed by substituting xðhÞ, for a given y, in
f ðx; yÞ. The LICQ at Step 5 of Algorithm, is applied to evaluate
the integer feasible solutions. The gradients of the active con-
straints for the each solution are calculated and tested to prove
their linear independence.47 Particularly, in symbolic

manipulation software there exist built-in functions that automati-

cally perform this task; however, in our case a small code was

written to perform the qualification. In Figure 3, the general out-

line of the proposed algorithm is presented. A procedure for the

dominance criterion (test) used in the proposed algorithm is pre-

sented in the Appendix, which is along the lines of the mp-MILP

algorithms.39

Explicit MPC of hybrid systems using mp-MIPOPT

MPC of nonlinear hybrid systems is computationally

demanding as one has to solve the corresponding MINLP

problem on-line. Algorithms for explicit solutions of multi-

parametric MINLPs are presented in Dua and Pistikopoulos.41

The problem of NMPC of hybrid systems, for the case that the

nonlinearities are in polynomial form, is considered in the pre-

sent work. In this article, hybrid systems will be considered in

the following form

x ðt 1 1Þ5 f ðxðtÞ; uðtÞ; dðtÞÞ (18)

z ðtÞ5 n ðxðtÞ; uðtÞ; dðtÞÞ (19)

subject to

h ðxðtÞ; uðtÞ; dðtÞÞ � 0 (20)

where xðtÞ represents the state vector, zðtÞ the output vector,

uðtÞ the control inputs, and dðtÞ the auxiliary variables that are

used to model the hybrid nature of the system and might be either

continuous or discrete.48 The vector h stands for the equality and

inequality constraints used to model logic-based decisions as

well as physical constraints of the system and can be either linear

or polynomial, f is a vector of polynomial functions. Considering

the initial state of the system as the vector of parameters, that is,

x0, the corresponding mp-MIPOPT problem that arises from the

MPC of the hybrid polynomial system is as follows

J�ðx0Þ5 min
u0;...;uN21;z0;...;zN21;d0;...;dN21

XN21

t 5 0

Lðxt; zt; dtÞ1 EðxNÞ

subject to

x0 5 xtjt 5 0 (21)

xðt 1 1Þ5 f ðxðtÞ; zðtÞ; dðtÞÞ; t 5 0; 1; . . . ;N21

zðt11Þ5 n ðxðtÞ; zðtÞ; dðtÞÞ; t 5 0; 1; . . . ;N21

Algorithm 1 mp-MIPOPT

Step 1. Reformulate the MIPOPT problem as an mp-PP, by relaxing the integer variables, i.e., y, and treating them as parame-
ters together with the uncertain parameters, i.e., h.
Step 2. Formulate the first-order Karush-Kuhn-Tucker (KKT) conditions for problem (12) resulting in the corresponding system
of equations and inequalities (13)–(17).
Step 3. Solve the resulting system of Eqs. (13)–(15) and compute the continuous variables and the Lagrange multipliers as
explicit functions of the y and h, i.e., obtain xðy; hÞ and kðy; hÞ.
Step 4. Fix y to all possible combinations of integer values and evaluate xðy; hÞ and kðy; hÞ to obtain xðhÞ and kðhÞ.
Step 5. Substitute [xðhÞ; kðhÞ] in to (16) and (17) to obtain a set of inequality constraints in terms of h, along with CQ, such as
Linear Independence CQ (LICQ). The regions formed by the corresponding sets of inequality constraints may no be polyhedrons.
Step 6. Perform a feasibility test, on the set of inequality constraints obtained in Step 5. Set(s) of solutions with infeasible con-
straints are rejected.
Step 7. Collect all the feasible sets of solutions corresponding to the same binary node in order to obtain a compact representa-
tion of the CRs in its parametric space.
Step 8. For different integer solutions which are valid in the same parametric space, perform a dominance test (See Appendix)
in order to keep only the ones that lead to the optimal value of the objective function in each CR and hence obtain a compact rep-
resentation of all the CRs in one parametric space.
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h ðxðtÞ; zðtÞ; dðtÞÞ � 0; t 5 0; 1; . . . ;N21

where N is the prediction horizon of the constrained finite time
optimal control problem. Solving the mp-MIPOPT problem in
(21) using the algorithm described in section, the optimal con-
trol inputs, that is, uðxN21Þ, along with discrete variables for
the prediction horizon, that is, yðxN21Þ are computed as
explicit functions of the initial state of the system, that is, x0,
at each sampling instance.

In the next section, we present two examples to illustrate
the merits of the proposed algorithm. First, a numerical exam-
ple is solved and the solution procedure is illustrated and then
the mp-MIPOPT algorithm is used for the explicit control of a
two tanks system.

Illustrative Examples

Numerical example with uncertain parameter

Consider the following modified example from Dua37 to
demonstrate the basic steps of the mp-MIPOPT algorithm
when only one uncertain parameter is considered

min
x;y

J52y112y214x12x2
12x2

212x214

subject to

g152x113x21h25 � 0

g252x123x223h25 � 0

g3522x11x2 � 0

g45x1213x2 � 0

Table 1. Parametric Solutions of Equality Constraints in KKT Conditions (Step 3 of Algorithm 1)

x1 x2 k1 k2 k3 k4 k5 k6

0 0 0 0 14
5

8
5

0 0
4
5

8
5

0 0 16
5

0 0 0
2 1 0 0 0 0 0 0
2 6y2 0 0 0 0 0 22110y2

21
10

7
10

0 0 0 1
5

0 0

6y1 1 0 0 0 0 24112y1 0
6y1 2y1 0 0 0 2

3
2

4y1

3 2 14
3

1
40y1

3
0

6y1 12y1 0 0 22124y1 0 28160y1 0
6y1 5y2 0 0 0 0 24112y1 22110y2

6y1 25112y123h 0 12224y216h 0 0 228160y1212h 0

6y1
5
3
12y12 h

3
422h

9
1

4y1

3
0 0 0 2 32

9
1

40y1

3
2 2h

9
0

5y2

2
5y2 0 0 22

5y2

2
0 0 241

25y2

2

15y2 5y2 0 0 0 24130y2 0 2141100y2

52h
5

22 2h
5

2
5
2 2h

5
0 412h

5
0 0 0

162h
10

11
5

2 3h
10

4
5
2 h

5
0 0 0 0 0

25115y21h 5y2 14130y222h 0 0 0 0 2441100y216h
4ð512hÞ

5
31 h

5
12
5

1 4h
5

16
5

12h 0 0 0 0

3ð513hÞ
5

11 3h
5

0 6112h
5

0 2 2
5
2 6h

5
0 0

2ð713hÞ
5

3
5
2 3h

5
0 416h

5
0 0 0 0

ð515y213hÞ
2

5y2 0 115y213h
2

0 0 0 3125y213h
2

Table 2. Set of Feasible Parametric Solutions and CRs Satisfying the Inequality Constraints in KKT Conditions

No. of
Feasible
Solution y1 y2 x1ðhÞ x2ðhÞ JðhÞ CR

1 0 0 0 0 4 2 5
3
� h � 5

2 1 0 0 0 6 2 5
3
� h � 5

3 0 1 0 0 5 2 5
3
� h � 5

4 0 0 4
5

8
5

36
5

2 5
3
� h � 1

5 1 1 2 1 12 2 2
3
� h � 4

6 1 1 21
10

7
10

11.9 2 1
2
� h � 4

7 1 1 6 52h
3

12
ð2100116h2h2Þ

9
5
4
� h � 5

8 1 1 52h
5

1022h
5

ð5012h2h2Þ
5

2 5
3
� h � 1

9 1 1 161h
10

2223h
10

ð10418h2h2Þ
10

2 8
5
� h � 5

10 1 1 4ð512hÞ
5

31 h
5

42 36h
5

2 13h2

5
2 5

3
� h � 5

4

11 1 1 3ð513hÞ
5

11 3h
5

ð55218h218h2Þ
5

2 1
2
� h � 2 1

3

12 1 1 2ð713hÞ
5

323h
5

ð55212h29h2Þ
5

2 2
3
� h � 2 1

3
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g5526y11x1 � 0

g6525y21x2 � 0

h 2 22; 5½ �

where x1; x2 are continuous variables, y1; y2 are 0-1 binary
variables, and h is an uncertain parameter. Following Algo-
rithm 1, after the relaxation of binary variables as continuous
and treating them as parameters along with the uncertain
parameter h, the Lagrange function, is given by

L5414x12x2
112x22x2

212y11y21ð252x113x21hÞk1

1ð2512x12x223hÞk2

1 ð22x11x2Þk31ðx123x2Þk41ðx126y1Þk51ðx225y2Þk6

The first-order KKT conditions are given by:
1. Equality Constraints

@L

@x1

5422x12k112k222k31k41k5

@L

@x2

5222x213k12k21k323k41k6

ð252x113x21hÞk150

ð2512x12x223hÞk250

ð22x11x2Þk350

ðx123x2Þk450

ðx126y1Þk550

Figure 4. Graphical representation of feasible parametric solutions in the parametric space.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 3. Summary of Final Solutions (i) for Example 1

i CRi yi JiðhÞ
1 2 5

3
� h � 0 [0 0] 4

2 0 � h � 5
4

[1 1] 42 36h
5

2 13h2

5

3 5
4
� h � 5 [1 1]

ð2100116h2h2Þ
9

Figure 5. Optimal value of the objective function in the parametric space.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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ðx225y2Þk650

2. Inequality Constraints

g152x113x21h25 � 0

g252x123x223h25 � 0

g3522x11x2 � 0

g45x123x2 � 0

g5526y11x1 � 0

g6525y21x2 � 0

k1; k2; k3; k4; k5; k6 � 0

Solving the system of equality constraints of the KKT system
the solutions [xðy; hÞ; kðy; hÞ] computed are given in Table T11.

The solutions [xðy; hÞ; kðy; hÞ] are then evaluated by fixing
y at all possible combinations of the integer values. The evalu-
ations result in [xðhÞ; kðhÞ]. Substituting [xðhÞ; kðhÞ] into the
inequality constraints (gjðhÞ � 0; kjðhÞ � 0) results in a set of
inequality constraints in terms of h. Solutions that satisfy this
step together with LIQC are stored while the rest are

Figure 6. Evaluation of parametric solution of
p-MIPOPT using GAMS.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 7. Two tanks polynomial hybrid system.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Table 4. Feasible Solutions for Hybrid Two Tanks System

k1 k2 k3 k4 k5 k6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 20:79573321:95608y2229:3426h2

121:3986h2119:5608h2
2

0 0 0 0 0 20:79573321:95608y2229:3426h2
121:3986h2119:5608h2

2

21:1453821:95608y121:3986h1129:3426h2
1 0 0 0 0 0

21:1453821:95608y121:3986h1129:3426h2
1 0 0 0 0 0

21:1453821:95608y121:3986h1129:3426h2
1 0 0 0 0 20:79573321:95608y2229:3426h2

121:3986h2119:5608h2
2

k7 k8

0 0
0 20:67132811:95608y2129:3426h2

111:3986h2219:5608h2
2

20:32167811:95608y111:3986h1229:3426h2
1 0

20:32167811:95608y111:3986h1229:3426h2
1 20:67132811:95608y2129:3426h2

111:3986h2219:5608h2
2

0 0
20:32167811:95608y111:3986h1229:3426h2

1 0
0 0
0 20:67132811:95608y2129:3426h2

111:3986h2219:5608h2
2

0 0

q1 q2

0:328922y121:43h1130:0014h2
1 0:68640122y2230:0014h2

121:43h2120h2
2

0:328922y121:43h1130:0014h2
1 0

0 0:68640122y2230:0014h2
121:43h2120h2

2

0 0
0:328922y121:43h1130:0014h2

1 1.5
0 1.5
0 0:68640122y2230:0014h2

121:43h2120h2
2

1.5 0
1.5 1.5
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discarded. After imposing the integrality conditions on the fea-
sible solutions, only those which are integer feasible are kept

and the rest are discarded while in Table 2 for the sake of
briefness the best integer feasible solution from each set of

solutions is reported.
In Figure 4, a graph of the feasible parametric solutions

within their CRs is shown. As it is obvious, there exist feasible

solutions within the same parametric range for which a domi-
nance test needs to be performed, that is, JiðhÞ2JkðhÞ
� 0; i 6¼ k, in order to identify min(JiðhÞ; JkðhÞ).

After the dominance test, the final parametric solutions and
the corresponding CRs are collected. In Figure 5, the final CRs

are depicted and the optimal value of the objective function in
the parametric space is shown.

In Table 3, the summary of the final parametric solutions

for Example 1 is given.

To compare the parametric solution computed with the pro-

posed mp-MIPOPT, the same problem is solved using GAMS

and in Figure 6, a comparison of the value of the objective

function using the mp-MIPOPT algorithm and that computed

by GAMS is shown. The corresponding MINLP problem was

solved in GAMS using BARON,49 with h being a varying

parameter.
As it can be seen in Figure 6, the parametric solution and

the solution obtained by exhaustive enumeration of h are

exactly the same.

Two tanks system

Consider the following polynomial hybrid system as shown

in Figure 7. The present system involves two flow control

valves that allow continuous flow of the liquid, that is,

q1ðtÞ; q2ðtÞ, two valves that can be either on or off, that is,

Figure 8. Critical Regions for different binary values for two tanks system.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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y1ðtÞ; y2ðtÞ. The flow resistance from each tank is assumed to

be a polynomial function of the level of the liquid in each tank

for illustration purposes.
The aim is to design an explicit controller which is able

to control the level of both the first and the second tank at

specific set-points, that is, hsp
1 5 0:23 m and hsp

2 5 0:48 m.

Both of the tanks have a surface of 0:0143 m2 and the

height of the tanks is 0:62 m. The restriction on the maxi-

mum flow from the continuous valves is given by qiðtÞ
� 1:5 for; i 5 1; 2. The dynamic behavior of the system is

given by Eqs. 22 and 23

A _h1 50:002q1ðtÞ10:0015y1ðtÞ20:06h2
1ðtÞ (22)

A _h2 50:06h1ðtÞ10:00315y2ðtÞ10:002q2ðtÞ20:04h2
2ðtÞ (23)

To compute the discrete time system, Euler integration was

employed and the prediction and control horizon is set to

N51. The use of prediction horizon of unity leads to less com-

putationally intensive optimization problem but issues with

stability may be encountered. Considering the initial condi-

tions of the system at each sampling instance as the vector of

Figure 9. Three-dimensional graph of the objective
function in terms the initial conditions of the
system, that is, h1 and h2.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 10. Critical regions of hybrid two tanks system.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Table 5. Critical Regions of the Two Tanks System

CR15

0 � h1 � 0:148344 0 � h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q

0:148344 < h1 � 0:151186

0 � h2 � 0:0357520:0000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:61582 � 10717:34265 � 108h2

1

q

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216158217:34265 � 106h2

1

q
� h2

0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q
� h2

8>>>>>>><
>>>>>>>:

0:151186 < h1 � 0:220133

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216158217:34265 � 106h2

1

q
� h2

0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q
� h2

8>><
>>:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

CR25

0:220133 � h1 � 0:275414

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216158217:34265 � 106h2

1

q
� h2

0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q
� h2

8>>>><
>>>>:

CR35

0:148344 � h1 � 0:171825 0 � h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q

0:148344 � h1 � 0:171825

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
221053317:34265 � 106h2

1

q
� h2

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216158217:34265 � 106h2

1

q
� h2

8>><
>>:

8>>>>>>>>><
>>>>>>>>>:

CR45

0:220133 � h1 � 0:275414

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
221053317:34265 � 106h2

1

q
� h2

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216158217:34265 � 106h2

1

q
� h2

8>>>><
>>>>:

CR55

0 � h1 � 0:220133

h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93706 � 109h2

1

q
h2 � 0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22303317:34265 � 106h2

1

q

8>>>><
>>>>:

CR65

0 � h1 � 0:220133

h2 � 0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22303317:34265 � 106h2

1

q
h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q

8>>>><
>>>>:

CR75

0:220133 � h1 � 0:27514

h2 � 0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22303317:34265 � 106h2

1

q
h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35919 � 10812:93706 � 109h2

1

q

8>>>><
>>>>:

CR85

0 � h1 � 0:220133

h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35919 � 10812:93706 � 109h2

1

q
h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:03052 � 10812:93706 � 109h2

1

q

8>>>><
>>>>:

CR95

0:220133 � h1 � 0:275414

h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35919 � 10812:93706 � 109h2

1

q
h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0352 � 10812:93706 � 109h2

1

q

8>>>><
>>>>:

CR105

0:275414 � h1 � 0:296312

h2 � 0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216158217:34265 � 106h2

1

q
h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q

8>>>><
>>>>:

CR115

0:220133 � h1 � 0:275414

h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q
h2 � 0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22303317:34265 � 106h2

1

q

8>>>><
>>>>:



CR125

0:275313 � h1 � 0:296312

h2 � 0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22303317:34265 � 106h2

1

q
h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35919 � 10812:93706 � 109h2

1

q

8>>>><
>>>>:

CR135

0:242774 � h1 � 0:261042

h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:20733 � 10712:93426 � 109h2

1

q
h2 � 0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22303317:34265 � 106h2

1

q

8>>>><
>>>>:

CR145

0:275313 � h1 � 0:296312

h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35919 � 10812:93706 � 109h2

1

q
h2 � 0:0357510:0000226103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0352 � 10812:93706 � 109h2

1

q

8>>>><
>>>>:

CR155

0:275313 � h1 � 0:296312

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
221053317:34265 � 106h2

1

q
� h2

0:0357510:000452206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216158217:34265 � 106h2

1

q
� h2

8>>>><
>>>>:

Table 6. Parametric Solutions of the Two Tanks System (I)

if ½h1; h2� 2 CR1 then

q15 0:33621:46h1130:7h2
1

q25 0:686230h2
121:43h2120h2

2

y15 0

y25 0

8>>>>><
>>>>>:

if ½h1; h2� 2 CR8 then

q15 0:33621:46h1130:7h2
1

q25 1:5

y15 0

y25 1

8>>>>><
>>>>>:

if ½h1; h2� 2 CR2 then

q15 20:42321:46h1130:7h2
1

q25 0:686230h2
121:43h2120h2

2

y15 1

y25 0

8>>>>><
>>>>>:

if ½h1; h2� 2 CR9 then

q15 20:42321:46h1130:7h2
1

q25 1:5

y15 1

y25 1

8>>>>><
>>>>>:

if ½h1; h2� 2 CR3 then

q15 0:33621:46h1130:7h2
1

q25 0

y15 0

y25 0

8>>>>><
>>>>>:

if ½h1; h2� 2 CR10 then

q15 1:5

q25 0:686230h2
121:43h2120h2

2

y15 1

y25 0

8>>>>><
>>>>>:

if ½h1; h2� 2 CR4 then

q15 20:42321:46h1130:7h2
1

q25 0

y15 1

y25 0

8>>>>><
>>>>>:

if ½h1; h2� 2 CR11 then

q15 20:42321:46h1130:7h2
1

q25 1:5

y15 1

y25 0

8>>>>><
>>>>>:

if ½h1; h2� 2 CR5 then

q15 0:33621:46h1130:7h2
1

q25 1:5

y15 0

y25 0

8>>>>><
>>>>>:

if ½h1; h2� 2 CR12 then

q15 1:5

q25 20:884230h2
121:43h2120h2

2

y15 1

y25 1

8>>>>><
>>>>>:

if ½h1; h2� 2 CR6 then

q15 0:33621:46h1130:7h2
1

q25 20:884230h2
121:43h2120h2

2

y15 0

y25 1

8>>>>><
>>>>>:

if ½h1; h2� 2 CR13 then

q15 1:5

q25 0

y15 1

y25 1

8>>>>><
>>>>>:

if ½h1; h2� 2 CR7 then

q15 20:42321:46h1130:7h2
1

q25 20:884230h2
121:43h2120h2

2

y15 1

y25 1

8>>>>><
>>>>>:

if ½h1; h2� 2 CR14 then

q15 1:5

q25 1:5

y15 1

y25 1

8>>>>><
>>>>>:

if ½h1; h2� 2 CR15 then

q15 1:5

q25 0

y15 1

y25 0

8>>>>><
>>>>>:
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parameters of the mp-MIPOPT problem, the resulting multi-
parametric program consists of 12 constraints, 2 parameters, 2
binary variables, and 4 optimization variables whereas the

objective function is considered to be the quadratic error func-
tion between the desired set-point and the predicted value of
the tank’s liquid level as shown in Eq. 24

Table 7. Parametric Solutions of the Two Tanks System (II)

if ½h1; h2� 2 CR1 then
x1ðtÞ5 0:23

x2ðtÞ5 0:48

(
if ½h1; h2� 2 CR8 then

x1ðtÞ5 0:521h1221h2
1

x2ðtÞ5 2:15 1 21h2
11h2213:98h2

2

(

if ½h1; h2� 2 CR2 then
x1ðtÞ5 0:23

x2ðtÞ5 0:48

(
if ½h1; h2� 2 CR9 then

x1ðtÞ5 0:23

x2ðtÞ5 2:15 1 21h2
11h2213:98h2

2

(

if ½h1; h2� 2 CR3 then
x1ðtÞ5 0:23

x2ðtÞ5 21h2
11h2214h2

2

(
if ½h1; h2� 2 CR10 then

x1ðtÞ5 1:551h1221h2
1

x2ðtÞ5 0:48

(

if ½h1; h2� 2 CR4 then
x1ðtÞ5 0:23

x2ðtÞ5 21h2
11h2214h2

2

(
if ½h1; h2� 2 CR11 then

x1ðtÞ5 0:23

x2ðtÞ5 0:48

(

if ½h1; h2� 2 CR5 then
x1ðtÞ5 0:23

x2ðtÞ5 1:05 1 21h2
11h2214h2

2

(
if ½h1; h2� 2 CR12 then

x1ðtÞ5 1:551h1221h2
1

x2ðtÞ5 1:1 1 21h2
11h2213:98h2

2

(

if ½h1; h2� 2 CR6 then
x1ðtÞ5 0:23

x2ðtÞ5 0:48

(
if ½h1; h2� 2 CR13 then

x1ðtÞ5 1:551h1221h2
1

x2ðtÞ5 1:1121h2
11h2213:98h2

2

(

if ½h1; h2� 2 CR7 then
x1ðtÞ5 0:23

x2ðtÞ5 0:48

(
if ½h1; h2� 2 CR14 then

x1ðtÞ5 1:551h1221h2
1

x2ðtÞ5 2:15 1 21h2
11h2213:98h2

2

(

if ½h1; h2� 2 CR15 then
x1ðtÞ5 1:551h1221h2

1

x2ðtÞ5 21h2
11h2213:98h2

2

(

Figure 11. Validation of the control inputs of the parametric controller for the two tanks system.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Vðh; yÞ5
X2

i51

XN

t50

ðxcalc
i;t ðh; yÞ2xsp

i;tÞ
2

(24)

For simplicity, no terminal set constraints were imposed in
the present example in order to enhance stability as well as
path constraints and velocity constraints were also not
employed. Solving the resulting mp-MIPOPT problem in
Mathematica 10VC , the KKT system of the problem was first
formulated and solved resulting in 25 candidate solutions.
Following the proposed algorithm, these candidate solutions
are qualified for the non-negativity of the Lagrange multi-
pliers and after this step, 9 are the feasible sets of solutions
and are shown in Table 4.

As shown in Table 4, both the Lagrange multipliers and the
control inputs are parametric in y; h. Next, the binary variables
that were until this step relaxed, as continuous variables
y 2 ½0; 1�, are fixed to all their possible values, that is, 1-0, and
from this procedure 36 candidate integer solutions are

computed for which by applying the feasibility and optimality
conditions, that is, kjðy; hÞ � 0 and gjðy; hÞ � 0; for j51; . . . ;
9 the integer feasible solutions are 36. For the final 36 integer
feasible solutions, the optimal value of the objective function
along with the corresponding CRs are computed. After Step
8 of the mp-MIPOPT algorithm, the final number of CRs (and
the corresponding optimal parametric solutions) was 17. With-
in the 17 CRs, there were 10 CRs where parametric solutions
corresponding to two different integer solution were overlap-
ping. In Figure 8, the corresponding CRs for the four integer
feasible solution are presented.

For the overlapping CRs, the dominance test is performed
after which only the solution with the lowest objective value is
kept and the other is discarded. Because of the nonconvex
nature of the underlying optimization problem as we will dis-
cuss in section “Overlapping Critical Regions,” for the present
example some overlapping CRs had solutions with the same
objective value and as a result no dominant solution could be
proven. Figure 9 is the three-dimensional graph of the objec-
tive function as a function of h1 and h2. Considering that the
problem involves polynomial terms, it is not surprising that
the objective function profile is nonconvex.

The overlapping CRs corresponded to different integer
nodes namely, ½y1; y2�5 ½1; 0� or ½0; 0� and ½y1; y2�5
½1; 1� or ½0; 1�. The CRs corresponding to the four possible

case are shown in Figure 10 and the parametric solution
for the case y 5 [1,1] is given in Table 5. Since for some
regions in the space of h one may obtain same parametric
solution for different integer solutions, the control engineers
may prefer an integer solution over another integer solu-
tion. Our methodology provides all the optimal parametric
profiles, allowing the control engineers to make an
informed decision.

The parametric solutions of the control inputs of the hybrid
control system example are shown in Table 6 while the explic-
it functions for the states of the system are given in Table 7.

Therefore, the parametric controller that was designed using
mp-MIPOPT involves two parameters, 15 CRs and the optimi-
zation variables, that is, the control inputs of the system com-
puted as explicit functions of the initial conditions of the
system at each sampling instance. Figures 11 and 12 provide a
comparison between the explicit controller and an online con-
troller solving an MINLP at each iteration. As shown, the

Figure 12. Validation of the explicit controller for the two tanks system.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 13. Optimal control policy in the parametric
space #1; #2.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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explicit controller and the MINLP solver provide the same
solution. The online optimization, that is, the corresponding

MINLP problem was solved using ANTIGONE50 in GAMS.
The computations were conducted on a single threaded
machine with an Intel Core i7-5600 CPU at 2.60 GHz and 16
GB of RAM. The dynamic evolution of the system in the para-

metric space is depicted in Figure 13.
In Figures 11 and 12, the superscripts MPC and mpMPC

refer to the online solution of the problem using GAMS/
ANTIGONE and the mp-MIPOPT algorithm that is proposed
in the present work.

Remark 2. In the present example, prediction horizon of
unity was employed for the MPC scheme to alleviate the
computational complexity. Concerning the offline computa-
tions, it takes 0.2 s to compute the complete map of candi-
date solutions while the algorithm returns the final
solutions after 30 s and to get a better idea about the off-
line computational complexity when the prediction horizon

is set to 2, Mathematica needs 3204 s to return 763 candi-
date feasible solutions. Concerning the benefits of applying
the proposed algorithm online for the explicit MPC of
hybrid polynomial systems it takes 0.002 s to compute the
optimal solution while when using ANTIGONE the optimal
solution is found in 0.125 s. Because of the polynomial
nature of the problem the time needed to compute the opti-
mal solution using online optimization grows rapidly as
ANTIGONE, needs 0.9 s for N 5 2, 50 s for N 5 3, and
690 s for N 5 4.

Remark 3. In the context of the decomposition algorithms
proposed in the literature for solving multiparametric mixed
integer programming problems,19,39,41,42 the main advantage
of the algorithm proposed here is that an approximation of
the nonlinear function (where applicable) is not required. A
current limitation of the proposed algorithm is the computa-
tional implementation for symbolic solution of polynomial
equations.

Figure 14. Overlapping CRs in the parametric space.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 15. Third case validation.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Results and Discussion

As shown in Figures 11 and 12, the proposed algorithm pro-

vides the exact explicit solution for optimal control of hybrid

polynomial systems. Exploiting the ability to solve the optimi-

zation problem analytically, by formulating the KKT condi-

tions, nonpolyhedral CRs are computed instead of the

approximate polyhedral ones that have been presented in the

literature for mp-MINLPs. It would be of interest to discuss

two topics concerning the results of the case study: (i) The

overlapping CRs with equal objective values and (ii)

the numerical accuracy vs. the computational complexity of

the parametric controller.

Overlapping CRs

In the literature of multiparametric programming, there

have been reports of overlapping CRs especially in nonconvex

optimization problems. A CR is the region in the parametric

space where a solution remains feasible and optimal; it is a

common case that two different solutions share a part of the

same CR in which case the solution with the lowest objective

value is kept, the other one is rejected and the CR is parti-

tioned based on the dominance criterion as explained in the

Appendix. This may not always be possible to achieve because

some regions in the parametric space may have different inte-

ger solutions but same objective function values.
Having two cost-wise same alternatives under the same con-

dition makes the decision making required in the optimal con-

trol of hybrid systems even more challenging. These

alternative solutions may have different dynamic impact on

the system. From a practical point of view if in the previous

time interval, a pressure safety valve is closed and in the next

state the valve can be open or closed without any impact on

the optimal operation of the system then probably one would

choose to keep to valve closed. In the example of the two

tanks, as can be seen in Figures 14a, b two CRs of the same

optimal cost share a common region in the parametric space.
Overlaps like these can be avoided with the addition of a pen-

alty term in the objective function that would account for the

values of the continuous control inputs, but that would also

increase the computational complexity of the optimization prob-

lem. In Figure 15, we present the results from the simulation that

validated the third case study in which the y 5 ½1; 1� and ½1; 0�
solutions are preferred. As shown in Figure 15a, when no explicit

constraint is implemented in GAMS for the overlaps the results

are slightly different in terms of binary variables; this is over-

come as shown in Figure 15b when we specify our preference

which does not affect the value of the objective function.

Computation of the CRs

In the hybrid two tanks system, the “CR900” which can be

seen in Figure 8d, after the comparison of its solution with oth-

er solutions that were valid in part of the same parametric

space, was found to be a quite small CR as show in Figure 16.

The graph was rescaled in order to have a better picture of the

size of this CR; note that in the same parametric region anoth-

er solution is also feasible but suboptimal. The importance of

neglecting the aforementioned CR was evaluated by numerical

simulations. In the final explicit solution, of the case study pre-

sented, this CR was not included.
So, while the explicit solutions that we obtain by analytical-

ly solving the KKT conditions are exact, the comparison pro-

cedure requires numerical techniques and hence can result in

some numerical issues.

Concluding Remarks

In this work, MPC of nonlinear hybrid systems, where non-

linearities are due to polynomial terms only, is considered.

This results in a mixed integer polynomial programming

(MIPP) problem. The online solution of the MIPP can be com-

putationally very intensive, especially because MIPPs in gen-

eral are nonconvex. To circumvent this issue, the problem is

reformulated as a mp-MIPOPT problem—this is achieved by

treating initial conditions of the state variables as parameters

bounded between certain lower and upper bounds. An algo-

rithm for the solution of mp-MIPOPT problems is presented—

to the best of our knowledge this is the first ever reported algo-

rithm for mp-MIPOPT problems that provides the exact solu-

tion. The solution is given by optimal value of the control

variables as a set of explicit functions of the state variables,

reducing online optimization to simple function evaluations.

The main ideas of the algorithm are demonstrated through two

illustrative examples. The focus of the ongoing work is on

implementing the algorithm for large scale problems and test-

ing it on wider range of control applications. For that purpose,

we will explore the structure of the underlying mathematical

problem while an implementation of the proposed algorithm

in a custom made environment would offer higher degree of

freedom so as to speed up the calculations needed for the solu-

tion of the system of polynomial equations.
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Appendix : Comparison Procedure for the
Dominance Criterion

Defining redundant constraints and computing the new CRs with-

in the comparison procedure is a nontrivial task, especially for non-

convex problems. A comparison procedure for parametric solutions

valid in the same parametric space can be found in Acevedo and Pis-

tikopoulos,39 so as to keep only the one that provides the better solu-

tion (dominance criterion). For the case of convex CRs, that is,

when the CRs are defined as a set of linear inequality constraints. In

general, while solving a mp-MIPOPT problem it can happen that

two different parametric solutions, that is, J1ðhÞ and J2ðhÞ to be
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feasible in the same parametric space. The comparison procedure

aims to identify the regions were

J1ðhÞ2J2ðhÞ � 0 (A1)

and

J2ðhÞ2J1ðhÞ � 0 (A2)

given that J1ðhÞ is valid in CR1 and J2ðhÞ is valid in CR2. The

first step is to compute CRINT 5 CR1 \ CR2.

Computation of CRINT and Redundant Constraints

Excluding the case that CRINT51 there are three possible out-

comes in the definition of the CRINT which are described in Table A1.

In Figure A1, the different cases for the definition of the

CRINT can be envisaged.

For illustration purposes assume that the following two ran-

domly generated CRs, given by (A3) and (A4), are under exami-

nation. We have chosen to illustrate a case that two nonconvex

CRs overlap and the CRINT is nonconvex as well, in order to

underline the salient feature of the proposed algorithm, i.e. com-

puting exact nonconvex CRs.

CR15
28 � h1 � 10

h3
2 > h11h2

113

(
(A3)

CR25
210 � h1 � 5

h2
21h2 < 92h3

11h2
1

(
(A4)

Figure A1. Definition of CRINT.

Table A1. Possible Outcomes in the Definition of CRINT

Case 1 CR1 � CR2 which means that all constraints of CR2

are redundant and CRINT5CR1

Case 2 CR1 � CR2 which means that all constraints of CR1

are redundant and CRINT5CR2

Case 3 The CRINT is defined by a set of active constraints from
both CR1 and CR2 as both

CRs have some nonredundant constraints
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Graphically, in the parametric space CR1 and CR2 are presented

in Figure A2. These two CRs are nonpolyhedral and the inequal-

ities defining the CRs are polynomial. As mentioned above, in

the present work Mathematica was employed for the analytic

solution of the mp-MIPOPT. Specifically, for the comparison

procedure the command “Reduce” was employed. “Reduce” is a

command in Mathematica that qualifies sets of conditional argu-

ments within a given set of parameters and computes a new set

within which these conditional statements are satisfied. For

example in the definition of the intersection of two CRs

(CRINT), “Reduce” identifies the redundant constraints of both

CRs and computes the region of parametric space where both

CRs exists; for the case that the CRs do not overlap the output

of “Reduce” is a “False” statement equivalent to the argument

CRINT51.

In this illustrative case using “Reduce,” the CRINT is comput-

ed and the redundant inequalities from the two CRs are auto-

matically removed from the set of inequalities forming the

CRINT, which is given mathematically by (A5) and graphically

presented in Figure A3; the CRINT as expected is non-

polyhedral

CRINT5

28 � h1 � 1:84742

h2 � 2h12h2
11h3

123

h2 � 20:510:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3714h2

124h3
1

q
8>>><
>>>:

(A5)

The redundant constraints from each CR can be computed as

RCCRi
5fhj h 2 ðCRi�ð:CRINTÞÞg; 8i 5 1; 2 using Mathematica.

Computation of CRREST and the Final

Nonoverlapping CRs

After the definition of the CRINT the dominance criterion can

be expressed by the conditional inequality (A6)

J1ðhÞ2J2ðhÞ � 0; h 2 CRINT (A6)

As a next step, excluding the case that CRINT51, the comparison

procedure is continued and a new set of conditional statements is

qualified, given by (A6). The output of this step is used so as to

define the CRRESTi
, given by (A7) and (A8), and the two new

CRs that satisfy the comparison procedure and no longer overlap

CRREST1
5fhj h 2 ðCRINT�ðJ1ðhÞ � J2ðhÞÞg (A7)

CRREST2
5fhj h 2 ðCRINT�ðJ1ðhÞ � J2ðhÞÞg (A8)

Following the comparison procedure for the previous illustrative

case, assume that J1ðhÞ2J2ðhÞ50:03h4
21h2

118h1220. In order

to compute the dominant solution for the illustrative case the

“Reduce” command is again employed in order to qualify (A6).

The output of the “Reduce” in the present case a new set of

polynomial inequalities given by (A9), namely CRREST1
; this is

the fraction of CRINT in which J1ðhÞ � J2ðhÞ

Figure A2. CR1 and CR2 in the parametric space.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure A4. Final nonoverlapping CRs in the parametric
space.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure A3. CRINT in the parametric space.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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CRREST1
5

28 � h1 � 22:83459

( h2 � 2h12h2
11h3

123

h2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(A9)

Given the mathematical expression of CRREST1
the fraction of

the CRINT where J1ðhÞ � J2ðhÞ can be computed evaluating two

equivalent conditional expressions given by (A10) and (A11).

The output of “Reduce” for this evaluation is given mathemati-

cally, for the present illustrative case by (A12)

CRREST2
5fhj h 2 ðCRINT�ð:CRREST1

Þg (A10)

CRREST2
5fhj h 2 ðCRINT�ðJ1ðhÞ � J2ðhÞÞg (A11)
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After the CRREST regions are computed the final CRs can be

computed as follows:

CRfin
1 5fhj h 2 ðCR1�ð:CRREST2

Þg (A13)

CRfin
2 5fhj h 2 ðCR2�ð:CRREST1

Þg (A14)

Notice that in the previous step CRREST2
could be implicitly

computed employing the negative Boolean expressions and not

explicitly as done here, alleviating thus the computational effort.

Finally, the two CRs that no longer overlap are presented graph-

ically in Figure A4, while their mathematical expression is given

by (A15) and (A16). Notice that J1ðhÞ is optimal in CRfin
1 and

J2ðhÞ is optimal in CRfin
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