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ABSTRACT 

This paper describes a novel approach to 
building stock energy modelling: individual 
building simulation models are auto-
generated for each building in the stock, and 
the resulting set of virtual buildings is 
selectively sampled, simulated and analysed 
in much the same way that an 
epidemiologist might study a population 
through surveys and statistical analysis. A 
conceptual and software framework is 
described, along with initial case study 
results for a London borough. 

INTRODUCTION 
The goal of the project described here, 
SimStock, is to develop a simulation model 
of the energy use of the non-domestic 
building stock in England and Wales for use 
in assessing the impact of technology 
improvements, tighter regulations and 
market interventions in order to inform 
government policy-making and planning. 
The SimStock project aims to develop a 
stock model that is both:  
• Interpretive - i.e. can reproduce, to some 

degree, actual energy consumption at a 
national or regional scale and help to 
understand the factors leading to that 
consumption 

• Predictive - i.e. can forecast the impact 
of interventions in the stock 

Various governmental organizations have a 
potential interest in this type of model. For 
example, in the UK, the Department of 
Energy and Climate Change is tasked with 
delivering reductions in national carbon 
emissions. Being able to quantify the 
potential savings from interventions in the 
stock is of clear interest, as is being able to 

assess whether year-to-year changes in 
energy use are due to external factors or 
fundamental improvements in efficiency.  
At a regional or city level, government 
bodies will be able to assess what specific 
interventions might be applicable in their 
areas (what works in larger cities may not 
work in smaller towns). Technology 
providers will be able use such a tool to 
understand the potential market for new 
technologies and the potential savings they 
could generate. Similarly, bodies that fund 
R&D will be able to use the tool to help 
identify the most promising emerging 
technologies towards which they should 
direct resources. If expanded to include an 
entire national non-domestic building stock, 
the tool would also assist large building 
owners in identifying how to improve their 
portfolios of buildings and would assist 
urban planners in large-scale master 
planning activities. 

BACKGROUND 
In recent years, there have been many 
detailed energy models of the UK domestic 
sector developed (Firth et al 2010, Cheng & 
Steemers 2011); however, models of the 
non-domestic sector have been more basic, 
due in a large way to the heterogeneity of 
the non-domestic stock (compared to the 
domestic stock) and the difficulty in 
obtaining and integrating information about 
the non-domestic stock. 
The most notable non-domestic stock 
models that have been supporting the UK 
government are the Non-Domestic building 
Energy and Emissions Model (N-DEEM, 
Pout 2000) and the CarB model (Bruhns et 
al 2006). In both of these models, the total 



energy performance of the building stock is 
obtained by multiplying a mean energy use 
per unit floor area (kWh/m2), derived from 
surveys and other data sources, by the total 
floor area of buildings.  As these models do 
not model the physics of building 
performance, they cannot assess the impact 
of interventions on the stock.  SimStock 
addresses this by using a simulation-based 
approach. 
A key characteristic of SimStock is the use 
of a auto-generated whole building energy 
simulation models to represent each 
building in the stock model. This approach 
allows explicit modelling of different 
technologies and operating practices to 
predict their effect on the energy 
performance of different building types in 
different climates. Successful application of 
this detailed simulation approach depends 
heavily on data availability for informing 
the auto-generation of the individual 
building models. These data either directly 
inform the model (as with building 
footprints from online maps), or provide a 
basis from which aspects of the building 
model description might be inferred (as with 
use categories from taxation offices and date 
of last refurbishment). Such data are 
increasingly becoming available, in the UK 
and elsewhere, along with a concomitant 
decrease in computing costs, which also aids 
in the feasibility of this approach. 
Non-domestic buildings often comprise 
several premises occupied by different users 
with different operational characteristics.  
Premises often span adjoining buildings and 
sometimes span separate buildings on the 
same site.  The association of energy meters 
with premises means that addressing the 
stock by reference to buildings can be both 
inadequate and misleading.  For this reason, 
we use the concept of the Self-Contained 
Unit (SCU) which draws together buildings 
into a single geometric entity so that no 
single premise has to be divided.  A more 
detailed description of SCUs is provided in 
Taylor et al (2014). 

METHODOLOGY 
Epidemiological Approach 
A common approach to simulation-based 
stock modelling involves a set of 
representative prototype or archetype 
models that are produced a priori (and 
generally without reference to any one 
particular building), with weighting factors 
based on numbers of buildings or floor areas 
assigned to them to represent the stock. In 
contrast to this, SimStock is follows an 
“epidemiological approach” to stock 
modelling, which has the following 
characteristics: 
• Automatic construction of EnergyPlus 

(DOE, 2015) models for any or all SCUs 
in the stock.  This process builds on the 
work undertaken in the 3DStock project 
(Evans et al, 2014) at University College 
London which aims to produce 3D 
models of UK building stock based on 
data from readily available datasets.  
These datasets include the Valuation 
Office (VOA) Summary Dataset, which 
holds data on floor areas and use types 
for the purposes of setting business 
taxation rates, and the Ordnance Survey 
database of addresses, footprints and 
building heights.  (Analogous sources of 
such information exist in other countries 
but details of such sources are beyond 
the scope of this paper.) 

• Scenario analysis is made possible by 
replicating and modifying the SCU 
descriptions (and thus their associated 
EnergyPlus models) for each year over 
the planning horizon 

• Cloud computing is used to allow for a 
large number of simulations in parallel 

• Epidemiological sampling and statistical 
analysis techniques are used to 
selectively sample and simulate groups 
of SCUs to answer particular research 
and policy questions 

The epidemiological approach avoids a 
common criticism of archetype-based stock 
model studies by basing each model on a 
particular building, against which its 
performance can be verified. This approach 
also avoids some of the practical difficulties 
associated with the archetype-based 
approach in projecting future scenarios, 



where there is a need to bifurcate the 
prototype/archetype bins at each time step as 
some portion of them get retrofitted and the 
remainder are left untouched. The 
epidemiological approach is also inherently 
scalable, working equally well for small 
building stocks or for large. The analysis is 
grounded in well-known statistical theory 
and practice, including confidence interval 
quantification, to inform further analysis. 
The practicality and utility of the 
epidemiological approach hinges upon an 
automated process of model construction, 
which has thus been a major aspect of 
SimStock development.  

Technical Overview 
Figure 1 illustrates the main components of 
SimStock. The simstocktools package / 
library, coded in R and Python, encapsulates 
the automated model generation and 
simulation functions for use within these 
statistical analysis platforms, such that 
researchers can operate within their 
commonly-used platforms for their analysis, 
without needing to deal with EnergyPlus 
syntax or simulation management.  
SimStock includes the following notable 
components:  

• an extensible JSON data structure for 
organizing given, inferred and simulated 
data for each building in the stock (along 
with a browser-based stock viewer) 

• a Python library for automatic 
generation of EnergyPlus models (given 
well-defined input in the prescribed 
form) and for the management of 
potentially vast numbers of parallel 
simulations (locally or remotely) 

• a R package that provides interfaces to 
both the external data structure and the 
Python simulation library 

The input to SimStock, denoted as 
stock_data_given.json in Figure 1, consists 
of a list of data objects, one for each SCU. 
Each of these may be conceived of as a 
vector of characteristics, noting that each 
characteristic may be either a single value or 
an array (or an array of arrays, or other such 
structure). Similarly, the main outputs from 
SimStock, denoted as simulated_stock.json 
in Figure 1, consist of a list of data objects, 
one for each SCU that has been simulated, 
containing annual energy consumption data, 
broken down by end use and fuel type 
(although more detailed outputs are also 
available). 

 
 

Figure 1 SimStock Technical Overview 
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Automated Model Generation 
For each SCU in stock_data_given.json, 
SimStock carries out the necessary 
transformations to produce an EnergyPlus 
model for that SCU, simulates it, and reads, 
aggregates and presents its outputs. This 
process, for a single SCU, is illustrated in 
Figure 2. Note that the process of creating 
the EnergyPlus model (denoted as idf in 
Figure 2) consists of two major steps, one 
that involves a mapping from the input 
vector to a more detailed vector containing 
the information needed by EnergyPlus, 
which the second step then uses to produce 
the EnergyPlus input file with the necessary 
syntax. In SimStock, the vectors are all 
persisted in JSON format and the mapping 
functions are coded in Python. 
This splitting of the EnergyPlus input file 
creation into two well-defined steps is a key 
aspect of SimStock, and facilitates use of its 
code for other projects. It separates the 
purely technical challenge of automatically 
constructing the .idf file from the statistical 
and/or expert-knowledge challenge of 
mapping from limited survey information to 
the more detailed information required by 
EnergyPlus. 
SimStock allows for easy modification of its 
mapping functions, but the following 
subfunction definitions illustrate how the 
given_data to eplus_data mapping was 
carried out in the Camden pilot case study 
discussed below. Note that defining these 
mapping functions is an expert-user (or 
SimStock developer) task. 

internalGains ←f (activities) 
given array of stories, floor areas 

and activity codes 
postulate end use intensities and 

schedules 
Notes: uses data from the Sheffield Hallam 
University surveys (Mortimer et al, 2001a, 2001b) 
constructions ←f (materialsCode) 

given materials code from walk-by 
visual inspection data 
carried out by a third-party 
group 

postulate external construction and 
interior thermal mass 

Notes: the materials code provides an encoding of 
the sub structure type, roof type, wall type and 
vintage. These values are decoded and mapped to 
EnergyPlus wall descriptions via expert engineering 
judgement captured in this function. 
glazingRatio ←f (materialsCode, 

vol:area, activities) 
given materials code, volume 

versus wall area ratio and 
dominant activity type 

postulate glazing ratio 
Notes: based on empirical correlations, Gakovic 
(2000) 

Stock-Level Analysis 
With a model of each building in hand, 
various types of analysis are possible, 
including the estimation of end use 
breakdowns across the stock, sensitivity 
analysis and scenario analysis, which are all 
described below in the context of a case 
study. SimStock is structured to allow for 
maximum flexibility in carrying out these or 
other such studies, providing just the core 
functionality of data formatting and 
automated model generation, along with 
some example starter code for the analyst. 

 
Figure 2 Data Mapping and Automated EnergyPlus Model Generation 



CASE STUDY APPLICATION 
As an initial case study, the SimStock 
framework was applied to the modelling of 
the non-domestic stock in the London 
borough of Camden. The stock model 
contains 143 SCUs, and the given data for 
each SCU includes footprint geometry, 
activity descriptions by floor (from the 
VOA), and visual materials surveys of the 
building envelope. SimStock was used to 
investigate various questions about the stock 
and its energy behaviour. 

Energy Consumption by End Use 
Perhaps the most basic application of the 
building stock model is to predict a more 
detailed breakdown of energy consumption 
than is readily available through measured 
data. Figure 3 shows the predicted end use 
breakdown of SCUs in the simulated 
Camden stock, averaged across the major 
activity categories for the SCU’s dominant 
activity type. Figure 4 shows the distribution 
of energy intensity (annual kWh per unit of 
floor area) across the SCUs in the stock. 
At the neighbourhood level and whole-
building level, comparisons of SimStock to 
measured data are on-going and initial 
results are promising. Although the model 
does not accurately predict the energy 
consumption of each individual SCU in the 
stock, it does well at capturing the average 
behaviour and seems to do well at 
appropriately capturing distributions. 

Sensitivity Analysis 
Relationships between the many inputs and 
outputs of the stock model can be explored 
to uncover unforeseen trends and influences, 
which can help define the need for improved 

 
Figure 4 Distribution of Simulated Total 

Energy Intensity Values  
 
information gathering and inform retrofit 
and/or other policy considerations. 
Figure 5 shows a modified scatterplot matrix 
with descriptive input variables based on the 
given data for each SCU (e.g. number of 
floors, interior volume to wall area ratio, 
dominant activity type) graphed against the 
resulting simulated heating, cooling, lighting 
and plug load intensities. (The lines in blue 
are smoothed distributions and the points are 
relationships between the variables on the 
vertical and horizontal axes.) These sorts of 
exploratory graphs can be used to uncover 
relationships in much the same way as they 
are used for measured data, but the 
simulated data can provide many more 
points of comparison. 
To investigate quantitatively the relative 
sensitivities of the model outputs to changes 
in the model inputs, stepwise (backward) 
regression analysis was carried out. The 
following variables, all taken from the given 
data or derived from them in simple ways, 
were used as possible independent variables: 
three continuous variables of basement 
volume, volume to wall area ratio and floor 
count; and five categorical variables of 
dominant activity, structure type, roof type, 
wall type, age group. 

 

 
Figure 3 End Use Breakdowns by Dominant Activity Classification in Case Study Model



 
Figure 5 Scatterplot Matrix with some of the Independent (Descriptive) and Dependent 

(Simulation Output) Variables 
 
 
With simulated total energy intensity taken 
as the dependent variable, the linear 
regression model which produces the 
highest adjusted R2 value uses only the 
following four independent variables (with 
the remaining four contenders discarded): 
number of floors, volume to wall area ratio, 
dominant activity and age group. (Note that 
this finding is similar to recent exploratory 
work done independently using only 
measured energy data.) A linear regression 
model with these four independent variables 
has an adjusted R2 value of 56%. With this 
regression model, the number of floors has a 
particularly strong influence on the result – 
it seems that in the simulated stock, when 
the other major variables are controlled for, 
the shorter buildings are using much more 
energy per unit of floor area than the taller 
ones.  
The same stepwise regression method was 
used in turn with the simulated heating, 
cooling, lighting and plug loads as the 
dependent variable. In all four cases, the 
following three independent variables were 
always in the best-found model: number of 
floors, volume to wall area ratio and 
dominant activity. In the plug loads case, 

only these three are included. In the cooling 
and lighting cases, the roof type is added. In 
the heating case, the roof type is not 
included, but both the age group and the 
structure type are added to the list.  

Scenario Analysis 
A major use case of SimStock is for the 
projection of future energy consumption 
trajectories under different scenarios 
representing future changes to building 
regulations and other programmes that 
would stimulate the rate at which the 
existing building stock is retrofitted and 
refurbished.  Work is ongoing to apply such 
scenarios to the Camden case study. 

DISCUSSION 
As noted earlier, comparisons of SimStock 
to measured data are on-going. The analysis 
of the differences between the model and 
measurements is of interest not just for 
validating the model. The simulation-
measurement ‘gap’ is also a potential source 
of insight into the stock’s behaviour – that 
some types of buildings (categorized by 
their activity types, location, or otherwise) 
should differ more or less broadly from 
physics- and data-driven expectations is 



perhaps indicative of other aspects of their 
behaviour that we do not properly 
understand. Investigation of such areas often 
leads to the uncovering of energy savings 
potential. Work in this direction continues. 
Refining SimStock for scenario analysis will 
require some extra thinking, both on the part 
of the SimStock development team and on 
the part of SimStock users, around questions 
of the appropriate level of model fidelity for 
particular scenarios under consideration. For 
example, the mapping code in the current 
configuration of SimStock does not 
explicitly consider such things as user 
window-opening behaviour – for most cases 
this simplification is appropriate, but for 
some particular scenario analysis 
applications it should be explicitly 
modelled. Further research should be 
undertaken to better understand the trade-
offs around modelling fidelity in scenario 
analysis. 
More generally, further research is required 
to characterize and evaluate expert-defined 
mapping functions. Just as user modelling 
decisions in standard single-building 
simulation are determining factors in the 
model’s veracity and utility, the decisions 
that go into defining the mapping functions 
are determining factors at the level of stock 
simulation. Building stock energy 
simulation is not immune to the classic 
engineering modelling concern of ‘garbage-
in-garbage-out’; more research is required to 
help clarify what mapping-function 
decisions are most important, and 
appropriate templates or defaults should be 
used in SimStock, along with guidelines for 
users in defining mapping functions. 
One of the key early goals of the SimStock 
project was to solve the lower level problem 
of performing dynamic thermal simulations 
of large numbers of non-domestic buildings, 
and move towards addressing the much 
larger data acquisition and management 
issues: Which data sources can be 
incorporated into the model to improve the 
inference engine and hence narrow the gap 
between simulation and reality?  How can 
data from disparate sources be integrated in 

a consistent and transparent manner?  We 
believe that the SimStock simulation 
toolbox that has been developed enables 
these questions to be addressed by a much 
wider field of experts. 
Another key challenge is to start to 
understand how the results of such 
simulations can most usefully be presented.  
The quantities of raw output data produced 
can be overwhelming and extracting the 
important patterns is a major undertaking.  
One approach that is being pursued is the 
automatic (or perhaps semi-automatic) 
generation of a small number of building 
archetypes that are in some way 
representative of a significant proportion of 
the stock.  These archetypes can then be 
investigated in detail with some confidence 
that the results will be applicable to the 
stock as a whole.  This would allow more 
rapid scenario analysis, and perhaps more 
comprehensible simulation results, without 
requiring the a priori allocation of buildings 
to archetypes that is inherent in typical 
archetypal models. 
In principle, the approach outlined in this 
paper could be applied to the domestic 
building stock as well and this is likely to be 
a more tractable challenge. However, as 
discussed at the beginning of this paper, the 
domestic building stock has been more 
extensively researched in other work, at 
least in the UK, and therefore an extension 
of SimStock to cover domestic buildings is 
seen as a lower priority, although the inter-
twining of domestic and non-domestic 
buildings in older urban areas may 
ultimately require an integrated approach. 
Work to further develop SimStock and to 
test its ability to predict the performance of 
sub-sectors of the non-domestic stock is 
underway and will be reported in 2016. 

CONCLUSION 
An epidemiological approach to stock 
modelling has been developed and 
embodied in a beta software framework. 
The approach takes advantage of recent 
increases in both computational power and 
data availability, and allows for another 



mode of analysis for building stocks. An 
initial case study has been carried out for a 
London borough, including sensitivity 
studies and scenario analyses. Analysis of 
the similarities and differences between the 
stock simulation outputs and measured data 
is on-going. In future work, the stock model 
will be refined to address some of the issues 
raised here, and will be extended in 
applications to consider much larger stocks 
of buildings. 
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