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Abstract The Buchdahl limit for static spherically symmetric isotropic stars is gen-
eralised to the case of five dimensional Gauss–Bonnet gravity. Our result depends on
the sign of the Gauss–Bonnet coupling constant α. When α > 0, we find, unlike in
general relativity, that the bound is dependent on the stellar structure, in particular the
central energy density and we find that stable stellar structures can exist arbitrarily
close to the black hole horizon. Thus stable stars can exist with extra mass in this
theory compared to five dimensional general relativity. For α < 0 it is found that the
Buchdahl bound is more restrictive than the general relativistic case.

Keywords Buchdahl inequality · Gauss–Bonnet gravity · Mass radius ratio bounds

1 Introduction

An important question in general relativity is determining bounds on the mass and
radius of stellar structures. The famous Buchdahl theorem [1] says that if we have
a static perfect fluid solution to Einstein’s equation, whose energy density in non-
increasing outwards, then the bound

2M

R
≤ 8

9
, (1.1)

holds, where M is the mass of the fluid and R is its radius in Schwarzschild coordinates;
defined by the location of the vanishing pressure surface. This has a number of impor-
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tant implications. For example, it tells us that the surface redshift is bounded, and that
the boundary of a star always occurs after the apparent horizon in the Schwarzschild
metric at r = 2M .

Buchdahl’s theorem has been extended in various ways. It has been generalised to
include both charge and a cosmological constant, see for example [2–4] and references
within. Bounds have also been considered without assuming Buchdahl’s assumption
on non-increasing energy density [5,6]. Such inequalities have also been studied in
modified theories of gravity, recently in [7] it was generalised to the case of f (R)

gravity. Bounds have also been considered in the context of Brane world scenarios [8,
9]. Studying mass radius bounds in modified theories of gravity is a way of testing
their validity. If the theory predicts a bound which is too small or large one can
experimentally measure whether there are stars violating these bounds.

Bounds on the mass radius ratio in higher dimensional general relativity have also
been considered by various authors. In d-dimensions the natural ratio to consider is

2M

Rd−3 (1.2)

since this is the component appearing in the higher dimensional Schwarzschild metric,
and thus allows one to derive bounds on quantities such as the stars gravitational
redshift [10]. In [11] Buchdahl’s theorem was extended to d-dimensions, where d ≥ 4
and this was generalised to include a non-zero cosmological constant in [12]. Bounds
were also considered without assuming Buchdahl’s asuumptions in d-dimensional
spacetimes in [10].

Gravity in higher dimensions can be extended further than simply considering
higher dimensional general relativity. Gauss–Bonnet gravity is a particular natural
theory to consider, and appears in the low energy effective action of string theory. This
theory is a generalisation of Einstein gravity that adds an extra term to the standard
Einstein–Hilbert action, which is quadratic in the Riemann tensor. When varying this
extra term with respect to the metric only second order derivatives remain in the field
equations, with the higher derivative terms cancelling out exactly, and thus the theory
shares many of the nice properties of general relativity. In four dimensions Gauss–
Bonnet gravity and general relativity are equivalent, since the Gauss–Bonnet term in
the action reduces to a total dervative, giving a surface integral and thus does not add a
contribution to Einstein’s equation. But when analysing gravity in higher dimensions
this extra term is non-trivial and it is thus natural to consider this extra Gauss–Bonnet
contribution when considering higher dimensional theories.

Many authors have considered fluid solutions in the context of Gauss–Bonnet grav-
ity. Constant density interior solutions were investigated in [13,14]. In [15] Boson star
solutions were considered. Spherical symmetric gravitational collapse has been con-
sidered by many authors, see for example[16,17] and references therein.

It has recently been claimed that Buchdahl’s theorem is not valid in Gauss–Bonnet
gravity [18]. In this paper we investigate Buchdahl’s inequality in five dimensional
Gauss–Bonnet gravity. Without the Gauss–Bonnet term the five dimensional Buchdahl
inequality derived in [11] reads
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2M

R2 ≤ 3

4
. (1.3)

It is of interest to investigate whether this Buchdahl bound, which uniformly bounds
the mass radius ratio away from the black hole bound, is a generic result of gravitational
theories, or is it in some sense a special property of general relativity. In this paper
we use Buchdahl’s method [1] to show that a version of Buchdahl’s inequality does
hold in Gauss–Bonnet gravity. In general relativity the interior solution saturating the
Buchdahl bound is given by the constant density solution. This is not always the case
for the inequality we have derived for the Gauss–Bonnet case. However it is found
that for a stable stellar configuration, as in general relativity, the apparent horizon lies
strictly below the radius of the star, however one cannot bound this uniformly away
from the horizon.

This paper is organised as follows. In Sect. 2 we review Gauss–Bonnet gravity
and the five dimensional black hole solution and we explore the consequences on
the mass radius bound for the constant density solution. In Sect. 3 we derive the field
equations for a spherically symmetric static perfect fluid and rewrite them in Buchdahl
variables. In Sect. 4 we make the standard Buchdahl assumptions and derive bounds
on the exterior vacuum metric. Finally in Sect. 5 we use these bounds to derive the
corresponding Gauss–Bonnet mass radius bound.

2 Gauss–Bonnet gravity

In this section we introduce the action and field equations of Gauss–Bonnet gravity.
The action for five dimensional Gauss–Bonnet gravity is given as follows

S =
∫

d5x
√−g

(
1

2κ
[R + αLGB]

)
+ Smatter. (2.1)

The first term is the usual Einstein Hilbert action, whereas the last is the usual mat-
ter Lagrangian. The Gauss–Bonnet Lagrangian is given by the following particular
combination of Ricci scalar, Ricci tensor and Riemann tensor

LGB = R2 − 4RAB RAB + RABCDR
ABCD . (2.2)

This particular Lagrangian appears from the low energy limit of heterotic superstring
theory [19]. Note that we will not consider the effect of a cosmological constant in
this paper.

Varying the action with respect to the metric gives the following generalisation of
Einstein’s field equations

GAB + αHAB = κTAB . (2.3)

Here GAB is the Einstein tensor, TAB is the usual energy momentum tensor, and the
tensor HAB is given by
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HAB = 2[RRAB − 2RAC R
C
B − 2RCDRABCD + RCDE

A RBCDE ] − 1

2
gABLGB.

(2.4)

From the interpretation of the low energy effective action from string theory, the
coupling constant α is related to the inverse string tension which is positive definite,
and thus the condition α ≥ 0 is usually considered. This is also required for stability
of Minkowski space in this theory. Nonetheless, in this paper we will also consider the
case of α < 0, which has been considered by some authors, see for example [18,21].
We will also assume geometric units κ = 1 from now on.

2.1 Gauss–Bonnet black hole

Assuming a static spherically symmetric metric and solving the field equations gives
the following five dimensional black hole solution, first derived in [20]

ds2 = −F(r)dt2 + dr2

F(r)
+ r2

(
dθ2 + sin2 θ (dϕ2 + sin2 ϕ dψ2)

)
, (2.5)

where the function F(r) is given by

F(r) = 1 + r2

4α

(
1 −

√
1 + 16αM

r4

)
(2.6)

where M is related to the mass of the black hole or interior. Taking the limit α → 0
in this expression we recover the five dimensional Schwarzschild metric

F(r) = 1 − 2M

r2 . (2.7)

For this solution to describe the exterior of a star we require the apparent horizon to
exist before the boundary of the star at r = R. The event horizon of a Gauss–Bonnet
black hole is located at

R = √
2M − 2α (2.8)

This gives the following condition on the mass radius ratio

2M

R2 ≤ 1 + 2α

R2 , (2.9)

assuming α > −R2/4. If α < −R2/4 then we simply have the condition

2M

R2 ≤ 1

2
(2.10)

123



Buchdahl’s inequality in five dimensional Gauss–Bonnet… Page 5 of 15 93

For positive α this mass-radius bound is less strict than the pure general relativistic
case.

Birkhoff’s theorem in five dimensional Gauss–Bonnet gravity does not hold due to
the presence of branch cuts, and thus this exterior solution is not unique. However we
will only consider interior solutions which match to this exterior solution in this paper,
as this is the branch which is asymptotically flat and agrees with the Schwarzschild
metric in the limit α → 0.

2.2 Constant density solution

In standard general relativity the constant density solution saturates the Buchdahl
bound in any dimension. The constant density interior solution for five dimensional
Gauss–Bonnet gravity was derived in [13]. We review this solution here and discuss
the implications on the mass radius ratio.

The energy density of the solution was taken to be a constant ρ and the pressure in
the interior is given by

p = 3

4α
(1 − μ)

⎡
⎢⎣1 − μ

1 + 2A
√

α

B
√

r2(1−μ)+4α

⎤
⎥⎦ (2.11)

where the quantity μ is defined by

μ = √
1 + 16αwb, wb =

√
1 + 4

3αρ − 1

8α
. (2.12)

The constants A and B and the mass of the fluid are determined by the matching
conditions; requiring that the metric components gtt and grr are continuous at r = R,
as well ass gtt,r being continuous on this surface. This implies that the mass is given
by

M = 1

12
ρR4 (2.13)

and A and B are given by

A = (1 − B)
√
F(R), (2.14)

B = −
(

1 + 16αM

R4

)−1/2

. (2.15)

In general relativity finiteness of central pressure of the constant density solution
gives the Buchdahl bound (1.3). Let us examine what this condition gives in the Gauss–
Bonnet case. Inserting r = 0 into (2.11) and requiring this to be finite and positive
gives the inequality
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A

B
≤ −1. (2.16)

This allows us to derive the following condition on F

F(R) ≥ 1

4(1 + 4αwb)2 . (2.17)

The right hand side of this is well defined even in the case of α < 0, since 1 + 4αwb >

0. We will discuss the implications of this bound on the mass radius ratio in Sect. 5.

3 Field equations for static star

In this section we will consider the solutions for a more general perfect fluid. We
assume a spherically symmetric static metric of the form

ds2 = −eνdt2 + eλdr2 + r2d
2
3 (3.1)

where d
2
3 is the metric of a 3-sphere and the functions μ and λ depend only on the

radial coordinate r . We take the energy momentum tensor to be that of a perfect fluid

T A
B = diag(−ρ, p, p, p, p) (3.2)

where ρ is the energy density of the fluid and p is the isotropic pressure. The additional
component of the energy momentum tensor in five dimensions, T 4

4 is required to be
identical to T 2

2 and T 3
3 under the assumption of spherical symmetry. Working in natural

units with κ = 1, the (t, t) component of the field Eq. (2.3) gives

ρ = 3e−λ

2r2

(
rλ′ − 2(1 − eλ)

) − 6αλ′e−2λ

r3 (1 − eλ) (3.3)

while the (r, r) component reads

p = 3e−λ

2r2

(
rν′ + 2(1 − eλ)

) − 12αν′e−λ

r3 (1 − eλ). (3.4)

Conservation of the energy momentum tensor will give the following equation

p′ = −(ρ + p)ν′ (3.5)

which is unmodified from general relativity. If these three equations are satisfied, the
remaining Einstein equations, that is the θ − θ , φ − φ and ϕ − ϕ components, are
identically satisfied, as in the standard four dimensional case.

Let us write e−λ = 1 − f (r). From Eq. (3.3) we get

(2α f 2 + r2 f )′ = 2

3
ρ(r)r3 (3.6)
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and hence integrating this gives

2α f 2 + r2 f = 2

3

∫
ρ(r ′)r ′3dr ′. (3.7)

Let us introduce the mass function

m = 1

3

∫ r

0
ρ(r ′)r ′3dr ′, (3.8)

where the factor of 1/3 at the front required as the higher dimension mass function
possesses an additional factor of 1/(d − 2) [11]. By matching this interior solution
with the exterior vacuum metric (2.5) we see that evaluating this mass function at the
boundary of the star gives the total mass of the fluid

M = m(R). (3.9)

Now we can solve for f to find the metric function e−λ

e−λ = 1 − f = 1 − r2

⎛
⎝

√
1 + 16αm(r)

r4 − 1

4α

⎞
⎠ (3.10)

Now let us define our Buchdahl variables. First we introduce the function w(r)
such that

e−λ = 1 − 2r2w(r) (3.11)

which we can solve for w to give

w(r) =
√

1 + 16αm(r)
r4 − 1

8α
. (3.12)

We also introduce the following further variables x , y and ζ :

x = r2, ζ = eν/2, y2 = e−λ = 1 − f (r). (3.13)

In terms of these new variables we can then rewrite the (r, r) component of Ein-
stein’s Eq. (3.4) as follows

p = 6y2 ζ,x

ζ
− 6w + 48αy2w

ζ,x

ζ
. (3.14)

Rewriting Eq. (3.6) in terms of w instead of f yields the following equation

ρ = 6(xw,x + 2w + 8αw(x)(xw,x + w)). (3.15)
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Inserting this into the conservation Eq. (3.5) gives

p,x = −(6(xw,x + 2w + 8αw(xw,x + w)) + p)
ζ,x

ζ
. (3.16)

By differentiating (3.14) with respect to x and inserting this into (3.16) we can elim-
inate the pressure from these equations, which after simplification gives the following
equation

((1 + 8αw)yζ,x ),x − w,xζ

y
= 0. (3.17)

Let us now introduce the final Buchdahl variable ξ given implicitly by

dξ = dx

y
. (3.18)

We can now use this to rewrite (3.17) as the following

((1 + 8αw)ζ,ξ ),ξ − w,xξ = 0. (3.19)

4 Buchdahl bounds

We are now in a position to derive our main results. In this section we will derive
bounds on the metric function F at the boundary r = R. We will assume the standard
Buchdahl assumption that the energy density is a monotonically decreasing function
with respect to r . Thus we see from differentiating (3.12) that

w′(r) = rm′(r) − 4m(r)

r5
√

1 + 16αm(r)
r4

≤ 0 (4.1)

In what follows we will denote quantities evaluated at the centre r = 0 with a subscript
c and quantities at the boundary r = R with a subscript b.

Now from inequality (4.1) we have

w,x ≤ 0. (4.2)

Inserting this into (3.19) yields the following relation

((1 + 8αw)ζ,ξ ),ξ = w,xζ ≤ 0. (4.3)

Thus we can deduce that

(1 + 8αw)ζ,ξ ≥ (1 + 8αwb)(ζ,ξ )b. (4.4)
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Now evaluating ζ,ξ at the boundary, using that ζ is C1 at the boundary so matches
the derivative of the exterior solution, yields

ζ,ξ |b= F ′(R)

4R
= wb

1 + 8αwb
. (4.5)

Inserting this back into (4.4) thus gives

(1 + 8αw)ζ,ξ ≥ wb (4.6)

Integrating both sides of this with respect to ξ gives

∫ ξb

0
(1 + 8αw)ζ,ξ dξ ≥ 2wb

∫ R

0

r

y
dr (4.7)

Now we find a lower bound for the left hand side of (4.7). Using the fact w is decreasing
means y ≤ √

1 − 2wbr2 and hence

∫ R

0

r

y
dr ≥

∫ R

0

r√
1 − 2wbr2

dr (4.8)

= 1

2wb
(1 −

√
1 − 2wbr2) (4.9)

= 1

2wb
(1 − √

F(R)). (4.10)

Now to examine the left hand side of (4.7) we will need to consider the cases of positive
and negative α separately.

4.1 Bounds forα > 0

First we will consider the more physically relevant case α > 0. Now since w is a
decreasing function, (4.4) is a weaker inequality than the corresponding one in general
relativity; and it will no longer necessarily be saturated by the constant density solution.

Now we wish to find an upper bound for the left hand side of (4.7). Since α is
positive and w is decreasing, w can be bounded by its central value

∫ ξb

0
(1 + 8αw)ζ,ξdξ ≤

∫ ξb

0
(1 + 8αwc)ζ,ξdξ (4.11)

≤ (1 + 8αwc)ζb (4.12)

= (1 + 8αwc)
√
F(R) (4.13)

And hence going back to (4.7) and using (4.13) and (4.10) we find the following
inequality holds

√
F(R)(1 + 8αwc) ≥ (1 − √

F(R)). (4.14)
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Rearranging this to find F(R) gives the following bound on the metric function

F(R) ≥ 1

4(1 + 4αwc)2 . (4.15)

In the case of a constant density solution, we have that wc = wb, and hence our
inequality (4.15) will in this case agree with the bound (2.17) found in the constant
density case.

4.2 Bounds for α < 0

Now we consider the case α < 0. We must impose the condition 1 + 16αM
R4 > 0 in

order for the exterior solution to be well defined, which implies 1 + 8αwb > 0. Now,
since w is decreasing, this time we can bound the left hand side of (4.7) using the
boundary value of w

∫ ξb

0
(1 + 8αw) ζ,ξ dξ ≤ (1 + 8αwb)

∫ ξb

0
ζ,ξdξ (4.16)

≤ (1 + 8αwb)
√
F(R) (4.17)

A lower bound on the right hand side of (4.7) was already obtained, and thus we find

(1 + 8αwb)
√
F(R) ≥ (1 − √

F(R)). (4.18)

Hence we can derive the following bound on the metric function F(R)

F(R) ≥ 1

4(1 + 4αwb)2 . (4.19)

This agrees with the bound (2.17) that was found for the constant density solution.

5 Mass-radius ratio bounds

In this section we will examine what the implications of the bounds (4.15),(4.19) on
the metric function F(R) have on the mass radius ratio.

First we will examine the case of α > 0, where the inequality (4.15) was derived.
Let us define the quantity

δα := 1 + 4αwc ≥ 1. (5.1)

Now we can rewrite wc in terms of the central energy density as follows

wc = lim
r→0

√
1 + 16αm

r4 − 1

8α
=

√
1 + 4αρc

3 − 1

8α
(5.2)
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Then rearranging (4.15) allows us to derive the following bound on the mass-radius
ratio

2M

R2 ≤
(

1 − 1

4δ2
α

)
+ 2α

R2

(
1 − 1

2δ2
α

+ 1

16δ4
α

)
. (5.3)

This is strictly weaker than the corresponding five dimensional general relativistic
Buchdahl bound. The right hand side of this inequality can in principle approach
the horizon bound if the central energy density is large. However, this result is not
necessarily saturated by any solution, as we have bounded the left hand side and the
right hand side of (4.7) by different solutions. Thus in order to examine whether the
bound does get arbitrarily close to the horizon bound, we will examine the constant
density solution again.

In the case of both the constant density solution for both positive and negative α,
and the generic case of α < 0, the same bounds (4.19),(2.17) were derived

F(R) ≥ 1

4(1 + 4αwb)2 (5.4)

Now since the right hand side involves wb, which is given explicitly by

wb =
√

1 + 16Mα
R4 − 1

8α
(5.5)

finding an inequality on the mass-radius ratio will reduce to solving a cubic equation.
Rearranging (5.4) gives the following cubic equation in wb which must be satisfied

H(wb) := −128α2R2w3
b + 64α(α − R2)w2

b − 8(R2 − 4α)wb + 3 ≥ 0 (5.6)

Let us introduce the variables

f = 2R2wb, β = α

R2 . (5.7)

In the limit α → 0, f = 2M/R2. Now the inequality (5.6) becomes

H( f ) = −16β2 f 3 + 16β(β − 1) f 2 + 4(4β − 1) f + 3 ≥ 0 (5.8)

For positive β the cubic has a positive discriminant and hence has three real roots.
Only one of these roots is positive. One can see this by noting that the cubic is negative,
H(−1/2β) = −1 < 0 and H(0) = 3 > 0 and hence two of the roots must be
negative. Let us call this positive root γ . Now since the horizon occurs and f = 1,
and H(1) = −1 < 0 we readily see that we must have γ < 1, and thus the bound on
f lies strictly below the horizon.

For negative β, the discriminant of this cubic is negative when approximately
−1.32343 ≤ β < 0. In this range the cubic has only one real root, which is posi-
tive, since the cubic is negative and H(0) = 3 > 0. We will denote this root by γ also.
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Fig. 1 Plot of the root γ against β := α/R2. The top dashed line indicates the horizon, whereas the
lower dashed line indicates the general relativistic bound. The point shows the location of vanishing α,
agreeing with the five dimensional general relativistic result. Positive β gives a less stricter bound than in
general relativity, and approaches the horizon as β increases, whereas negative β gives a stricter bound and
approaches 0 as β decreases

For β < −1.32343 the cubic has three real roots, all of which are positive. However,
we note for negative β the inequality

1 + 2β f > 1 + 4β f =
√

1 + 16αM

R4 > 0 (5.9)

holds, and thus f ≤ −1/2β. Now, H(−1/2β) = −1 < 0, H ′(−1/2β) = 0, and thus
the cubic has a turning point at this value. By looking at the second deivative of H
we see that this turning point is a minimum for β < −1.32343 meaning that two of
the roots of the cubic are above −1/2β. Thus only one of the roots of the cubic is less
than −1/2β, and we will also denote this root again by γ . Hence for all values of β

the cubic inequality reduces to the simple condition f ≤ γ .
We plot the graph of this positive root γ of this cubic in Fig. 1. We note that γ

varies continuously with β; the root γ belongs to the same branch cut. We see that for
α > 0 the result rapidly approaches the horizon bound at wb = 1. For negative α the
bound on γ is much stricter than the general relativistic case.

Now this root of the cubic γ does not have a pleasing analytic form. However, in
terms of γ we can find the following bound on the mass-radius ratio

2M

R2 ≤ γ

(
1 + 2αγ

R2

)
(5.10)

for R2 > −4αγ , whereas for R2 < −4αγ we have

2M

R2 ≤ γ

2
(5.11)

This is less than the horizon bound, but γ → 1 as α/R2 gets large, and therefore there
is no uniform bound below the horizon for α > 0.
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But for α < 0 we can find some simple results on the mass radius bound. To do
this we note a sufficient condition for (5.4) to be true is that

F(R) ≥ 1

4
. (5.12)

This is equivalent to noting that in this case γ < 3/4. Analysing this weaker bound
alone allows us to draw important conclusions. Rearranging this, we find the two
following bounds on the mass radius ratio, dependent on the radius of the star. For
R2 < −3α we have

2M

R2 ≤ 3

8
(5.13)

and for R2 > −3α we have

2M

R2 ≤ 3

4
+ 9

8R2 α (5.14)

6 Discussion

In this paper we have investigated the equivalent of the Buchdahl bound in five dimen-
sional Gauss–Bonnet gravity. For positive coupling constant α we have derived the
inequality (5.3). Unlike in five dimensional general relativity, the bound is not inde-
pendent of the stellar structure since it depends on the central energy density through
the value of ρc. However, one important consequence of our bound is that it is strictly
less than the position of the event horizon, in particular

2M

R2 < 1 + 2α

R2 . (6.1)

This is because the quantity δα is finite and greater than 1. This means that Gauss–
Bonnet black holes cannot have a perfect fluid interior either.

In principle the right hand side of the inequality (5.3) can approach the horizon
bound (6.1) if the central density becomes large. Thus unlike in general relativity
we cannot give a generic bound on quantities such as the surface redshift. In five
dimensional general relativity, the surface redshift z is bounded above by z ≤ 1. How-
ever our result shows that the redshift bound will be dependent on the specific stellar
structure, agreeing with the conclusion in [14]. Also, unlike in general relativity, the
constant density solution does not saturate the bound (4.15). However, even analysing
the constant density solution, we see that this can be arbitrarily close to the black hole
bound, and so we can see that this black hole bound is saturated by a fluid solution in
Gauss–Bonnet gravity.

In the limit α → 0 of this inequality we recover five dimensional general relativistic
Buchdahl bound
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2M

R2 ≤ 3

4
. (6.2)

The Gauss–Bonnet inequality is less restrictive than this general relativistic bound,
and thus we are able to conclude that the appearance of the Gauss–Bonnet term allows
stable configurations of stars with more mass in a given radius than their general
relativistic counterparts.

On the other hand, considering negative α gives a completely different situation.
In this case these the constant density solution does saturate the bound (4.19) on the
function F(R). The weaker inequality (5.4) is also true, and this allows us to derive
the explicit bounds (5.13) and (5.14), and are valid depending on the size of the radius
of the star. Both of these bounds are stricter than the general relativistic bound, and are
independent of the exact stellar structure. Again, the bound (5.14) correctly reduces
to the standard five dimensional Buchdahl bound in the limit α → 0. This means we
can fit less mass into a given radius and while maintaining a stable stellar structure.
These inequalities will also imply a smaller upper bound for the surface redshift. The
right hand side of inequality (5.11) approaches 0 as the ratio α/R2 decreases, and thus
as α or R decreases the mass-radius ratio gets very small.

Of further interest would be to consider the maximum mass of a neutron star in
Gauss–Bonnet gravity. In general relativity, it is known that Mmax < 3.2M� [22], with
M� the solar mass, where certain physical assumptions were made on the structure of
the neutron star interior. Such an analysis has been done for higher dimensional general
relativity for one particular EoS in [23], where it was found that in higher dimension
the neutron star maximum mass violated the Schwarzschild bound, and thus did not
in fact describe a neutron star. Thus a further investigation of the structure of higher
dimensional neutron stars in both general relativity and Gauss–Bonnet gravity should
take place.
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