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Abstract 

Population-based cohort studies are invaluable to health research because of the 

breadth of data collection over time, and the representativeness of their samples. 

However, they are especially prone to missing data, which can compromise the validity 

of analyses when data are not missing at random. Having many waves of data 

collection presents opportunity for participants’ responsiveness to be observed over 

time, which may be informative about missing data mechanisms and thus useful as an 

auxiliary variable. Modern approaches to handling missing data such as multiple 

imputation and maximum likelihood can be difficult to implement with the large 

numbers of auxiliary variables and large amounts of non-monotone missing data that 

occur in cohort studies. Inverse probability-weighting can be easier to implement but 

conventional wisdom has stated that it cannot be applied to non-monotone missing 

data. This paper describes two methods of applying inverse probability-weighting to 

non-monotone missing data, and explores the potential value of including measures of 

responsiveness in either inverse probability-weighting or multiple imputation. 

Simulation studies are used to compare methods and demonstrate that 

responsiveness in longitudinal studies can be used to mitigate bias induced by missing 

data, even when data are not missing at random. 
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1 Introduction 

Missing data are one of the few problems faced by researchers from all disciplines. 

This problem is a particularly strong feature of longitudinal studies involving humans, 

where the logistics of following participants over years or decades combine with 

human error and omission to degrade the representativeness of samples and thus the 

utility of their data. Cohort studies often collect large quantities of information and 

exhibit complex patterns of missing data. While the strength of cohort studies lies in 

the breadth of information that can be collected over long periods of time, large 

numbers of variables push the computational limits of the statistical methods available 

for analysing missing data. Modern techniques for handling missing data generally 

assume that data are missing at random given observed variables. The challenge for 

the analyst then is to include a set of observed variables that is sufficient to maximise 

the plausibility of the missing at random assumption. This set can include auxiliary 

variables, which are informative about missingness but extraneous to the analytic 

model. 

In large cohort studies, even the list of prima facie good candidates for inclusion as 

auxiliary variables may be long. The motivation for this paper was a program of 

research focusing on child maltreatment in a prospective birth cohort that had been 
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followed through 15 waves of data collection over 28 years. Child maltreatment was 

recorded through the retrospective self-report of participants in wave 14 (age 23–24 

years), by which time a substantial portion had been lost to follow-up and another 

group or were non-respondent in that wave. There are good reasons to expect that 

missingness does not occur at random in variables like child maltreatment, which 

correlates with disadvantage and social marginalisation.1 Hundreds of potential risk 

factors and outcomes of child maltreatment were identified in the available dataset, 

across all waves of data collection. Nearly all were associated with both child 

maltreatment and missingness and thus good prima facie candidates for inclusion in 

analysis of missing data. Furthermore, child maltreatment itself was associated with 

missingness in other waves. Thus, questions arose as to if and how responsiveness 

could be utilised to maximise the plausibility of the missing at random assumption, and 

how to best utilise the large set of candidate auxiliary variables. 

 This paper reviews the available methods for dealing with missing data in large cohort 

studies and presents some adaptations of inverse probability-weighting and multiple 

imputation that utilise auxiliary variables, with a particular focus on the utilisation of 

responsiveness. The methods are applicable primarily to longitudinal studies with at 

least three waves of follow-up. They are particularly relevant to research questions 
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where strong relationships are suspected between model variables and the likelihood 

of data being missing or being not missing at random. 

The paper is organised as follows: Section 2 provides some background on types of 

missing data, common approaches to addressing missing data, and the potential value 

of responsiveness as an auxiliary variable; Section 3 describes a simple approach for 

applying inverse probability-weighting to non-monotone missing data, which makes 

some implicit use of responsiveness and has been previously implemented but not 

fully described or tested; Section 4 presents a novel approach to implementing inverse 

probability-weighting with non-monotone missing data, which also makes implicit use 

of responsiveness; Section 5 discusses some of the specific limitations of these 

approaches and extensions for addressing them; Section 6 presents four simulation 

studies that compare various approaches to inverse probability-weighting and multiple 

imputation, with and without inclusion of responsiveness and under different missing 

data conditions; and Section 7 summarises the main conclusions from these. 
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2 Background 

2.1 Patterns and mechanisms of missing data 

Patterns of missing data can be broadly classified as either monotone or non-

monotone.2 In cohort studies, progressive loss of participants, such as from death, 

withdrawal of consent or loss of contact, results in often-large portions of missing data 

that are strictly increasing over time ('monotone'). However, this situation is usually 

complicated by non-response to individual items and to whole waves of the survey 

(and a range of less common sources of missing data), which produce 'non-monotone' 

patterns of missing data. Monotone patterns are useful because they can simplify 

some of the methods for addressing missing data.3, 4 

‘Mechanisms of missingness’ refer to the probability of missingness with respect to 

variables of interest and may or may not relate to the true causes of missingness.5 

Missing data can be categorised into three conditions relative to the assumption upon 

which an analysis is based: missing completely at random (MCAR), missing at random 

(MAR), and not missing at random (NMAR).2 The MCAR assumption holds if 

missingness is unrelated to the values or missingness of any variables included in the 

analysis—generally, a strong assumption but the one underlying, for example, 

complete case analysis/listwise deletion. The weaker MAR assumption adopted by 
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'modern' methods holds if missingness of model variables is unrelated to the values or 

missingness of other model variables, given the observed values of any variables 

included in the analysis (including auxiliary variables). If there are relationships 

between missingness and model variables that exist after conditioning on other 

observed variables, then the MAR assumption does not hold and data are considered 

to be NMAR for the purposes of that analysis.2 The validity of the MAR assumption 

cannot truly be tested, as it relates to what are essentially 'unknown unknowns'.6 

2.2 Multiple imputation, maximum likelihood and inverse probability-weighting 

When the level of missing data is non-trivial and there are not good reasons to expect 

the MCAR assumption to hold (e.g. data were accidentally destroyed), there are three 

broad approaches to handling missing data that may produce valid inference under 

less restrictive MAR assumptions: multiple imputation, maximum likelihood and 

inverse probability-weighting. Imputation involves replacing missing values with those 

drawn from observed conditional distributions given any other available information. 

The assumptions underlying imputation are weaker than they may seem, operating at 

the level of the sample distributions rather than individual participants. Further, 

multiple imputation accounts for uncertainty in the imputed values, as first 

demonstrated by Rubin7. 
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While multiple imputation is perhaps the most commonly utilised of the modern 

approaches to missing data, imputation of large amounts of missing data can result in 

computational problems that impede the use of large imputation models that may be 

required to minimise the strength of the missing at random assumption.4 Additionally, 

large numbers of variables and non-normally distributed variables can be difficult to 

handle, and multiple imputation is best conducted in the context of pre-specified 

analyses as it is important that the imputation models support (are consistent with) 

the analysis model.4 All of these limitations present problems for cohort studies, where 

large numbers of variables are collected over long periods of time with associated high 

levels of missingness, for the purpose of unspecified future analyses. Multiple 

imputation can, however, handle non-monotone patterns of missing data, with the 

most common approaches to these being imputation by chained equations and 

multivariate normal imputation.4 

Maximum likelihood-based approaches to missing data, including Heckman selection 

models, involve explicitly modelling the likelihood of having complete data, 

simultaneously with implementation of the analysis model.8, 9 While having some 

advantages over multiple imputation and inverse probability-weighting with respect to 

assumptions and efficiency, implementation of maximum likelihood is generally 

restricted to linear models. Also, the ability to draw on information from auxiliary 
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variables is restricted by the simultaneous implementation of missingness and analysis 

models, and the availability of software is limited.10 

Inverse probability weighting is related to maximum likelihood-based approaches in 

the explicit modelling of an auxiliary 'missingness model'. However, rather than 

estimate sampling probabilities simultaneous and include them explicitly in the 

analysis model, the missingness model is estimated first, then each complete case is 

weighted according to the inverse of their probability of being complete, e.g. a 

participant who has half the probability of providing complete data carries twice as 

much weight in a substantive analysis that only includes weighted complete cases.3, 11 

Compared with multiple imputation and maximum likelihood, the implementation of 

inverse probability-weighting can be relatively straightforward; first the likelihood of 

having complete data given observed data is estimated using logistic regression, then 

the inverse of the fitted values are used to weight participants in a weighted complete 

case analysis. While this is a quite different approach to multiple imputation, the 

fundamental assumption underlying each is MAR. 

While inverse probability-weighting is commonly implemented to weight known-

probability samples (in national surveys, etc.), its use in other missing data problems 

has been restricted. This is largely because of the problems that non-monotone 
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missing data patterns present to its implementation.3 With monotone missing data, 

exclusion from the analysis because of incomplete data can be stepped out over time; 

e.g. in the case of progressive loss to follow-up, partial weights can be derived to 

account for loss to follow-up at each wave, based on all of the information observed 

prior to that wave, with the final weights being the product of the partial weights for 

each wave. With non-monotone missing data, the conventional approach is to 

construct weights using only variables that are fully observed.3 In the longitudinal 

setting, this usually restricts the weighting to variables measured at baseline only, 

which can mean ignoring a lot of information that may be informative about 

mechanisms of missingness, particularly missingness that occurs much later in time. 

2.3 Auxiliary variables and the potential value of responsiveness with respect to 

the missing at random assumption 

A key point to note about each of the above approaches to missing data is that the 

MAR assumption is defined by the observed information that is fed into the analysis. 

Auxiliary variables can reduce bias by weakening the MAR assumption in both multiple 

imputation and inverse probability-weighting.3, 12, 13 Measures of responsiveness are 

not usually considered as potential auxiliary variables, perhaps because they are 
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‘metadata’ that may need to be derived, and perhaps because information about 

responsiveness over time is limited or absent in most study designs.14 

Longitudinal studies with many waves of data collection provide a unique opportunity 

for observation of responsiveness in waves outside of those containing key variables. 

Responsiveness can be measured as, for example, the proportion of other waves 

responded to or the proportion of items missed in each wave. Using data from the 

1958 National Child Development Study (NCDS), Hawkes and Plewis15 modelled non-

response over time in the as dependent variables, to identify important missing data 

mechanisms, but did not evaluate their potential uses as auxiliary independent 

variables. When imputing missing predictors of treatment assignment before applying 

inverse probability of treatment weighting (propensity scores, used to address 

confounding rather than missing data), inclusion of missing value indicators has been 

found to reduce bias under NMAR conditions but induce bias under MAR.16 

Adding measures of responsiveness to missingness or imputation models may weaken 

the MAR assumption in the same way that adding other auxiliary variables does, with 

the weakening occurring if they predict both the values and missingness of variables in 

the analysis model.13 One potential difference from other auxiliary variables is that 

responsiveness may be a very good predictor of missingness.  If relationships between 
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model variables and missingness varies over time, then auxiliary measures of 

missingness may be less informative or even misinformative. The same is true, 

however, for more tangible auxiliary variables and this reflects the irreducible part of 

the MAR assumption; that missingness cannot be determined by unobserved variables. 

When many waves of follow-up are available, the stability of an association between a 

variable and response in other waves could be observed or even modelled. 

Apart from weakening the MAR assumption for the given analysis, inclusion of 

responsiveness provides opportunity for indirect evaluation of the MAR assumption. 

Strictly speaking, the MAR assumption cannot be tested because it is a function of 

unknown information.6, 17, 18 However, observed relationships between model 

variables and responsiveness at one time point may be informative about the 

relationships to missingness that cannot be observed at other time points.14, 19 This is 

the same basic premise that underlies follow-up studies of non-respondents. For 

example, Fielding et al.14 adapt the method proposed by Fairclough20 to test whether 

their outcome was significantly associated with response to a follow-up survey, after 

controlling for all other predictors of response to the follow-up survey. With many 

waves of follow-up, similar tests could be implemented using more sensitive 

continuous or count measures of missingness. In either inverse probability-weighting 
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or multiple imputation, insight might also be gained by comparing estimates that 

include or exclude the explicit measures of missingness. 

In Sections 3–5, I will now discuss two techniques for applying inverse probability-

weighting to cohort data with non-monotone patterns of missing data. The first is a 

relatively simple approach which can only be applied in relatively simple non-

monotone patterns. It has been previously implemented but not discussed in detail or 

evaluated. The second is a novel, more complex and versatile approach that extends 

some of the principles of the first. Both techniques make some implicit use 

responsiveness and allow for further explicit utilisation of it. In Section 6 they are 

evaluated using simulated data, alongside approaches to multiple imputation that vary 

in their utilisation of responsiveness as an auxiliary variable. If your interest lies more 

in multiple imputation (which is more efficient and, in some cases, more effective), 

then feel free to skip ahead to Section 6. 

3 Stratified inverse probability-weighting 

3.1 Overview 

Implementation of inverse probability-weighting in non-monotone missing data can be 

potentiated by stratifying on the pattern of missingness.3, 21, 22 First, a minimum 
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threshold for completeness must be set, such as response to a certain wave of data 

collection. Participants meeting this threshold will form the final weighted subsample. 

The threshold may include observation of all variables required for the analysis, or it 

may include only some (e.g. the outcome), with an expectation that missingness in the 

remainder can be handled by some other means (i.e. combining with multiple 

imputation or simpler, less robust methods that me be adequate for small amounts or 

certain types of missing data). Then, the sample is stratified according to their pattern 

of missingness in other waves or variables, and the probability of inclusion in the 

weighted subsample estimated within each stratum given only variables that are 

complete in that stratum. This approach was implemented by Seaman and White3, 

although little of their report was devoted to this aspect of the analysis. Using data 

from four waves of the NCDS, Seaman and White stratified their weighting by response 

in the two intermediate waves, resulting in four strata (respondent in both 

intermediate waves, non-respondent in wave 2 only, non-respondent in wave 3 only 

and non-respondent in both wave 2 and wave 3). Stratified inverse probability-

weighting has a few key benefits: 

1. It is compatible with non-monotone missing data, provided that the number of 

missingness patterns is small. If the number of missingness patterns is large, a 

few extensions are available (more on these to follow). 
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2. Compared with the conventional inverse probability-weighting approach which 

utilises only complete variables, it includes more potentially-informative 

variables for those in whom additional variables are observed. Thus, the 

underlying MAR assumption is weakened (in those strata). 

3. By allowing the probability of completeness to vary according to the pattern of 

missingness (through stratification), prior responsiveness becomes an implicitly 

modelled predictor of completeness. 

3.2 Assumptions 

The fundamental assumption characterising stratified inverse probability-weighting is 

that, within each pattern of response, missingness does not depend on variables in the 

model of interest, given variables that were observed within that stratum. 

Formally, if we let 

𝐼 =  inclusion in the analysis versus exclusion because of incomplete data

𝑋1, … , 𝑋𝑘  =  vectors of variables recorded in waves 1, … , 𝑘

𝑀1, … ,𝑀𝑘  =  missingness pattern in 𝑋1, … , 𝑋𝑘

𝑋𝑀  =  variables complete within missingness pattern 𝑀

 

then the MAR assumption is that, for each stratum, 
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 𝑃(𝐼|𝑀𝑘, 𝑋1, …𝑋𝑘) = 𝑃(𝐼|𝑀𝑘, 𝑋𝑀) (1) 

For example, in the analysis implemented by Seaman and White3, let the four patterns 

of response in waves two and three be defined as 𝑀11, 𝑀10, 𝑀01, and 𝑀00, 

respectively. Inclusion, 𝐼, was defined by response to the fourth wave. The set of 

assumptions relating to missingness mechanisms were the following: 

 

{
 
 
 

 
 
 

 

𝑃(𝐼|𝑀11, 𝑋1, …𝑋4) = 𝑃(𝐼|𝑀11, 𝑋1, 𝑋2, 𝑋3)

𝑃(𝐼|𝑀10, 𝑋1, …𝑋4) = 𝑃(𝐼|𝑀10, 𝑋1, 𝑋2)

𝑃(𝐼|𝑀01, 𝑋1, …𝑋4) = 𝑃(𝐼|𝑀01, 𝑋1, 𝑋3)

𝑃(𝐼|𝑀00, 𝑋1, …𝑋4) = 𝑃(𝐼|𝑀00, 𝑋1)

 (2) 

 

4 Stepped inverse probability-weighting 

4.1 Overview 

One limitations of stratified inverse probability-weighting is that as the number of 

waves increases, the number of potential patterns of missingness increases 

exponentially (other limitations will be discussed in Section 5). In such cases, some 

compromises may be possible through collapsing strata with similar response patterns, 

and either imputing missing values or replacing the variables from conflicting waves 
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with a set of dummy variables indicating response in those waves. However, this will 

only get you so far before large quantities of information are ignored or the analysis 

becomes overly complicated. Stepped inverse probability-weighting is a novel and 

relatively straightforward approach to handling situations like these. 

Stepped inverse probability-weighting combines elements of stratified inverse 

probability-weighting with the standard implementation of inverse probability-

weighting for monotone missing data, by identifying a subset of non-monotone 

missing data that exhibits monotone missingness. It is particularly relevant to large 

cohort studies with many waves of data collection. Like the standard approach to 

monotone missing data patterns, inclusion as a (minimally) complete case is stepped 

out over time. While patterns of wave response may be non-monotone, inclusion is 

strictly monotone; participants become progressively excluded from the analysis after 

the final wave in which they contribute a response. For example, in the above 

illustration from Seaman and White3 participants in patterns 𝑀11 and 𝑀01 who did not 

respond to wave 4 both would have become excluded after wave 3, regardless of their 

response in wave 2. 

The next step derives from the insight that, using this stepped definition of 'inclusion', 

participants who become excluded at any given point in time are by definition a subset 
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of respondents to the previous wave. Therefore, partial weights can be estimated 

using only these individuals, assigning partial weight = 1 for that step to any individuals 

who did not respond to the previous wave. The implication of this is that now, instead 

of relying only on baseline information, stepped inverse probability-weighting can be 

applied using any variables that were observed at baseline or in the previous wave. 

Further, observations of responsiveness in the intermediate waves (between baseline 

and the previous wave) will also be completely observed and these can be added to 

the missingness models. 

In stepped inverse probability-weighting, the initial stratification on response to the 

previous wave can then be extended, depending on within-stratum power, by further 

stratifying on response to intermediate waves. Theoretically, this can progress up to 

point at which 'full stratification' is achieved—all missingness patterns are represented 

within each step. At this point, stepped inverse probability-weighting becomes a 

somewhat less efficient version of stratified inverse probability-weighting (less 

efficient because of the increased variability in weights that would result from the 

assignment of partial weights = 1 to the non-respondents to the previous wave at each 

step). In such cases, it would be preferable to use stratified inverse probability-

weighting, without stepping inclusion out over time. In its simplest form—stratified 

only on response to the previous wave—stepped inverse probability-weighting 
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involves a single regression for each wave of follow-up but has the potential to include 

information that may be highly informative about missingness mechanisms: variables 

observed immediately prior to loss to follow-up, and indicators of prior responsiveness 

itself. 

4.2 Assumptions 

Stepped inverse probability-weighting is in some respects a collapsed form of stratified 

inverse probability-weighting; the starting point is a 'fully collapsed' stratum within 

each step. Thus, the basic assumption underlying stepped inverse probability-

weighting is usually stronger than for stratified inverse probability-weighting. In the 

fully collapsed scenario, the assumption is that exclusion (read: loss to follow-up) at 

each wave is unrelated to variables in the model of interest, given variables that are 

complete amongst respondents to the previous wave. This usually includes at least 

baseline variables, variables from the previous wave and intermediate responsiveness. 

Formally, in addition to the terms defined above, if we let 
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𝐼2, … , 𝐼𝑘  =  Inclusion in the analysis, stepped over waves 2…𝑘

𝑅𝑘−1 = response to the previous wave

𝑋𝑅𝑘−1=1 = variables complete amongst respondents to the previous wave

𝑀𝑅𝑘−1=1 = measures of prior responsiveness in respondents to the previous wave

 

then, for each wave of follow-up, the basic assumptions is that 

 𝑃(𝐼𝑘|𝑅𝑘−1, 𝑋1, …𝑋𝑘) = 𝑃(𝐼𝑘|𝑅𝑘−1, 𝑋𝑅𝑘−1=1) (3) 

which can usually be further specified to 

 𝑃(𝐼𝑘|𝑅𝑘−1, 𝑋1, …𝑋𝑘) = 𝑃(𝐼𝑘|𝑅𝑘−1, 𝑋1, 𝑋𝑘−1, 𝑀𝑅𝑘−1=1) (4) 

For example, if stepped inverse probability-weighting had been applied to the example 

provided by Seaman and White3 in its most simple (least stratified) form, then the set 

of assumptions would have been 

 

{
 
 

 
 

 

𝑃(𝐼2|𝑋1, …𝑋𝑘) = 𝑃(𝐼2|𝑋1)

𝑃(𝐼3|𝑅2 = 1, 𝑋1, …𝑋𝑘) = 𝑃(𝐼3|𝑅2 = 1, 𝑋1, 𝑋2)

𝑃(𝐼4|𝑅3 = 1, 𝑋1, …𝑋𝑘) = 𝑃(𝐼4|𝑅3 = 1, 𝑋1, 𝑋3, 𝑅2)

 (5) 

Of course, such an analysis should not have been implemented because the number of 

strata was low so it was possible to implement stratified inverse probability-weighting. 
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Note that the first two assumptions in (5) are almost equivalent to the assumptions 

that would be adopted in a standard application of inverse probability-weighting 

should the data have been monotone missing, while the final assumption excludes 𝑋2 

(which would have been observed if data were monotone missing) and includes a 

reference to response in the second wave, 𝑅2 (which corresponds to 𝑀𝑅𝑘−1=1 in (4)). 

Including such explicit measures of responsiveness is optional. 

5 Limitations and extensions of stepped/stratified inverse probability-weighting 

5.1 Item non-response in missingness models 

The examples and assumptions above consider only wave non-response, ignoring the 

possibility of item non-response, which usually occurs to some extent and was of 

course also encountered by Seaman and White3. As there are usually far more data 

items than waves of data collection, item non-response has the potential to increase 

the number of missingness patterns by orders of magnitude. Apart from further 

stratification, at least a couple of alternatives are available: impute the missing values 

prior to weighting, or incorporate missing value indicators into the weighting 

procedure. While incorporating missing value indicators is not generally a good idea in 

substantive analysis models, it may be defended in missingness models on the grounds 

that the missingness itself can be informative too—potentially even more informative 
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than the underlying value. The usual coefficient biases and problems with 

interpretation that occur when using missing value indicators in analysis models do not 

apply as clearly to the missingness model, because inferences derived from the 

missingness model do not need to be generalised beyond the study sample; 

missingness does not even exist in the population. Seaman and White3 used single 

imputation for missing values with a prevalence of <2% and missing indicators for 

items with >2% missing values. 

5.2 Item and wave non-response in analysis models 

In multivariate analyses, especially those incorporating many variables, weighting only 

complete cases may erode too much of the sample, diminishing statistical power and 

strengthening the MAR assumption (the smaller the fraction of complete cases, the 

less likely it is that weighting can make them representative of the whole sample). In 

such cases, it may be preferable to define a threshold of ‘minimal completeness’ and 

to combine inverse probability-weighting for handling the bulk of missing data (usually 

loss to follow-up) with another method for handling the remainder. Building on their 

previous analysis, Seaman et al.21 demonstrate how inverse probability-weighting can 

be combined with multiple imputation; first weighting respondents to wave 4, then 

multiply imputing any remaining missingness due to item non-response or prior wave 
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non-response. This approach is equally applicable to stepped/stratified inverse 

probability-weighting. Combining other simpler but less robust methods (single 

imputation, last observation carried forward, etc.) may also be acceptable depending 

on the variable concerned and extent of missingness within the minimally-complete 

cases. 

5.3 Many, rare, and strong predictors of missingness 

In large cohort studies in particular, each wave of data collection may include 

hundreds of variables, reaching into the thousands once level-indicators of categorical 

variable are considered. This can present obvious problems for the fitting of 

missingness models. Seaman and White3 propose using forwards stepwise selection in 

such cases. However, if an analysis model is pre-specified, then one should also 

consider the relationship between the potential predictors of missingness and the 

variables of interest (those included in the substantive model); including variables that 

predict missingness but not the variables of interest will only reduce efficiency of the 

weights without improving bias.3 For categorical predictors of missingness, it is also 

worth considering collapsing categories that exhibit similar associations with 

missingness, thereby improving overall model power and potentially allowing for a 

wider range of (more coarsely measured) variables to be included. This could be done 



 Doidge (2016) 24 

 

 
 

 

prior to performing stepwise variable selection, and may reduce the need to select 

variables. 

Another time to consider collapsing levels of categorical missingness predictors is 

when some of those levels are rare. Rare variables may produce instability in weights 

or lead to perfect prediction. Usually, this perfect prediction will be of inclusion, as 

exclusion, at least when stepped over time, will usually be less common. This makes 

collapsing rare categories less problematic. When categories strongly predict exclusion, 

then there is likely to be a mechanism violating the MAR assumption that must be 

acknowledged and the implications for the analysis considered. 

It should be noted that collapsing variables for the purposes of the missingness model 

does not necessarily inhibit their use in other forms (e.g. uncollapsed) in the analysis 

model. Provided that the conditional associations with missingness are in fact similar, 

then the MAR assumption does not greatly change. However, collapsing categories 

that are dissimilar with respect to missingness could substantially alter the MAR 

assumption and reduce the effectiveness of weighting. 
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5.4 Power requirements 

For stepped/stratified inverse probability-weighting to be implemented, each stratum 

must contain a sufficient number of observations (participants) proportional to the 

prevalence of the missingness being modelled, to ensure that regression coefficients, 

and thus weights, are reasonably stable. When retention is near-perfect within a 

stratum or at a step, either a smaller set of weighting variables must be selected 

(which may not matter given the small potential for bias) or the stratum can be 

combined with another exhibiting a similar pattern of missingness. 

5.5 Structural support for inverse probability weights 

For weighting to be effective, there must be good overlap of the distributions of 

weights between the included minimally complete cases and those excluded because 

of missing data. Some insights about this may be able to be gleaned from the literature 

on inverse probability of treatment (propensity score) analysis. For example, Rubin23 

proposed three guidelines for comparing the distributions of propensity scores 

between treatment and control groups: (1) that the difference in mean propensity 

score should be less than half a standard deviation, (2) that the ratio of the variances 

of the propensity scores be close to one and certainly between 0.5 and 2.0, and (3) 

that the ratio of the variances of the residuals of covariates after adjusting for the 
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propensity score must be close to 1.0 and certainly between 0.5 and 2.0. When these 

guidelines are exceeded, the capacity of the propensity scores to reduce confounding 

becomes limited, and likewise the capacity of inverse probability-weighting to reduce 

bias from missing data may also be reduced. Such guidelines would, however, 

effectively restrict the application of inverse probability-weighting to situations where 

only low levels of selection bias would be present in complete case data. It may be that 

the use of inverse probability-weighting in missing data requires different thresholds 

to the ones proposed by Rubin for use with confounding. In any case but especially 

when there is poor overlap of the distributions, close attention to the characteristics of 

participants with very low predicted probabilities of completeness, and to the factors 

most strongly associated with non-response, may help to understand limits of 

representation of the weighted subsample. 

5.6 Plausibility of the stratified/stepped missing at random assumption 

Stepped/stratified inverse probability-weighting allows the missingness model to vary 

by step and/or stratum, only including predictors of missingness in those for whom 

they are observed. That a variable would be only be related to missingness if it is 

observed might seem unrealistic but becomes more intuitive when you consider 

missingness occurring over time. For example, variables observed in wave 2 may well 
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be unrelated to loss to follow-up at wave 4 given variables observed in wave 3, while 

still being associated with loss to follow-up at wave 3. In cohort studies that collect a 

broad amount of information at each wave, and in trials where the information 

collected during follow-up are repeated measures of the same underlying variable, this 

assumption may be more defensible. In their multivariate analysis of the NCDS cohort, 

Hawkes and Plewis15 found that previous-wave variables were the strongest predictors 

of non-response. 

6 Simulations 

6.1 Objectives and methods 

Below are presented a series of simulations exploring (1) the value of stepped or 

stratified inverse probability-weighting in reducing bias compared with other available 

methods, (2) the potential value of including measures of responsiveness in inverse 

probability-weighting or multiple imputation, and (3) the sensitivity of each method to 

violations of the missing at random assumption. Eleven approaches were compared: (i) 

complete case analysis (to benchmark the degree of bias reduction in other methods), 

(ii) inverse probability-weighting using baseline variables only, (iii) inverse probability-

weighting using baseline measures and responsiveness, (iv) stratified inverse 

probability-weighting, (v) stepped inverse probability-weighting without 
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responsiveness, (vi) stepped inverse probability-weighting with responsiveness, (vii) 

multiple imputation using baseline variables only, (viii) multiple imputation using 

baseline variables and responsiveness, (ix) multiple imputation using responsiveness 

only (for comparison purposes only; this would not usually be recommended); (x) 

multiple imputation by chained equations without responsiveness, and (xi) multiple 

imputation by chained equations with responsiveness. Maximum likelihood-based 

approaches were not used because of the focus on categorical and auxiliary variables. 

Another approach not considered here is multivariate normal multiple imputation, as 

all variables were categorical. However, methods for its application with categorical 

variables have been a topic of recent research4, 24, 25 and it may warrant consideration 

in similar situations. 

The simulations focus on wave non-response in a longitudinal setting with non-

monotone patterns of missingness. The simulations were designed to mimic the 

motivating example: estimation of the prevalence of child maltreatment, 

retrospectively recorded in a population-based birth cohort and associated with non-

response at all points in time. For simplicity and comparability, item non-response is 

not simulated, but could be handled by some of the approaches in ways described in 

section 5. 
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Each simulation included one outcome variable, to be estimated from observation in 

the final wave, and 20 weak correlates (𝑐 = 0.1 with outcome, otherwise independent 

of each other) observed in each other wave (i.e. distinct rather than time-varying 

correlates). In keeping with the categorical nature of most epidemiological data and to 

demonstrate handling of such data, variables were all created as binaries and assigned 

prevalence = 50%. Each simulation included 1000 participants who exhibited a 

probability of response of 50% at each wave after the first, with a portion of non-

respondents becoming permanently lost to follow-up at each wave (a high level of 

missing data was simulated to better demonstrate the of the value of the approaches 

to missing data). Each simulation was repeated 20 times, and the mean estimated 

outcome prevalence and the mean of its standard error were used to compare the 

different approaches to missing data. 

The first simulation included only four waves of data collection and thus relatively 

simple patterns of missingness (four patterns based on response to waves 2 and 3, 

mimicking the example discussed in Section 3). Responsiveness was allowed to depend 

on baseline variables and variables measured in the previous wave (OR = 0.67 with 

respect to each correlate), thus satisfying the missing at random assumption in any of 

the approaches that included these variables in missingness or imputation models. The 

second simulation extended the first by adding 6 additional waves of follow-up, thus 
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complicating the patterns of missing data and increasing the number of relevant 

variables. The final two simulations compared the robustness of methods to not 

missing at random conditions, where response was directly related to the outcome 

variable. In simulation 3, responsiveness was allowed to depend on the outcome 

variable and variables measured in the previous wave. In simulation 4, responsiveness 

was determined only by the outcome measure. Thus, simulation 3 represents a weaker 

violation of the missing at random assumption, with only part of the relationship 

between the outcome and missingness being determined by observed variables, and 

simulation 4 represents a strong violation where the only thing truly driving 

missingness is the outcome variable. 

Simulations were conducted using Stata 12 (Statacorp, Texas) and input code is 

provided in the Supplementary Appendix. Correlates were drawn from binomial 

distributions with the probability of success being a function of the outcome variable 

(p = 0.55 if outcome = positive; p = 0.45 if outcome = negative).  Response variables 

were drawn from binomial distributions with the probability of success being a 

function of the outcome variable and correlates, depending on the simulation, set to 

approximately maintain selection odds with respect to the outcome across 

simulations. Approaches based on inverse probability-weighting used fitted logistic 
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regressions without modifications (weight stabilisation, etc.). Approaches based on 

multiple imputation used logit imputation models with 20 imputations. 

6.2 Results 

Results of each simulation are presented in Table 1. In simulation 1, as would be 

expected, the methods that ignored information from the intermediate waves (and 

thus for which the missingness assumption was violated) exhibited greater bias. 

Stratified and stepped inverse probability-weighting performed comparably to multiple 

imputation by chained equations in terms of mean bias reduction but with about half 

the precision. Inclusion of responsiveness (indicators of response to waves 2 and 3) in 

weighting or imputation models made little difference to the estimates of prevalence 

or their standard error, improving them only slightly in each case. While multiple 

imputation by chained equations was able to be implemented, it required the 

specification of 41 imputation models (one for each variable from waves 2–4). 

The increased complexity of patterns of missingness in simulation 2 precluded 

stratified inverse probability-weighting from being implemented. The increased 

number of variables that predict both missingness and the outcome (160) further 

complicated the implementation of multiple imputation by chained equations, leading 

to computation problems that precluded it being fully implemented. While it may have 
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been feasible to implement some variable selection method to identify reasonably 

good imputation models given the available power, this was beyond the scope of the 

study. The effectiveness of stepped inverse probability-weighting diminished slightly, 

but it was still better than multiple imputation or inverse probability-weighting using 

baseline measures alone. However, the apparent benefit conveyed by including 

measures of missingness in multiple imputation or inverse probability-weighting 

became much more pronounced. Inclusion of responsiveness in either of these 

methods—even the inclusion of responsiveness alone—was sufficient to remove most 

bias. 

Results of simulation 3 were similar to simulation 2 in terms of the comparative 

effectiveness of each method and the inability to implement stratified inverse 

probability-weighting or multiple imputation by chained equations.  The importance of 

including responsiveness, however, became more pronounced. Any method that 

ignored responsiveness had only limited effect in terms of reducing bias, while 

methods that included responsiveness exhibited comparable effectiveness to 

simulation 2, despite the introduction of a direct relationship between the outcome 

and the probability of response. The effectiveness of stepped inverse probability-

weighting diminished in this scenario, even with inclusion of responsiveness. 
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In simulation 4, with only the outcome truly driving responsiveness, stepped inverse 

probability-weighting and any method that ignored responsiveness proved essentially 

ineffective, while other methods that included responsiveness retained excellent levels 

of bias-reduction. 

7 Discussion and conclusions 

While multiple imputation is generally preferable to inverse probability-weighting, it 

may not be well-suited to some scenarios in which large numbers of variables predict 

both the missing variables of interest and missingness itself. In such cases, stepped or 

stratified inverse probability-weighting may provide a simple alternative, requiring less 

model specification and allowing for automated variable selection methods to be 

incorporated. Simplification always comes at a cost, though; in this case, strengthening 

of the MAR assumption and sacrificing statistical power. There is a clear trade-off that 

must be weighed by the analyst within the context of the study. 

The value of stepped or stratified inverse probability-weighting is mostly restricted to 

situations where auxiliary variables from intermediate waves are likely to be 

particularly valuable. If variables observed at baseline are fairly comprehensive and 

only limited additional information about mechanisms of missingness is likely to be 

provided by intermediate or subsequent waves, then focusing on that baseline 
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information—or baseline information plus responsiveness—may be sufficient. Both 

inverse probability-weighting or multiple imputation with only complete auxiliary 

variables (including responsiveness) are relatively straightforward procedures in 

modern computing software. As novel procedures, stepped and stratified inverse 

probability-weighting require additional coding but potentially less than the adequate 

specification and testing of multiple imputation by chained equations if a large number 

of imputation models are required. 

What was really highlighted in the results of the simulation studies was the potential 

value of prior responsiveness in weakening the MAR assumption and improving 

performance of any method under NMAR conditions. The fact that methods which 

included responsiveness were still able to address most bias in simulations 3 and 4 

implies that that inclusion made the missing at random assumption plausible, despite 

the omission of variables that were truly related to both missingness and the outcome. 

Under MAR conditions (when the auxiliary variables matched the simulated 

determinants), inclusion of responsiveness made little difference to estimates, but as 

the conditions became increasingly NMAR, responsiveness became increasingly 

important and some methods that utilised it even performed better than under MAR. 

The increase in bias that Seaman and White16 observed with respect to use of 
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missingness indicators in propensity score analysis did not appear to extend to the 

utilisation of responsiveness in missingness or imputation models. 

The simulation study presented here focused on the utilisation of responsiveness and 

the use of techniques in specific contexts (cohort studies with many waves and many 

variables). It is not a comprehensive comparison of the techniques under all 

conditions. Several potentially-relevant study parameters were not varied, including 

the number of auxiliary variables and the correlations between the auxiliary variables 

and outcome variable. Some research on the influence of such factors on the 

performance of techniques has been previously published but it is a relatively 

unexplored field.12 These factors are unlikely to influence findings with respect to the 

utilisation of responsiveness, apart from making it more or less important relative to 

the value contributed by other auxiliary variables. 

How responsiveness should be measured and incorporated to optimise performance 

of the techniques has also not been explored. One potential pitfall in the utilisation of 

responsiveness that was not revealed by the simulation study relates to the 

assumptions that are made about participants lost to follow-up. Loss to follow-up may 

not indicate a low level of responsiveness and almost certainly does not to the degree 

that would be indicated by tallying the number of non-responses long after a 



 Doidge (2016) 36 

 

 
 

 

participant was lost. It is therefore advisable that responsiveness only be measured 

during the windows in which the participant had fair opportunity to respond (i.e. up 

until the point at which they become lost to follow-up). Measures of responsiveness 

may therefore also have some level of missing data, which should be accounted for 

just like missing data in other auxiliary variables (such as by specifying an imputation 

model for responsiveness). 

In conclusion, cohort studies and trials that involve many waves of follow-up provide a 

unique opportunity for observing responsiveness of participants over time. This 

information should not be disregarded in analysis of missing data and its use should be 

prioritised whenever there are concerns that data are not missing at random. 

Acknowledgements 

The author would like to thank Dr Shaun Seaman for insightful discussion of the 

assumptions presented above, and Profs Leonie Segal and Paul Delfabbro for their 

detailed comments on a draft of this paper. 

https://www.researchgate.net/profile/Paul_Delfabbro?el=1_x_11&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/profile/Leonie_Segal?el=1_x_11&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==


 Doidge (2016) 37 

 

 
 

 

Funding 

This research received no specific grant from any funding agency in the public, 

commercial, or not-for-profit sectors. 

References 

1. Drake B and Jonson-Reid M. Poverty and Child Maltreatment. In: Korbin JE 

and Krugman RD, (eds.). Handbook of Child Maltreatment. Springer Netherlands, 

2014, p. 131-48. 

2. Little RJA and Rubin DB. Statistical Analysis with Missing Data, Second 

Edition. Hoboken, NJ, USA: John Wiley & Sons, 2002. 

3. Seaman SR and White IR. Review of inverse probability weighting for dealing 

with missing data. Stat Methods Med Res. 2013; 22: 278-95. 

4. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in 

epidemiological and clinical research: potential and pitfalls. BMJ. 2009; 338. 

5. Schafer JL and Graham JW. Missing data: our view of the state of the art. 

Psychol Methods. 2002; 7: 147-77. 

https://www.researchgate.net/publication/277689712_Statistical_Analysis_with_Missing_Data_Second_Edition?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/277689712_Statistical_Analysis_with_Missing_Data_Second_Edition?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/49741953_Review_of_inverse_probability_weighting_for_dealing_with_missing_data?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/49741953_Review_of_inverse_probability_weighting_for_dealing_with_missing_data?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/26328207_Multiple_imputation_for_missing_data_in_epidemiological_and_clinical_research_Potential_and_pitfalls_British_Medical_Journal?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/26328207_Multiple_imputation_for_missing_data_in_epidemiological_and_clinical_research_Potential_and_pitfalls_British_Medical_Journal?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/235726150_Missing_Data_Our_View_of_the_State_of_the_Art?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==


 Doidge (2016) 38 

 

 
 

 

6. Jaeger M. On Testing the Missing at Random Assumption. In: Fürnkranz J, 

Scheffer T and Spiliopoulou M, (eds.). Machine Learning: ECML 2006. Springer Berlin 

Heidelberg, 2006, p. 671-8. 

7. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: John 

Wiley & Sons, 1987. 

8. Muthén B, Kaplan D and Hollis M. On structural equation modeling with data 

that are not missing completely at random. Psychometrika. 1987; 52: 431-62. 

9. Allison PD. Estimation of linear models with incomplete data. In: Clogg CC, 

(ed.). Sociological methodology. San Fancisco: Jossey-Bass, 1987, p. 71-103. 

10. Cole JC. How to Deal With Missing Data: Conceptual Overview and Details for 

Implementing Two Modern Methods. In: Osborne JW, (ed.). Best Practices in 

Quantitative Methods. Thousand Oaks, CA: SAGE, 2008, p. 214-39. 

11. Wooldridge JM. Inverse probability weighted estimation for general missing 

data problems. Journal of Econometrics. 2007; 141: 1281-301. 

12. Mustillo S and Kwon S. Auxiliary Variables in Multiple Imputation When Data 

Are Missing Not at Random. The Journal of Mathematical Sociology. 2015; 39: 73-91. 

https://www.researchgate.net/publication/221112703_On_Testing_the_Missing_at_Random_Assumption?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/44500847_Multiple_Imputation_For_Nonresponse_In_Surveys?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/44500847_Multiple_Imputation_For_Nonresponse_In_Surveys?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/24062775_On_structural_equation_modeling_with_data_that_are_not_missing_completely_at_random?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/24062775_On_structural_equation_modeling_with_data_that_are_not_missing_completely_at_random?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/243692522_Estimation_of_Linear_Models_with_Incomplete_Data?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/243692522_Estimation_of_Linear_Models_with_Incomplete_Data?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/222428598_Inverse_Probability_Weighted_Estimation_for_General_Missing_Data_Problems_Journal_of_Econometrics_141_1281-1301?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/222428598_Inverse_Probability_Weighted_Estimation_for_General_Missing_Data_Problems_Journal_of_Econometrics_141_1281-1301?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/275061886_Auxiliary_Variables_in_Multiple_Imputation_When_Data_Are_Missing_Not_at_Random?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==


 Doidge (2016) 39 

 

 
 

 

13. White IR, Royston P and Wood AM. Multiple imputation using chained 

equations: Issues and guidance for practice. Stat Med. 2011; 30: 377-99. 

14. Fielding S, Fayers PM and Ramsay CR. Investigating the missing data 

mechanism in quality of life outcomes: a comparison of approaches. Health Qual Life 

Outcomes. 2009; 7: 57. 

15. Hawkes D and Plewis I. Modelling non-response in the National Child 

Development Study. Journal of the Royal Statistical Society: Series A (Statistics in 

Society). 2006; 169: 479-91. 

16. Seaman S and White I. Inverse Probability Weighting with Missing Predictors 

of Treatment Assignment or Missingness. Communications in Statistics - Theory and 

Methods. 2014; 43: 3499-515. 

17. Rubin DB. Inference and Missing Data. Biometrika. 1976; 63: 581-92. 

18. Molenberghs G, Beunckens C, Sotto C and Kenward MG. Every missingness 

not at random model has a missingness at random counterpart with equal fit. Journal of 

the Royal Statistical Society: Series B (Statistical Methodology). 2008; 70: 371-88. 

19. Listing J and Schlittgen R. Tests If Dropouts Are Missed at Random. 

Biometrical Journal. 1998; 40: 929-35. 

https://www.researchgate.net/publication/49746707_White_IR_Royston_P_Wood_AMMultiple_imputation_using_chained_equations_Issues_and_guidance_for_practice_Stat_Med_304_377-399?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/49746707_White_IR_Royston_P_Wood_AMMultiple_imputation_using_chained_equations_Issues_and_guidance_for_practice_Stat_Med_304_377-399?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/26309999_Investigating_the_missing_data_mechanism_in_quality_of_life_outcomes_A_comparison_of_approaches?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/26309999_Investigating_the_missing_data_mechanism_in_quality_of_life_outcomes_A_comparison_of_approaches?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/26309999_Investigating_the_missing_data_mechanism_in_quality_of_life_outcomes_A_comparison_of_approaches?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/4771676_Modelling_Non-Response_in_the_National_Child_Development_Study?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/264388666_Inverse_Probability_Weighting_with_Missing_Predictors_of_Treatment_Assignment_or_Missingness?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/264388666_Inverse_Probability_Weighting_with_Missing_Predictors_of_Treatment_Assignment_or_Missingness?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/264388666_Inverse_Probability_Weighting_with_Missing_Predictors_of_Treatment_Assignment_or_Missingness?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/280743082_Inference_and_Missing_Data?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/4993363_Every_missing_not_at_random_model_has_got_a_missing_at_random_counterpart_with_equal_fit?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/4993363_Every_missing_not_at_random_model_has_got_a_missing_at_random_counterpart_with_equal_fit?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/4993363_Every_missing_not_at_random_model_has_got_a_missing_at_random_counterpart_with_equal_fit?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/4993363_Every_missing_not_at_random_model_has_got_a_missing_at_random_counterpart_with_equal_fit?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/4993363_Every_missing_not_at_random_model_has_got_a_missing_at_random_counterpart_with_equal_fit?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==


 Doidge (2016) 40 

 

 
 

 

20. Fairclough DL. Design and analysis of quality of life studies in clinical trials. 

Boca Raton: CRC Press, 2002. 

21. Seaman SR, White IR, Copas AJ and Li L. Combining Multiple Imputation and 

Inverse-Probability Weighting. Biometrics. 2012; 68: 129-37. 

22. Thomas C, Hypponen E and Power C. Prenatal exposures and glucose 

metabolism in adulthood: are effects mediated through birth weight and adiposity? 

Diabetes Care. 2007; 30: 918-24. 

23. Rubin DB. Using Propensity Scores to Help Design Observational Studies: 

Application to the Tobacco Litigation. Health Services and Outcomes Research 

Methodology. 2001; 2: 169-88. 

24. Bernaards CA, Belin TR and Schafer JL. Robustness of a multivariate normal 

approximation for imputation of incomplete binary data. Stat Med. 2007; 26: 1368-82. 

25. Lee KJ and Carlin JB. Multiple Imputation for Missing Data: Fully Conditional 

Specification Versus Multivariate Normal Imputation. Am J Epidemiol. 2010; 171: 624-

32. 

 

 

https://www.researchgate.net/publication/267975750_Design_and_Analysis_of_Quality_of_Life_Studies_in_Clinical_Trials?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/51767455_Combining_Multiple_Imputation_and_Inverse-Probability_Weighting?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/51767455_Combining_Multiple_Imputation_and_Inverse-Probability_Weighting?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/51767455_Combining_Multiple_Imputation_and_Inverse-Probability_Weighting?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/51767455_Combining_Multiple_Imputation_and_Inverse-Probability_Weighting?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/6527797_Prenatal_Exposures_and_Glucose_Metabolism_in_Adulthood_Are_effects_mediated_through_birth_weight_and_adiposity?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/6527797_Prenatal_Exposures_and_Glucose_Metabolism_in_Adulthood_Are_effects_mediated_through_birth_weight_and_adiposity?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/6527797_Prenatal_Exposures_and_Glucose_Metabolism_in_Adulthood_Are_effects_mediated_through_birth_weight_and_adiposity?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/226721116_Using_Propensity_Scores_to_Help_Design_Observational_Studies_Application_to_the_Tobacco_Litigation?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/6973609_Robustness_of_a_Multivariate_Normal_Approximation_for_Imputation_of_Binary_Incomplete_Data?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/6973609_Robustness_of_a_Multivariate_Normal_Approximation_for_Imputation_of_Binary_Incomplete_Data?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/41165943_Multiple_Imputation_for_Missing_Data_Fully_Conditional_Specification_Versus_Multivariate_Normal_Imputation?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/41165943_Multiple_Imputation_for_Missing_Data_Fully_Conditional_Specification_Versus_Multivariate_Normal_Imputation?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==
https://www.researchgate.net/publication/41165943_Multiple_Imputation_for_Missing_Data_Fully_Conditional_Specification_Versus_Multivariate_Normal_Imputation?el=1_x_8&enrichId=rgreq-0ae621fca9a31691444fdc4962e3869f-XXX&enrichSource=Y292ZXJQYWdlOzI5ODcyNTk2MztBUzozNDg1MzQ5MDY4Njc3MjJAMTQ2MDEwODYwNTcxNA==


 Doidge (2016) 41 

 

 
 

 

Table 1 Simulation results comparing methods for handling non-monotone categorical missing data under missing at random and not 
missing at random conditions 

Analysis Simulation 1a Simulation 2b Simulation 3c Simulation 4d 
 Valide 𝑷𝒓̂ (SE) Valide 𝑷𝒓̂ (SE) Valide 𝑷𝒓̂ (SE) Valide 𝑷𝒓̂ (SE) 

Whole sample  50.0  50.0  50.0  50.0 
Complete case analysis no 33.3 (2.3) no 32.0 (2.3) no 34.6 (2.4) no 34.0 (2.4) 
IPW using baseline variables only no 41.4 (3.0) no 40.3 (3.0) no 37.1 (2.5) no 36.4 (2.5) 
IPW using baseline variables and responsiveness no 42.7 (3.2) no 45.2 (3.2) no 45.2 (2.8) no 46.1 (2.8) 
Stratified IPW no 46.5 (4.3) no UTC no UTC no UTC 
Stepped IPW without responsiveness yes 45.7 (4.5) yes 44.3 (5.1) no 39.5 (3.6) no 31.4 (2.8) 
Stepped IPW with responsiveness yes 45.8 (4.6) yes 44.1 (5.0) no 41.0 (3.7) no 34.6 (2.9) 
MI using baseline variables only no 41.3 (2.6) no 40.6 (2.6) no 37.5 (2.3) no 36.8 (2.4) 
MI using baseline variables and responsiveness no 42.8 (2.6) no 46.4 (2.5) no 46.9 (2.2) no 47.8 (2.0) 
MI using responsiveness onlyf no 39.0 (2.7) no 46.7 (2.6) no 47.1 (2.2) no 47.2 (2.3) 
MI by chained equations excluding responsiveness yes 45.8 (2.5) yes UTC no UTC no UTC 
MI by chained equations including responsiveness yes 46.1 (2.6) yes UTC no UTC no UTC 

IPW: inverse probability-weighting; MI: multiple imputation; 𝑃𝑟̂: mean estimated prevalence; SE: mean standard error; UTC: unable to 
compute without substantial modification  
aFour waves of follow-up, missingness determined by baseline and prior-wave variables. 
bTen waves of follow-up, missingness determined by baseline and prior-wave variables. 

cTen waves of follow-up, missingness determined by prior-wave and outcome variables. 

dTen waves of follow-up, missingness determined by outcome variable alone. 
eDoes the method incorporate all variables that are simulated determinants of missingness (is MCAR/MAR theoretically supported)? 

fMI using responsiveness only would not usually be considered an appropriate approach, despite its good performance in some of these 
simulations. It is presented here to illustrate the potential value of responsiveness relative to other auxiliary variables. 
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