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ON THE ASYMPTOTIC GROWTH OF

BLOCH–KATO–SHAFAREVICH–TATE GROUPS OF MODULAR

FORMS OVER CYCLOTOMIC EXTENSIONS

ANTONIO LEI, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

Abstract. We study the asymptotic behaviour of the Bloch–Kato–Shafarevich–
Tate group of a modular form f over the cyclotomic Zp-extension of Q under
the assumption that f is non-ordinary at p. In particular, we give upper
bounds of these groups in terms of Iwasawa invariants of Selmer groups de-
fined using p-adic Hodge Theory. These bounds have the same form as the
formulae of Kobayashi, Kurihara and Sprung for supersingular elliptic curves.

1. Introduction

Let p be an odd prime and f a normalised new cuspidal modular eigenform
of weight k ≥ 2, and p an odd prime which does not divide the level of f . For
notational simplicity, we assume in this introduction that all the Fourier coefficients
of f lie in Z. We let Vf be the cohomological p-adic Galois representation attached
to f (so the determinant of Vf is χ1−k times a finite-order character). Then Vf
has Hodge–Tate weights {0, 1− k}, where our convention1 is that the Hodge–Tate
weight of the cyclotomic character is 1. Let Tf be the canonicalGQ-stable Zp-lattice
in Vf defined by Kato [Kat04, 8.3].

Let K∞ be the cyclotomic Zp-extension of Q and write Kn for the unique sub-
extension of degree pn. Our aim is to study the asymptotic behaviour of the Bloch–
Kato–Shafarevich–Tate groups X(Kn, Tf(j)) (with j ∈ [1, k− 1]), whose definition
we shall recall below.

When k = 2, the form f corresponds to an isogeny class of elliptic curves, and
we may choose a curve E in this isogeny class such that Tf (1) = Tp(E), where the
latter is the p-adic Tate module of E . In this case it can be shown that the group
X(Kn, Tf (1)) is the quotient of the classical p-primary Shafarevich–Tate group
Xp(Kn, E) by its maximal divisible subgroup; hence if the latter group is finite
(which is a well-known conjecture), the two groups are equal.
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The ordinary case. The behaviour of the Selmer and Shafarevich–Tate groups
over the cyclotomic extension depends sharply on whether E has ordinary or su-
persingular reduction at p. If E is ordinary, then the p-Selmer group

Selp(K∞, E) = lim
−→
n

Selp(Kn, E)

of A over K∞ is cotorsion over the Iwasawa algebra Zp[[Gal(K∞/Q)]], by a theorem
of Kato [Kat04, Theorem 17.4]. By Mazur’s control theorem [Maz72], this implies
that if the groups Xp(Kn, E) are finite for all n, then we must have

lenZpXp(Kn, E) = µpn + λn+O(1),

for some Iwasawa invariants µ and λ associated to Selp(E/K∞).

The supersingular case. The case of supersingular elliptic curves with ap(E) =
0 has been studied by Kurihara [Kur02] and Kobayashi [Kob03]. Suppose that
Xp(Kn, E) is finite for all n and write sn(E) = lenZpXp(Kn, E). They showed that
for n sufficiently large,

sn(E)− sn−1(E) = qn + λ± + µ±(p
n − pn−1)− r∞(E),

where qn is an explicit sum of powers of p, r∞(E) is the rank of E over K∞, λ±
and µ± are the Iwasawa invariants of some cotorsion signed Selmer groups, and the
sign ± depends on the parity of n.

For supersingular elliptic curves with ap(E) 6= 0 (which can only occur when
p = 2 or 3), Sprung [Spr13] proved a similar formula:

sn(E)− sn−1(E) = q⋆n + λ⋆ + µ⋆(p
n − pn−1)− r∞(E),

for n ≫ 0, where q⋆n is again an explicit sum of powers of p, ⋆ ∈ {#, ♭}, λ⋆ and
µ⋆ are Iwasawa invariants of some cotorsion Selmer groups defined in [Spr12] and
the choice of ⋆ depends on the “modesty algorithm”. An analytic version of this
formula has been generalised to arbitrary weight 2 modular forms in [Spr15].

Higher weights. The main result of the present article is that a similar formula
for modular forms of higher weight would give us an upper bound on the growth
of the Bloch–Kato–Shafarevich–Tate groups. Suppose that ordp(ap(f)) >

k−1
2p and

3 ≤ k ≤ p, where ap(f) is the p-th Fourier coefficient of the modular form f . We
shall see below that the Selmer coranks

rn(f) = corankZpSel(Kn, Tf(j))

stabilise for n ≫ 0, and we define r∞(f) to be the limiting value (see Proposi-
tion 5.4). We define

sn(f) = lenZpXp(Kn, Tf(j))

(which is finite by definition). We prove the inequality (see Theorem 5.5 for the
precise statement)

sn(f)− sn−1(f) ≤ q
⋆
n + λ⋆ + µ⋆(p

n − pn−1) + κ− r∞(f),

for n ≫ 0, where q⋆n is once again a sum of powers of p that depends on k and
the parity of n, λ⋆ and µ⋆ are the Iwasawa invariants of the Selmer groups defined
in [LLZ10] for some choice of basis of the Wach module of Tf , κ is some integer
that depends on the image of some Coleman maps that we shall review in §3 of this
article and the choice of ⋆ is given by an explicit algorithm (similar to the “modesty
algorithm” of Sprung).
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The fact that we have an inequality is a result of the growth of the logarithmic
matrix contributed from the twists of Tf(i) for i 6= j. In the appendix to this paper,
we relate the defect of this inequality to the Tamagamwa numbers of Tf (j) using
the method developed by Perrin-Riou in [PR03].

Acknowledgement. The authors are grateful to the anonymous referee for many
useful comments and suggestions, which improved the paper substantially.

2. Background from p-adic Hodge theory

We recall the necessary notation and definitions from p-adic analysis and p-adic
Hodge theory. For more details see [LLZ11, §1.3]. We fix (for the duration of this
article) a finite extension E/Qp with ring of integers O, which will be the coefficient
field for all the representations we shall consider.

2.1. Iwasawa algebras and distribution algebras. Let Γ = Gal(Q(µp∞)/Q).
This group is isomorphic to a direct product ∆× Γ1, where ∆ is a finite group of
order p − 1 and Γ1 = Gal(Q(µp∞)/Q(µp)). We choose a topological generator γ
of Γ1, which determines an isomorphism Γ1

∼= Zp. We also fix a finite extension
E of Qp with ring of integers O which will be our field of coefficients (i.e. we will
consider representations of Galois groups on E-vector spaces).

We write Λ = O[[Γ]], the Iwasawa algebra of Γ. The subalgebra O[[Γ1]] can be
identified with the formal power series ring O[[X ]], via the isomorphism sending γ1
to 1 +X ; this extends to an isomorphism

(2.1) Λ = O[∆][[X ]].

For a character η of ∆ and a Λ-module M , Mη denotes its η-isotypic component,
which is regarded as an O[[X ]]-module. For n ≥ 1, we write Γn for the subgroup
Gal(Q(µp∞)/Q(µpn)) and Λn = O[Γ/Γn]. Note that

Λn = O[∆][[X ]]/(ωn−1(X)),

where ωn−1(X) denotes the polynomial (1 +X)p
n−1

− 1.
We may consider Λ as a subring of the ring H of locally analytic E-valued

distributions on Γ. The isomorphism (2.1) extends to an identification between H
and the subring of power series F ∈ E[∆][[X ]] which converge on the open unit disc
|X | < 1.

2.2. Power series rings. Let A+
Qp

= O[[π]], where π is a formal variable. We equip

this ring with a O-linear Frobenius endomorphism ϕ, defined by π 7→ (1 + π)p − 1,
and with an O-linear action of Γ defined by π 7→ (1 + π)χ(σ) − 1 for σ ∈ Γ, where
χ denotes the p-adic cyclotomic character.

The Frobenius ϕ has a left inverse ψ, satisfying

(ϕ ◦ ψ)(f)(π) = 1
p

∑

ζ:ζp=1

f (ζ(1 + π)− 1) .

The map ψ is not a morphism of rings, but it is O-linear, and commutes with the
action of Γ.

We write B+
Qp

= A+
Qp

[1/p] ⊂ E[[π]], and

B+
rig,Qp

= {F (π) ∈ E[[π]] : F converges on the open unit disc} ,
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so there are natural inclusions

A+
Qp
→֒ B+

Qp
→֒ B+

rig,Qp
.

The actions of ϕ, ψ, and Γ extend to these larger rings (via the same formulae as
before). We shall write q = ϕ(π)/π ∈ A+

Qp
, and t = log(1 + π) ∈ B+

rig,Qp
.

2.3. The Mellin transform. The action of Γ on 1+ π ∈ (A+
Qp

)ψ=0 extends to an

isomorphism of Λ-modules

M : Λ
∼=
−→(A+

Qp
)ψ=0

1 7−→1 + π,

called the Mellin transform. This can be further extended to an isomorphism of
H-modules

H
∼=
−→(B+

rig,Qp
)ψ=0

which we denote by the same symbol.

Theorem 2.1. For every n ≥ 1, the Mellin transform induces an isomorphism of
Λ-modules

Λn ∼= (A+
Qp

)ψ=0/ϕn(π)(A+
Qp

)ψ=0.

Proof. If µ ∈ ωn−1(X)Λ, then M(µ) ∈ ϕn(π)(B+
rig,Qp

)ψ=0, by [LLZ10, Theorem

5.4]. However, ϕn(π) is a monic polynomial in π, so if an element of A+
Qp

is di-

visible by ϕn(π) in B+
rig,Qp

, it is divisible by the same element in A+
Qp

. Hence the

Mellin transform induces a map Λn → (A+
Qp

)ψ=0/ϕn(π)(A+
Qp

)ψ=0; and this map is

surjective, because the Mellin transform itself is surjective. Since both sides are
free O-modules of the same rank, namely (p − 1)pn, it follows that the map must
in fact be an isomorphism. �

We write ∂ for the differential operator (1 + π) d
dπ on B+

rig,Qp
, and Tw for the

ring automorphism of H defined by σ 7→ χ(σ)σ for σ ∈ Γ. Then one has the
compatibility relation

M ◦ Tw = ∂ ◦M.

Let u = χ(γ) be the image of our topological generator γ under the cyclotomic
character, so that Tw maps X to u(1 +X)− 1. If m ≥ 0 is an integer, we define
ωn,m(X) = ωn(u

−m(1 + X) − 1) and ω̃n,m =
∏m
i=0 ωn,i. By exactly the same

argument as Theorem 2.1, this gives the following isomorphism of Λ-modules

(2.2) Λn,m := Λ/ω̃n−1,mΛ ∼= (A+
Qp

)ψ=0/ϕn(πm+1)(A+
Qp

)ψ=0.

We will need below the following technical result, regarding the interaction be-
tween Mellin transforms and the Iwasawa invariants of power series. We recall the
Weierstrass preparation theorem, which states that any F ∈ O[[X ]] can be factorized
uniquely as

F (X) = ̟µ(F ) · (Xλ(F ) +̟G(X)) · u(X),

where ̟ is a uniformizer of O, λ(F ) and µ(F ) are non-negative integers, G ∈ O[X ]
is a polynomial of degree < λ(F ), and u ∈ O[[X ]]×. The quantities λ(F ) and µ(F )
are called the Iwasawa invariants of F .

It is clear that, for x ∈ OCp with ordp(x) > 0, we have the lower bound

(2.3) ordp F (x) ≥ min
(

µ+1
e , µe + λ ordp(x)

)

,
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where e = 1/ ordp(̟) is the absolute ramification degree of F . Moreover, if ordp(x)
is sufficiently small (depending on F ), this lower bound is an equality (it suffices
to take ordp(x) < 1/(eλ)).

Proposition 2.2. Let f ∈ A+
Qp

, and let g be the unique element of Λ(Γ1) such that

M(g) = (1 + π)ϕ(f). Then the λ- and µ-invariants of f (as an element of O[[π]])
coincide with those of g (as an element of O[[X ]]).

Proof. This is a consequence of Proposition 7.2 of [LZ12], which shows that for any
f ∈ B+

rig,Qp
and g ∈ H such that M(g) = (1+π)ϕ(f), and any real s with 0 < s < 1,

we have vs(f) = vs(g), where

vs(f) := inf{ordp f(x) : ordp(x) ≥ s}.

When f ∈ O[[X ]] and s is sufficiently small, vs(f) is determined by the Iwasawa
invariants of f : from the inequality (2.3) and the discussion following, we have
vs(f) = 1

eµ(f) + λ(f)s for any s < 1
eλ(f) . So the cited proposition implies the

equalities λ(f) = λ(g) and µ(f) = µ(g). �

2.4. Crystalline representations and Wach modules. Fontaine has defined a
certain topological Qp-algebra Bcris, equipped with an action of GQp , a filtration
Fil•, and a Frobenius endomorphism ϕ.

For any p-adic representation V of GQp , we define the crystalline Dieudonné
module of V by

Dcris(V ) =
(

V ⊗Qp Bcris

)GQp .

The space Dcris(V ) inherits a filtration and a Frobenius endomorphism from those
of Bcris. It is known that dimQp Dcris(V ) ≤ dimQp V , and we say V is crystalline if
equality holds. If in fact V is an E-linear representation, then Dcris(V ) is naturally
an E-vector space (and its filtration and Frobenius are E-linear).

Definition 2.3. Let a ≤ b be integers. A Wach module over B+
Qp

with weights in

[a, b] is a finite free B+
Qp

-module N , equipped with an action of Γ and a Frobenius

ϕ : N [1/π]→ N [1/ϕ(π)]

compatible with those of B+
Qp

, satisfying the following conditions:

• Γ acts trivially on N/πN ,
• ϕ(πbN) ⊆ πbN ,
• if ϕ∗(πbN) is the B+

Qp
-submodule of πbN generated by ϕ(πbN), then the

quotient πbN/ϕ∗(πbN) is killed by qb−a.

Cf. [Ber04, Definition III.4.1]. In op.cit. it is shown how to attach to every
crystalline E-linear representation V of GQp a Wach module N(V ) over B+

Qp
, in

such a way that there is a canonical isomorphism

N(V )⊗
B
+

Qp

B+
rig,Qp

[1/t] ∼= Dcris(V )⊗E B+
rig,Qp

[1/t].

Moreover, the definition of Wach modules also makes sense integrally, i.e. over A+
Qp

;

and we may associate to each O-lattice T in V that is stable under GQp an integral
Wach module N(T ) ⊂ N(V ) (Lemme II.1.3 of op.cit.).

Definition 2.4. We say V satisfies the Fontaine–Laffaille condition if it is crys-
talline and has Hodge–Tate weights in [a, a+ (p− 1)] for some a ∈ Z.



6 A. LEI, D. LOEFFLER, AND S.L. ZERBES

If V satisfies the Fontaine–Laffaille condition, and V is irreducible of dimension
≥ 2, then one has a particularly convenient parametrisation of GQp -stable lattices
in V . We say a O-lattice M ⊂ Dcris(V ) is a strongly divisible lattice if the equality

ϕ
(

M ∩ FiliDcris(V )
)

⊂ piM

holds for all i ∈ Z. Then there is a bijection T 7→ Dcris(T ) between GQp -stable
lattices in V , and strongly divisible lattices in Dcris(V ), given by defining Dcris(T )
to be the image of N(T ) in N(V )/πN(V ) ∼= Dcris(V ); cf. [Ber04, Propositions V.2.1
& V.2.3].

We shall need below the following technical result.

Theorem 2.5. Let T be a GQp -stable O-lattice in a crystalline E-linear represen-

tation V . Then (ϕ∗N(T ))ψ=0 is a free Λ-module of rank d = dimE V . Moreover, if
{n1, . . . , nd} is an A+

Qp
-basis of N(T ) which satisfies the condition

(γ − 1)ni ∈ π
2N(T )

for all i, then {(1 + π)ϕ(ni) : i = 1, . . . , d} is a Λ-module basis of (ϕ∗N(T ))
ψ=0

.

Proof. This is shown in the course of the proof of Theorem 3.5 of [LLZ10]. The
condition on the basis modulo π2 is the conclusion of Lemma 3.9 in op. cit. �

2.5. Iwasawa cohomology and the Fontaine isomorphism. If V is an E-
linear p-adic representation of GQp , and T ⊂ V is a GQp -stable OE-lattice, then we
define Iwasawa cohomology groups by

Hi
Iw(Qp(µp∞), T ) = lim

←−
n

H1(Qp(µpn), T )

(where the inverse limit is with respect to the corestriction maps). These groups are
finitely-generated Λ-modules, zero unless i ∈ {1, 2}. If H0(Qp(µp∞), T/pT ) = 0,
which is the case in our applications below, then H2

Iw is zero, and H1
Iw is a free

Λ-module of rank equal to the O-rank of T .
The following theorem is the starting-point for our study of Iwasawa cohomology:

Theorem 2.6 (Fontaine–Berger). If V is crystalline with all Hodge–Tate weights
≥ 0, and V has no non-zero quotient on which GQp acts trivially, then there is a
canonical Λ-module isomorphism

h1T : N(T )ψ=1 → H1
Iw(Qp(µp∞), T ).

See [CC99, §II.1], where it is shown that (for any T ) there is an isomorphism
D(T )ψ=1 → H1

Iw(Qp(µp∞), T ) where D(T ) is the (ϕ,Γ)-module of T ; and [Ber03,
§A], where it is shown that N(T )ψ=1 = D(T )ψ=1 under the above hypotheses.

3. Wach modules and Coleman maps

3.1. Review on the definition of Coleman maps. Let f =
∑

anq
n be a nor-

malised new cuspidal modular eigenform of weight k ≥ 3 (note that the case k = 2
can be dealt with using the method of Sprung in [Spr13]), nebentypus ε and level
N with (p,N) = 1. We take E to be the completion of the smallest number field
containing all the coefficients of f at some fixed prime above p. We assume that f
is non-ordinary at p, and that k ≤ p. We write Tf for the O-linear representation of
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GQ associated to f as defined by Kato [Kat04, 8.3]. It is crystalline, with Hodge–
Tate weights 0 and 1− k. We fix an integer j ∈ [1, k− 1] and write T = Tf (j) and
T = Tf(k − 1). Note that T = T (j − k + 1).

The representation T/̟T (where ̟ is a uniformiser of O) is irreducible as a
representation of GQp , so in particular we have

H0(Qp(µp∞), T/̟T ) = 0.

Both Tf and T are GQp -stable OE-lattices in crystalline representations of GQp ,
so we may consider their Wach modules and Dieudonné modules. By [Ber04, Propo-
sition III.2.1], there are inclusions of B+

rig,Qp
-modules

B+
rig,Qp

⊗
A

+

Qp

N(T ) ⊂B+
rig,Qp

⊗O Dcris(T ),

B+
rig,Qp

⊗O Dcris(Tf ) ⊂B
+
rig,Qp

⊗
A

+

Qp

N(Tf ),

where the elementary divisors of the inclusions are given by 1 and (t/π)k−1 in both
cases.

Lemma 3.1. There exists an O-basis v1, v2 of Dcris(T ) such that v1 ∈ Fil0 Dcris(T )
and v2 = ϕ(v1), where ϕ is the Frobenius action on Dcris(T ).

Proof. The Fontaine–Laffaille condition of [FL82] implies that for all integers i

(a) FiliDcris(T ) is a direct summand of Dcris(T );

(b) ϕ(Fili Dcris(T )) ⊂ p
iDcris(T );

(c) Dcris(T ) =
∑

i p
−iϕ(FiliDcris(T )).

The Hodge–Tate weights of T are 0 and k − 1, so Fil0 Dcris(T ) is of rank 1, say
Fil0 Dcris(T ) = O · v1 and (b) says that v2 := ϕ(v1) ∈ Dcris(T ). Furthermore, (a)
tells us that there exists some v

′ ∈ Dcris(T ) such that

Dcris(T ) = O · v1 ⊕O · v
′.

By (c), we have

Dcris(T ) = O · ϕ(v1) + pk−1ϕ(Dcris(T )).

Combing the last two equations gives

(3.1) Dcris(T ) = O · ϕ(v1)⊕O · p
k−1ϕ(v′).

Let D be the O-lattice generated by v1 and v2. Note that (3.1) implies that

(3.2) v
′ ∈ D +O · pk−1ϕ(v′).

As v2 = ϕ(v1) and

ϕ2 −
ap
pk−1

ϕ+
ε(p)

pk−1
= 0

on Dcris(T ), we have pk−1ϕ(v2) = apv2 − ε(p)v1. In particular, this implies that
pk−1ϕ(D) ⊂ D. Hence, we may iterate the inclusion (3.2) to deduce that

v
′ ∈ D +O · (pk−1ϕ)n(v′)

for all n ≥ 0. However, as f is non-ordinary at p, pk−1ϕ is an O-operator on
Dcris(T ) with strictly positive slope. This implies that (pk−1ϕ)n → 0 as n → ∞,
which forces that v′ ∈ D. Hence, D = Dcris(T ) as required. �
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We fix an O-basis v1, v2 of Dcris(T ), as given by Lemma 3.1. Since Dcris(T ) =
N(T )/πN(T ), this basis can be lifted to a basis n1, n2 of N(T ) as an A+

Qp
-module.

There is a change of basis matrix M ∈M2×2(B
+
rig,Qp

) such that

(3.3)
(

n1 n2

)

=
(

v1 v2

)

M

and M ≡ I2 mod π, where I2 is the 2 × 2 identity matrix. We write vi = vi ·
tk−j−1e−k+j+1, ni = ni ·π

k−j−1e−k+j+1, vf,i = vi ·t
k−1e1−k and nf,i = ni ·π

k−1e1−k
for the corresponding bases of Dcris(T ), N(T ), Dcris(Tf ) and N(Tf) respectively.
Here er denotes a basis of the Tate motive O(χr) for r ∈ Z. By [Ber04, proof of
Proposition V.2.3] and [Lei15, Proposition 4.2], we may choose our bases so that

(3.4) M ≡ I2 mod πk−1

and that the matrices of ϕ with respect to v1,f , v2,f and n1,f , n2,f are given by
(

0 −ε(p)
pk−1 ap

)

and

(

0 −ε(p)
(δq)k−1 ap

)

respectively, where δ = p/(q − πp−1) ∈ (A+
Qp

)×. Then, the matrices of ϕ with

respect to v1, v2 and n1, n2 are given by

A =

(

0 − ε(p)
pk−1

1
ap
pk−1

)

and P =

(

0 − ε(p)
qk−1

δk−1 ap
qk−1

)

.

Definition 3.2. We define the logarithmic matrix Mlog (with respect to the chosen
bases) to be M

−1 ((1 + π)Aϕ(M)).

Theorem 3.3. Let n1, n2 be the basis of N(T ) chosen above. Then, (1+π)ϕ(n1), (1+
π)ϕ(n2) form a Λ-basis of (ϕ∗N(T ))ψ=0.

Proof. Let γ ∈ Γ be a topological generator. Then, (3.3) tells us that
(

γ · n1 γ · n2
)

=
(

v1 v2

)

γ(M).

This gives the equation
(

γ · n1 γ · n2
)

=
(

n1 n2

)

M−1 · γ(M).

Hence, for both i = 1, 2, we have

(1− γ)ni ∈ π
k−1N(T )

thanks to (3.4). As we assume that k ≥ 3, we have in particular

(1 − γ)ni ∈ π
2N(T ),

which is the condition required in Theorem 2.52. Therefore, our result follows. �

Recall from [LLZ10, Remark 3.4] that for all z ∈ N(T )ψ=1, we have (1 − ϕ)z ∈
(ϕ∗N(T ))ψ=0. The latter is free of rank 2 over Λ, with basis (1 + π)ϕ(n1), (1 +
π)ϕ(n2) as given by Theorem 3.3. This allows us to define the Coleman maps
(again, with respect to our chosen bases) as follows.

2This is the only place where we use the assumption that k ≥ 3.
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Definition 3.4. For i ∈ {1, 2}, we define the Λ-homomorphisms Coli : N(T )
ψ=1 →

Λ given by the relation

(1 − ϕ)z =

2
∑

i=1

Coli(z) · (1 + π)ϕ(ni) =
(

v1 v2

)

·Mlog ·

(

Col1(z)
Col2(z)

)

.

Let h1T : N(T )ψ=1 → H1
Iw(Qp(µp∞), T ) be the Λ-isomorphism given by Theo-

rem 2.6. By an abuse of notation, we shall write Col1,Col2 for the compositions
Col1 ◦ (h

1
T )

−1 and Col2 ◦ (h
1
T )

−1 as well.

3.2. A finite projection of the Coleman maps.

Definition 3.5. For each n ≥ 1, we define Hn = ϕn−1(P−1) · · ·ϕ(P−1) and Hn =
M

−1 ((1 + π)Hn).

Remark 3.6. Note that Hn ∈ A+
Qp

, and Hn ∈ Λ; and H1 = H1 = 1.

Lemma 3.7. We have the congruence

Mlog ≡ A
n ·Hn mod ω̃n−1,k−2(X)H.

Proof. From (3.3), we have the relation

MP = Aϕ(M),

which we may rewrite as M = Aϕ(M)P−1. On iteration, we have

M = An−1ϕn−1(M)ϕn−2(P−1) · · ·ϕ(P−1)P−1.

By (3.4), we have ϕn−1(M) = 1 mod ϕn−1(πk−1), so this implies that

M ≡ An−1ϕn−2(P−1) · · ·ϕ(P−1)P−1 mod ϕn−1(πk−1).

This implies that

ϕ(M) ≡ An−1 ·Hn mod ϕn(πk−1).

Hence the result by (2.2). �

Lemma 3.8. For all n ≥ 1 and z ∈ N(T )ψ=1, (1⊗ ϕ−n) ◦ (1 − ϕ)z is congruent
to an element in Λn,k−2 ⊗ Dcris(T ) modulo ω̃n−1,k−2(X)H⊗ Dcris(T ).

Proof. By Lemma 3.7 and the equation in Definition 3.4, we have the congruence

(1 − ϕ)z ≡
(

v1 v2

)

· An ·Hn ·

(

Col1(z)
Col2(z)

)

mod ω̃n−1,k−2(X)H⊗ Dcris(T ).

If we apply (1⊗ ϕ−n) to both sides, we obtain

(

1⊗ ϕ−n
)

◦ (1−ϕ)z ≡
(

v1 v2

)

·Hn ·

(

Col1(z)
Col2(z)

)

mod ω̃n−1,k−2(X)H⊗Dcris(T ).

As Hn, Col1(z) and Col2(z) are all defined over Λ, we see that (1⊗ ϕ−n)◦ (1−ϕ)z
is indeed congruent to an element in Λn,p−2 ⊗ Dcris(T ). �

This allows us to give the following definition.

Definition 3.9. For n ≥ 1, define

Coln : H1
Iw(Qp(µp∞), T )→Λn,k−2 ⊗ Dcris(T )

z 7→
(

1⊗ ϕ−n
)

◦ (1− ϕ) ◦ (h1T )
−1(z) mod ω̃n−1,k−2(X).
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We recall that h1T is an isomorphism by Theorem 2.6. Therefore, Lemma 3.8
tells us that the map Coln is well-defined.

For an integer m, we define the twisting map

Twm := Tw−m ⊗ t−mem : H⊗ Dcris(T )→ H⊗ Dcris(T (m)).

Consider the twisting map Twk−j−1 : σ 7→ χk−j−1(σ)σ on Λ. Since k−j−1 ≤ k−1,

Twk−j−1(ω̃n−1,k−2(X)) is divisible by ωn−1(X). Hence, Twk−j−1 induces a natural
map Λn,k−2 → Λn. Therefore, we may define

ColT,n : H1
Iw(Qp(µp∞), T )→Λn ⊗ Dcris(T )

z 7→Tw−k+j+1 ◦ Coln(z · ek−j−1) mod ωn−1(X),

on identifying H1
Iw(Qp(µp∞), T ) · ek−j−1 with H1

Iw(Qp(µp∞), T ).

Lemma 3.10. The map ColT,n defines a Λn-homomorphism from H1(Qp(µpn), T )
to Λn ⊗ Dcris(T ).

Proof. We note that ColT,n is a Λ-homomorphism since both Coln and x 7→ Twk−j−1◦

(x · ek−j−1) are Λ-linear. The fact that ColT,n factors through H1(Qp(µpn), T )

follows from the equation H1
Iw(Qp(µp∞), T )Γn = H1(Qp(µpn), T ) (because of the

vanishing of H2
Iw(Qp(µp∞), T )). �

We have the explicit formula

(3.5) ColT,n(z) ≡
(

v1 v2
)

· Twk−1−j

(

Hn ·

(

Col1(z · ek−1−j)
Col2(z · ek−1−j)

))

mod ωn−1(X)Λ⊗ Dcris(T ),

by Lemma 3.7 and the expansion of 1− ϕ as given in Definition 3.4.
We now modify the definition of ColT,n to define a map that lands in Λn. For

any u ∈ Z×
p , we define ColT,n,u : H1

Iw(Qp(µp∞), T )→ Λn to be the composition of
ColT,n and the linear functional on Λn⊗Dcris(T )→ Λn given by a·v1+b·v2 7→ a+ub.
More explicitly, (3.5) tells us that ColT,n,u is given by
(3.6)

ColT,n,u(z) ≡
(

1 u
)

· Twk−1−j

(

Hn ·

(

Col1(z · ek−1−j)
Col2(z · ek−1−j)

))

mod ωn−1(X)Λ.

Note that Lemma 3.10 tells us that ColT,n,u is Λn-linear.

3.3. Analysis of Bloch–Kato subgroups via Coleman maps. If F is a finite
extension of Qp, we write H

1
f (F, T ) ⊂ H

1(F, T ) for the usual Bloch–Kato subgroup

from [BK90] and H1
/f (F, T ) denotes the quotient H1(F, T )/H1

f (F, T ). The goal of

this section is to study H1
/f (Qp(µpn), T ) via the map ColT,n,u.

Let T ∗ be the O-linear dual of T . For each n ≥ 1, we define the pairing

〈∼,∼〉n : H1(Qp(µpn), T )×H
1(Qp(µpn), T

∗(1))→Λn

(x, y) 7→
∑

σ∈Γ/Γn

[x, yσ]nσ,

where [∼,∼]n is the standard cup-product pairing

H1(Qp(µpn), T )×H
1(Qp(µpn), T

∗(1))→ O.
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On taking inverse limits, this induces a pairing

〈∼,∼〉 : H1
Iw(Qp(µp∞), T )×H1

Iw(Qp(µp∞), T ∗(1))→ Λ.

It is semi-linear over Λ with respect to the involution on Λ (which we denote by ι̃)
in the following sense:

〈σx, y〉 = σ〈x, y〉, 〈x, σy〉 = σι̃〈x, y〉

We may extend the pairing 〈∼,∼〉 by semi-linearity to
(

H⊗O H1
Iw(Qp(µp∞), T )

)

×
(

H⊗O H1
Iw(Qp(µp∞), T ∗(1))

)

→ H,

which is again denoted by 〈∼,∼〉 by an abuse of notation.
Recall that in [PR94], Perrin-Riou defined the big exponential map

ΩT ∗(1),1 : (B+
rig,Qp

)ψ=0 ⊗ Dcris(T
∗(1))→ H⊗H1

Iw(Qp(µp∞), T ∗(1)).

By [LLZ11, proof of Proposition 4.8], for all z ∈ H1
Iw(Qp(µp∞), T ),

(M−1 ⊗ 1)(1− ϕ)z =
2
∑

i=1

〈z,ΩT ∗(1),1((1 + π)⊗ v
′
i)〉vi

where v
′
1, v

′
2 is the dual basis of Dcris(T

∗(1)) to v1, v2 with respect to the natural
pairing

[∼,∼] : Dcris(T )× Dcris(T
∗(1))→ O.

Therefore,

Coln(z) =
2
∑

i=1

〈z,ΩT ∗(1),1((1 + π)⊗ v
′
i)〉ϕ

−n(vi) mod ω̃n−1,k−2

=
2
∑

i=1

〈z,ΩT ∗(1),1((1 + π)⊗ (pϕ)n(v′i))〉vi mod ω̃n−1,k−2

as the dual of ϕ−1 with respect to [∼,∼] is pϕ. This description allows us to make
the following choice of u to describe the kernel of ColT,n,u.

Proposition 3.11. There exists u ∈ Z×
p such that ker(ColT,n,u) = H1

f (Qp(µpn), T ).

Proof. Write v′ = (v′1+uv
′
2)·t

−k+j+1ek−j−1 ∈ Dcris(T
∗(1)) and let z ∈ H1(Qp(µpn), T ).

If θ is a Dirichlet character of conductor pm > 1, we have the interpolation formula
of Perrin-Riou [PR94, §3.2.3] (see also [Lei11, §3.2])

(3.7)
θ
(

ColT,n,u(z)
)

(−1)k−j−1(k − j − 1)!
=

∑

σ∈Γ/Γm

θ−1(σ)

τ(θ)
[exp∗T,m(zσ), pnϕn−m(v′)],

where exp∗T,m : H1(Qp(µpm), T )→ Qp(µpm)⊗ Fil0 Dcris(T ) is the Bloch–Kato dual

exponential map and τ(θ) is the Gauss sum of θ. There is a similar formula when θ

is the trivial character on replacing ϕ−m by
(

1− ϕ−1

p

)

(1−ϕ)−1. We note that here

exp∗T,m(z) is the shorthand for exp∗T,m ◦ corn/m(z), where corn/m denotes the the

corestriction map H1(Qp(µpn), T ) → H1(Q(µpm), T ). Recall that exp∗T,n factors

through H1
/f (Qp(µpn), T ). Therefore, we see that H1

f (Qp(µpn), T ) is contained in

ker(ColT,n,u).

We choose u so that ϕn−m(v′), 1 ≤ m ≤ n and ϕn
(

1− ϕ−1

p

)

(1 − ϕ)−1(v′) are

not contained inside Fil0 Dcris(V ). We note that such u exists since all maps are
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surjective on Dcris(V ) and Fil0 Dcris(V ) is of dimension one. Let v′′ be any O-basis

of Dcris(T )/Fil
0
Dcris(T ). In particular, for each m ≥ 1, there exists a non-zero

constant cm ∈ O such that ϕn−m(v′) ≡ cmv
′′ and ϕn

(

1− ϕ−1

p

)

(1 − ϕ)−1(v′) ≡

c0v
′′ modulo Fil0 Dcris(T ).
Suppose that ColT,n,u(z) = 0. From (3.7), we deduce that

∑

σ∈Γ/Γn

θ−1(σ)[exp∗
T,n(z

σ), v′′] = 0

for all characters θ on Γ/Γn. By the independence of the characters, this implies
that [exp∗T,n(z

σ), v′′] = 0 for all σ. In particular, z is contained in the kernel of

exp∗T,n, which is H1
f (Qp(µpn), T ). �

Corollary 3.12. For any u ∈ Z×
p that satisfies the condtion of Proposition 3.11,

ColT,n,u induces an injection of Λn-modules

H1
/f (Qp(µpn), T ) →֒ Λn,

whose cokernel is finite.

Proof. The injectivity is given by Proposition 3.11. By [BK90, Theorem 4.1],
H1
f (Qp(µpn), V ) is isomorphic to Dcris(V )/Fil0 Dcris(V ) ⊗Zp Qp(µpn). Hence, by

duality H1
/f (Qp(µpn), V ) is isomorphic to Fil0 Dcris(V )⊗Zp Qp(µpn). Therefore, the

finiteness of the cokernel follows from the fact that the two sides have the same
Zp-rank. �

We remark that our map ColT,n,u does depend on the choice of u. But it does
not affect our calculations later, see the proof of Proposition 4.11 below.

4. Results on p-adic valuations

4.1. Review of Kobayashi rank. Given an O-module N , we shall write len(N)
for the O-length of N . We fix a family of primitive pn-th root of unity ζpn and
write ǫn = ζpn − 1.

Definition 4.1. Let N = (Nn) be an inverse system of finitely generated O-modules
with transition maps πn : Nn → Nn−1. If πn has finite kernel and cokernel, the
Kobayashi rank ∇Nn is defined as

∇Nn := len(kerπn)− len(cokerπn) + rankONn−1.

If L is an O[[X ]]-module, we define ∇nL to be ∇ (L/ωn(X)L), with the connecting
map given by the natural projection L/ωn(X)L → L/ωn−1(X)L, if its kernel and
cokernel are finite.

Lemma 4.2. Let F ∈ O[[X ]] be a non-zero element. Let N be the inverse limit
defined by Nn = O[[X ]]/(F, ωn), where the the connecting maps are the natural
projections.

(a) Suppose that F (ǫn) 6= 0, then ∇Nn is defined and is equal to ordǫn F (ǫn).
(b) When n is sufficiently large, then ∇Nn is defined. Furthermore,

∇Nn = e× ordǫn F (ǫn) = eλ(F ) + (pn − pn−1)µ(F ),

where e is the ramification index of E/Qp and λ(F ), µ(F ) are the Iwasawa
invariants as defined in §2.3 above.
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(c) If L is a finitely generated torsion O[[X ]]-module, then ∇nL is defined for
n≫ 0 and its value is given by

λ(L) + (pn − pn−1)µ(L),

where λ(L) and µ(L) are the λ- and µ-invariants of a generator of the
characteristic ideal of L.

Proof. This follows from the same proof as [Kob03, Lemma 10.5]. �

We write pr for the size of the residue field of E. The following lemma allows
us to relate the growth in the size of a tower of finite O-modules and Kobayashi
ranks.

Lemma 4.3. Suppose that N = (Nn) is an inverse limit of finite O-modules such
that |Nn| = psn for some integer sn ∈ rZ for all n ≥ 1. Then, r∇Nn = sn − sn−1.

Proof. Since Nn−1 is finite, we have

∇Nn = len(kerπn)− len(cokerπn)

= (len(Nn)− len(Im πn))− (len(Nn−1)− len(Imπn))

= len(Nn)− len(Nn−1).

In general, if L is a finite O-module, then |L| = prlen(L). Hence the result. �

Finally, we prove a lemma on p-adic valuations that will be needed later.

Lemma 4.4. Let F ∈ O[[X ]] be non-zero. Then for all sufficiently large integers n
we have

ordp F (ǫn) = ordpM(F )(ǫn+1).

Moreover, for n≫ 0 we also have

ordp F (ǫn) = ordpTw(F )(ǫn).

Proof. We may write M(F ) = (1 + π)ϕ(G) for some G ∈ A+
Qp

. By Proposition 2.2,

F and G have the same Iwasawa invariants, so ordp F (ǫn) = ordpG(ǫn) for n≫ 0.
This implies the first part of the lemma since (1 + π)ϕ(G)(ǫn+1) = ζpn+1G(ǫn).
The second part of the lemma follows from the fact that Tw preserves µ- and
λ-invariants. �

4.2. Calculations on evaluation matrices. From now on, we shall write v =
ordp(ap), where ap is the p-th Fourier coefficient of f . Following [Spr13, §4.1], given

any 2×2 matrix φ =

(

a b
c d

)

defined overQp, we write ordp(φ) =

(

ordp(a) ordp(b)
ordp(c) ordp(d)

)

.

Lemma 4.5. Let 1 ≤ i ≤ n− 2, then

ordp
(

ϕi(P−1)(ǫn)
)

=

(

v 0
k−1

pn−i−1 ∞

)

.

Proof. Recall that

P =

(

0 − ε(p)
qk−1

δk−1 ap
qk−1

)

,

so its inverse is given by

P−1 =

( ap
δk−1ε(p)

1
δk−1

− q
k−1

ε(p) 0

)

.
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Therefore, our result follows from the fact that δ ∈ Z×
p , ε(p) ∈ O

× and ϕi(q) is

equal to the pi+1-cyclotomic polynomial, so ϕi(q)(ǫn) =
ζpn−i−1−1

ζpn−i−1 whose p-adic

valuation is 1/pn−i−1. �

Proposition 4.6. Assume that 2v > k−1
p . For all n ≥ 1,

ordp (Hn(ǫn)) =























(

v +
∑

n−1

2

i=1
k−1
p2i−1

∑

n−1

2

i=1
k−1
p2i

∞ ∞

)

if n is odd.

(

∑
n
2

i=1
k−1
p2i−1 v +

∑
n
2
−1

i=1
k−1
p2i

∞ ∞

)

if n is even.

Proof. By Lemma 4.5, we have

ordp (Hn(ǫn)) =

(

v 0
∞ ∞

)(

v 0
k−1
p ∞

)

· · ·

(

v 0
k−1
pn−1 ∞

)

.

In particular,

(4.1) ordp (Hn+1(ǫn+1)) = ordp (Hn(ǫn))

(

v 0
k−1
pn ∞

)

.

Therefore,

ordp(H1(ǫ1)) =

(

v 0
∞ ∞

)

and ordp(H2(ǫ2)) =

(

k−1
p v

∞ ∞

)

since 2v > k−1
p by our assumption.

Suppose that

ordp(H2ℓ−1(ǫ2ℓ−1)) =

(

v +
∑ℓ−1
i=1

k−1
p2i

∑ℓ−1
i=1

k−1
p2i−1

∞ ∞

)

,

ordp(H2ℓ(ǫ2ℓ)) =

(

∑ℓ
i=1

k−1
p2i−1 v +

∑ℓ−1
i=1

k−1
p2i

∞ ∞

)

for some integer ℓ ≥ 1. By (4.1), we have first of all

ordp(H2ℓ+1(ǫ2ℓ+1)) =

(

v +
∑ℓ
i=1

k−1
p2i

∑ℓ
i=1

k−1
p2i−1

∞ ∞

)

because
∑ℓ
i=1

k−1
p2i <

∑ℓ
i=1

k−1
p2i−1 . On applying (4.1) again, we have

ordp(H2ℓ+2(ǫ2ℓ+2)) =

(

∑ℓ+1
i=1

k−1
p2i−1 v +

∑ℓ
i=1

k−1
p2i

∞ ∞

)

thanks to our assumption that 2v > k−1
p , which implies that

2v +

ℓ
∑

i=1

k − 1

p2i
>

ℓ+1
∑

i=1

k − 1

p2i−1
.

Therefore, our result follows from induction. �

For i = 1, 2, we fix two elements F1, F2 ∈ O[[X ]] with µi and λi being its µ- and
λ-invariants.
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Corollary 4.7. Under the condition that 2v > k−1
p , for n≫ 0 we have the formulae

ordǫn ((Hn+1)1,1 · F1(ǫn)) =







λ1 + (pn − pn−1)
(

µ1

e + v +
∑

n−1

2

i=1
k−1
p2i−1

)

n odd,

λ1 + (pn − pn−1)
(

µ1

e +
∑

n
2

i=1
k−1
p2i−1

)

n even,

ordǫn ((Hn+1)1,2 · F2(ǫn)) =







λ2 + (pn − pn−1)
(

µ2

e +
∑

n−1

2

i=1
k−1
p2i

)

n odd,

λ2 + (pn − pn−1)
(

µ2

e + v +
∑

n
2
−1

i=1
k−1
p2i

)

n even.

Proof. By Lemma 4.4, ordpHn+1(ǫn) = ordpHn(ǫn). Hence, our result follows
from combining Proposition 4.6 with Lemma 4.2(b). �

Corollary 4.8. Suppose that 2v > k−1
p . For n≫ 0 and n odd, we have

ordǫn ((Hn+1)1,1 · F1(ǫn)) < ordǫn ((Hn+1)1,2 · F2(ǫn)) if
µ1

e
+ v +

k − 1

p+ 1
≤
µ2

e

ordǫn ((Hn+1)1,1 · F1(ǫn)) > ordǫn ((Hn+1)1,2 · F2)(ǫn)) if
µ1

e
+ v +

k − 1

p+ 1
>
µ2

e
.

For n≫ 0 and n even, we have

ordǫn ((Hn+1)1,1 · F1(ǫn)) < ordǫn ((Hn+1)1,2 · F2(ǫn)) if
µ1

e
<
µ2

e
+ v +

k − 1

p+ 1

ordǫn ((Hn+1)1,1 · F1(ǫn)) > ordǫn ((Hn+1)1,2 · F2(ǫn)) if
µ1

e
≥
µ2

e
+ v +

k − 1

p+ 1
.

Proof. Note that

n−1

2
∑

i=1

k − 1

p2i−1
−

n−1

2
∑

i=1

k − 1

p2i
> 0 and

n
2
∑

i=1

k − 1

p2i−1
−

n
2
−1
∑

i=1

k − 1

p2i
> 0

and that both sequences are strictly increasing and tend to k−1
p+1 as n→∞. Hence

the result. �

4.3. Some global Iwasawa modules. For n ≥ 0 let us write Kn = Q(µpn).

Definition 4.9 (cf. [Kat04, §12.2]). For m ≥ 0, we define

Hm(T ) := lim
←−
n

Hm
ét

(

Spec OKn [1/p], j∗T
)

,

where the inverse limit is respect to the corestriction maps, and j is the inclusion
map Spec Kn →֒ Spec OKn [1/p].

By [Kat04, 12.4(3)], the modules Hm(T ) are finitely-generated over Λ, and are
zero unless m ∈ {1, 2}; and H1(T ) is free of rank 1 over Λ. We fix an element
z ∈ H1(T ) so that H1(T ) = Λ · z. Tensoring with the basis vector ek−1−j of
O(k − 1− j) gives a bijection

H1(T ) ∼= H1(T ),

and (in a slight abuse of notation) we shall write Coli(z) for the image of z · ek−1−j

under Coli composed with the localization map H1(T )→ H1
Iw(Qp(µp∞), T ).
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Definition 4.10. For i = 1, 2 and η a Dirichlet character modulo p. Let µηi be the
µ-invariant of Coli(z)

η. For each n ≥ 1, we define an integer τ(n, η) ∈ {1, 2} by
{

1 if
µη
1

e + v + k−1
p+1 ≤

µη
2

e and n odd or
µη
1

e <
µη
2

e + v + k−1
p+1 and n even,

2 otherwise.

Furthermore, we write q∗n = ordǫn
(

(Hn+1)1,τ(n,η)(ǫn)
)

.

Note in particular that q∗n is a sum of some powers of p, together with possibly
v, as given by Proposition 4.6. Furthermore, Corollary 4.8 tells us that

(4.2) ordǫn

(

2
∑

i=1

(Hn+1)1,i · Coli(z)
η(ǫn)

)

= q∗n + ordǫn Colτ(n,η)(z)
η(ǫn).

4.4. Analysis of some local Iwasawa modules. For n ≥ 1, we define

Xloc(Q(µpn)) = coker
(

H1(T )Γn → H1
/f (Qp(µpn), T )

)

,

which gives an inverse limit with the connecting maps given by the corestriction
maps. We would like to study ∇Xloc(Q(µpn+1))η for a fixed Dirichlet character η
modulo p.

Proposition 4.11. Suppose that Col1(z)
η and Col2(z)

η are non-zero. For n≫ 0,
∇Xloc(Q(µpn+1))η is defined, and its value is bounded above by

∇nX
η
loc ≤ eq

∗
n +∇n(O[[X ]]/Colτ(n,η)(z)

η).

Proof. Recall from Corollary 3.12, we have the injection

ColT,n+1,u : H1
/f (Qp(µpn+1), T ) →֒ Λn+1.

On taking Γn-coinvariants, the same map (not ColT,n,u) induces an injection

ColT,n+1,u : H1
/f (Qp(µpn), T ) →֒ Λn,

which admits the same description as (3.6). We write cokern+1 and cokern for the
cokernels of these two maps respectively. Then, we have the commutative diagram

0 −−−−→ H1
/f (Qp(µpn+1), T )

ColT,n+1,u
−−−−−−−→ Λn+1 −−−−→ cokern+1 −−−−→ 0





y





y

π





y

0 −−−−→ H1
/f (Qp(µpn), T )

ColT,n+1,u
−−−−−−−→ Λn −−−−→ cokern −−−−→ 0,

where the vertical maps are all natural projections. This gives

0 −−−−→ Xloc(Qp(µpn+1)) −−−−→ Λn+1/(ColT,n+1,u(z)) −−−−→ cokern+1 −−−−→ 0




y





y





y

π

0 −−−−→ Xloc(Qp(µpn)) −−−−→ Λn/(ColT,n+1,u(z)) −−−−→ cokern −−−−→ 0.

Recall from Corollary 3.12 that cokern+1 is finite (in particular, cokern too). Hence,
on taking η-isotypic components, ∇ cokerηn+1 (with respect to π) is defined. In fact,
it is given by len(kerπη), which is ≥ 0.

Furthermore, recall that we assume Coli(z)
η 6= 0 for i = 1, 2. Proposition 4.6 tells

us that the second row of Hn+1(ǫn) is 0. So, the formulae (3.6) and (4.2) imply



ASYMPTOTIC GROWTH OF SHA FOR MODULAR FORMS 17

that ColT,n+1,u(z)(ǫn) 6= 0 when n ≫ 0. Hence, ∇
(

Λn+1/(ColT,n+1,u(z))
)η

=

∇n
(

O[[X ]]/ColT,n+1,u(z)
η
)

is defined. Its value is given by

eq∗n +∇n(O[[X ]]/Colτ(n,η)(z)
η),

thanks to Lemma 4.2.
Therefore, the fact that the Kobayashi rank ∇ respects short exact sequences

([Kob03, Lemma 10.4]) tells us that ∇Xloc(Qp(µpn+1))η is defined and its value is
equal to

∇n
(

O[[X ]]/ColT,n+1,u(z)
η
)

− len(kerπη).

Hence the result. �

This can be considered as a weakened version of the modesty proposition [Spr13,
Proposition 3.10]. In the k = 2 case, equality holds because the projection π turns
out to be an injection (see [Kob03, Lemma 10.7] and [Spr13, Lemma 4.12]).

5. Selmer groups and Shafarevich–Tate groups

5.1. Signed Selmer groups. Let T∨ be the Pontryagin dual of T . As in [LLZ10],
the Coleman maps allow us to define the Selmer groups

Seli(T
∨/Q(µp∞)) = ker

(

Sel(T∨/Q(µp∞))→
H1(Qp(µp∞), T∨)

ker(Coli)⊥

)

for i = 1, 2. Here Sel(T∨/Q(µp∞)) is the Bloch–Kato Selmer group from [BK90].
We shall write X (Q(µpn)) = Sel(T∨/Q(µpn))

∨ for n ≥ 1.
Let Xi be the Pontryagin dual of Seli(T

∨/Q(µp∞)). We subsequently assume
that for any Dirichlet character η that factors through Gal(Q(µp)/Q), both X η1 and
X η2 are O[[X ]]-torsion. Note that this is the case if either k ≥ 3 or ap = 0 by [LLZ10,
Theorem 6.5]. In particular, ∇nX

η
i are defined for n≫ 0 by Lemma 4.2(c).

We have the Poitou-Tate exact sequence (see for example [LLZ10, (61)])

(5.1) H1(T )→ ImColi → Xi → X0 → 0,

where X0 is H2(T ) and can be realized as the Pontryagin dual of the zero Selmer
group Sel0(T

∨/Q(µp∞)), which is defined to be

ker

(

H1(Q(µp∞), T∨)→
∏

v

H1(Q(µp∞)v, T
∨)

)

,

where v runs through all places of Q(µp∞). Note that X0 is a torsion Λ-module
by [Kat04, Theorem 12.4] and hence ∇nX

η
0 is defined for n≫ 0 by Lemma 4.2(c).

Note that (5.1) gives the short exact sequence

0→
ImColi
(Coli(z))

→ Xi → X0 → 0.

Hence, our assumption that X ηi be torsion implies that Coli(z)
η 6= 0. In particular,

Proposition 4.11 applies.
Recall from [LLZ11, §5] that ImColηi is pseudo-isomorphic to

∏

m(X −χ(γ)m+
1)O[[X ]], where m runs through some subset of {0, 1, . . . , k− 2} depending on i and
η. Let us write κi(η) for the cardinality of this subset and write κ(n, η) = κτ(n,η)(η).
We have the following generalization of [Spr13, Proposition 3.11].
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Proposition 5.1. For i = 1, 2, η any Dirichlet character modulo p and n≫ 0,

∇nX
η
i = ∇n(Λ/Coli(z))

η +∇nX
η
0 − eκi(η).

Proof. The following sequence

0→

(

Im(Coli)

Coli(z)

)η

→

(

Λ

Coli(z)

)η

→
O[[X ]]

∏

m(X − χ(γ)m + 1)O[[X ]]
→ G→ 0

is exact, where G is some finite subgroup. In particular, ∇nG = 0 for n ≫ 0. We
may work out the Kobayashi rank of the second last term using Lemma 4.2(b).
Recall from [Kob03, Lemma 10.4] that Kobayashi ranks respect exact sequences,
therefore,

∇n

(

Im(Coli)

Coli(z)

)η

+ eκi(η) = ∇n

(

Λ

Coli(z)

)η

.

From (5.1), we have furthermore the following exact sequence

0→
Im(Coli)

Coli(z)
→ Xi → X0 → 0,

which implies that

∇n

(

Im(Coli)

Coli(z)

)η

+∇nX
η
0 = ∇nX

η
i .

Combing the two equations gives our result. �

Remark 5.2. Let µη0 be the µ-invariant of X η0 . For i = 1, 2, let µ̃ηi be the µ-
invariant of X ηi . Then, Proposition 5.1 implies that µ̃ηi = µηi − µ

η
0 . In particular,

µη1 −µ
η
2 = µ̃η1 − µ̃

η
2. Therefore, we may replace µη1 and µη2 by µ̃η1 and µ̃η2 respectively

in Definition 4.10. In other words, we may define τ(n, η) using the µ-invariants of
the dual Selmer groups Xi, instead of Coli(z).

Corollary 5.3. For n ≫ 0, ∇X (Q(µpn+1))η is defined. Furthermore, its value is
bounded above by

eq∗n +∇nX
η
τ(n,η) + eκ(n, η).

Proof. Let Y(Q(µpn)) = coker(H1(Gn,S , T )→ H1
/f (Qp(µpn), T )) and X0(Q(µpn)) =

Sel0(T
∨/Q(µpn))

∨. As a consequence of the Poitou–Tate exact sequence, we have
the short exact sequence

0→ Y(Q(µpn))→ X (Q(µpn))→ X0(Q(µpn))→ 0

(c.f. [Kob03, (10.35)]). But Proposition 10.6 in op. cit. says that

• ∇Y(Q(µpn+1))η is defined for n≫ 0 and is equal to ∇Xloc(Q(µpn+1))η;
• ∇X0(Q(µpn+1))η = ∇nX

η
0 .

Therefore,

∇X (Q(µpn+1))η = ∇Xloc(Q(µpn+1))η +∇nX
η
0

and our result follows from Propositions 4.11 and 5.1. �
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5.2. Bloch–Kato–Shafarevich–Tate groups. Let L be a number field. We re-
call that the Bloch–Kato–Shafarevich–Tate group of T∨ over L is defined to be

(5.2) X(L, T∨) =
Sel(T∨/L)

Sel(T∨/L)div
,

where (⋆)div denotes the maximal divisible subgroup of ⋆. (See e.g. [BK90, Re-
mark 5.15.2]). If f corresponds to an elliptic curve E and the p-primary part of the
classical Shafarevich–Tate group E is finite, then the two definitions of (p-primary)
Shafarevich–Tate groups agree.

Proposition 5.4. There exists integers nη0 , r
η
∞ ≥ 0 such that

corankOSel(T
∨/Q(µpn+1))η = rη∞

for all n ≥ nη0.

Proof. By Corollary 5.3, ∇X (Q(µpn+1))η is defined for n ≫ 0. In particular, the
kernel and cokernel of the connecting map

Sel(T∨/Q(µpn+1))∨ → Sel(T∨/Q(µpn))
∨

are finite for n ≫ 0. In particular, Sel(T∨/Q(µpn+1)) and Sel(T∨/Q(µpn)) must
have the same Zp-corank. �

This implies that Sel(T∨/Q(µpn+1))ηdiv
∼= (E/O)⊕r

η
∞ (as Zp-modules) for n≫ 0.

Combined this with (5.2), we obtain the following short exact sequence of Zp-
modules

0→ (E/O)⊕r
η
∞ → Sel(T∨/Q(µpn+1))η →X(Q(µpn+1), T∨)η → 0.

Therefore, on taking Pontryagin duals, we deduce that

∇X (Q(µpn+1))η = rη∞ +∇X(Q(µpn+1), T∨)η.

From Corollary 5.3, we deduce that

∇X(Q(µpn+1), T∨)η ≤ eq∗n +∇nX
η
τ(n,η) + eκ(n, η)− rη∞.

Therefore, we obtain the following theorem on applying Lemma 4.3.

Theorem 5.5. Let #X(Q(µpn), T
∨)η = ps

η
n . For n≫ 0,

sηn+1 − s
η
n ≤ r

(

eq∗n +∇nX
η
τ(n,η) + eκ(n, η)− rη∞

)

,

where r is the integer so that the residue field of E has cardinality pr.

Using Lemma 4.2, we may rewrite this formula as

sηn+1 − s
η
n ≤ d

(

q∗n + λτ(n,η) + (pn − pn−1)
µτ(n,η)

e
+ κ(n, η)−

rη∞
e

)

,

where d = [E : Qp].
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Appendix A. Growth of Tamagawa numbers over cyclotomic

extensions

We let T = Tf (j) and T = Tf(k− 1) be the representations studied in the main
part of the article. In particular, we assume all the previous hypotheses on T and
T are satisfied throughout. Furthermore, we shall assume that the eigenvalues of ϕ
on Dcris(T ) are not integral powers of p. For notational simplicity, we shall assume
that the coefficient field E is Qp throughout.

Recall the Perrin-Riou p-adic regulator

LT : H1
Iw(Qp(µp∞), T )→ H⊗ Dcris(T )

defined by M
−1 ◦ (1 − ϕ) ◦ (h1T )

−1, which is the map used to define the Coleman
maps in Definition 3.4. We have the following interpolation formula

Proposition A.1. Let n ≥ 1. For any z ∈ H1
Iw(Qp(µp∞), T ), i ≥ 0 and a Dirichlet

character δ of conductor pn, we have

LT (z)(χ
iδ) =

{

i!(1− ϕ)(1 − p−1ϕ−1)−1 (exp∗(z0,−i)) · t
−iei if n = 0,

i!pn

τ(δ)ϕ
n (exp∗(ẽδ · zn,−i)) · t

−iei otherwise,

where τ(δ) is the Gauss sum of δ, zn,−i is the projection of z in H1(Qp(µpn), T (−i))
and ẽδ is the element

∑

σ∈Gal(Qp(µpn )/Qp)
δ−1(σ)σ.

Proof. This is a slight reformulation of [LZ14, Theorem B.5] since we have the
equation

ϕ(t−iei) = p−i · t−iei.

�

Corollary A.2. Let z ∈ H1
Iw(Qp, T ). Then, LT (z)(χ

iδ) = 0 if and only if ẽδ ·
zn,−i ∈ ẽδ ·H

1
f (Qp(µpn), T (−i)).

Proof. This is because our assumption on the eigenvalues of ϕ implies that (1 −
ϕ)(1− p−1ϕ−1)−1 and ϕn are both invertible. �

We write K = Q(µpn) and ∆K = Gal(K/Q). For each character δ on ∆K , we
write pnδ for its conductor. Let Kp be the completion of K at the unique place

above p (which may be identified with Qp(µpn)). We fix a basis v for Fil0 Dcris(T )

and its dual v′ in Dcris(T
∗(1))/Fil0 Dcris(T

∗(1)). We have the definition of the
Tamagawa number as defined by Bloch–Kato [BK90]:

Tam(T/K) = [H1
f (Kp, T ) : OKp · v]Lp(T, 1),

where Lp(T, 1) is the Euler factor of the complex L-function Lp(T, 1) at p and we
identify OKvv with its image under the Bloch–Kato exponential map. We may
decompose the Tamagawa number into isotypic components, namely

Tam(T/K) =
∏

η

Tam(T/K)η,

where the product runs through all the Dirichlet characters modulo p and Tam(T/K)η

is given by

[H1
f (Kp, T )

η :
(

OKp · v
)η
]Lp(T (η), 1),

which we may identify with Tam(T (η)/K∆).
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Lemma A.3. Let dK be the discriminant of K. Then, we have the formula

Tam(T/K) = |dK |
−1
p [OKp · v : H1

/f (Kp, T )]Lp(T, 1),

where we identify H1
/f (Kp, T ) with its image under the Bloch–Kato dual exponential

map.

Proof. This follows from the commutative diagram
(

Kp ⊗ Fil0 Dcris(T )
)

×
(

Kp ⊗
Dcris(T

∗(1)
Fil0 Dcris(T∗(1))

)

−−−−→ Kp
x




exp∗





y

exp





y

TrKp/Qp

(

Qp ⊗H
1
/f (Kp, T )

)

×
(

Qp ⊗H
1
f (Kp, T

∗(1))
)

−−−−→ Qp.

�

Take z to be a Λ-generator of H1(T ) as in the main part of the article. This gives
a Λ-basis z · ek−j−1 of H1(T ). We shall write LT (z) for Tw−k+j+1 ◦LT (z · ek−j−1)
and

ṽK =
⊗

δ∈∆̂K

(

ϕnδ (1 − δ(p)ϕ)(1 − p−1δ̄(p)ϕ−1)−1v
)

.

Theorem A.4. Suppose that LT (z)(δ) 6= 0 for all δ ∈ ∆̂K . Then,
⊗

δ∈∆̂K

LT (z)(δ) ∼p
Tam(T/K)

Lp(T, 1)

∏

δ

[

eδH
1
/f (Kp, T ) : eδzK

]

ṽK .

Here, we write a ∼p b if a and b have the same p-adic valuation.

Proof. Let zK be the projection of z in H1(Kp, T ). For each character of ∆K ,
we write eδ =

∑

σ∈∆K
δ−1(σ)σ and let Kδ for the subfield of K defined by the

kernel of δ. Our assumption means that eδ · zK /∈ eδ ·H
1
f (Qp(µpn), T ) for all δ by

Corollary A.2. Note that
∑

eδ = [K : Q]. On applying Proposition A.1, we deduce
that

⊗

δ∈∆̂K

LT (z)(δ) ∼p
∏

δ

[

eδ
[K : Q]

O[∆K ]v : eδO[∆K ]
pnδ

τ(δ)
exp∗(zK)

]

ṽK

∼p
∏

δ

pnδ

[

eδO[∆K ]
τ(δ)

[K : Q]
: eδO[∆K ]

]

× [eδO[∆K ]v : eδO[∆K ] exp∗(zK)] ṽK .

Note that the factor (k − j − 1)! does not appear because of the Fontaine–Laffaille
condition. Now, [Gil79, Proposition 1] tells us that
[

eδO[∆K ]
τ(δ)

[K : Q]
: eδO[∆K ]

]

= [K : Kδ]

[

eδO[∆K ]
τ(δ)

[Kδ : Q]
: eδO[∆K ]

]

= 1.

Therefore, we deduce from the conductor-discriminant formula that
⊗

δ∈∆̂K

LT (z)(δ) ∼p |dK |
−1
p

∏

δ

[eδO[∆K ]v : eδO[∆K ] exp∗(zK)] ṽK .

Combining this with Lemma A.3 gives us the result. �

Remark A.5. There is in fact a similar formula without assuming the non-vanishing
of Iarith(T )(δ). It would involve Perrin-Riou’s p-adic height. See [PR03, p.180].



22 A. LEI, D. LOEFFLER, AND S.L. ZERBES

Corollary A.6. Let η be a Dirichlet character modulo p. Under the conditions of
Theorem A.4, we have

∇nX
η
loc + bηn+1 − b

η
n = q∗n +∇n(Zp[[X ]]/Colτ(n,η)(z)

η) + pn−1(p− 1)n(k − j − 1)

for n≫ 0, where τ(n, η) is as defined in Definition 4.10 and bηi denotes the p-adic
valuation of Tam(T/Q(µpi)

η) for i = n, n+ 1.

Proof. Let ∆n+1 be the set of Dirichlet characters of conductor pn+1 whose ∆-
component is η. Its cardinality is given by pn−1(p − 1). By Theorem A.4, we
have
⊗

δ∈∆n+1

LT (z)(δ) ∼p
Tam(T/Q(µpn+1))η

Tam(T/Q(µpn))η

∏

δ∈∆n+1

[

eδH
1
/f (Kp, T ) : eδzK

]

ϕn+1(v)⊗|∆n+1|.

This gives
(A.1)
⊗

δ∈∆n+1

ϕ−n−1◦LT (z)(δ) ∼p
Tam(T/Q(µpn+1))η

Tam(T/Q(µpn))η

∏

δ∈∆n+1

[

eδH
1
/f (Kp, T ) : eδzK

]

v⊗|∆n+1|.

Note that ϕ−n−1◦Tw−k+j+1 = p(n+1)(k−j−1)Tw−k+j+1◦ϕ
−n−1. The terms appear-

ing on the left-hand side are therefore simply p(n+1)(k−j−1)ColT,n+1(z)(δ). There-
fore, the p-adic valuation of the left-hand side of (A.1) is given by

pn−1(p− 1)(n+ 1)(k − j − 1) + q∗n + ordǫn Colτ(n,η)(z)
η(ǫn)

thanks to (4.2). Hence the result. �

The proof of our Proposition 4.11 implies that the defect of our inequality in
Theorem 5.5 is in fact given by the length of kerπη, where π is some projection
map. We see here that we may in fact relate this defect to the Tamagawa numbers,
namely,

lenZp kerπ
η = bηn+1 − b

η
n − p

n−1(p− 1)n(k − j − 1).

Let tηn be the integer sηn+b
η
n, which is the p-adic valuation of #X(Q(µpn), T

∨)η×
Tam(T/Q(µpn))

η. The Bloch–Kato conjecture predicts that this quantity should be
related to the leading coefficient of the complex L function of T at 1. Theorem 5.5
tells us that we have the equality

tηn+1 − t
η
n = q∗n +∇nX

η
τ(n,η) + κ(n, η)− rη∞ + pn−1(p− 1)n(k − j − 1).

for n≫ 0.
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